1	Revision 4 (Clean)
2	Lead and noble gas isotopic constraints on the origin of Te-bearing adularia-sericite
3	epithermal Au-Ag deposits in a calc-alkaline magmatic arc, NE China
4	Shen Gao ^{1, 2*} (<i>Corresponding Author</i>), Albert H. Hofstra ³ , Kezhang Qin ^{2, 4*}
5	(<i>Corresponding Author</i>), Xinyu Zou ² , Michael J. Pribil ³ , Andrew G. Hunt ³ , Andrew H.
6	Manning ³ , Heather A. Lowers ³ , Hong Xu ¹
7	¹ School of Earth Sciences and Resources, China University of Geosciences (Beijing),
8	Beijing 100083, China
9	² Key Laboratory of Mineral Resources, Institute of Geology and Geophysics, Chinese
10	Academy of Sciences, Beijing 100029, China
11	³ U.S. Geological Survey, P.O. Box 25046, Denver, CO 80225, USA
12	⁴ University of Chinese Academy of Sciences, Beijing 100049, China
13	
14	Submitted to: American Mineralogist
15	Submission date: 04/14/2022
16	Revision 1 date: 04/20/2023
17	Revision 2 date: 07/21/2023
18	Revision 3 date: 11/17/2023
19	Revision 4 date: 12/05/2023
20	

21

Abstract

22

23 Tellurium (Te)-bearing adularia-sericite epithermal Au-Ag deposits are widely distributed in calc-alkaline magmatic arcs and are an important current and future source 24 of precious and critical metals. The source of ore-forming fluids in these deposits remains 25 26 unclear due to the lack of in-situ isotopic evidence on Au-, Ag-, and Te-bearing minerals. To advance the understanding of the source and evolution of Te and precious metals, 27 28 herein, we combine in situ Pb isotope analysis with He, Ne, and Ar isotope and 29 microthermometric analysis of fluid inclusions in ore and gangue minerals from two Te-rich and two Te-poor epithermal Au-Ag deposits that occur in an Early Cretaceous 30 31 magmatic arc in the North Heilongjiang Belt, northeastern China. Ore minerals (hessite, petzite, calaverite, altaite, pyrite, chalcopyrite, and galena) from Te-rich Au-Ag deposits, 32 including Sandaowanzi and Yongxin, have the least radiogenic Pb isotope compositions 33 $(^{206}\text{Pb}/^{204}\text{Pb}$ from 18.1 to 18.3) and the lowest µ1 values (the $^{238}\text{U}/^{204}\text{Pb}$ ratio of the lead 34 35 source down to 9.14) of the deposits studied. For these Te-rich deposits, noble gas isotope data show that fluid inclusions in ore minerals contain a large proportion of 36 mantle He (up to 25%) whereas barren early-stage minerals do not (<1%). The Pb, noble 37 gas isotope, and fluid inclusion microthermometric results suggest that Te-rich 38 39 ore-forming fluids were likely discharged from mafic magmas into convecting meteoric flow systems at shallow levels (<2 km). In contrast to the Te-rich deposits, ore minerals 40 from the Te-poor Dong'an Au-Ag deposit have radiogenic Pb isotope compositions 41

42	$(^{206}\text{Pb}/^{204}\text{Pb}$ from 18.8 to 18.9) and the highest µ1 values (up to 10.54). Fluid inclusions
43	in ore minerals contain a small proportion of mantle He (1% to 5%). The results suggest
44	that metals and ore-forming fluids in these deposits were discharged from either more
45	crustally contaminated intermediate-felsic magmas or leached from upper crustal rocks
46	by convecting meteoric flow systems. Although the Te-poor Tuanjiegou Au-Ag deposit
47	has a non-radiogenic Pb isotope composition consistent with a mafic magma source, Te is
48	much less abundant (electrum [>95%] is the major gold- and silver-bearing mineral) than
49	Au. The main exploration implication of these results is that unexplored volcano-plutonic
50	centers in the northeast Xing'an Block with less radiogenic Pb isotope compositions
51	$(^{206}\text{Pb}/^{204}\text{Pb} < 18.3)$ and containing fluids having a high proportion of mantle He are more
52	likely to generate Te-rich epithermal Au-Ag deposits than other volcano-plutonic centers
53	in NE China.
54	
55	Key words: In situ Pb isotope, Noble gas, Te, Epithermal, Au-Ag deposit, NE China.
56	
57	1. Introduction
58	
59	Tellurium (Te)-bearing adularia-sericite epithermal Au-Ag deposits are often
60	associated with calc-alkalic volcano-plutonic centers, such as those in the Golden
61	Quadrilateral, Romania, numerous Cretaceous-Quaternary deposits in Japan, and Early
62	Cretaceous deposits in northeastern China (Shikazono et al. 1990; Ciobanu et al. 2006;

63	Cook et al. 2009; Sun et al. 2013; Goldfarb et al. 2016, 2017; Gao et al. 2017a, 2018a,
64	2021, 2022; White et al. 2019; Keith et al. 2020), although many deposits are associated
65	with alkalic volcano-plutonic centers (e.g., Cripple Creek, Colorado, USA; Kelley et al.
66	1998, 2016). These Te-bearing deposits are economically important and are a potential
67	source of Te, which is a critical commodity for modern technology, if current
68	metallurgical and economic impediments are resolved (Spry et al. 2004; Ciobanu et al.
69	2006; Cook et al. 2009; Kelley and Spry 2016; Goldfarb et al. 2016, 2017; Jenkin et al.
70	2019).
71	The source of Te in these deposits is generally thought to be derived from igneous
72	intrusions in continental magmatic belts that metasomatized subcontinental lithospheric
73	mantle (SCLM) during subduction (Jensen and Barton 2000; Saunders and Brueseke
74	2012; Kelley and Spry 2016; Holwell et al. 2019). However, the abundance of Te-bearing
75	minerals varies among adularia-sericite epithermal Au-Ag deposits within the same
76	calc-alkaline magmatic arc, e.g., Te-rich Sandaowanzi and Te-poor Dong'an deposits in
77	NE China (Zhang et al. 2010; Yu et al. 2012; Han 2013; Liu et al. 2013; Zhai et al. 2015,
78	2018; Gao et al. 2017a, 2021; Zhao et al. 2019a, b and reference therein). This
79	observation suggests that the source of and/or enrichment process for Te vary in each
80	Au-Ag deposit in the arc. Previous work on the S, Pb, H, O, He, and Ar isotopic
81	composition of Te-bearing epithermal Au-Ag deposits in NE China suggests that they
82	formed from a mixture of magmatic fluids and meteoric water (e.g., Zhai et al. 2015,
83	2018; Li 2018; Zhao et al. 2019b). Similar evidence has been obtained from classic

84	adularia-sericite epithermal Au-Ag deposits in other parts of the world (e.g., Baguio
85	district, Philippines; Mule Canyon, Nevada, USA; Cooke and Simmons 2000; John et al.
86	2003a, b, 2018). However, these studies have not identified the source and evolution of
87	Te-bearing fluids due to the lack of in situ analysis of ore minerals, e.g., altaite (PbTe),
88	petzite (Ag ₃ AuTe ₂), and hessite (Ag ₂ Te). Thus, the role of magmatic fluids in the
89	formation of Te-rich and Te-poor adularia-sericite epithermal Au-Ag deposits within the
90	same arc remains unknown.

91 To advance understanding of the source of Te, precious metals, volatiles, and fluid 92 evolution in adularia-sericite epithermal Au-Ag deposits within a calc-alkaline magmatic arc, we studied the Te-rich Sandaowanzi and Yongxin deposits in the Xing'an Block, and 93 94 the Te-poor Dong'an deposit in the Songliao Block and the Tuanjiegou deposit in the Jiamusi Massif. We conducted in situ femtosecond laser ablation Pb isotope analysis on 95 96 telluride minerals, coexisting sulfide minerals, and hydrothermal gangue minerals in the veins together with high-resolution isotope analysis of He, Ne, and Ar extracted from 97 98 fluid inclusions and fluid inclusion microthermometry. The results are used to determine 99 the proportions of mantle and crustal material in Te-rich and Te-poor Au-Ag deposits. For example, He sources include 10–40 R/R_A (where R/R_A is the ${}^{3}\text{He}/{}^{4}\text{He}$ ratio of air, 100 1.384×10^{-6}) for the primitive mantle; 7–9 R/R_A for shallow depleted mantle; ~1 R/R_A for 101 102 air-saturated meteoric water; and ~0.02 R/RA for crustal fluids (Graham 2002; Hilton et al. 2002). In addition, this is also the first in situ study of Pb isotopes in tellurides 103 (including altaite, petzite, and hessite) from an epithermal system that has been conducted 104

105	using a	femtoseco	nd la	ser abla	tion N	AC-ICP-MS	. Th	e isotopi	c resi	ults obta	ined	on low	Pb
106	content	minerals	are	useful	and	important	for	tracing	the	source	of	metals	in
107	hydroth	ermal depo	osits.										

108

- 109 2. Geological framework and deposit setting
- 110

The study area is located in the eastern part of the Paleozoic Central Asian Orogenic 111 112 Belt (CAOB) (Sengör et al. 1993; Jahn et al. 2000; Jahn 2004; Li 2006). The CAOB 113 consists of the Erguna and Xing'an Blocks in the northwest, the Songliao Block in the central part, and the Jiamusi Massif in the east, which are separated by the De'erbugan, 114 Nenjiang-Heihe, and Jiayin-Mudanjiang structures, respectively (Fig. 1a) (Wu et al. 115 116 2007). The adularia-sericite epithermal Au-Ag deposits studied are located in the Xing'an 117 and Songliao Block, and the Jiamusi Massif (Fig. 1a; e.g., Sun et al. 2013; Wang et al. 118 2016; Song et al. 2019; Gao et al. 2021; Wang et al. 2021). 119 The Xing'an Block is dominated by Mesozoic igneous rocks (Ge et al. 2005; Sui et al. 2007; Zhang et al. 2008) and Neoproterozoic-Lower Cambrian metamorphic rocks, 120

121 e.g., Luomahu Group (Qu 2008; Fig. 1a). Although sedimentation occurred during the

122 Neoproterozoic and Paleozoic (Miao et al. 2004, 2007, 2015), metamorphism and

deformation occurred in these blocks during the Jurassic (ca. 170–160 Ma; Miao et al.

124 2015; Fig. 1b) producing a lithologic assemblage that is dominated by mica and

125 two-mica-plagioclase gneisses, marbles, and the garnet-sillimanite-staurolite-bearing

126	two-mica quartz schist (e.g., Miao et al. 2015). The Songliao Block is largely covered by
127	Lower Cretaceous volcanic rocks (Wang et al. 2002; Zhang et al. 2007; Shu et al. 2007;
128	Ding et al. 2007) with local exposures of underlying granitoids and Precambrian rocks
129	(Wu et al. 2000; Wang et al. 2006; Pei et al. 2007; Gao et al. 2007; Xu et al. 2008; Zhang
130	et al. 2008) (Fig. 1b). The Jiamusi Massif consists of the Mashan Complex, the
131	Heilongjiang Complex, Cambrian and Permian granitoids and Lower Cretaceous volcanic
132	rocks. The Mashan Complex contains schists, gneisses, and marbles metamorphosed to
133	the granulite facies (metamorphic age: ca. 500 Ma) (Wilde et al. 1997, 2000). The
134	Heilongjiang Complex consists of mafic-ultramafic rocks, various quartz-feldspathic
135	schists, and radiolarian-bearing quartzites (formerly cherts) (Zhou et al. 2009). Two types
136	of granitoids, including deformed and metamorphosed Cambrian granitoids (ca. 520 Ma)
137	(Wilde et al. 2003) and weakly deformed to undeformed Permian granites (ca. 260 Ma),
138	are documented in the Jiamusi massif (Wilde et al. 1997; Wu et al. 2000).
139	Regional structures mainly consist of NE- and NW-trending faults. The
140	Nenjiang-Heihe fault and Jiayin-Mudanjiang fault control the distribution of gold
141	deposits in the area (Fig. 1a). Mesoproterozoic intrusions include
142	biotite-plagioclase-gneisses. Carboniferous intrusions consist of mylonitized diorite,
143	tonalite, and monzogranite, Early Permian intrusions are alkali-feldspar granites, and
144	Triassic-Jurassic intrusions consist of monzogranite and granodiorite (ca. 150-190 Ma;
145	Sui et al. 2007; Zhao et al. 2015; Gao et al. 2018b). Early Cretaceous granites were
146	emplaced in an extensional setting related to subduction of the Paleo-Pacific Plate (e.g.,

147 Wu et al. 2007).

148	The Pb isotope framework of the northern Heilongjiang province and the geology of
149	the Sandaowanzi, Yongxin, Dong'an, and Tuanjiegou deposits are described in Appendix
150	A (Fig. A1–A2; Fig. 2). The main features of each deposit are summarized in Table 1 and
151	briefly described below. In these deposits, igneous rocks and hydrothermal minerals are
152	similar in age. The Sandaowanzi deposit has an older age (~120 Ma; e.g., Liu et al., 2011,
153	Gao et al., 2017a) than the Yongxin deposit (~114 Ma; e.g., Zhao et al. 2019a, b). Both
154	the Dong'an and the Tuanjiegou deposits have the youngest ages (~108 Ma; e.g., Zhang
155	et al. 2010; Wang et al. 2012).
156	
157	3. Sampling and methods
158	
159	3.1. Sample collection and description
160	
161	Fresh hand samples from Sandaowanzi, Yongxin, Dong'an, and Tuanjiegou were
162	collected from underground mines, open pits, and drill holes (Table 2; Fig. 3). The
163	samples were obtained from veins or host rock close to the veins, and they are all fresh

without any weathering rims. Ore mineral-bearing thick sections ($\sim 200 \ \mu m$) were used to

- 165 conduct in situ Pb isotope analyses. Sixteen minerals were analyzed (samples shown in
- 166 Figs. 3-4, Appendix Fig. A3), including tellurides (stützite: Ag₇Te₄, hessite: Ag₂Te,
- 167 sylvanite: AuAgTe₄, petzite: Ag₃AuTe₂, calaverite: AuTe₂, and altaite: PbTe), sulfides

(pyrite: FeS₂, chalcopyrite: CuFeS₂, sphalerite: ZnS, argentite: Ag₂S, and galena: PbS), silicates (adularia: KAlSi₃O₈, plagioclase: (Na, Ca)[(Si, Al)AlSi₂]O₈, and sericite: KAl₂(AlSi₃O₁₀)(OH)₂), carbonate (calcite: CaCO₃), and sulfosalt (freibergite: Ag₆[Cu₄Fe₂]Sb₄S₁₂). Analyzed minerals such as stützite, calaverite, freibergite, chalcopyrite, and sericite had signals that were too low for ²⁰⁴Pb and/or too high signals of ²⁰²Hg, in which case the ²⁰⁴Pb-related data were not used for discussion. Instead, the other three Pb isotopes (²⁰⁶Pb, ²⁰⁷Pb, and ²⁰⁸Pb) are presented (Table 3).

175 Samples analyzed for noble gas isotopes are listed in Table 2 and are composed of 176 gangue mineral separates and sulfide separates. Mineralized pyrites containing electrum/telluride inclusions were collected from quartz-pyrite veins in the Yongxin and 177 178 Tuanjiegou deposits. Unmineralized pyrites in the host volcanic rocks that formed by alteration were collected from Sandaowanzi. Ore-bearing quartz veins including sulfides, 179 electrum, and tellurides were collected from each deposit. Late-stage veins containing 180 181 calcite and fluorite are barren and usually cut main stage veins. In general, a single vein 182 stage was analyzed to avoid mixing multiple veins in the same sample.

Hand samples were first crushed to a large grain size (~2 mm) and sieved. These grains were ultrasonically cleaned in distilled water. After drying at room temperature, mineral separates of quartz, adularia, calcite, fluorite, and pyrite were handpicked under a binocular microscope. The dried separates were then put in glass bottles with a cover. Prior to analysis, each separate was cleaned in distilled water and methanol. The images on Figure 5 are representative of the textures, mineral assemblages, and fluid inclusions (also see Fig. 6) present in the samples. Most samples are dominated by primary
inclusions in crystal cores and growth zones, with minor secondary inclusions in
fractures.

