1	Revision 2
2	Geochemical processes and mechanisms for Cs
3	enrichment in a hot-spring system
4	Wei Wang ^a , Shao-Yong Jiang ^{a*} , Hai-Zhen Wei ^b
5 6 7	^a State Key Laboratory of Geological Processes and Mineral Resources, Collaborative Innovation Center for Exploration of Strategic Mineral Resources, China University of Geosciences, Wuhan 430074, PR China
8 9	^b State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, PR China
10	*Corresponding author: <u>shyjiang@cug.edu.cn</u>
11	
12	
13	ABSTRACT:
14	Geothermal systems in Tibet, a crucial geothermal region in China, belong to the

15 Mediterranean-Himalayan geothermal belt and are characterized by a broad distribution of Cs-bearing geyserite deposits. Targejia, one of the largest Cs-bearing 16 geyserites in southern–western Tibet, contains 1.446×10^4 tons of Cs. The highest ore 17 grade reaches 2.89 wt.%, and the ore-forming process can be subdivided into 18 19 mineralization stages I to V. Cs is heterogeneously distributed in geyserites. Herein, 20 two Cs-bearing ores are investigated, with distinct characteristics of (1) low Csbearing ore (amorphous silica opal-A and opal-CT type) with low Cs (average of ~0.2 21 wt.%), Na, K, Al, and Ca contents, and (2) high Cs-bearing ore (clay type) with high 22

23	Cs (average of ~1.40 wt.%), Na, K, Al, and Ca contents. It is reported for the first
24	time that Cs primarily exists in clay rather than in amorphous silica opal. The Cs-
25	enrichment mechanisms are different for the above two Cs-bearing geyserite types.
26	(1) The deprotonated –OH, surrounded by water molecules, controls the amount of Cs
27	absorbed on the geyserite surface (Si-OH) in the low Cs-bearing ore. (2) The variable
28	Cs content depends on the Al content because Al substitutes Si, yielding more
29	negative charges to absorb Cs in the high Cs-bearing ore. Geothermal fluid loading-
30	mass elements, such as Cs and SiO ₂ , precipitate as amorphous silica (opal) with clay
31	minerals. Mineral saturation index modeling was used to predict the most applicable
32	physical parameters for ore formation. The results confirm that the ore forms at
33	~85 °C and a pH of ~8.5 in the Na–Cl system at stage V. The degree of Cs enrichment
34	reduces from the latest stage V (0-4 ka) to the early stage IV (4-17 ka), and is
35	controlled by clay dissolution, which might further relate to the climate change in
36	Tibet's Holocene. Fluid-rock interaction modeling shows that dissolution-
37	reprecipitation induces a higher order of amorphous silica formation and clay
38	dissolution at >40 °C and pH of 5–9 at stages V and III, excluding Cs from the ore.

39

40 Keywords: Cs, enrichment mechanism, amorphous silica, clay

2

41 **1. Introduction**

42	Owing to its excellent optoelectronic properties and strong chemical activity,
43	Cesium (Cs) is a critical metal widely used in vacuum device and phototube
44	manufacturing. So far, Cs deposits can be divided into granite-pegmatite (Černý,
45	1978) and hot-spring types (Guo et al., 2008). Hot-spring deposits closely relate to
46	geothermal systems because sinter deposits precipitated from geothermal fluids
47	contain many ore elements (i.e., Au, Ag, Li, B, As, Mo, Hg, Cu, Pb, Sb, and W) (Fig.
48	1a) (Rui and Shen, 1992; Lynne et al., 2007). Sinters represent a rare situation among
49	low epithermal hydrothermal systems because metal mineralization occurs in
50	subaerial siliceous sinters (Lynne et al., 2007).

51 The Yunnan-Tibet geothermal belt (YTGB), part of the Himalayan geothermal belt, is in the primary collision zone with intense tectonic deformation between the 52 53 Indian and Eurasian plates, where intense modern geothermal activities are developed 54 (T'ung et al., 1981). Geothermal systems, including geothermal fluids and their 55 sediments, have been used as tracers for recording the changes in external surroundings and climate and reflecting the tectonic-thermal events in the plateau's 56 57 rapid uplifting process in recent several million years or several hundred-thousand years (Hou et al., 2001). Along the YTGB, large-scale silica sinters (opal-A, opal-CT, 58 59 and opal-C) form as discharging thermal fluids cool at the surface below 100°C (Guidry and Chafetz, 2002). 60

61

In Tibet, China, a new type of Cs-bearing geyserite was found in 1986.