192

- 193 **3.2. Femtosecond Laser Ablation MC-ICP-MS**
- 194

In situ Pb isotope ratio analyses were conducted at the U.S. Geological Survey High 195 196 Resolution Laboratory in Denver, Colorado using femtosecond (fs) laser ablation 197 multicollector inductively coupled plasma mass spectrometry (fs LA-MC-ICP-MS). A Teledyne Photon Machines Excite Pharos fs laser ablation system (Teledyne, USA) was 198 coupled to a Nu Plasma 2 MC-ICP-MS (Nu Instruments, UK). Ablated sample aerosols 199 200 were carried from the laser ablation cell to the MC-ICP-MS using He carrier gas. Laser 201 ablation parameters varied dependent on Pb concentration and mineral grain size. Laser 202 beam energy applied to the sample surface is dependent on beam diameter and ranged from 4.1 J/cm² for 75 µm spot size to 7.5 J/cm² for 30 µm spot size with laser power 203 204 ranging from 8 to 90%. Beam size for line and spot analyses ranged from 5 to 75µm (beam aperture variable from 1 to 75 µm at 1 µm resolution) and the repetition rate varied 205 from 6 to 30 Hz. Larger beam sizes (e.g., 75 µm) were used for lead-poor Au-Ag 206 207 tellurides whereas smaller sizes $(10-15 \ \mu m)$ were used for lead-rich galena and altaite. A wavelength of 257 nm was used for all analyses. A line scan rate of 5 µm per second was 208 209 used for all line analyses.

210	The MC-ICP-MS system simultaneously collected ²⁰² Hg, ²⁰³ Tl, ²⁰⁴ Pb, ²⁰⁵ Tl, ²⁰⁶ Pb,
211	²⁰⁷ Pb, and ²⁰⁸ Pb signals on Faraday cups during each analysis. Correction for ²⁰⁴ Hg was
212	automatically implemented via data acquisition software for samples with measurable
213	²⁰² Hg signal. Mass bias was corrected using National Institute of Standards and
214	Technology (NIST) isotopic standard reference material (SRM) for thallium (SRM 997).
215	A prepared solution of SRM 997 was introduced to the laser ablation sample stream prior
216	to the MC-ICP-MS using an Aridus II (Cetac, USA) desolvating nebulizer. Mass bias was
217	corrected using the exponential law with 205 Tl/ 203 Tl for SRM 997 of 2.3871 and isotope
218	pair correction (Woodhead et al. 2002).
219	A mixed solution of NIST SRM 981 (20 ug/L) and NIST SRM 997 (2 ug/L) was
220	analyzed prior to the laser ablation session (daily and between long breaks) to tune the
221	MC-ICP-MS and verify the accuracy and precision of the instrument in solution mode.
222	The femtosecond laser ablation system was coupled to the MC-ICP-MS once the Pb
223	isotope ratio measurements for SRM 981 in solution were within error of reference
224	values previously reported for NIST SRM 981 (Galer and Abouchami 1998). Two USGS
225	glasses, PB-ISO-1G and GSE-2G, were used to determine standard deviation and
226	reproducibility for femtosecond laser ablation sample introduction. The USGS
227	PB-ISO-1G in-house glass is a basalt material spiked with NIST SRM 981 at 250 ug/g
228	and prepared in a similar manner as other USGS glasses. The Pb isotope ratios were
229	validated by solution and laser introduction and results are within error of previously
230	reported values for NIST SRM 981 by Galer and Abouchami (1998); ²⁰⁸ Pb/ ²⁰⁴ Pb =

231
$$36.722 \pm 0.004$$
, ${}^{207}Pb/{}^{204}Pb = 15.496 \pm 0.002$, and ${}^{206}Pb/{}^{204}Pb = 16.941 \pm 0.002$ (Table 3).

The PB-ISO-1G was analyzed two to three times prior to the start of each session and periodically between samples and resulted in an average ${}^{208}Pb/{}^{204}Pb = 36.718 \pm 0.013$, ${}^{207}Pb/{}^{204}Pb = 15.489 \pm 0.006$, and ${}^{206}Pb/{}^{204}Pb = 16.946 \pm 0.008$ (n = 11, 2s; Table 3). The USGS GSE-2G glass resulted in an average ${}^{208}Pb/{}^{204}Pb = 39.143 \pm 0.016$, ${}^{207}Pb/{}^{204}Pb =$ 15.771 ± 0.007, and ${}^{206}Pb/{}^{20t4}Pb = 19.907 \pm 0.009$ (n=15, 2s; Table 3).

237

238 **3.3. High-resolution sector mass spectrometry**

239

Noble gases (He, Ne, and Ar) in fluid inclusions were extracted from 20 samples by 240 241 thermal decrepitation and analyzed using a mass spectrometer. The analytical method and 242 interpretation schemes are those described by Landis and Hofstra (2012), Hofstra et al. (2016) and Manning and Hofstra (2017). Each 0.5- to 1.5-g mineral separate was 243 244 drop-loaded into a preheated, evacuated vacuum furnace, heated to 350 °C, and held at 245 temperature for 10 to 30 min to collect volatiles for analysis. Reactive gases were chemically removed from the gas mixture and the remaining noble gases were 246 247 cryogenically separated (liquid nitrogen trap at 77 °K and helium refrigerant trap at 9 °K), 248 prior to determinations of noble gas abundance and isotopic compositions with a static high-resolution sector mass spectrometer (Helix-SFT). Gas concentrations were 249 250 determined by calibration to a known air standard with an average sample-to-standard 251 ratio of two (Manning and Hofstra, 2017). Details are provided in Hunt (2015) and Hunt

et al. (2023).

253

254 **3.4. Microthermometry**

255

256	In representative samples, fluid inclusion assemblages were observed in crystalline
257	quartz, calcite, and fluorite. Fluid inclusions > 5 μ m in size were analyzed and correlated
258	with the noble gas analysis. Fluid inclusion petrography and microthermometry were
259	conducted at the Key Laboratory of Mineral Resources, Institute of Geology and
260	Geophysics, Chinese Academy of Sciences. A Linkman 600 heating/freezing stage on an
261	Olympus BX60 microscope was used to measure the ice melting temperature and
262	homogenization temperature of fluid inclusions in each assemblage. A pure H ₂ O standard
263	with an ice melting temperature (T_m) of 0 °C and a critical homogenization temperature
264	(T _h) of 373.6 °C was used to calibrate the stage with the data reproducible to \pm 0.2 °C for
265	ice melting temperatures and ± 2.0 °C for homogenization temperatures.

266

4. Results

268

269 **4.1. Pb isotope compositions**

270

Due to complex intergrowths of fine-grained tellurides, sulfides, and gangue minerals, Pb isotope analyses were conducted using in situ methods (Fig. 4; Appendix A

Fig. A3). Eleven minerals (altaite, hessite, petzite, sylvanite, galena, sphalerite, pyrite, argentite, adularia, calcite, and plagioclase) were analyzed and the data are reported in Table 3. In Table 3, "nd" (not determined) was due to insufficient ²⁰⁴Pb signal, as we did not report data where the ²⁰⁴Pb signal was below 50mV. The total signal for our reported Pb isotope ratios was greater than 3 volts and most samples were 10 volts and higher.

278 At Sandaowanzi, main stage minerals have a narrow range of Pb isotope compositions. The ranges of ²⁰⁶Pb/²⁰⁴Pb, ²⁰⁷Pb/²⁰⁴Pb, and ²⁰⁸Pb/²⁰⁴Pb values are 18.263 to 279 18.285, 15.525 to 15.542, and 38.105 to 38.173, respectively. The 207 Pb/ 206 Pb values 280 range from 0.8486 to 0.8592 (average SE 0.0001), whereas the 208 Pb/ 206 Pb values range 281 from 2.0824 to 2.1082 (average SE 0.0003). The radiogenic Pb isotope composition of 282 early-stage pyrite in host rocks ranges from 0.8492 to 0.8538 in ²⁰⁷Pb/²⁰⁶Pb values 283 (average SE 0.0001) and from 2.0844 to 2.0936 in ²⁰⁸Pb/²⁰⁶Pb values (average SE 284 285 0.0003).

At Yongxin, main-stage altaite and galena have similar Pb isotope compositions. The ranges of 206 Pb/ 204 Pb, 207 Pb/ 204 Pb, and 208 Pb/ 204 Pb values are 18.127 to 18.139, 15.509 to 15.526, and 37.949 to 37.976, respectively. The 207 Pb/ 206 Pb values range from 0.8557 to 0.8563 (average SE 0.0001), and the 208 Pb/ 206 Pb values range from 2.0935 to 2.0946 (average SE 0.0003). The radiogenic Pb isotope composition of main stage pyrite ranges from 0.8535 to 0.8560 in 207 Pb/ 206 Pb values (average SE 0.0001) and from 2.0902 to 2.0936 in 208 Pb/ 206 Pb values (average SE 0.0003).

At Dong'an, the Pb isotope compositions of tellurides and sulfides also have a

14

294	relatively narrow range. The ranges of ²⁰⁶ Pb/ ²⁰⁴ Pb, ²⁰⁷ Pb/ ²⁰⁴ Pb, and ²⁰⁸ Pb/ ²⁰⁴ Pb values are
295	18.822 to 18.909, 15.574 to 15.610, and 38.423 to 38.573, respectively. The composition
296	of 207 Pb/ 206 Pb ranges from 0.8251 to 0.8284 (average SE 0.0001) and 208 Pb/ 206 Pb ranges
297	from 2.0384 to 2.0440 (average SE 0.0003).
298	At Tuanjiegou, main stage galena and pyrite have ²⁰⁶ Pb/ ²⁰⁴ Pb, ²⁰⁷ Pb/ ²⁰⁴ Pb, and
299	208 Pb/ 204 Pb values that range from 18.272 to 18.317, 15.521 to 15.544, and 38.161 to
300	38.221, respectively. The 207 Pb/ 206 Pb values range from 0.8488 to 0.8501 (average SE
301	0.0001) and the 208 Pb/ 206 Pb values range from 2.0866 to 2.0903 (average SE 0.0003).
302	
303	4.2. Noble gas isotope compositions
304	
305	Twenty mineral separates composed of quartz, adularia, fluorite, calcite, or pyrite

306 were analyzed for He, Ne, and Ar, including four from Sandaowanzi, five from Yongxin,

seven from Dong'an, and four from Tuanjiegou (Fig. 5; Table 4).

At Sandaowanzi, main stage quartz has helium R/R_A values from 0.064 to 0.340 with an average uncertainty of 0.020. ⁴He concentrations range from 0.010 to 0.151 µcc/g with an average uncertainty of 0.011. ²⁰Ne concentrations range from 0.003 to 0.042 µcc/g with an average uncertainty of 0.001, ²⁰Ne/²²Ne and ²¹Ne/²²Ne have narrow ranges of 9.779 to 9.965 and 0.0275 to 0.0293, respectively. ⁴⁰Ar concentrations range from 37.555 to 120.092 µcc/g with an average uncertainty of 1.816, and the samples have a narrow range of ⁴⁰Ar/³⁶Ar ratios from 287.6 to 289.6 and ³⁸Ar/³⁶Ar ratios from 0.1880 to 0.1882.

315	At Yongxin, main stage pyrite and quartz as well as later stage calcite have the
316	highest helium R/R_A values from 0.055 to 1.698 with an average uncertainty of 0.050.
317	⁴ He concentrations range from 0.147 to 3.648 μ cc/g with an average uncertainty of 0.056.
318	The Ne isotope values are higher than Sandaowanzi. ²⁰ Ne concentrations range from
319	0.014 to 0.172 μ cc/g with an average uncertainty of 0.002, ²⁰ Ne/ ²² Ne and ²¹ Ne/ ²² Ne have
320	narrow ranges of 9.818 to 10.120 and 0.0287 to 0.0293, respectively. ⁴⁰ Ar concentrations
321	range from 50.210 to 478.419 μ cc/g with an average uncertainty of 3.985, and the
322	samples have a narrow range of 40 Ar/ 36 Ar ratios from 268.3 to 303.0 and 38 Ar/ 36 Ar ratios
323	from 0.1878 to 0.1939.
324	At Dong'an, quartz, pyrite, adularia, and fluorite have helium R/RA values from
325	0.028 to 0.926 with an average uncertainty of 0.038. ⁴ He concentrations range from 0.009

to 2.261 μ cc/g with an average uncertainty of 0.033. Dong'an has the lowest ²⁰Ne concentrations with a range from 0.002 to 0.011 μ cc/g with an average uncertainty of 0.0001. ²⁰Ne/²²Ne and ²¹Ne/²²Ne have narrow ranges of 9.891 to 10.168 and 0.0258 to 0.0301, respectively. ⁴⁰Ar concentrations range from 11.216 to 26.037 μ cc/g with an average uncertainty of 0.429, and the samples have a narrow range of ⁴⁰Ar/³⁶Ar ratios from 275.3 to 291.6 and ³⁸Ar/³⁶Ar ratios from 0.1773 to 0.1913.

At Tuanjiegou, main stage pyrite and quartz as well as later stage calcite have helium R/R_A values from 0.135 to 0.528 with an average uncertainty of 0.032. ⁴He concentrations range from 0.006 to 0.525 μ cc/g with an average uncertainty of 0.013, and ²⁰Ne concentrations range from 0.002 to 0.172 μ cc/g with an average uncertainty of 0.001,

336	20 Ne/ 22 Ne and 21 Ne/ 22 Ne have narrow ranges of 9.707 to 10.046 and 0.0290 to 0.0294,
337	respectively. Tuanjiegou has the highest 40 Ar concentrations from 5.283 to 906.175 µcc/g
338	with an average uncertainty of 5.637. The samples have a range of ${}^{40}\text{Ar}/{}^{36}\text{Ar}$ ratios from
339	248.8 to 291.9 and 38 Ar/ 36 Ar ratios from 0.1782 to 0.1905.

340

4.3. Fluid inclusion microthermometry 341

342

Thirty-five doubly polished sections composed of quartz, fluorite, and calcite were 343 344 used for fluid inclusion petrography and microthermometric analyse of ice melting and homogenization temperatures, including three from Sandaowanzi, seventeen from 345 Yongxin, nine from Dong'an, and six from Tuanjiegou (Table 5; Appendix B Table B1). 346 347 Additional data on fluid inclusions in quartz from Sandaowanzi (thirty-four samples) and Dong'an (two samples) were compiled from Gao (2017) and Gao et al. (2021), and fluid 348 349 inclusions in fluorite (N=74) from Dong'an were compiled from Zhi (2015). Ice melting 350 temperatures were used to calculate salinity (Hall et al. 1988). Fluid inclusion data from 351 early, main, and late-stage minerals were used in this study. Early stage is I, the main stage includes II-IV, and the late stage is V. Although Yongxin quartz contains 352 353 CO_2 -bearing fluid inclusions (Fig. 6f, g), they were too small (<5 μ m) for microthermometry. Others are L-V type in the H₂O-NaCl system (Fig. 6). 354 355 At Sandaowanzi (Te-rich), fluid inclusions in the early stage have a large range of

356 homogenization temperatures from 226 to 361 °C and salinities that range from 0.2 to

357	12.9 eq. wt. % NaCl, in the main stage homogenization temperatures range from 186 to
358	309 °C and salinities range from 0.2 to 9.6 eq. wt. % NaCl, and in the late stage
359	homogenization temperatures range from 110 to 211 °C and salinities range from 0.2 to
360	8.5 eq. wt. % NaCl (Table 5; Appendix B Table B1). At Yongxin (Te-rich), fluid
361	inclusions in the early stage have high homogenization temperatures that range from 328
362	to 341 °C and salinities that range from 6.0 to 8.3 eq. wt. % NaCl, in the main stage
363	homogenization temperatures range from 178 to 297 °C and salinities range from 3.0 to
364	9.2 eq. wt. % NaCl. Late stage homogenization temperatures range from 117 to 207 $^{\circ}\mathrm{C}$
365	and salinities have high values up to 11.2 eq. wt. % NaCl (Table 5; Appendix B Table B1).
366	At Dong'an (Te-poor), fluid inclusions in the early stage have lower homogenization
367	temperatures from 260 to 290 °C and salinities that range from 0.2 to 4.9 eq. wt. % NaCl,
368	in the main stage homogenization temperatures range from 223 to 256 °C and salinities
369	range from 0.2 to 3.0 eq. wt. % NaCl, and in the late stage homogenization temperatures
370	range from 120 to 190 °C and salinities range from 0.4 to 3.2 eq. wt. % NaCl (Table 5;
371	Appendix B Table B1). All stages at Dong'an have lower salinities than the other four
372	deposits. At Tuanjiegou (Te-poor), fluid inclusions in the early stage have
373	homogenization temperatures that range from 261 to 280 °C and salinities that range
374	from 1.8 to 2.2 eq. wt. % NaCl, in the main stage homogenization temperatures range
375	from 208 to 254 °C and salinities range from 2.2 to 7.9 eq. wt. % NaCl, and in the late
376	stage homogenization temperatures range from 162 to 171 °C and salinities range from
377	2.2 to 3.4 eq. wt. % NaCl (Table 5; Appendix B Table B1).

```
378
```

5. Discussion

381 5.1. Lead isotopes

5.1.1. Lead sources

385	Lead isotope compositions are a useful tool to constrain the source and evolution of
386	ore-forming fluids in hydrothermal deposits (e.g., Gulson 1986; Foley and Ayuso 1994;
387	Richards et al. 1991; Richards and Noble 1998; Bouse et al. 1999; Tosdal et al. 1999,
388	2003; Hofstra et al. 2000; Ayuso et al. 2016; Lode et al. 2017; Haroldson et al. 2018;
389	Piercey and Kamber 2019; Gigon et al. 2020), therefore Pb isotope compositions of bulk
390	minerals have been analyzed in many Te-bearing deposits in NE China. For example, the
391	Pb isotope compositions of ore stage pyrite from the Te-bearing Yongxin and Tuanjiegou
392	deposits plot in the range of Early Cretaceous intermediate to felsic rocks in the district
393	(Appendix A Fig. A1), indicating that Pb in ore-forming fluids was leached from Early
394	Cretaceous intermediate to felsic rocks or exsolved from corresponding magmas (Han
395	2013; Hao et al. 2016; Wang et al. 2016; Gao et al. 2017a; Li 2018; Zhai et al. 2018;
396	Zhao et al. 2019b; Liu et al. 2019). However, the samples analyzed in this study have a
397	range in Pb isotope compositions that indicate the source of Pb in ore-forming fluids are
398	different for Te-rich and Te-poor epithermal Au-Ag deposits in NE China (Fig. 7a, b),

ranging from mafic or intermediate to felsic magmatic sources in each volcano-plutonic
center (Fig. 7c, d).

401 Igneous sources: In the Te-rich Sandaowanzi and Yongxin, and Te-poor Tuanjiegou 402 deposits the bulk Pb isotope compositions of main stage minerals are consistent with an early Cretaceous magmatic source and are much less radiogenic than the underlying 403 404 basement (dashed pattern area; Fig. 7a, b; Appendix B Table B2). However, the in situ Pb 405 isotope compositions of ore minerals in these deposits are less radiogenic than their Early 406 Cretaceous intermediate-felsic host rocks and contemporaneous felsic igneous rocks 407 (blue line area) in the region (Fig. 7c, d). This shift implies that most of the less radiogenic Pb in ore-forming fluids were not inherited from the host rocks or the regional 408 409 exposed contemporaneous intermediate to felsic rocks including andesite, dacite, tuff, 410 granite porphyry, and diorite. The less radiogenic Pb in ore-forming fluids must have 411 been derived from deeper intrusions with non-radiogenic Pb isotope compositions. This 412 trend is also similar to the Orcopampa epithermal Au-Ag deposit in Peru where Pb 413 isotopes from gold-rich stages are also less radiogenic than host rocks (Tosdal et al. 1999). This is also inferred for several other deposits elsewhere in the world (e.g., 414 Porgera, Papua New Guinea; Orcopampa, Peru; Richards et al. 1991; Richards and Noble 415 1998; Bouse et al. 1999; Tosdal et al. 1999). We, therefore, infer that ore-forming fluids 416 for the three aforementioned deposits were derived from mafic intrusions at deeper levels 417 418 in the magmatic-hydrothermal systems.

419	Although Te and Au are compatible elements during mantle melting, they primarily
420	reside in sulfides or discrete metallic phases (Patten et al. 2013; Jenner 2017).
421	Consequently, the concentrations of S and Te in basaltic melts vary considerably with the
422	proportion of metal-ligand in the reservoir (Helmy et al. 2020). For example, the highest
423	Te concentrations occur when the ferrous iron cation is the principal metal-ligand (Helmy
424	et al., 2020). Experiments show that major base metal sulfides do not balance the
425	whole-rock Te concentrations of fertile mantle peridotites (Patten et al. 2013; Lorand and
426	Luguet 2016). The missing Te fraction of the whole-rock budget (30–90%) was attributed
427	to randomly distributed tellurides (Lorand and Alard 2010; Lorand and Luguet 2016).
428	This can explain why Te is much less abundant (electrum [>95%] is the major gold- and
429	silver-bearing mineral) than Au in Tuanjiegou. In this case, Te is controlled by dilution
430	during extensive partial mantle melting.

431 In another Te-poor deposit (Dong'an), the Pb isotope compositions of ore minerals are slightly more radiogenic than the Early Cretaceous andesite and rhyolite (triangles 432 outlined in green) in the region (Fig. 7c, d), but are similar to those of underlying Triassic 433 to Jurassic intermediate-felsic igneous rocks (dashed line area; Fig. 7a, b) (e.g., Zhang et 434 al. 2019). The geologic setting suggests that some of the radiogenic Pb in ore-forming 435 fluids were leached from the Early Jurassic alkaline feldspar granite in the area. For 436 437 example, the $\mu 1$ values in minerals (10.49 to 10.59) are higher than alkaline feldspar granite (μ 1=10.40 with the age of 176 Ma; Zhi et al., 2016). However, the presence of 438 late-stage fluorite in the veins suggests that fluorine was derived from a more fractionated 439

and crustally contaminated early Cretaceous F-rich porphyry intrusion (Li et al. 2014,

2019). Therefore, the ore-forming fluids at Dong'an were likely discharged from an Early
Cretaceous intermediate-felsic intrusion (Pb median=14.7 ppm; Zhang et al., 2010) that
obtained most of its Pb from underlying Jurassic felsic igneous rocks with a median of
13.2 ppm Pb (Zhi et al., 2016) in the region.

440

445 Country rock sources: Country rock contamination is common in mafic-derived Au-Ag deposits, but generally results in very small shifts (e.g., ²⁰⁶Pb/²⁰⁴Pb ~0.05; 446 447 Richards et al. 1991; Tosdal et al. 1999). In general, bulk Pb isotope data from sulfides (e.g., pyrite) have a large range, such as ²⁰⁶Pb/²⁰⁴Pb from 18.17 to 18.37 in the 448 Tuanijegou deposit. The in situ Pb isotope data presented in this study more clearly show 449 450 country rock contamination than the bulk Pb isotope data generated by previous workers. 451 The generally low Pb concentrations of ore-stage minerals as well as their small Pb 452 isotope variations suggest that the contribution of Pb from the host rocks was minimal 453 until the hydrothermal fluid was depleted of Pb (Tosdal et al. 1999). For example, the 454 radiogenic Pb isotope compositions of altaite, petzite, and sylvanite at Sandaowanzi 455 extend towards the Cambrian metasedimentary and Ordovician igneous rock trend. Yongxin is shifted slightly towards this trend (Fig. 7e, f). Dong'an extends from the 456 Triassic-Jurassic rock trend towards the Cambrian-Ordovician rock trend. These shifts 457 suggest that ore-forming fluids dissolved Pb as they flowed through underlying 458 metasedimentary and igneous rocks of different ages, and therefore contain multi-stage 459

lead (Richards et al. 1991; Tosdal et al. 1999). To further evaluate the lead sources,
evolution models were calculated.

462

463 **5.1.2. Lead isotope evolution models**

464

465 All of the in situ Pb isotope data obtained on ore minerals in in this study have linear distributions. Although these linear data arrays do not yield meaningful isochron ages, 466 467 they provide evidence of mixing between Pb sources (e.g., Harolson et al. 2018; Gigon et 468 al. 2020). To advance understanding of the Pb sources in these deposits, a Pb isotope evolution model was built. The model assumes that the crustal Pb involved in 469 470 crust-mantle mixing has undergone a two-stage evolution process (Stacey and Kramers 471 1975). The model age of both Pb sources is based on the maximum and minimum ages 472 for each deposit (Table 6). The parameters for the model are $\mu 1_{max}$ and $\mu 1_{min}$ which are the ${}^{238}\text{U}/{}^{204}\text{Pb}$ ratio for the lead sources 1 and 2 respectively, and $t1_{max}$ and $t1_{min}$ the 473 474 timings of crust formation for lead sources 1 and 2 respectively. Max and Min are the maximum and minimum data from each deposit. Back-calculation indicates the 475 extraction of a crustal reservoir from the mantle at t1_{max} Ga that evolved toward the 476 composition of Pb source 1 ($\mu 1_{max}$), followed at $t 1_{min}$ Ga by the extraction of another 477 crustal reservoir from the mantle that evolved toward the composition of Pb source 2 478 $(\mu 1_{min})$ in each deposit. The Pb isotope model is shown in Figure 8. Low $\mu 1$ values 479 indicate that Pb was likely derived from mafic magmas (Tosdal et al. 1999), whereas high 480

481 μ1 values suggest that Pb was derived from more crustally contaminated felsic magmas
482 (Gigon et al. 2020).

483 Tellurium-rich deposits have low $\mu 1$ values. For example, Yongxin has the lowest $\mu 1$ values (9.14 to 9.15) and Sandaowanzi (9.41 to 9.42) have slightly higher μ 1 values. In 484 contrast, µ1 values are much higher in the Te-poor Dong'an deposit (10.49 to 10.59). In 485 486 addition, Tuanjiegou (9.41 to 9.44) has low μ 1 values, but Te is poor. This is explained 487 by Te dilution during mantle melting as mentioned above. In this case, Te was not transported to shallow levels (<2 km) with Au. Although both Te-rich and Te-poor 488 489 deposits have mixed Pb sources, Pb in Te-bearing fluids may be from a non-radiogenic 490 source in the region.

Compared with other Te-rich systems, such as intrusion-related systems in the 491 margin of the North China Craton, non-radiogenic Pb sources are common (e.g., 492 Dongping and Dabaiyang; Zhang and Mao 1995; Shen et al. 2020). Those deposits are 493 494 related to alkaline intrusions which are likely from a mantle source (e.g., Mao et al. 2003; 495 Gao et al. 2017b). In other gold-rich systems in the North China Craton, radiogenic Pb sources are common and are related to basement contributions (e.g., Sidaogou in 496 Liaodong in the northeast; Feng et al. 2019). Thus, in both epithermal and 497 498 intrusion-related systems, Te is related to non-radiogenic Pb sources, but Au has both mantle and basement contributions. 499

500

501 **5.2.** Noble gas isotopes and fluid inclusion microthermometry

24

502

503 5.2.1. Noble gas sources

504

505	The proportion of atmospheric, crustal, and mantle He, Ne, and Ar trapped in ore and
506	gangue minerals from the Sandaowanzi, Yongxin, Dong'an, and Tuanjiegou deposits was
507	determined to elucidate the source(s) of volatiles in the magmatic-hydrothermal systems.
508	Twenty new data sets (He, Ne, and Ar; Table 5) supplement twenty-one published data
509	sets (He and Ar only; Appendix B Table B3; Yu et al. 2012; Zhai et al. 2015; Li 2018; He
510	et al., 2023). To determine the source of volatiles in these epithermal deposits, He, Ne,
511	and Ar isotopic data are plotted on Figure 9 relative to the isotopic composition of air,
512	crust, and mantle, geothermal water in the Basin and Range province and Cascades arc in
513	the western U.S. (Fig. 9c and d only), as well as hydrothermal gold deposits related to
514	subduction of the Paleo-Pacific Ocean in East China (e.g., intrusion-related deposits; Tan
515	et al., 2018) and South Korea (epithermal deposits; Kim et al., 2012) during the Early to
516	Late Cretaceous. In magmatic-hydrothermal systems (e.g., epithermal deposits in South
517	Korea and western U.S.), the large range of He ratios, and in some cases Ne and Ar
518	isotope ratios, have been interpreted to reflect mixing between air saturated meteoric
519	water, meteoric groundwater that obtained radiogenic crustal helium from older country
520	rocks, and mantle-derived magmatic fluids (e.g., Kim et al., 2012; Manning and Hofstra
521	2017 and references therein).

522

The samples investigated in this study have lower R/RA than geothermal sites from

523 the Cascades arc and overlap those in the Basin and Range (B&R) province and Late 524 Cretaceous epithermal deposits in South Korea (Fig. 9c, d; Kennedy and van Soest 2007), 525 but are unlike intrusion-related systems in China (Appendix B Table B3). This result indicates that epithermal deposits in the Early Cretaceous magmatic arc in NE China 526 527 formed from fluids containing a smaller proportion of mantle helium than geothermal 528 sites in the Cascades arc and Late Cretaceous epithermal deposits in South Korea. This is likely due to a greater proportion of meteoric water as in geothermal sites in the Basin 529 530 and Range province and NE China. At Sandaowanzi, data from barren quartz and pyrite plot between air and crust (Fig. 9c-e), whereas data from ore stage petzite and 531 532 chalcopyrite plot between crust and mantle (Fig. 9c). These trends reflect mixing between magmatic fluids with mantle ³He and air-saturated meteoric groundwater with variable 533 amounts of crustal ⁴He. At Yongxin, main stage pyrite has high ⁴He concentrations, R/R_A 534 ratios and 20 Ne/ 22 Ne ratios, as well as low CO₂/ 3 He ratios (Fig. 9a, b, e), indicating that 535 ore stage fluids contained mantle-derived volatiles. At Dong'an, later quartz and fluorite 536 also have high R/R_A and ${}^{20}Ne/{}^{22}Ne$ (Fig. 9a–e). These results reflect mixing among air 537 saturated meteoric water with variable amounts of crustal ⁴He and magmatic fluids with 538 mantle ³He. At Tuanjiegou, quartz and late calcite plot between air and crust (Fig. 9c, d). 539 Ore stage pyrite has high $CO_2/^3$ He ratios and low ⁴He and variable ²⁰Ne/²²Ne ratios (Fig. 540 9a, b, e). This result is indicative of mixing between air saturated meteoric water with 541 variable amounts of crustal ⁴He, anomalous CO₂ and a small amount of magmatic fluid 542 with mantle ²⁰Ne. 543

544	In this study, main stage minerals (tellurides, chalcopyrite, telluride-bearing pyrite,
545	fluorite, adularia, quartz) in both Te-rich and Te-poor deposits have a greater portion of
546	mantle helium (1-25%) than early- and late-ore stage minerals (quartz, adularia, calcite,
547	barren pyrite) (Fig. 9a-d). Notably, main stage tellurides and chalcopyrite in the Te-rich
548	Sandaowanzi deposit have 1-15% mantle helium and telluride-bearing pyrite from
549	Yongxin has 10–25% mantle helium (Fig. 9c, d). The samples with more mantle helium
550	also have more mantle neon (Fig. 9e), which is consistent with a mafic magmatic source
551	(Hofstra et al. 2016). In contrast, Te-poor deposits have lower proportions of mantle
552	helium (Fig. 9a, b), such as 1–5% mantle helium at Dong'an (Fig. 9c, d), which is likely
553	due to dilution by voluminous meteoric water as in many other classic epithermal
554	systems (O'Neil and Silberman 1974; Hedenquist and Lowenstern 1994; Cooke and
555	Simmons 2000; Simmons et al. 2005, 2016; Manning and Hofstra 2017). Pyrite from the
556	Tuanjiegou deposit has 1-15% mantle helium but is Te-poor due to Te dilution during
557	partial mantle melting (Patten et al. 2013; Lorand and Luguet, 2016; Jenner 2017).
558	Low R/R _A ratios indicative of crustal sources are common in epithermal Au-Ag
559	systems (e.g., Manning and Hofstra 2017). In this study, the proportion of crustal helium
560	is highest in early- and late-stage minerals, especially early-stage pyrite in altered host
561	rocks (Fig. 9a-d) at Sandaowanzi and Dong'an (Yu et al. 2012; Zhai et al. 2015 and
562	reference therein). Noble gas isotopes show that early-barren pyrites contain crustal
563	helium ($He_{(mantle)} < 1\%$). The proportion of crustal helium is also large in early-quartz
564	veins at Yongxin and Tuanjiegou ($He_{(mantle)} = \sim 1\%$). Some of the early- and late-stage

565 minerals have isotopic compositions that plot on or near the mixing line between air and 566 crust (Fig. 9c-e). These compositions are characteristic of air saturated meteoric water that convected through old rocks containing radiogenic ⁴He (Manning and Hofstra 2017). 567 568 Generally, these fluids are not important sources of precious metals. Epithermal deposits have higher ²⁰Ne, ³⁶Ar, and ⁴He than intrusion-related deposits 569 570 due to shallow levels (≤ 2 km) with a high proportion of noble gas isotope from air (Fig. 9c–e). Low-sulfidation deposits in South Korea have lower ⁴He and higher R/R_A than 571 572 epithermal deposits in NE China. This trend indicates that the Late Cretaceous epithermal 573 deposits in South Korea have a large mantle contribution. In intrusion-related systems in the margin of the North China Craton, Jibei in the north has more mantle He (from $\sim 10\%$ 574 575 to \sim 75%) than Jiaodong (from \sim 1% to \sim 50%) in the east, Liaodong (from \sim 1% to \sim 30%) in the northeast, and Xiaoqing (from $\sim 1\%$ to $\sim 30\%$) in the south. The greater proportion 576 577 of mantle He (\sim 75%) is consistent with less radiogenic Pb and indicates that the Te-rich epithermal deposits formed in magmatic-hydrothermal systems with significant 578

579 contributions of mantle-derived volatiles (e.g., Dongping; Mao et al. 2003; Gao et al.