3

Geothermal fluids have high Cs contents (up to ~50 μ g/mL), and parts of Cs-bearing geyserites constitute large-scale Cs deposits (Zheng et al., 1995). The Targejia hotspring Cs deposit is one of the largest Cs deposits in Tibet and represents the focus of an ongoing exploration program for high-grade Cs ore (Zheng et al., 1995; Zhao et al., 2006a, b, 2008). The Cs potential resources in the area yield 1.446 × 10⁴ t (ore grade up to 1.55 wt.%) (Zheng et al., 1995).

68 The Cs enrichment in geothermal fluids can be attributed to the partial melting of the Qinghai–Tibet Plateau's crust, magma evolution, and fluid–rock interaction (Li et 69 70 al., 2006). The collision between India and Asia is one crucial factor in partial melting 71 (Li et al., 2006). When geothermal fluids loading high Cs, H₄SiO₄, Na, B, and Li 72 contents ascend to the surface, minerals (primarily amorphous silica) with these 73 elements form along with various physical and chemical parameters, such as CO₂ degassing, temperature, and pressure decrease (Zhao et al., 2006b). Cs occurs as three 74 75 distinctive ore types: opal-A, opal-CT, and opal-C.

Typically, the phase transformation scenario is that amorphous opal-A precipitates first, and a diagenetic process promotes opal-A transformation into paracrystalline opal-CT and/or well-ordered opal-C, and finally into more stable and microcrystalline quartz (Lynne, 2015). The phase transformation scenario and most studies have shown that the mineralized opal-A alternates to barren opal-C based on whole-rock data, indicating that precious metal Cs deposition was modified (Zheng et al., 1995; Zhao et al., 2006a, b). Cs is in the Q² and Q³ constructs of amorphous silica.

83	The Q ² site, Si(OSi) ₂ (OH) ₂ , refers to a Si atom linked to two other Si atoms through
84	two bridging oxygen atoms, whereas the Q ³ site, Si(OSi) ₃ (OH), refers to a Si atom
85	linked to three other Si atoms (Luo et al., 2012; Zhou et al., 2013).
86	The progressive dehydration and polymerization of amorphous silica (loss of
87	H_2O , Si–OH + HO–Si = Si-O–Si + H_2O) explain the reduced degree of Cs enrichment
88	and phase transformation because Cs primarily exists as OCs ⁻ by substituting -OH in
89	amorphous silica (Si-OH) (Zheng 1995; Zhao et al. 2006b, 2008, 2010). However, for
90	most epithermal deposits, such as Au at the McLaughlin Mine hot-spring gold deposit
91	and the low-sulfidation epithermal deposits of the Omu Camp in Hokkaido, Japan, the
92	Au distribution is heterogeneous in ore and controlled by different formation
93	mechanisms (Sherlock and Lehrman, 1995, 2005; Zeeck et al., 2021). Research on Cs
94	ore whole-rock is limited and more studies are needed to reveal the detailed ore-
95	forming process and the enrichment mechanisms in this type of Cs deposit.
96	This study investigated high-grade Cs ore (clay) and low-grade Cs ore (opal) in
97	the Targejia deposit using in situ analysis. To investigate in detail the geothermal
98	fluid mineralization process, including Cs migration-precipitation-enrichment-
99	dissolution processes from deep to shallow, the mineralogical and geochemical
100	characteristics were determined using X-ray diffraction (XRD), X-ray fluorescence
101	spectroscopy (XRF), inductively coupled plasma (ICP) mass spectrometry (MS), in
102	situ scanning electron microscopy (SEM) energy-dispersive spectrometry (EDS),
103	transmission electron microscopy (TEM), in situ electron microprobe (EMPA), and

laser ablation (LA) multicollector (MC) ICP-MS. Furthermore, an essential part of
this study is simulating the geothermal fluid mineralization process using the mineral
saturation index model and the fluid–rock interaction model by the PHREEQC code.