580 2015, 2017b).

581

582 **5.2.2. Fluid evolution**

583

584 The crustal signature of deeply circulated meteoric ground water in early- and 585 late-stage minerals (Fig. 9c, d) may be caused by water-rock reaction along fluid flow

28

586	paths as evident in other epithermal systems (O'Neil and Silberman 1974; Hedenquist and
587	Lowenstern 1994; Simmons 1995; Simmons et al. 2005). Evidence of magmatic inputs
588	into hydrothermal fluids is clearer in the main stage minerals of Te-rich deposits (Fig. 9c,
589	d), although these fluids were also diluted by meteoric water (O'Neil and Silberman 1974;
590	Hedenquist and Lowenstern 1994; Simmons et al. 2005, 2016; Manning and Hofstra
591	2017; Gao et al. 2021). The trends in Figure 9c, d are interpreted to result from input of
592	magmatic fluid with mantle He into variably exchanged meteoric ground water with
593	crustal He (e.g., Manning and Hofstra 2017). Despite the predominance of meteoric water
594	at shallow levels (<2 km), Te- and Au-related minerals still contain a relatively large
595	proportion of mantle-derived components (up to ~9 R/R_A ; Simmons et al. 1987; Kim et
596	al., 2012; Mao et al. 2003; Saunders et al. 2008; Manning and Hofstra 2017).
597	In the epithermal systems studied, ore-forming fluids have low temperatures and
598	salinities (<5%; Fig. 10). However, inputs of higher salinity fluids (~5–10%) are evident
599	in the Te-rich Au deposits. Although noble gas data have a large range of R/R_A , Te-rich
600	systems usually have higher proportions of mantle-derived volatiles. The Te-rich
601	Yongxin deposit has the highest salinities and the highest temperature and proportion of
602	mantle He, which are indicative of mafic magma contributions (Fig. 10). The Te-rich
603	Sandaowanzi and Te-poor Tuanjiegou deposits have a few samples with high salinity
604	inclusions, which is likely related to periodic inputs of magmatic fluids. The Te-poor
605	Dong'an deposit has low salinities with various temperatures indicative of a meteoric

606 water dominant system. This interpretation is supported by recent secondary ion mass

607	spectroscopy (SIMS) oxygen isotope evidence (Gao et al. 2021). Thus, input of magmatic
608	fluids with a mantle source and moderately high salinity (e.g., >5%) are characteristic of
609	Te-rich epithermal Au systems. The Te-rich deposits have high salinity, possibly because
610	Te is carried as a chloride complex (e.g., Cook et al., 2023).

611

612 **5.3. Conclusions**

613

Integrated geologic, in situ Pb isotopic, noble gas isotope, and fluid inclusion microthermometry evidence were used to construct a fluid source and evolution model for the epithermal Au-Ag deposits in the north Heilongjiang province in NE China (Fig. 11). The Pb, noble gas isotope, and fluid inclusion microthermometry results indicate that Te-rich epithermal deposits likely formed from fluids discharged from mafic intrusions underlying northern Heilongjiang province.

620 In the model, Te-rich epithermal deposits are located along the Nenjiang-Heihe fault 621 near the margin of the Xing'an Block. The Te-rich veins are exposed at different depths 622 as Sandaowanzi is hosted by Early Cretaceous calc-alkaline andesite or dacite (e.g., Liu et al. 2011; Gao et al. 2017a, 2018a) and Yongxin is hosted in the contact zone of Early 623 Cretaceous andesite and Triassic mylonite (e.g., Li 2018; Zhao et al. 2019a). Ore stage 624 minerals have the least radiogenic Pb isotope compositions (206 Pb/ 204 Pb from 18.1 to 18.3) 625 626 in both deposits. These values are also lower than the intermediate to felsic host rocks. 627 The Pb isotope model shows that ore minerals have low $\mu 1$ values (down to 9.14). These

results suggest that ore-forming fluids were likely derived from deeper mafic intrusions.

629 Noble gas evidence shows that ore stage tellurides, chalcopyrite and pyrite contain more 630 mantle helium (up to 25%) than early- and late-stage minerals ($\sim 1\%$) (Yu et al. 2012; 631 Zhai et al. 2015 and reference therein). A large proportion of mantle He in fluids is also evident in the deeper Te- and Bi-rich intrusion-related Dongping deposit in north China 632 633 (Mao et al. 2003), and in the Te-rich adularia-sericite epithermal Au-Ag deposits in South Korea (Kim et al. 2012). These fluids are moderately saline (>~5 eq. wt. % NaCl; Fig. 634 635 10). Thus, productive high-grade Au-Ag-telluride ores in adularia-sericite epithermal 636 systems may form by the input of magmatic fluids with mantle-derived volatiles from concealed mafic intrusions into barren meteoric flow systems (e.g., Gao et al. 2021). 637

638 Tellurium-poor deposits such as Dong'an in the Songliao Block and Tuanjiegou in the Jiamusi Massif are hosted by Early Cretaceous rhyolite and Early Jurassic granite 639 (e.g., Zhang et al. 2010) and Early Cretaceous granodiorite porphyry (Sun et al. 2013; 640 641 Wang et al. 2016; White et al. 2019), respectively. Ore stage minerals at Dong'an have the most radiogenic Pb isotope compositions (²⁰⁶Pb/²⁰⁴Pb from 18.8 to 18.9) and the 642 highest μ values (up to 10.54). These data imply that the ore-forming fluids were likely 643 derived from crustally contaminated intermediate to felsic magmas. Although Tuanjiegou 644 645 has a non-radiogenic Pb isotope composition consistent with a mafic magma source, Te is much less abundant (electrum [>95%] is the major gold- and silver-bearing mineral) than 646 Au, which is controlled by Te-poor magmatic systems. These features are similar to those 647 of most adularia-sericite epithermal Au-Ag deposits in the world (O'Neil and Silberman 648

649 1974; Hedenquist and Lowenstern 1994; Cooke and Simmons 2000; Simmons et al. 2005;

650 Manning and Hofstra 2017; John et al. 2003a, b, 2018; White et al. 2019).

651

652 6. Implications

653

654 The in situ fsLA-MC-ICP-MS Pb isotope analyses of tellurides, coexisting sulfides and hydrothermal minerals with various beam sizes $(5-75 \mu m)$ presented herein are the 655 656 first to be conducted in Te-bearing epithermal Au deposits. The Pb isotopic results show 657 that Te-rich epithermal deposits have the least radiogenic Pb isotope compositions and the lowest ul values indicative of a mafic source. The Te-poor epithermal deposits are 658 659 controlled by Te-poor magmatic systems or dominated by meteoric ground water that 660 contain smaller proportion of mantle helium. These conclusions are also supported by 661 noble gas (He, Ne, and Ar) isotopic composition of fluid inclusion extracts from various 662 ore and gangue minerals and fluid inclusion microthermometry. For example, Te-rich 663 Yongxin deposits have a larger proportion of mantle helium up to 25%, providing clear 664 evidence for mafic magmatic sources.

This study demonstrates that in situ Pb isotope compositions obtained from Au-, Ag-, and Te-bearing minerals can be used to constrain the source of critical and precious metals in hydrothermal deposits. Together, the Pb, noble gas isotope compositions, and fluid inclusion microthermometry show that the Te-rich epithermal deposits in NE China are associated with special volcano-plutonic centers, where ore-forming fluids in

mantle-derived mafic magmas were discharged into convecting meteoric water. The
volcano-plutonic centers with the least radiogenic Pb isotope compositions (²⁰⁶Pb/²⁰⁴Pb <
18.3) have the greatest potential for Te-rich epithermal Au-Ag deposits in NE China, and
perhaps elsewhere.

In future studies, Pb isotopes together with Te stable isotopes using MC-ICP-MS 674 675 (e.g., Fehr et al., 2004) have the potential to constrain both Te and Au sources in hydrothermal systems. However, Te isotopes on Au-Ag-Te minerals and native Te in ore 676 677 deposits have relatively large Te isotope variations (Fornadel et al. 2014; 2017). At 678 present, the processes responsible for those variations are unclear, although few studies have been conducted on tellurides from ore deposits (Fornadel et al. 2019). Thus, before 679 680 the Te isotope system can be applied to ore-forming systems, such as those in NE China, 681 more laboratory studies could help identify the cause of the large Te isotope variations 682 obtained thus far.

683

684 Acknowledgements

685

The authors are grateful to the Bureau of Geology and Mineral Exploration (Heilongjiang), the Geological Brigades of the Heilongjiang Geological Survey, and Sandaowanzi, Dong'an and Tuanjiegou Gold Co. Ltd. for their support of the field work. The manuscript benefited from reviews by Dr. Stephan Schuth, Associated Editor Dr. Daniel Gregory, and the U.S. Geological Survey reviewer Dr. Nora K. Foley. This study

691	was funded by the National Natural Science Foundation of China (Grant Nos. 42272080
692	and 41802099), the Major Research Plan of National Natural Science Foundation of
693	China (Grant No. 92062219), the Second Tibetan Plateau Scientific Expedition and
694	Research Program (STEP, Grant No. 2019QZKK0806), and the Fundamental Research
695	Funds for the Central Universities (Grant No. 2-9-2021-021). Any use of trade, firm, or
696	product names is for descriptive purposes only and does not imply endorsement by the
697	U.S. Government.
698	
699	References
700	
701	Albrecht M, Derrey IT, Horn I, Schuth S and Weyer S (2014) Quantification of trace
702	element contents in frozen fluid inclusions by UV-fs-LA-ICP-MS analysis. Journal
703	of Analytical Atomic Spectrometry 29: 1034-1041.
704	Ayuso RA, Slack JF, Day WC and McCafferty AE (2016) Geochemistry, Nd-Pb isotopes,
705	and Pb-Pb ages of the Mesoproterozoic Pea Ridge iron oxide-apatite-rare earth
706	element deposit, southeast Missouri. Economic Geology 111: 1935-1962.
707	Bouse RM, Ruiz J, Titley SR, Tosdal RM and Wooden JL (1999) Lead isotope
708	compositions of Late Cretaceous and early Tertiary igneous rocks and sulfide
709	minerals in Arizona; implications for the sources of plutons and metals in porphyry
710	copper deposits. Economic Geology 94: 211-244.
711	Ciobanu CL, Cook NJ and Spry PG (2006) Preface - Special Issue: Telluride and

34

712	selenide minerals in gold deposits - how and why. Mineralogy and Petrology 87:
713	163-169.
714	Cook NJ, Ciobanu CL, Spry PG and Voudouris P (2009) Understanding
715	gold-(silver)-telluride-(selenide) mineral deposits. Episodes 32: 249-263.
716	Cook DA, Reeves SJ, Zhang W, Reid G, Levason W, Bartlett PN, Dyke JM, Greenacre
717	VK (2023) Tellurium electrodeposition from tellurium (II) and (IV) chloride salts in
718	dichloromethane. Electrochimica Acta 456: 142456.
719	Cooke DR and Simmons SF (2000) Characteristics and Genesis of Epithermal Gold
720	Deposits, in Hagemann, SG and Brown PE (Eds.), Gold in 2000. Society of
721	Economic Geologists Inc., pp 221-244.
722	Ding RX, Shu P, Ji XY, Qu YM, Chen RH and Zhang B (2007) SHRIMP zircon U-Pb age
723	and geological meaning of reservoir volcanic rocks in Qingshen gas field of the

- Songliao Basin, NE China. Journal of Jilin University (Earth Science Edition) 37:
- 725 525-530 (in Chinese with English abstract).
- Fehr MA, Rehkämper M and Halliday AN (2004) Application of MC-ICPMS to the
 precise determination of tellurium isotope compositions in chondrites, iron
 meteorites and sulfides. International Journal of Mass Spectrometry 232: 83-94.
- Feng H, Shen P, Zhu R, Li C, Ma G and Pan H (2019) Geology and He-Ar-S-Pb isotope
- constraints on the genesis of the Sidaogou gold deposit in Liaodong Peninsula,
- northeastern North China Craton. Ore Geology Reviews 113: 103080.
- 732 Foley NK and Ayuso RA (1994) Lead isotope compositions as guides to early gold

- mineralizations; the North Amethyst vein system, Creede District, Colorado.
 Economic Geology 89: 1842-1859.
- Fornadel AP, Spry PG and Jackson SE (2019) Geological controls on the stable tellurium
- isotope variation in tellurides and native tellurium from epithermal and orogenic gold
- 737 deposits: Application to the Emperor gold-telluride deposit, Fiji. Ore Geology
 738 Reviews 113: 103076.
- Fornadel AP, Spry PG, Haghnegahdar MA, Schauble EA, Jackson SE and Mills SJ (2017)
- 740 Stable Te isotope fractionation in tellurium-bearing minerals from precious metal
- hydrothermal ore deposits. Geochimica et Cosmochimica Acta 202: 215-230.
- 742 Fornadel AP, Spry PG, Jackson SE, Mathur RD, Chapman JB and Girard I (2014)
- 743 Methods for the determination of stable Te isotopes of minerals in the system
- Au-Ag-Te by MC-ICP-MS. Journal of Analytical Atomic Spectrometry 29: 623-637.
- Galer SJG and Abouchami W (1998) Practical application of lead triple spiking for
 correction of instrumental mass discrimination. Mineralogical Magazine 62A:
 491-492.
- Gao FH, Xu WL, Yang DB, Pei FP, Liu XM and Hu ZC (2007) LA-ICP-MS zircon U-Pb
- dating from granitoids in southern basement of Songliao basin: constraints on ages of
 the basin basement. Science in China (Series D) 50: 995-1004.
- 751 Gao S (2017) Study on Mesozoic gold metallogenic system, northern Heihe,
- 752 Heilongjiang province. PhD thesis, Beijing, China, China University of Geosciences
- 753 (Beijing), pp 1-196 (in Chinese with English abstract).
| 754 | Gao S, Hofstra AH, Qin K and Xu H (2022) A case of Te-rich low-sulfidation epithermal |
|-----|--|
| 755 | Au-Ag deposits in a calc-alkaline magmatic arc, NE China. Ore Geology Reviews |
| 756 | 115: 105158. |
| 757 | Gao S, Hofstra AH, Zou X, Valley JW, Kitajima K, Marsh EE, Lowers HA, Adams DT, |
| 758 | Qin K and Xu H (2021) Oxygen isotope evidence for input of magmatic fluids and |
| 759 | precipitation of Au-Ag-tellurides in an otherwise ordinary adularia-sericite |
| 760 | epithermal system in NE China. American Mineralogist 106: 2003-2019. |
| 761 | Gao S, Xu H, Li SR, Santosh M, Zhang DS, Yang LJ and Quan SL (2017b) Hydrothermal |
| 762 | alteration and ore-forming fluids associated with gold-tellurium mineralization in the |
| 763 | Dongping gold deposit, China. Ore Geology Reviews 80: 166-184. |
| 764 | Gao S, Xu H, Quan SL, Zang YQ and Wang T (2018b) Geology, hydrothermal fluids, |
| 765 | H-O-S-Pb isotopes, and Rb-Sr geochronology of the Daxintun orogenic gold deposit |
| 766 | in Heilongjiang province, NE China. Ore Geology Reviews 92: 569-587. |
| 767 | Gao S, Xu H, Zang YQ and Wang T (2018a) Mineralogy, ore-forming fluids and |
| 768 | geochronology of the Shangmachang and Beidagou gold deposits, Heilongjiang |
| 769 | province, NE China. Journal of Geochemical Exploration 188: 137-155. |
| 770 | Gao S, Xu H, Zang YQ, Yang LJ, Yang B and Wang T (2017a) Late Mesozoic |
| 771 | magmatism and metallogeny in NE China: The Sandaowanzi-Beidagou example. |
| 772 | International Geology Review 59: 1413-1438. |
| 773 | Gao S, Xu H, Zhang DS, Shao HN and Quan SL (2015) Ore petrography and chemistry |
| 774 | of the tellurides from the Dongping gold deposit, Hebei Province, China. Ore |

775	Geology	Reviews	64:	23-34.

776 G	e WC,	Wu FY,	Zhou CY	and	Zhang	JH	(2005)	Zircon	U-Pb	ages	and its	signif	icance	of
-------	-------	--------	---------	-----	-------	----	--------	--------	------	------	---------	--------	--------	----

- the Mesozoic granites in the Wulanhaote Region, central Great Xing'an Range. Acta
 Petrologica Sinica 21: 749-762 (in Chinese with English abstract).
- Gigon J, Deloule E, Mercadier J, Huston DL, Richard A, Annesley IR, Wygralak AS,
- 780 Skirrow RG, Mernagh TP and Masterman K (2020) Tracing metal sources for the
- giant McArthur River Zn-Pb deposit (Australia) using lead isotopes. Geology 48:
 478-482.
- Goldfarb RJ, Berger BR, George MW and Seal RR, II (2017) Tellurium, in Schulz KJ,
- 784 DeYoung JH, Jr Seal RR II and Bradley DC (Eds.), Critical Mineral Resources of the
- 785 United States—Economic and Environmental Geology and Prospects for Future

786Supply US Geological Survey Professional Paper 1802, R1-R27.