108 2. Geological Background

109 The Tibetan-Himalayan orogen, the largest mountain chain on Earth today, 110 resulted from the continued convergence between the Indian and Eurasian continents (Li et al., 2015 and reference in). The electron-spin resonance dating data of 111 112 geothermal sediments in the Tibetan Plateau show an uplifting history of the plateau 113 since 0.5 Ma B.P. in the Pleistocene (Li et al., 2001), where the climate changes from 114 severely cold and semi-arid to arid (Han et al., 2009). Targejia's mean annual rainfall 115 and evaporation rates are ~192 mm/yr. and ~2269 mm/yr., respectively. The mean annual temperature is approximately 0.4 °C and ranges from -13.4 °C in January to 116 117 11.7 °C in July (Zheng et al., 1995).

In Tibet, a N–S rift controls the hot-spring Cs deposits (Hou et al., 2001; Li et al., 2005). The compression of the Indian and Eurasian plates caused this rift system (Zhao et al., 2010). The Targejia deposit is close to the Yarlung Zangbo suture zone, with an average of more than 5000 m above sea level (Fig. 1b), and is covered by unconsolidated Quaternary sediments (loess) and siliciclastic sedimentary rocks (conglomerate and sandstone) from Tertiary to Jurassic (Fig. 1c). The Targejia deposit is to the south of the intersection of three fault sets (NNE, NNW, and NW) (Fig. 1c),

125	the Sangsang District, Anren County, Xigaze region, southern-western Tibet, China
126	(Zhao et al., 2008). Five mineralization stages (I to V) have been classified from top
127	to bottom of the terraces based on field observations, petrographic features, and
128	mineralogy (Fig. 1d, e) (Zheng et al. 1995; Zhao et al. 2006a, 2008). (1) Stage I is 255
129	\pm 63/–41.5 to 201 \pm 36 ka B.P., (2) stage II is 99 \pm 12.3 ka B.P., (3) stage III is 39.4 \pm
130	1.9 to 25.0 ± 3.9 ka B.P., (4) stage IV is 14.8 ± 2.5 to 4.4 ± 3.4 ka B.P., and (5) stage
131	V is modern (Zhao et al. 2006a). The mineral assemblage is primarily opal-CT in
132	stages I, II, III, and IV and opal-A in stage V. Unit I comprises calc sinter (36.7 ± 3.7
133	to 39.6 ± 2.7 ka B.P.).
134	Intensive geothermal activities or ore-forming fluids are observed in the field,
134 135	Intensive geothermal activities or ore-forming fluids are observed in the field, including hydrothermal outbreaks, high-temperature boiling springs, and cold springs
135	including hydrothermal outbreaks, high-temperature boiling springs, and cold springs
135 136	including hydrothermal outbreaks, high-temperature boiling springs, and cold springs (Zhong et al., 1996). The mineralization of stage V is closely associated with the
135 136 137	including hydrothermal outbreaks, high-temperature boiling springs, and cold springs (Zhong et al., 1996). The mineralization of stage V is closely associated with the primary geothermal vent of ~4 m diameter (Fig. 1d), and the primary geothermal vent
135 136 137 138	including hydrothermal outbreaks, high-temperature boiling springs, and cold springs (Zhong et al., 1996). The mineralization of stage V is closely associated with the primary geothermal vent of ~4 m diameter (Fig. 1d), and the primary geothermal vent fluids' Cs concentrations are up to ~5 μ g/mL (Zheng et al., 1995; Wang et al., 2019).
135 136 137 138 139	including hydrothermal outbreaks, high-temperature boiling springs, and cold springs (Zhong et al., 1996). The mineralization of stage V is closely associated with the primary geothermal vent of ~4 m diameter (Fig. 1d), and the primary geothermal vent fluids' Cs concentrations are up to ~5 μ g/mL (Zheng et al., 1995; Wang et al., 2019). Large silica sinters (up to 16 m thick), incorporating high Cs contents (up to 1.55

143 **3. Sampling and Analytical Methods**

Samples from Targejia were collected from unit I, mineralization stages I, II, IV,
and V (Fig. 1d). Table A1 lists the mineralogy and major element whole-rock

146 compositions. Whole-rock (Table A1) and in situ microarea analyses (Table A2, A3)

147 were conducted on all samples, including major and trace element concentrations.

148

149 **3.1 Mineralogical characteristics**

150 The mineralogy of the samples was studied using XRD (Bede-D1) with CuKa 151 radiation (X'TRA) and SEM. The XRD samples were dried and ground to a grain size of ~75 μ m by agate. The analyses were performed in a 2 θ range between 3° and 51° 152 using a step of 0.02° and a collection time of 0.24 s/step. The polished carbon-coated 153 thin sections were examined using a JEOL JCM-7000 SEM, fitted with an EDS 154 155 system at the Collaborative Innovation Center for Exploration of Strategic Mineral 156 Resources, China University of Geosciences (Wuhan). Imaging was performed at a 157 working distance of 10 mm and an accelerating voltage of 15 kV. The microstructural 158 analyses of the samples were conducted on a Thermo Fisher TEM Talos F200 X, with 159 a field emission gun as the electron source operating at 200 kV accelerating voltages. 160 The samples were examined after 30 min of reaction time.

161

162 **3.2 Major and trace elements analysis**

For major element analysis, samples mixed with 0.9 g $Li_2B_4O_7$ – $LiBO_2$ flux were digested at 1050–1100 °C. After melting, the samples were measured using XRF with an AXIOS Mineral Spectrometer, with an analytical relative standard deviation (RSD) of <±0.1%–5.0%. For trace element analysis, approximately 50 mg of powdered samples were digested using HF-HNO₃ at 160 °C. Trace elements were determined

168 using ICP-MS, with an analytical RSD of $<\pm 5\%$.

169	The in situ distribution of elements in solid samples (the same polished thin
170	sections for SEM) was determined using a JEOL JXA-8230 electron probe
171	microanalyzer (EPMA) equipped with five wavelength-dispersive spectrometers
172	(WDSs) at the Laboratory of Microscopy and Microanalysis, Wuhan Microbeam
173	Analysis Technology Co. Ltd and LA-ICP-MS at the Geological Processes and
174	Mineral Resources, China University of Geosciences, Wuhan. The EPMA samples
175	were coated with a thin conductive carbon film before analysis. Details of EPMA
176	methods have been described by Zhang and Yang (2016) and Yang et al. (2022).
177	The operating conditions for quantitative WDS analyses involved an accelerating
178	voltage of 15 kV, beam current of 20 nA, and 20- μ m spot size to avoid time-
179	dependent intensity variations. Data were corrected online using an atomic number,
180	absorption, fluorescence (ZAF) correction procedure. The H_2O content was calculated
181	based on the difference to reach the analytical total of 100 wt.% and incorporated into
182	the ZAF correction procedure. The peak counting time was 10 s for K, Ca, Mg, Al, Fe,
183	Na, Si, and Cs and 20 s for Ti. The background counting time was half of the peak
184	counting time on the high- and low-energy background positions. The following
185	standards were used: microcline (K), diopside (Ca, Mg), pyrope garnet (Al, Fe),
186	jadeite (Na), olivine (Si), pollucite (Cs), and rutile (Ti). The detection limits (3σ) for
187	K, Ti, Ca, Mg, Al, Na, Si, Cs, and Fe were 147 μ g/mg, 219 μ g/mg, 201 μ g/mg, 174

- $\mu g/mg$, 243 $\mu g/mg$, 369 $\mu g/mg$, 531 $\mu g/mg$, 729 $\mu g/mg$, and 351 $\mu g/mg$, respectively.
- 189 For LA-ICP-MS, in situ trace element analyses were performed on polished thin
- 190 sections using RESOlution S-155 LA system coupled to a Thermo iCAP Qc ICP-MS.
- 191 Helium was used as the carrier gas and argon as the compensation gas. The NIST
- 192 SRM 612 and 610 glass standards and the USGS reference glasses (BIR-1G, BCR-
- 193 2G, and BHVO-2G) were repeatedly analyzed between samples. Both standards and
- 194 samples were ablated using a 33 µm spot size, 10 Hz repetition rate, 40 s counting
- 195 time, and a corresponding energy density of $\sim 3 \text{ J/cm}^2$.
- 196