- 787 Goldfarb RJ, Hofstra AH and Simmons SF (2016) Critical elements in Carlin, epithermal,
- and orogenic gold deposits, in Verplanck PL and Hitzman MW (Eds.), Rare Earth
 and Critical Elements in Ore Deposits. Society of Economic Geologists Inc., pp
 217-244.
- 791 Graham DW (2002) Noble gas isotope geochemistry of mid-ocean ridge and ocean island
- basalts: characterization of mantle source reservoirs, in Porcelli D, Ballentine CJ and
- 793 Wieler R (Eds.), Reviews in Mineralogy and Geochemistry, Noble Gases in
- Geochemistry and Cosmochemistry, vol. 47. Mineralogical Society of America,
- 795 Washington, D.C., pp 247-318.

- Gulson BL (1986) Lead isotope in mineral exploration. Developments in Economic
 Geology Series, Elsevier, pp 245.
- Hall DL, Sterner SM and Bodnar RJ (1988) Freezing point depression of NaCl-KCl-H₂O
- solutions. Economic Geology 83: 197-202.
- 800 Han S (2013) Magmatic fluids and gold mineralization of the late Mesozoic epithermal
- gold system in northern Lesser Xing'an Range, NE China. PhD thesis, Changchun,
- 802 China, Jilin University, pp 47-50 (in Chinese with English abstract).
- Hao B, Deng J, Bagas L, Ge L, Nie F, Turner S, and Qing M (2016) The Gaosongshan
- 804 epithermal gold deposit in the Lesser Hinggan Range of the Heilongjiang Province,
- NE China: implications for Early Cretaceous mineralization. Ore Geology Reviews
 73: 179-197.
- Haroldson EL, Beard BL, Satkoski AM, Brown PE and Johnson CM (2018) Gold
 remobilization associated with Mississippi Valley–type fluids: A Pb isotope
 perspective. Geological Society of America Bulletin 130: 1583-1595.
- 810 He J, Liu J, Li X, Wang X and Sun P (2023) Genesis of Tuanjiegou epithermal gold
- 811 deposit in Heilongjiang province: Zircon U-Pb dating, element geochemistry and
- 812 Hf-S-Pb-He isotopic evidence. Journal to Jilin University (Earth Science Edition),
- doi: 10.13278/j.cnki.jjuese.20210387 (in Chinese with English abstract).
- Hedenquist JW and Lowenstern JB (1994) The role of magmas in the formation of
 hydrothermal ore deposits. Nature 370: 519-527.
- 816 Helmy HM, Ballhaus C, Fonseca RO and Leitzke FP (2020) Concentrations of Pt, Pd, S,

817	As, Se and Te in silicate melts at sulfide, arsenide, selenide and telluride saturation:
818	Evidence of PGE complexing in silicate melts? Contributions to Mineralogy and
819	Petrology 175: 1-14.
820	Hilton DR, Fischer TP and Marty B (2002) Noble gases and volatile recycling at
821	subduction zones, in Porcelli D, Ballentine CJ and Wieler R (Eds.), Reviews in
822	Mineralogy and Geochemistry, Noble Gases in Geochemistry and Cosmochemistry,
823	vol. 47. Mineralogical Society of America, Washington, D.C., pp 319-370.
824	Hofstra AH and Cline JS (2000) Characteristics and models for Carlin-type gold deposits,
825	in Hagemann SG and Brown PE (Eds.), Gold in 2000. Society of Economic
826	Geologists Inc., pp 163-220.
827	Hofstra AH, Meighan CJ, Song X, Samson I, Marsh EE, Lowers HA, Emsbo P and Hunt
828	AG (2016) Mineral thermometry and fluid inclusion studies of the Pea Ridge iron
829	oxide-apatite-rare earth element deposit, Mesoproterozoic St Francois Mountains
830	terrane, southeast Missouri, USA. Economic Geology 111: 1985-2016.
831	Holwell DA, Fiorentini M, McDonald I, Lu Y, Giuliani A, Smith DJ, Keith M and
832	Locmelis M (2019) A metasomatized lithospheric mantle control on the metallogenic
833	signature of post-subduction magmatism. Nature Communications 10: 3511.
834	Jahn BM (2004) The Central Asian Orogenic Belt and growth of the continental crust in
835	the Phanerozoic, in Malpas J, Fletcher CJN, Ali JR and Aitchison JC (Eds), Aspects
836	of the Tectonic Evolution of China. Special Publication 226: 73-100.
837	Jahn BM, Wu FY and Chen B (2000) Massive granitoids generation in central Asia: Nd

838	isotopic evidence and implication for continental growth in the Phanerozoic.
839	Episodes 23: 82-92.
840	Jenkin GRT, Graham H, Smith DJ, Khan R, Abbott AP, Harris RC, Holwell DA, Graham
841	SD, Khan R and Stanley CJ (2019) Gold and critical element recovery with
842	environmentally benign Deep Eutectic Solvents. 15th SGA Biennial Meeting abstract
843	4: 1512-1515.
844	Jenner FE (2017) Cumulate causes for the low contents of sulfide-loving elements in the
845	continental crust. Nature Geoscience 10: 524-529.
846	Jensen EP and Barton MD (2000) Gold deposits related to alkaline magmatism, in
847	Hagemann SG and Brown PE (Eds.), Gold in 2000. Society of Economic Geologists
848	Inc., pp 279-314.
849	John DA, Hofstra AH and Theodore TG (2003b) A special issue devoted to gold deposits
850	in northern Nevada: Part 1 regional studies and epithermal deposits. Economic
851	Geology 98: 225-234.
852	John DA, Hofstra AH, Fleck RJ, Brummer JE and Saderholm EC (2003a) Geologic
853	setting and genesis of the Mule Canyon low-sulfidation epithermal gold-silver
854	deposit, North-Central Nevada. Economic Geology 98: 425-463.

- John DA, Vikre PG, du Bray EA, Blakely RJ, Fey DL, Rockwell BW, Mauk JL,
- Anderson ED and Graybeal FT (2018) Descriptive models for epithermal gold-silver
- 857 deposits: US Geological Survey Scientific Investigations Report 2010–5070–Q, pp
- 858 7-12.

859	Keith M, Smith DJ, Doyle K, Holwell DA, Jenkin GRT, Barry TL, Becker J and Rampe J
860	(2020) Pyrite chemistry: A new window into Au-Te ore-forming processes in alkaline
861	epithermal districts, Cripple Creek, Colorado. Geochimica et Cosmochimica Acta
862	274: 172-191.
863	Kelley KD and Spry PG (2016) Critical Elements in Alkaline Igneous Rock-Related
864	Epithermal Gold Deposits, in Verplanck PL, and Hitzman MW (Eds.), Rare Earth
865	and Critical Elements in Ore Deposits. Society of Economic Geologists Inc., pp
866	195-216.
867	Kelley KD, Romberger SB, Beaty DW, Pontius JA, Snee LW, Stein HJ and Thompson
868	TB (1998) Geochemical and geochronological constraints on the genesis of Au-Te
869	deposits at Cripple Creek, Colorado. Economic Geology 93: 981-1012.
870	Kennedy BM and van Soest MC (2007) Flow of Mantle Fluids Through the Ductile
871	Lower Crust: Helium Isotope Trends. Science 318: 1433-1436.
872	Kim KH, Lee S, Nagao K, Sumino H, Yang K and Lee JI (2012) He-Ar-H-O isotopic
873	signatures in Au-Ag bearing ore fluids of the Sunshin epithermal gold-silver ore
874	deposits, South Korea. Chemical Geology 320: 128-39.
875	Landis GP and Hofstra AH (2012) Ore genesis constraints on the Idaho cobalt belt from
876	fluid inclusion gas, noble gas isotope, and ion ratio analyses. Economic Geology 107:
877	1189-1205.

- Landis GP and Rye RO (2005) Characterization of gas chemistry and noble-gas isotope
- ratios of inclusion fluids in magmatic-hydrothermal and magmatic-steam alunite.
- 880 Chemical Geology 215: 155-184.
- Li CL (2018) Gold metallogeny and prospecting in the Nenjiang-Heihe tectonic mélange
- zone, Heilongjiang Province. PhD thesis, China University of Geosciences (Beijing),
- pp 1-182 (in Chinese with English abstract).
- Li JY (2006) Permian geodynamic setting of Northeast China and adjacent regions:
- closure of the Paleo-Asian Ocean and subduction of the Paleo-Pacific Plate. Journal
- of Asian Earth Sciences 26: 207-224.
- Li Z, Qin K, Li G, Ishihara S, Jin L, Song G and Meng Z (2014) Formation of the giant
- 888 Chalukou porphyry Mo deposit in northern Great Xing'an Range, NE China: partial
- 889 melting of the juvenile lower crust in intra-plate extensional environment. Lithos
- 890 202-203: 138-156.
- 891 Li Z, Qin K, Li G, Jin L, Song G and Han R (2019) Incursion of meteoric water triggers
- molybdenite precipitation in porphyry Mo deposits: A case study of the Chalukou
 giant Mo deposit. Ore Geology Reviews 109: 144-162.
- Liu JL, Bai XD, Zhao SJ, Tran MD, Zhang ZC, Zhao ZD, Zhao HB and Lu J (2011)
- Geology of the Sandaowanzi telluride gold deposit of the northern Great Xing'an
- 896 Range, NE China: Geochronology and tectonic controls. Journal of Asian Earth
- 897 Sciences 41: 107-118.
- Liu JL, Zhao SJ, Cook NJ, Bai XD, Zhang ZC, Zhao ZD and Lu J (2013) Bonanza-grade

899	accumulations of gold tellurides in the Early Cretaceous Sandaowanzi deposit,
900	northeast China. Ore Geology Reviews 54: 110-126.
901	Liu Y, Sun J, Han J, Ren L, Gu A, Zhao K and Wang C (2019) Origin and evolution of
902	ore-forming fluid for the Gaosongshan gold deposit, Lesser Xing'an Range: Evidence
903	from fluid inclusions, H-O-S-Pb isotopes. Geoscience Frontiers 10: 1961-1980.
904	Lode S, Piercey SJ, Layne GD, Piercey G and Cloutier J (2017) Multiple sulphur and
905	lead sources recorded in hydrothermal exhalites associated with the Lemarchant
906	volcanogenic massive sulphide deposit, central Newfoundland, Canada. Mineralium
907	Deposita 52: 105-128.
908	Lorand JP and Luguet A (2016) Chalcophile and siderophile elements in mantle rocks:
909	Trace elements controlled by trace minerals, in Harvey J and Day JMD (Eds.)
910	Reviews in Mineralogy and Geochemistry, Highly Siderophile and Strongly
911	Chalcophile Elements in High-Temperature Geochemistry and Cosmochemistry, vol.
912	81. Mineralogical Society of America, Washington, D.C., pp 441-488.
913	Lorand JP and Alard O (2010) Determination of selenium and tellurium concentrations in
914	Pyrenean peridotites (Ariege, France): new insight into S/Se/Te systematics of the
915	upper in mantle samples. Chemical Geology 278: 120-130.
916	Manning AH and Hofstra AH (2017) Noble gas data from Goldfield and Tonopah
917	epithermal Au-Ag deposits, ancestral Cascades Arc, USA: Evidence for a primitive
918	mantle volatile source. Ore Geology Reviews 89: 683-700.
919	Mao J, Li Y, Goldfarb R, He Y and Zaw K (2003) Fluid inclusion and noble gas studies

920	of the Dongping gold deposit, Hebei Province, China: a mantle connection for
921	mineralization? Economic Geology 98: 517-534.

- 922 Miao LC, Fan WM, Zhang FQ, Liu DY, Jian P, Shi GH, Tao H and Shi YR (2004) Zircon
- 923 SHRIMP geochronology of the Xinkailing-Kele complex in the northwestern Lesser
- 924 Xing'an Range, and its geological implications. Chinese Science Bulletin 49:
 925 201-209.
- 926 Miao LC, Liu DY, Zhang FQ, Fan WM, Shi YR and Xie HQ (2007) Zircon SHRIMP
- 927 U-Pb ages of the "Xinghuadukou Group" in Hanjiayuanzi and Xinlin areas and the
- 928 "Zhalantun Group" in Inner Mongolia, Da Hinggan Mountains. Chinese Science
 929 Bulletin 52: 1112-1124.
- 930 Miao LC, Zhang FQ, Zhu MS and Liu DY (2015) Zircon SHRIMP U-Pb dating of
- 931 metamorphic complexes in the conjunction of the Greater and Lesser Xing'an ranges,
- 932 NE China: Timing of formation and metamorphism and tectonic implications.
- Journal of Asian Earth Sciences 114: 634-648.
- O'Neil JR and Silberman ML (1974) Stable isotope relations in epithermal Au-Ag
 deposits. Economic Geology 69: 902-909.
- Ozima M and Podosek FA (2002) Noble gas geochemistry, 2nd ed. Cambridge,
 Cambridge University Press, pp 1-281.
- 938 Patten C, Barnes SJ, Mathez EA and Jenner FE (2013) Partition coefficients of
- 939 chalcophile elements between sulfide and silicate melts and the early crystallization
- 940 history of sulfide liquid: LA-ICP-MS analysis of MORB sulfide droplets. Chemical

941 Geology 358: 170-188.

942	Pei FP, Xu WL, Yang DB, Zhao QG, Liu XM and Hu ZC (2007) Zircon U-Pb
943	geochronology of basement metamorphic rocks in the Songliao Basin. Chinese
944	Science Bulletin 52: 942-948.
945	Piercey SJ and Kamber BS (2019) Lead isotope geochemistry of shales from the
946	Wolverine volcanogenic massive sulfide deposit, Yukon: Implications for Pb isotope
947	vectoring in exhalative ore systems. Economic Geology 114: 47-66.
948	Qu GS (2008) Lithostratigraphy of Heilongjiang province, China: Wuhan, China
949	University of Geosciences Press, pp 1-301 (in Chinese).
950	Richards JP and Noble SR (1998) Application of radiogenic isotope systems to the timing
951	and origin of hydrothermal processes, in Richards JP and Larson PB (Eds.),
952	Techniques in Hydrothermal Ore Deposits Geology. Society of Economic Geologists
953	Inc., pp 195-233.
954	Richards JP, McCulloch MT, Chappell BW and Kerrich, R (1991) Sources of metals in
955	the Porgera gold deposit, Papua New Guinea: Evidence from alteration, isotope, and
956	noble metal geochemistry. Geochimica et Cosmochimica Acta 55: 565-580.
957	Saunders JA and Brueseke ME (2012) Volatility of Se and Te during subduction-related
958	distillation and the geochemistry of epithermal ores of the western United States.
959	Economic Geology 107: 165-172.
960	Saunders JA, Unger DL, Kamenov GD, Fayek M, Hames WE and Utterback WC (2008)
961	Genesis of Middle Miocene Yellowstone hotspot-related bonanza epithermal Au-Ag

962	deposits, Northern	Great Basin, USA.	Mineralium Deposita 43:	715-734.
-----	--------------------	-------------------	-------------------------	----------

963 Sengör AMC, Natal'in BA and Burtman VS (1993) Evolution of the Altaid tectonic

collage and Paleozoic crustal growth in Eurasia. Nature 364: 299-307.