197 **4. Results**

4.1 Major elements and Cs concentration of whole-rock

The contents of the primary whole-rock components, SiO₂, Al₂O₃, Na₂O, CaO, 199 and K₂O, were 87.6 wt.% to 94.8 wt.%, 0.3 to 5.7 wt.%, 0 to 0.7 wt.%, 0.5 to 0.7 200 201 wt.%, and 0.3 to 1.0 wt.%, respectively (Table A1). Cs contents significantly vary from 2034 to 9030 µg/mg (Table A1). Compared to amorphous phases, Cs contents in 202 203 high crystalline minerals, quartz, and calcite are low $(0-600 \ \mu g/mg)$ (Table A1). 204 Sample DGJ-10A was collected close to the primary spring vent where geothermal 205 fluids contain high Cs contents ($\sim 5 \,\mu g/mL$) at stage V and especially incorporates the 206 highest Cs grade (~9000 µg/mg). However, other amorphous opal samples are 207 characterized by low grades ($\sim 2000 \ \mu g/mg$) (Table A1). These results correlate well 208 with earlier studies (Table A1) (Zheng et al., 1995; Li, 2002; Zhao et al., 2008).

209

210 4.2 Mineralogy and microtextures of Cs ore

211	The samples' mineral phases were identified using an optical microscope, SEM,
212	and XRD. At stage V, samples DGJ-9A and DGJ-10A display significantly different
213	mineral compositions than other samples, as they primarily comprise amorphous opal-
214	A. Furthermore, illite was identified using elemental and XRD analyses (Fig. A1a,
215	Fig. A2). Samples DGJ-6, 8, and 11 from stages IV and V primarily comprise opal-
216	CT (Fig. A1b). In stages I and II, DGJ-16 and DGJ-18 are the oldest samples,
217	comprising quartz crystals and other minerals, such as kaolinite, amorphous opal,
218	microcline, and calcite (Table A1). These results are consistent with the mineralogical
219	assemblages of the study area described previously (Zhao et al., 2006b, 2008).
220	At the microscale, three distinct textures of Cs-bearing geyserite were observed
221	(M1, M2, and M3). (1) M1 is granular opal with no significant color (Fig. 2a) and
222	element variation (Fig. 2, Fig. 3) in opal-CT and opal-A, and this type is the most
223	common in the ore. (2) M2 comprises alternating, irregular concentric bands or shells
224	of color, and this type only occurs in opal-A (Fig. 2b-2c, 2f-2g). As the color
225	changes, the mineral compositions (amorphous silica vs. clay) associated with
226	elemental compositions change accordingly (Fig. 4) (Section 4.3). (3) M3 is quartz
227	cemented by amorphous opal (Fig. 2d, 2h). This is the first time reporting that distinct
228	structures and clay minerals coexist on a microscale in Cs-bearing ore.
220	In symmetry and A formed at store V incompositor two constructs (M1 and M2)

In summary, opal-A formed at stage V incorporates two constructs (M1 and M2),

11

230 whereas opal-CT formed at stages IV and V comprises only M1. M3 type was

observed in sample DGJ-16 with the oldest age.

232

4.3 In situ major and trace elemental compositions in M1, M2, and

234 **M3**

The major elements of the three constructs in opal-A, opal-CT, and quartz are
analyzed using in situ EPMA, and the trace elements of M2 in opal-A are analyzed
using LA-ICP-MS. Na, Al, K, Si, Ca, Cs, and H₂O are the primary components,
accounting for more than 99.9% of the samples (Table A2). Furthermore, rare metals
(Li, 0–44 µg/mg; Be, 0.6–600 µg/mg; B, 0–400 µg/mg; Ga, 0–585 µg/mg; Rb, 20–300
µg/mg; Sr, 0–625 µg/mg) were obtained (Table A3).

241 Type M1: Cs is evenly distributed in amorphous opal-CT at stages V and IV 242 (Fig. 3). This amorphous silica incorporates low contents of Cs_2O (0.06–0.36 wt.%, 243 av. 0.21 wt.%), Na₂O (0.07–1.13 wt.%, av. 0.60 wt.%), K₂O (0.05–0.35 wt.%, av 0.19 244 wt.%), CaO (0.07–0.10 wt.%, av. 0.41 wt.%), and Al₂O₃ (0–1.22 wt.%, av. 0.28 wt.%) 245 and high contents of SiO₂ (87.47-93.35 wt.%, av. 90.86 wt.%) and H₂O (3.14-11.10 246 wt.%, av. 7.00 wt.%). The average Cs₂O contents in M1 are identical within 247 uncertainties to the average Cs content obtained from the whole-rock data (~ 0.2 248 wt.%).

Type M2: Cs, Na, Al, K, and Ca-dominant zones occur in opal-A at stage V (Fig.
Quantitative EPMA spot analyses reveal vastly different elemental compositions in

251	the different zones. The high Cs zone (av. 1.40 wt.% Cs ₂ O) can incorporate numerous
252	Na_2O , K_2O , CaO , Al_2O_3 , and H_2O , with average values of 1.93 wt.%, 1.28 wt.%, 0.65
253	wt.%, 5.32 wt.%, and 8.64 wt.%, respectively. Elemental compositions in the low Cs
254	zone include averages of 90.11 wt.% SiO ₂ , 0.61 wt.% Na ₂ O, 0.30 wt.% K ₂ O, 0.23
255	wt.% CaO, 1.23 wt.% Al ₂ O ₃ , 6.62 wt.% H ₂ O, and 0.19 wt.% Cs. These elements'
256	average contents in the low Cs zone in M2 correlate with that in M1 (Table A2).
257	
257	Type M3 contains quartz cemented by amorphous opal with low Cs contents
257	(Fig. 5). The lowest contents of Cs_2O (below EPMA detection limits), Na_2O (0.16
258	(Fig. 5). The lowest contents of Cs_2O (below EPMA detection limits), Na_2O (0.16
258 259	(Fig. 5). The lowest contents of Cs ₂ O (below EPMA detection limits), Na ₂ O (0.16 wt.%), K ₂ O (0.09 wt.%), CaO (0.04 wt.%), Al ₂ O ₃ (0.55 wt.%), and H ₂ O (0.80 wt.%)

263 ore/geyserite (high Cs zone in M2 in opal-A).

264

265 4.4 Nanoscale petrographic results using TEM

Sample DGJ-10A (Type M2) with high Cs contents (up to 2.89 wt.%) and low
Cs contents (average 0.20 wt.%) (Table A2) was used to conduct TEM. EDS analysis
demonstrated significant variations in Cs contents as a function of the mineral host
(Fig. A3a, c). The area with low Cs contents is amorphous and disorganized (Fig.
A3a, b). The well-defined lattice fringes evidenced the microcrystalline nature of
particles with high Cs content, representing an interplanar spacing of 0.2 nm–0.25 nm

272 (Fig. A3c–f).

273

274 **5. Discussion**

275	Macroscopically, most studies have reported enrichment of the amorphous silica
276	opal-A in Cs, which might be explained by how Cs substitutes -OH based on whole-
277	rock data because opal-A contains high $\mathrm{H_2O}$ contents (the correlation between Cs and
278	H ₂ O is 0.75 in previous studies) (Fig. A4, Table A4) (Zheng et al., 1995; Zhao et al.,
279	2006a, b, 2008, 2010; Luo et al., 2012; Zhou et al., 2013). The most striking
280	observation from our measurements is that significant Cs content variation is
281	extremely sensitive to the cation contents. The Cs shows a weak correlation with
282	Na ₂ O, Al ₂ O ₃ , K ₂ O, SiO ₂ , and CaO in low Cs-ore, and an excellent occurs in the high
283	Cs-bearing ore (Fig. 6a-e). However, this study did not obtain a good correlation
284	between Cs and H ₂ O (Fig. 6f). The second observation of 2.89 wt.% Cs ₂ O is
285	extensively higher than that of reported values of 1.55 wt.% (Zheng et al., 1995) and
286	~9000 ppm in this study based on whole-rock data (Table A1). Our results indicate
287	that preliminary observations of mineral composition variations and the texture of Cs
288	ore in the microstructure limit the interpretation based on whole-rock data. Therefore,
289	our approach first explores the processes controlling the heterogeneous Cs
290	distribution and enrichment from different ore-forming processes (migration-
291	precipitation-enrichment-dissolution).