- 965 Shen JF, Santosh M, Li SR, Li CP, Zhang JQ, Zhang SQ, Alam M, Wang YH and Xu KX
- 966 (2020) He-Ar, S, Pb and O isotope geochemistry of the Dabaiyang gold deposit:
- 967 Implications for the relationship between gold metallogeny and destruction of the968 North China Craton. Ore Geology Reviews 116: 103229.
- 969 Shikazono N, Nakata M and Shimizu M (1990) Geochemical, mineralogic and geologic
- 970 characteristics of Se-and Te-bearing epithermal gold deposits in Japan. Mining971 Geology 40: 337-352.
- 972 Shu P, Ding RX, Ji XY and Qu YM (2007) SHRIMP zircon geochronology of reservoir
- 973 volcanic rocks in the Qingshen gas field, Songliao Basin. Acta Petrologica et
 974 Mineralogica 26: 239-246 (in Chinese with English abstract).
- 975 Simmons SF (1995) Magmatic contributions to low-sulfidation epithermal deposits, in
- Magmas, fluids and ore deposits: Mineralogical Association of Canada Short Course
 Series 23: 455-477.
- 978 Simmons SF, Brown KL and Tutolo BM (2016) Hydrothermal transport of Ag, Au, Cu,
- Pb, Te, Zn, and other metals and metalloids in New Zealand geothermal systems:
- 980 Spatial patterns, fluid-mineral equilibria, and implications for epithermal
 981 mineralization. Economic Geology 111: 589-618.
- 982 Simmons SF, Sawkins FJ and Schlutter DJ (1987) Mantle-derived helium in two

983	Peruvian	hvdrothermal	ore deposits.	Nature 329	: 429-432.

- 984 Simmons SF, White NC and John DA (2005) Geological characteristics of epithermal
- precious and base metal deposits, in Hedenquist JW, Thompson JFH, Goldfarb RJ,
- and Richards JP (Eds.), One Hundredth Anniversary Volume. Society of Economic
- 987 Geologists Inc., pp 485-522.
- 988 Song G, Cook NJ, Wang L, Qin K, Ciobanu CL and Li G (2019) Gold behavior in
- 989 intermediate sulfidation epithermal systems: A case study from the Zhengguang gold
- deposit, Heilongjiang Province, NE-China. Ore Geology Reviews 106: 446-462.
- Spry PG, Chryssoulis S and Ryan CG (2004) Process mineralogy of gold: Gold from
 telluride-bearing ores. JOM 56: 60-62.
- 993 Stacey JS and Kramers JD (1975) Approximation of terrestrial lead isotope evolution by

a two-stage model. Earth and Planetary Science Letters 26: 207-221.

- 995 Sui ZM, Ge WC, Wu FY, Zhang JH, Xu XC and Cheng RY (2007) Zircon U-Pb ages,
- geochemistry and its petrogenesis of Jurassic granites in northeastern part of the Da
- 997 Hinggan Mts. Acta Petrologica Sinica 23: 461-480 (in Chinese with English998 abstract).
- 999 Sun JG, Zhang Y, Han SJ, Men LJ, Li YX, Chai P and Yang F (2013) Timing of
- 1000 formation and geological setting of low-sulphidation epithermal gold deposits in the
- 1001 continental margin of NE China. International Geology Review 55: 608-632.
- 1002 Tan J, Wei J, He H, Su F, Li Y, Fu L, Zhao S, Xiao G, Zhang F, Xu J and Liu Y (2018)
- 1003 Noble gases in pyrites from the Guocheng-Liaoshang gold belt in the Jiaodong

1004	province: Evidence for a mantle source of gold. Chemical Geology 480: 105-115.
1005	Tatsumoto M, Knight RJ and Allegre CJ (1973) Time differences in the formation of
1006	meteorites as determined from the ratio of lead-207 to lead-206. Science 180:
1007	1279-1283.
1008	Tosdal RM, Cline JS, Fanning CM and Wooden JL (2003) Lead in the
1009	Getchell-Turquoise Ridge Carlin-type gold deposits from the perspective of potential
1010	igneous and sedimentary rock sources in northern Nevada: Implications for fluid and
1011	metal sources. Economic Geology 98: 1189-1211.
1012	Tosdal RM, Wooden JL and Bouse RM (1999) Pb isotopes, ore deposits, and
1013	metallogenetic terranes, in Lambert DD and Ruiz J (Eds.), Application of Radiogenic
1014	Isotopes to Ore Deposit Research and Exploration. Society of Economic Geologists
1015	Inc., pp 1-28.
1016	Wang L, Percival JB, Hedenquist JW, Hattori K and Qin K (2021) Alteration mineralogy
1017	of the Zhengguang epithermal Au-Zn deposit, Northeast China: Interpretation of
1018	shortwave infrared analyses during mineral exploration and assessment. Economic
1019	Geology 116: 389-406.
1020	Wang PJ, Liu ZJ, Wang SX and Song WH (2002) $^{40}\text{Ar}/^{39}\text{Ar}$ and K/Ar dating of the
1021	volcanic rocks in the Songliao basin, NE China: Constraints on stratigraphy and
1022	basin dynamics. International Journal of Earth Sciences 91: 331-340.
1023	Wang Y, Zeng Q, Zhou L, Chu S, and Guo Y (2016) The sources of ore-forming material
1024	in the low-sulfidation epithermal Wulaga gold deposit, NE China: Constraints from S,

1025	Pb isotopes and REE pattern. Ore Geology Reviews 76: 140-151
1026	Wang Y, Zhang FQ, Zhang DW, Miao LC, Li TS, Xie HQ, Meng QR and Liu DY (2006)
1027	Zircon SHRIMP U-Pb dating of meta-diorite from the basement of the Songliao
1028	Basin and its geological significance. Chinese Science Bulletin 51: 1877-1883.
1029	Wang YB, Liu JM, Sun SK, Li Y, Li FY and Hu HT (2012) Zircon U-Pb geochronology,
1030	petrogenesis and geological implication of ore-bearing granodiorite porphyry in the
1031	Wulaga gold deposit, Heilongjiang Province. Acta Petrologica Sinica 28: 557-570.
1032	White NC, Zhang D, Hong H, Liu L, Sun W and Zhang M (2019) Epithermal Gold

1033 Deposits of China-An Overview, in Chang Z and Goldfarb RJ (Eds.), Mineral

1034 Deposits of China. Society of Economic Geologists Inc., pp 235-262.

1035 Wilde SA Dorsett-Bain HL and Liu JL (1997) The identification of a Late Pan-African

1036 granulite facies event in Northeastern China: SHRIMP U-Pb zircon dating of the

- 1037 Mashan Group at Liu Mao, Heilongjiang Province, China Proceedings of the 30th
- 1038 IGC: Precambrian Geology and Metamorphic Petrology, VSP International, Science
- 1039 Publishers, Amsterdam, 17, pp 59-74.
- 1040 Wilde SA, Wu FY and Zhang XZ (2003) Late Pan-African magmatism in Northeastern
- 1041 China: SHRIMP U-Pb zircon evidence for igneous ages from the Mashan Complex.
- 1042 Precambrian Research 122: 311-327.
- 1043 Wilde SA, Zhang XZ and Wu FY (2000) Extension of a newly-identified 500 Ma
- 1044 metamorphic terrain in Northeast China: Further U-Pb SHRIMP dating of the
- 1045 Mashan Complex, Heilongjiang Province, China. Tectonophysics 328: 115-130.

1046	Woodhead J	(2002)	A sim	ple	method for	or	obtaining	highly	accurate	Pb	isotope	data	bv
		_~~ <i>~</i>											~ /

- 1047 MC-ICP-MS. Journal of Analytical Atomic Spectrometry 17: 1381-1385.
- 1048 Wu FY, Sun DY, Li HM and Wang XL (2000) Zircon U-Pb ages of the basement rocks
- beneath the Songliao Basin, NE China. Chinese Science Bulletin 45: 1514-1518.
- 1050 Wu FY, Yang JH, Lo CH, Wilde SA, Sun DY and Jahn BM (2007) The Heilongjiang
- Group: A Jurassic accretionary complex in the Jiamusi Massif at the western Pacific
 margin of northeastern China. Island Arc 16: 156-172.
- 1053 Xu WL, Pei FP, Gao FH, Yang DB and Bu YJ (2008) Zircon U-Pb age from basement
- 1054 granites in Yishu graben and its tectonic implications. Earth Science-Journal of China

1055 University of Geosciences 33: 145-150 (in Chinese with English abstract).

- 1056 Yu YX, Xu H, Wu XK, Yang LJ, Tian Z, Gao S and Wang QS (2012) Characteristics of
- 1057 the Au-Ag-Te minerals and its ore-forming fluids in Sandaowanzi gold deposit,
- Heilongjiang Province. Acta Petrologica Sinica 28: 345-356 (in Chinese with Englishabstract).
- Zhai DG, Liu JJ, Edward MR and Wang JP (2015) Geochronological and He-Ar-S
 isotopic constraints on the origin of the Sandaowanzi gold-telluride deposit,
- northeastern China. Lithos 212: 338-352.
- 1063 Zhai DG, Williams-Jones AE, Liu JJ, Tombros SF and Cook NJ (2018) Mineralogical,
- 1064 fluid inclusion and multiple isotope (H-O-S-Pb) constraints on the genesis of the
- 1065 Sandaowanzi epithermal Au-Ag-Te deposit, NE China. Economic Geology 113:
- 1066 1359-1382.

1067	Zhang C, Wang E, Bi Z, Han R, Shao J, Liu B, Chen J and Zeng N (2019)
1068	Geochronology and isotope geochemistry studies of an epithermal gold deposit in the
1069	northern Lesser Khingan Range, NE China: The Gaosongshan example. Ore Geology
1070	Reviews 105: 356-374.
1071	Zhang FQ, Pang YM, Yang SF, Dong CW, Chen HL and Shu P (2007) Geochronology of
1072	zircon SHRIMP, geochemistry and its implication of the volcanic rocks from
1073	Yingcheng Formation in depression area, north of Songliao Basin. Acta Geologica
1074	Sinica 81: 1249-1259 (in Chinese with English abstract).
1075	Zhang JH, Ge WC, Wu FY, Wilde SA, Yang JH and Liu XM (2008) Large-scale Early
1076	Cretaceous volcanic events in the northern Great Xing'an Range, northeastern China.
1077	Lithos 102: 138-157.
1078	Zhang Z and Mao J (1995) Geology and geochemistry of the Dongping gold telluride
1079	deposit, Heibei province, north China. International Geology Review 37:
1080	1094-1108.
1081	Zhang Z, Mao J, Wang Y, Pirajno F, Liu J and Zhao Z (2010) Geochemistry and
1082	geochronology of the volcanic rocks associated with the Dong'an adularia-sericite
1083	epithermal gold deposit, Lesser Hinggan Range, Heilongjiang province, NE China:

- 1084 Constraints on the metallogenesis. Ore Geology Reviews 37: 158-174.
- 1085 Zhao YD, Che JY, Li SC, Wang KL, Zhao J, Wu DT, Xu FM and Sun QS (2015) Late
- 1086 Jurassic rapakivi granite and its geological implication of the northeast Great
- 1087 Xing'an Range, China: Chinese Mineral Geochemistry Society 15th Annual

1088 Conference Abstract Book, v 1 (in Chinese).

- 1089 Zhao ZH, Sun JG, Li GH, Xu WX, Lv CL, Wu S, Guo Y, Liu J and Ren L (2019b) Early
- 1090 Cretaceous gold mineralization in the Lesser Xing'an Range of NE China: the

1091 Yongxin example. International Geology Review 61: 1522-1549.

- 1092 Zhao ZH, Sun JG, Li GH, Xu WX, Lv CL, Wu S, Guo Y, Ren L and Hu ZX (2019a) Age
- 1093 of the Yongxin Au deposit in the Lesser Xing'an Range: Implications for an Early
- 1094 Cretaceous geodynamic setting for gold mineralization in NE China. Geological
- 1095 Journal 54: 2525-2544.
- 1096 Zhi Y (2015) Study on the mineralization tectonic setting and genesis of the Dong'an
- 1097 gold deposit, Lesser Khingan Range. MSc thesis, Jilin University, Changchun, China,
- 1098 pp 1-82 (in Chinese with English abstract).
- 1099 Zhi Y, Li B, Xi A, Xu Q, Zhang L, Sun Y, Chang J and Peng B (2016) Geochronology
- and geochemistry of the major host rock of the Dong'an gold deposit, Lesser
- 1101 Khingan Range: implications for petrogenesis and metallogenic setting during the
- Early–Middle Jurassic in northeast China. Geochemistry 76: 257-74.
- 1103 Zhou JB, Wilde SA, Zhang XZ, Zhao GC, Zheng CQ, Wang YJ and Zhang XH (2009)
- 1104 The onset of Pacific margin accretion in NE China: evidence from the Heilongjiang
- high-pressure metamorphic belt. Tectonophysics 478: 230-246.

1106

1107 Figure captions

- 1109 Fig. 1. (a) Regional geologic map showing the location of Te-bearing epithermal Au-Ag
- deposits in north Heilongjiang province, NE China (after Gao 2017; Zhao et al. 2019a, b;
- 1111 Gao et al., 2022). The inset shows the location of the regional map relative to crustal
- 1112 blocks in NE China. Numbers are ²⁰⁶Pb/²⁰⁴Pb values from host rocks by bulk analysis
- 1113 (Appendix B, Table B2). (b) Stratigraphic section of north Heilongjiang province,
- 1114 showing Cretaceous intrusive rock and host rocks for the deposits.
- 1115 Abbreviation: O = Ordovician, S = Silurian, D = Devonian, C = Carboniferous, P =
- 1116 Permian, T = Triassic, J = Jurassic, K = Cretaceous, N = Neogene, Q = Quaternary, LS =
- 1117 low sulfidation, IS = intermediate sulfidation.
- 1118
- 1119 Fig. 2. Geologic maps and cross sections of (a) Sandaowanzi (after Liu et al. 2013; Gao
- et al. 2017a; 2022), (b) Yongxin (after Zhao et al. 2019a, b), (c) Dong'an (after Zhang et
- al. 2010), and (d) Tuanjiegou (after Wang et al. 2012) deposits.
- 1122

Fig. 3. Photographs showing mineralogy and textures representative of ores from Sandaowanzi (a–d), Yongxin (e–g), Dong'an (h–k), and Tuanjiegou (l–o) Te-bearing epithermal Au-Ag deposits (Gao et al., 2022). (a) and (b) Au-Ag tellurides and chalcopyrite in colloform quartz vein. (c) Au-Ag tellurides and chalcopyrite with crystalline quartz vug. (d) Crystalline quartz and laumontite. (e) Quartz, sericite and pyrite alteration. (f) Brecciated quartz vein. (g) Quartz, sericite and calcite alteration. (h) Quartz and adularia vein hosted in andesite. (i) Quartz, adularia and chlorite in colloform

vein. (j) Bladed quartz. (k) Late-stage fluorite and quartz vein hosted in granite. (l)
Marcasite and quartz vein hosted in granodiorite. (m) Au-Ag telluride and sulfide vein. (n)
Stibnite and quartz vein. (o) Colloform calcite vein.

1133

1134	Fig. 4. Pre laser ablation images of telluride and sulfide minerals analyzed for Pb isotope
1135	compositions using the femtosecond (fs) laser ablation multicollector inductively coupled
1136	plasma mass spectrometry (fs LA-MC-ICP-MS). Tracks from Sandaowanzi (a-e),
1137	Yongxin (f), Dong'an (g-h), and Tuanjiegou (i). Figure 4f is a reflected images others are
1138	secondary electron images. (a) Stützite coexisting with hessite in colloform quartz vein.
1139	(b) Sylvanite coexisting with petzite in colloform quartz vein. (c) Calaverite coexisting
1140	with petzite in colloform quartz vein. (d) Altaite coexisting with petzite, sylvanite and
1141	hessite in colloform quartz vein. (e) Pyrite in andesite breccia replaced by quartz. (f)
1142	Altaite coexisting with galena and sphalerite in colloform quartz and adularia vein. (g)
1143	Galena replacing pyrite in quartz vein. (h) Argentite coexisting with galena, sphalerite
1144	and replacing pyrite in colloform quartz and adularia vein. (i) Pyrite associated with
1145	native gold in quartz vein. The ellipses mark areas that were subsequently ablated.
1146	Abbreviation: Alt = altaite, Arg = argentite, Cav = calaverite, Cp = chalcopyrite, Gn =
1147	galena, Hes = hessite, Ptz = petzite, Py = pyrite, Qz = quartz, Sp = sphalerite, Stü =
1148	stützite, Syl = sylvanite.

1149

1150 Fig. 5. Photomicrographs showing the textures of gangue minerals and fluid inclusions

1151 from Sandaowanzi (a-c), Yongxin (d-f), Dong'an (g-i) and Tuanjiegou (j-l). (a) 1152 Abundant liquid rich fluid inclusions in quartz crystals in colloform vein. (b) 1153 Fine-grained quartz with a colloform texture. (c) Abundant liquid rich fluid inclusions in 1154 quartz crystals in late-stage quartz vein. (d) Quartz associated with tellurides. (e) 1155 Late-stage crystalline quartz. (f) Calcite coexisting with quartz. (g) Early stage bladed 1156 quartz and recrystallized quartz. (h) Quartz and adularia in colloform vein. (i) Late-stage 1157 fluorite vein. (j) Quartz and pyrite vein. (k) Abundant liquid rich fluid inclusions in 1158 quartz crystals. (1) Calcite crystals in colloform vein.

1159 Abbreviation: Adl = adularia, Cal = calcite, Flr = fluorite, Py = pyrite, Qz = quartz, Fls =

- 1160 fluid inclusions, FQ = fine-grained quartz.
- 1161

1162 Fig. 6. Photomicrographs of fluid inclusions in quartz, fluorite, and calcite from

1163 Sandaowanzi (a-c), Yongxin (d-g), Dong'an (g-l), and Tuanjiegou (m-o). Yongxin has

1164 CO₂-bearing fluid inclusions (Fig. 5f, g). Others are L-V type in the H₂O-NaCl system.

- 1165 Abbreviation: Cal = calcite, Flr = fluorite, Qz = quartz.
- 1166

```
1167 Fig. 7. Lead isotope compositions of telluride, sulfide and gangue minerals determined by
```

1168 femtosecond (fs) laser ablation multicollector inductively coupled plasma mass

- 1169 spectrometry (fs LA-MC-ICP-MS) from Sandaowanzi, Dong'an, Yongxin, and
- 1170 Tuanjiegou. (a) ²⁰⁷Pb/²⁰⁴Pb versus ²⁰⁶Pb/²⁰⁴Pb. (b) ²⁰⁸Pb/²⁰⁴Pb versus ²⁰⁶Pb/²⁰⁴Pb. (c) and
- 1171 (d) Enlarged areas from (a) and (b), respectively. Lead isotopes of Early Cretaceous

igneous rocks and pyrite in the area are from Wang et al. (2012), Han (2013), Gao et al.
(2017a), Li (2018), Zhang et al. (2019). (e) ²⁰⁶Pb/²⁰⁷Pb versus ²⁰⁸Pb/²⁰⁷Pb (f). ²⁰⁷Pb/²⁰⁶Pb
versus ²⁰⁸Pb/²⁰⁶Pb. Country rock trends in Fig. 7e are based on Early Cretaceous rock
plots (see Appendix A Fig. A1). Rock contaminated trends in Fig. 7f are from regional
rocks in NE China (see Appendix A Fig. A1). Sulfide data points in Fig. 7a, b are based
on Early Cretaceous sulfide plots (see Appendix A Fig. A2).

1178

1179 Fig. 8. Lead isotope evolution model for lead sources in epithermal Au-Ag deposits 1180 (Northern Heilongjiang province, NE China). Colors of characters, numbers and lines: Sandaowanzi = red, Yongxin = yellow, Dong'an = green, and Tuanjiegou = blue. The 1181 1182 model age of both lead sources is based on the maximum and minimum ages for each deposit. Values of $\mu 1_{max}$ and $\mu 1_{min}$ are calculated values from lead evolution models. $\mu 1$ 1183 corresponds to the ²³⁸U/²⁰⁴Pb ratio of mantle (7.192; Tatsumoto et al., 1973), and lead 1184 source; t1_{max} and t1_{min} correspond to the age of crust formation for lead sources 1 and 2 in 1185 1186 each deposit, respectively.

1187

Fig. 9. Noble gas plots of fluid inclusion extracts showing early, main, and late-stage minerals. (a) Molar He abundance versus R/R_A . (b) Molar $CO_2/{}^3$ He versus R/R_A plot (dashed vertical lines; Ozima and Podosek 2002). (c) Molar ${}^{36}Ar/{}^4$ He versus R/R_A diagram with binary mixing lines between air/air-saturated water (ASW), mantle, and crust. (d) Molar ${}^{20}Ne/{}^4$ He versus R/R_A diagram with binary mixing lines between

air/air-saturated water (ASW), mantle, and crust. (e) Molar 20 Ne/ 22 Ne versus R/R_A plot of 1193 1194 fluid inclusion extracts relative to those of air, crust and mantle sources (dashed lines). 1195 Published data of Sandaowanzi and Yongxin deposits are from Yu et al. (2012), Zhai et al. 1196 (2015), and Li (2018). Geothermal data from the Cascades arc and Basin and Range (B&R) province are from Kennedy and van Soest (2007). The R/R_A ratios of air, mantle, 1197 1198 and crustal are from Graham (2002) and Hilton et al. (2002). Vertical dashed line shows typical pattern of increasing mantle ³He with decreasing abundance of radiogenic ⁴He 1199 1200 (Landis and Rye 2005; Landis and Hofstra 2012; Hofstra et al. 2016; Manning and 1201 Hofstra 2017). Bold dashed line shows epithermal and deeper intrusion-related systems. 1202 Shadow and line circles are different areas.

1203

Fig. 10. Homogenization temperatures and salinities of fluid inclusions from the Sandaowanzi, Yongxin, Dong'an, and Tuanjiegou deposits in the North Heilongjiang Belt, NE China. Representative samples overlay with R/R_A from the same sample. Symbol shape with color line is for data points from each deposit. Color filling is the stage. Shape size is R/R_A value. Grey field and colored lines encompass data from different deposits and are determined by 2D density contours. Secondary fluid inclusions (FIs) are formed when fluids are trapped after the crystal growth is complete.

1211

1212 Fig. 11. Schematic models for fluid source and evolution in epithermal Au-Ag deposits in

1213 north Heilongjiang province, NE China. μ 1 corresponds to the ²³⁸U/²⁰⁴Pb ratio of mantle

1214	(7.192; Tatsumoto et al., 1973), and Pb source. He _{mantle} is referring to typical pattern of
1215	increasing mantle ³ He with decreasing abundance of radiogenic ⁴ He (Landis and Rye
1216	2005; Landis and Hofstra 2012; Hofstra et al. 2016; Manning and Hofstra 2017). Colors
1217	of characters and numbers in models: Sandaowanzi = red, Yongxin = yellow, Dong'an =
1218	green, and Tuanjiegou = blue.
1219	
1220	List of tables
1221	
1222	Table 1. Characteristics of Early Cretaceous adularia-sericite epithermal Au-Ag deposits
1223	in the North Heilongjiang Belt, NE China.
1224	
1225	Table 2. Minerals analyzed from Sandaowanzi, Yongxin, Dong'an, and Tuanjiegou
1226	deposits in the North Heilongjiang Belt, NE China.
1227	
1228	Table 3. In situ Pb isotope results for minerals from Sandaowanzi, Yongxin, Dong'an,
1229	and Tuanjiegou in the North Heilongjiang Belt, NE China. "nd" (not determined) was
1230	due to insufficient ²⁰⁴ Pb signal.
1231	
1232	Table 4. Noble gas isotope results of fluid inclusions from Sandaowanzi, Yongxin,
1233	Dong'an and Tuanjiegou in the North Heilongjiang Belt, NE China.
1234	

1235	Table 5. Homogenization temperatures and salinities of fluid inclusions from
1236	Sandaowanzi, Yongxin, Dong'an and Tuanjiegou in the North Heilongjiang Belt, NE
1237	China.
1238	
1239	Table 6. Summary of lead and noble gas isotopes, fluid inclusion microthermometry, and
1240	the main features of Te-rich and Te-poor deposits in the North Heilongjiang Belt, NE
1241	China.
1242	
1243	Appendix
1244	
1245	Appendix A: Lead isotope framework of northern Heilongjiang province and
1246	descriptions of the Au-Ag deposits.
1247	
1248	Appendix B: Fluid inclusion, Pb isotope, and noble gas isotope data.
1249	
1250	Table B1 Detailed homogenization temperature and salinity of fluid inclusions from
	Table D1. Detailed nonogenization temperature and samily of fidid metasions from
1251	Sandaowanzi, Yongxin, Dong'an, and Tuanjiegou in the North Heilongjiang Belt, NE
1251 1252	Sandaowanzi, Yongxin, Dong'an, and Tuanjiegou in the North Heilongjiang Belt, NE China.
1251 1252 1253	Sandaowanzi, Yongxin, Dong'an, and Tuanjiegou in the North Heilongjiang Belt, NE China.
1251 1252 1253 1254	Table B1: Detailed hollogenization temperature and samily of huld metasions fromSandaowanzi, Yongxin, Dong'an, and Tuanjiegou in the North Heilongjiang Belt, NEChina.Table B2. Published Pb isotope data from igneous rocks, metamorphic rocks, and sulfide

1256

- 1257 Table B3. Published noble gas isotope data from epithermal and intrusion-related Au
- 1258 deposits in China and South Korea.

Deposit	Sandaowanzi	Yongxin	Dong'an	Tuanjiegou
Туре	Te-rich	Te-rich	Te-poor	Te-poor
Tectonic location	Xing'an Block	Xing'an Block	Songliao Block	Jiamusi Massif
Production	22t Au at a grade of 13.98 g/t	20t Au at a grade of 4.1 g/t	24t Au at a grade of 8.8 g/t	80t Au at a grade of 4.0 g/t
Alteration	Quartz, pyrite, sericite, calcite, chlorite, and epidote	Quartz, pyrite, sericite, carbonates, anhydrite, and chlorite	Quartz, pyrite, sericite, calcite, and chlorite	Quartz, pyrite, sericite, calcite, and chlorite
Gangue minerals in the veins	Quartz, chalcedony, calcite, laumontite, anhydrite and zeolite	Quartz, pyrite, and calcite	Quartz, adularia, chalcedony, chlorite, calcite, pyrite and fluorite	Quartz, pyrite, marcasite, and carbonates
Ore minerals in the veins	Abundant Au-Ag-tellurides (>95% in metal minerals), rare chalcopyrite, galena, and sphalerite	Pyrite, chalcopyrite, galena, sphalerite, native gold, Au-Ag-tellurides, and Bi-tellurides	Electrum, native gold, Ag-sulfides, Ag-sulfates, Au-Ag-tellurides (low content), pyrite, chalcopyrite, galena, and sphalerite	Pyrite, marcasite, stibnite, chalcopyrite, galena, sphalerite and native gold
Pb isotopes	Volcanic rocks and pyrite are similar	Volcanic rocks, dikes and pyrite are similar	Pyrite is similar to the regional volcanic rocks	Granodioritic porphyry and pyrite are similar
He-Ar isotopes	Quartz, pyrite, chalcopyrite and tellurides: more crust contaminations of pyrite	Gold-bearing pyrite: more mantle compositions	Quartz, adularia, pyrite and fluorite: more crust contaminations of pyrite	Pyrite, quartz, calcite
Ages	Volcanic rocks, dikes, and hydrothermal pyrite, quartz and sericite are similar in age (~120 Ma)	Volcanic rocks, dikes, and hydrothermal pyrite are similar in age (~114 Ma)	Volcanic rocks, and hydrothermal sericite are similar in age (~108 Ma)	Porphyry, dikes, and hydrothermal pyrite are similar in age (~108 Ma)

1 Table 1. Characteristics of Early Cretaceous adularia-sericite epithermal Au-Ag deposits in the North Heilongjiang Belt, NE China.

2 Table 2. Minerals analyzed from Sandaowanzi, Yongxin, Dong'an, and Tuanjiegou deposits in the North Heilongjiang Belt, NE China.

Deposit	osit Sandaowanzi				Yongxin		Tuanjieg	gou
Isotope	Lead Noble gas		Lead	Noble gas	Lead	Noble gas	Lead	Noble gas
systems								
Early stage	Ру	Py ¹ , Qtz		Qz, Py		Qz	Pl	Qz
Main stage	Alt, Hes, Ptz,	Cp^1 , Ptz^1 , Qtz	Alt, Gn, Arg,	Adl	Alt, Gn,	Ру	Gn, Py	Ру
	Syl, Stü, Cp, Sp		Py, Adl, Sp,		Ру			
			Fer ²					
Late stage	Cal			Qz, Fl		Cal	Cal	Cal

 $3 \quad {}^{1}$ Cite from published data, see Appendix B.

4 Abbreviation: Adl = adularia, Alt = altaite, Arg = argentite, Cal = calcite, Cav = calaverite, Cp = chalcopyrite, Gn = galena, Hes =

f hessite, Pl = plagioclase, Ptz = petzite, Py = pyrite, Qz = quartz, Sp = sphalerite, Stu = stutzite, Syl = sylvanite.

6

7

Table 3. In situ Pb isotope results for minerals from Sandaowanzi, Yongxin, Dong'an, and Tuanjiegou in the North Heilongjiang Belt,
NE China.

Location	Mineral	Sample and description	²⁰⁸ Pb/ ²⁰⁴ Pb	SE	²⁰⁷ Pb/ ²⁰⁴ Pb	SE	²⁰⁶ Pb/ ²⁰⁴ Pb	SE	²⁰⁸ Pb/ ²⁰⁶ Pb	SE	²⁰⁷ Pb/ ²⁰⁶ Pb	SE
Sandaowanzi	Alt	90CM21-1 area 2 altaite line 1	38.152	0.003	15.539	0.003	18.274	0.003	2.0880	0.0004	0.8505	0.0001
	Alt	90CM21-1 area 2 altaite line 2	38.105	0.003	15.525	0.003	18.263	0.003	2.0866	0.0004	0.8503	0.0001
	Sp	90CM21-1 area 2 sphalerite line 1	nd		nd		nd		2.0872	0.0004	0.8499	0.0001
	Ptz	90CM21-1 area 2 petzite line 1	38.138	0.003	15.534	0.003	18.278	0.003	2.0866	0.0004	0.8501	0.0001
	Hes	90CM21-1 area 1 hessite line 1	nd		nd		nd		2.0857	0.0004	0.8501	0.0001
	Cal	90CM21-1 area 1 calcite line 2	nd		nd		nd		2.1082	0.0004	0.8592	0.0001
	Ptz+Hes	90CM21-1 area 1 petzite + hessite line 4	nd		nd		nd		2.0856	0.0004	0.8501	0.0001
	Py	90CM21-1 area 3 pyrite line 1	nd		nd		nd		2.0844	0.0004	0.8492	0.0001
	Syl	130CM23-10 area 1 sylvanite line 2	nd		nd		nd		2.0824	0.0004	0.8486	0.0001
	Alt	130CM23-14-1 area 3 altaite line 1	38.149	0.007	15.534	0.003	18.279	0.003	2.0872	0.0001	0.8501	0.0001
	Alt	130CM23-14-1 area 3 altaite line 1 rerun	38.173	0.007	15.542	0.003	18.285	0.003	2.0878	0.0001	0.8502	0.0001
	Alt	130CM23-14-1 area 3 altaite line 2	38.164	0.007	15.539	0.003	18.283	0.003	2.0875	0.0001	0.8501	0.0001
	Py	130CM23-14-1 area 5 pyrite spot 1	nd		nd		nd		2.0936	0.0001	0.8538	0.0001
	Py	130CM23-14-1 area 5 pyrite spot 2	nd nd			nd			2.0906	0.0001	0.8534	0.0001
Yongxin	Alt	180-29-232.5 area 3 altaite spot 1	37.976	0.007	15.526	0.003	18.139	0.003	2.0937	0.0001	0.8562	0.0001
•	Alt	180-29-232.5 area 3 altaite spot 2	37.962	0.007	15.518	0.003	18.128	0.003	2.0942	0.0001	0.8563	0.0001
	Alt	180-29-232.5 area 3 altaite spot 3	nd		nd		nd		2.0946	0.0001	0.8571	0.0001
	Py	180-29-232.5 area 3 pyrite line 1	nd		nd		nd		2.0936	0.0001	0.8559	0.0001
	Ğn	177.5-3-200 area 1 galena spot 1	37.949	0.003	15.509	0.003	18.127	0.003	2.0936	0.0004	0.8558	0.0001
	Gn	177.5-3-200 area 1 galena spot 2	37.949	0.003	15.509	0.003	18.128	0.003	2.0935	0.0004	0.8558	0.0001
	Py	177.5-3-200 area 1 galena line 1	nd		nd		nd		2.0909	0.0004	0.8545	0.0001
	Py	177.5-3-200 area 2 galena line 1	nd		nd		nd		2.0902	0.0004	0.8535	0.0001

Dong'an	Gn	36-6-221.5 area 1 galena spot 1	38.533	0.003	15.603	0.003	18.864	0.003	2.0427	0.0004	0.8273	0.0001
•	Gn	36-6-221.5 area 1 galena spot 2	38.500	0.003	15.593	0.003	18.855	0.003	2.0419	0.0004	0.8271	0.0001
	Arg	36-6-221.5 area 1 argentite line 1	38.513	0.003	15.601	0.003	18.865	0.003	2.0416	0.0004	0.8271	0.0001
	Py	36-6-221.5 area 1 pyrite line 1	38.504	0.003	15.596	0.003	18.855	0.003	2.0418	0.0004	0.8273	0.0001
	Sp	36-6-221.5 area 1 sphalerite possibly shot AgS	38.469	0.003	15.583	0.003	18.846	0.003	2.0413	0.0004	0.8271	0.0001
	Gn	36-6-221.5 area 2 galena spot 1	38.512	0.003	15.598	0.003	18.860	0.003	2.0421	0.0004	0.8272	0.0001
	Arg	36-6-221.5 area 2 argentite spot 1	nd		nd		nd		2.0384	0.0004	0.8263	0.0001
	Gn	36-6-221.5 area 3 galena spot 1	38.503	0.003	15.597	0.003	18.852	0.003	2.0424	0.0004	0.8275	0.0001
	Gn	36-6-221.5 area 4 galena spot 1	38.510	0.003	15.599	0.003	18.845	0.003	2.0436	0.0004	0.8280	0.0001
	Gn	36-6-221.5 area 5 galena spot 1	38.540	0.003	15.605	0.003	18.871	0.003	2.0423	0.0004	0.8271	0.0001
	Ad	DA-80 area 3 adularia line 1	38.423	0.007	15.574	0.003	18.822	0.003	2.0414	0.0001	0.8277	0.0001
	Py	DA-80 area 3 pyrite line 1	38.494	0.007	15.597	0.003	18.833	0.003	2.0440	0.0001	0.8284	0.0001
	Ad	DA-80 area 4 adularia line 1	38.470	0.007	15.591	0.003	18.834	0.003	2.0426	0.0001	0.8280	0.0001
	Alt	36-7-152.4 area 2 altaite spot 1	38.567	0.007	15.608	0.003	18.902	0.003	2.0404	0.0001	0.8260	0.0001
	Alt	36-7-152.4 area 2 altaite spot 2	38.518	0.007	15.592	0.003	18.890	0.003	2.0391	0.0001	0.8256	0.0001
	Gn	36-7-152.4 area 2 galena spot 1	38.573	0.007	15.610	0.003	18.909	0.003	2.0400	0.0001	0.8258	0.0001
	Sp	36-7-152.4 area 2 sphalerite line 1	nd		nd		nd		2.0399	0.0001	0.8251	0.0001
	Sp	36-7-152.4 area 2 sphalerite spot 1	38.559	0.007	15.609	0.003	18.903	0.003	2.0399	0.0001	0.8260	0.0001
	Gn	36-7-152.4 area 4 galena spot 1	38.526	0.007	15.599	0.003	18.881	0.003	2.0406	0.0001	0.8264	0.0001
	Alt	36-7-152.4 area 4 altaite spot 1	38.555	0.007	15.608	0.003	18.886	0.003	2.0415	0.0001	0.8266	0.0001
	Alt	36-7-152.4 area 3 altaite spot 1	38.568	0.007	15.608	0.003	18.903	0.003	2.0403	0.0001	0.8259	0.0001
	Gn	36-7-152.4 area 3 galena spot 1	38.562	0.007	15.607	0.003	18.901	0.003	2.0402	0.0001	0.8264	0.0001
Tuanjiegou	Gn	TJG-024 area 4 galena spot 1	38.221	0.007	15.544	0.003	18.317	0.003	2.0867	0.0001	0.8488	0.0001
	Gn	TJG-024 area 6 galena spot 1	38.203	0.007	15.539	0.003	18.311	0.003	2.0864	0.0001	0.8488	0.0001
	Gn	TJG-024 area 6 galena spot 2	38.190	0.007	15.539	0.003	18.307	0.003	2.0862	0.0001	0.8490	0.0001
	Ру	TJG-002 area 1 pyrite line 1	38.170	0.003	15.525	0.003	18.272	0.003	2.0891	0.0004	0.8499	0.0001
	Ру	TJG-002 area 1 fine-grained pyrite line 2	38.161	0.003	15.521	0.003	18.279	0.003	2.0878	0.0004	0.8494	0.0001
	Ру	TJG-002 area 2 pyrite line 1	38.205	0.003	15.535	0.003	18.278	0.003	2.0903	0.0004	0.8501	0.0001
	Pl	TJG-002 area 3 plagioclase line 1	nd		nd		nd		2.1128	0.0004	0.8598	0.0001
	Pl	TJG-002 area 3 plagioclase line 2	nd		nd		nd		2.1177	0.0004	0.8626	0.0001
	Cal	TJG-006 area 1 calcite line 1	nd		nd		nd		2.1412	0.0004	0.8746	0.0001
	Cal	TJG-006 area 1 calcite line 2	nd		nd		nd		2.1376	0.0004	0.8705	0.0001
NIST SRM 9	81 (avg, n=	=12) solution introduction	36.711		15.489		16.935		2.1678		0.9148	
2s			0.008		0.002		0.003		0.0003		0.0001	
USGS PB-IS	O-1G (avg	n=11) fs laser introduction	36.718		15.489		16.946		2.1667		0.9142	
2s			0.013		0.006		0.008		0.0004		0.0001	
USGS GSE-2	2G (avg, n=	15) fs laser introduction	39.143		15.771		19.907		1.9656		0.7924	
2s			0.016		0.007		0.009		0.0003		0.0001	
			201									

10 Note: "nd" (not determined) was due to insufficient 204 Pb signal. SE = standard error.

12 Table 4. Noble gas isotope results of fluid inclusions from Sandaowanzi, Yongxin, Dong'an, and Tuanjiegou in the North

	тт	- 1		D 1/	NTT	<u> </u>
17	10	10000	10100	Dalt	NL	(hino
1.5				DPH		
1.5	110	none	Iune	DUIL.		Umma.
		- 62	23			

Deposit	Sample	Mineral	⁴ He (μcc/cc)	1σ	R/R _A	1σ	²⁰ Ne (µcc/cc)	1σ	²⁰ Ne/ ²² Ne	1σ	²¹ Ne/ ²² Ne	1σ	⁴⁰ Ar (μcc/cc)	1σ	⁴⁰ Ar/ ³⁶ Ar	1σ	³⁸ Ar/ ³⁶ Ar	1σ
Sandaowanzi	170CM13	Quartz	0.151	0.009	0.219	0.023	0.042	1.18E-03	9.779	0.084	0.029	0.001	120.092	2.767	287.6	6.3	0.188	0.001
Sandaowanzi	130CM21-6	Quartz	0.010	0.001	0.340	0.036	0.003	7.03E-05	9.965	0.331	0.028	0.003	BDL	BDL	BDL	BDL	BDL	BDL
Sandaowanzi	130CM23-21	Quartz	0.417	0.024	0.064	0.007	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Sandaowanzi	90CM4	Quartz	0.138	0.008	0.126	0.013	0.025	7.08E-04	9.926	0.360	0.029	0.001	37.555	0.865	289.9	6.4	0.188	0.001
Yongxin	180-29-232.5	Quartz	0.273	0.016	0.148	0.015	0.014	3.79E-04	10.120	0.582	0.029	0.001	50.210	1.157	278.8	6.1	0.188	0.001
Yongxin	175-20-141.1	Quartz	0.147	0.009	0.182	0.019	0.021	5.80E-04	9.818	0.659	0.029	0.001	58.703	1.353	303.0	6.7	0.189	0.001
Yongxin	175-25-186	Calcite	3.648	0.215	0.055	0.006	0.172	4.82E-03	9.846	0.135	0.029	0.001	478.419	11.023	268.3	5.9	0.192	0.001
Yongxin	175-13-133	Calcite	0.192	0.011	0.523	0.055	0.062	1.72E-03	10.123	0.236	0.029	0.001	198.494	4.573	278.8	6.1	0.194	0.001
Yongxin	175-24-188.3	Pyrite	0.472	0.028	1.698	0.155	0.038	1.06E-03	10.334	0.010	0.029	0.001	78.934	1.819	288.1	6.3	0.194	0.001
Dong'an	DA-103	Quartz	0.697	0.040	0.926	0.064	0.002	4.55E-05	10.048	0.107	0.027	0.003	BDL	BDL	BDL	BDL	BDL	BDL
Dong'an	DA-92	Quartz	0.093	0.005	0.028	0.003	0.002	6.58E-05	10.110	0.267	0.030	0.003	BDL	BDL	BDL	BDL	BDL	BDL
Dong'an	DA-115	Pyrite	2.261	0.131	0.036	0.004	0.006	1.50E-04	10.007	0.200	0.028	0.003	BDL	BDL	BDL	BDL	BDL	BDL
Dong'an	DA-61	Adularia	0.014	0.001	0.395	0.042	0.005	1.28E-04	10.023	0.342	0.028	0.003	BDL	BDL	BDL	BDL	BDL	BDL
Dong'an	DA-53	Adularia	0.009	0.001	0.478	0.050	0.004	1.05E-04	9.891	0.669	0.029	0.001	11.216	0.258	291.6	6.4	0.191	0.001
Dong'an	DA-23	Fluorite	0.525	0.030	0.752	0.077	0.003	8.81E-05	10.168	0.878	0.026	0.003	BDL	BDL	BDL	BDL	BDL	BDL
Dong'an	DA-125	Fluorite	0.356	0.021	0.248	0.025	0.011	3.13E-04	9.998	0.496	0.029	0.001	26.037	0.600	276.3	6.1	0.177	0.001
Tuanjiegou	TJG-019	Pyrite	0.006	0.000	0.448	0.047	0.003	9.40E-05	10.046	0.186	0.029	0.001	7.804	0.180	291.9	6.4	0.190	0.001
Tuanjiegou	TJG-015	Pyrite	0.010	0.001	0.135	0.014	0.002	4.80E-05	9.707	0.636	0.029	0.001	5.283	0.122	298.4	6.6	0.190	0.001
Tuanjiegou	TJG-006	Calcite	0.525	0.031	0.528	0.056	0.172	4.82E-03	9.956	0.002	0.029	0.001	906.175	20.879	248.8	5.5	0.178	0.001
Tuanjiegou	TJG-011	Quartz	0.328	0.019	0.097	0.010	0.024	6.64E-04	9.835	0.325	0.029	0.001	59.395	1.368	286.5	6.3	0.185	0.001

14 Note: BDL (below detection limit).

16 Table 5. Homogenization temperatures and salinities of fluid inclusions from Sandaowanzi, Yongxin, Dong'an and Tuanjiegou in the

Deposit	Stage	Host mineral	Туре	Homogenization temperature (°C)	Salinity (NaCl eq. wt. %)	Reference	
	Pre ore (I)	Quartz	L-V (N=150)	226-361	0.2-12.9	This study, Cap 2017, Cap at	
Sandaowanzi	Main ore (II-IV)	Quartz	L-V (N=213)	186-309	0.2–9.6	al 2021	
	Post ore (V)	Quartz	L-V (N=50)	110-211	0.2-8.5	al., 2021	
	Secondary	Quartz	L-V (N=6)	167–216	0.2-0.7	Gao et al., 2021	
Yongxin	Pre ore (I)	Quartz	L-V (N=8)	328-341	6.0-8.3		
	Main ore (II-IV)	Quartz	L-V (N=54)	178–297	3.0-9.2	This study	
	Post ore (V)	Quartz	L-V (N=27)	117-207	2.2-11.2	-	
Dong'an	Pre ore (I)	Quartz	L-V (N=21)	260-290	0.2–4.9	This study, Cas at al. 2021	
	Main ore (II-IV)	Quartz	L-V (N=53)	223-256	0.2-3.0	This study, Gao et al., 2021	
	Post ore (V)	Fluorite	L-V (N=102)	120-190	0.4-3.2	This study, Zhi et al., 2016	
	Secondary	Quartz	L-V (N=7)	164-210	0.5-1.1	Gao et al., 2021	
Tuanjiegou	Pre ore (I)	Quartz	L-V (N=13)	261-280	1.8-2.2		
	Main ore (II-IV)	Quartz	L-V (N=34)	208–254	2.2-7.9	This study	
	Post ore (V)	Calcite	L-V (N=10)	162–171	2.2–3.4	-	

17 North Heilongjiang Belt, NE China.

18 Table 6. Summary of lead and noble gas isotopes, fluid inclusion microthermometry, and the main features of Te-rich and Te-poor

19 deposits in the North Heilongjiang Belt, NE China.

Туре	Te-	rich	Te-poor		
Block	Xing'an Block		Songliao Block	Jiamusi Massif	
Location	Sandaowanzi	Yongxin	Dong'an	Tuanjiegou	
Tonnage Au	22	20	24	80	
Grade (g/t)	14	4	9	4	
Au-bearing mineral	Quartz	Quartz, pyrite	Quartz	Quartz, pyrite	
Age (Ma)	120	114	108	108	
²⁰⁶ Pb/ ²⁰⁴ Pb	18.263-18.285	18.127-18.139	18.822-18.909	18.272-18.317	
²⁰⁷ Pb/ ²⁰⁶ Pb	0.8486-0.8592	0.8557-0.8563	0.8251-0.8284	0.8488-0.8501	
²⁰⁸ Pb/ ²⁰⁶ Pb	2.0824-2.1082	2.0935-2.0946	2.0384-2.0440	2.0866-2.0903	
R/R_A (main stage)	0.080-1.030	0.810-1.800	0.395-0.478	0.135-0.448	
R/R_A (early stage)	0.010-0.030	0.148-0.182	0.028-0.036	0.097	
Temperature (main stage)	186-309	178-297	223-256	208-254	
Salinity (main stage)	0.2-9.6	3.0-9.2	0.2-3.0	2.2-7.9	
Magmatic Pb	Mafic	Mafic	Intermediate-felsic	Mafic	
Deals Dh	K host rock, C-O	K host rock, C-O	K host rock, Tr-J	V hast real.	
ROCK PD	basement	basement	and C-O basement	K HOST TOCK	
t1 (Ga)	3.69-3.71	3.79-3.82	3.38-3.40	3.68-3.70	
μ1	9.41-9.42	9.14-9.15	10.49-10.59	9.41-9.44	
He _{mantle} (ore)%	1-15%	10-25%	1-5%	1-15%	
Fluid evolution	Periodic magmatic inputs	Magmatic inputs	Meteoric water dominant	Periodic magmatic inputs	
	with Te-Au	with IC-Au		with Au	

20 Note: the ²³⁸U/²⁰⁴Pb ratio for the lead source (μ 1) and the timings of crust formation for lead source (t1).

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 8

Figure 11