292

293 5.1 The Cs migration from deep to shallow and ore precipitation

294 mechanisms from geothermal fluids

295	Modern geothermal fluid mineralization is ongoing, and the geochemical
296	characteristics of Cs-mineralizing fluids at stage V are summarized as follows: pH
297	~8.5 (Fig. A5a), temperature 85 °C (Fig. A5b), and NaCl–H ₂ O systems (Zhao et al.,
298	2008). The mineralization temperature is 40 °C for stage III (Zhao et al., 2008). The
299	excellent correlation between Cs and Cl in geothermal fluids (Zhao et al., 2006b;
300	Wang et al., 2019) implies that both elements migrate together as CsCl.
301	The formation of amorphous silica and illite from geothermal fluids under
302	typical Cs-mineralizing conditions was modeled using the PHREEQC thermodynamic
303	parameters and the llnl.dat (Parkhurst and Appelo, 2013). Figure 7 shows the mineral
304	saturation index at different pH and temperatures in the studies by Yan et al. (2019)
305	and Zhao et al. (2007), who studied the elemental compositions of geothermal fluids
306	in detail (Table A5). Amorphous silica precipitates at pH 6-9 and low temperatures
307	<100 °C (Guidry and Chafetz, 2002). Based on computed saturation indexes (SI), the
308	SI of amorphous silica is lower than 0 (SI < 0, no precipitation) because the solution
309	is undersaturated (~100 ppm). However, large-scale amorphous silica formation is
310	observed in the field, most likely caused by (1) the formation of ice (Channing and
311	Butler, 2007) due to low temperatures (~-10°C) and high altitude (~5000 m) of the
312	study area, and (2) the oversaturated Si concentrations in Li et al. (2006) of 100-600
313	ppm at 45 °C-84 °C causing silica acid to precipitate. A crucial clay mineral, illite,

314	the secondary Al-bearing phase, is precipitated from the geothermal fluids under SI $>$
315	0. The most suitable physical parameters for illite precipitation are at pH ${\sim}7$ and ${>}$
316	50 °C (Fig. 7, Table A5). The model results reproduce the field observation that illite
317	coexisting with opal is common in geothermal systems (Boudreau, 1990; Smith et al.,
318	2017). Amorphous silica formation is less sensitive to temperature and pH than illite,
319	and simple cooling is more efficient for amorphous silica precipitation than illite.
320	Furthermore, illite and opal layers indicate the physical conditions of geothermal fluid
321	changes.

Additionally, Boudreau (1990) established a diagenesis model for clay 322 preservation opal or devoid of dissolvable opal. This model considers conserving the 323 324 dissolvable solid at a steady state with constant porosity and is simulated by applying the following equation. 325

326
$$F_b - \frac{F_m b(\infty)}{\rho_{m_{clay}} \left(1 - \frac{b(\infty)}{\rho_{b_{opal}}}\right)} - \gamma \varphi D_s \left[\frac{k_s b(\infty)}{D s \rho_{b_{opal}}}\right]^{\frac{1}{2}} (C_s - C_w) = 0 \text{ (Eq. 1)}$$

327
$$F_{er} = \frac{F_m \rho_{b_{opal}}}{\rho_{m_{clay}}} + \left[\left(\frac{F_m \rho_{b_{opal}}}{\rho_{m_{clay}}}\right)^2 + (\gamma \varphi)^2 k_s D_s (C_s - C_w)\right]^{1/2}, \text{(Eq. 2)}$$

where $C_{sil}\ (mM)$ is the dissolved silica, b_{opal} is the solid opal (g cm^{-3} of total 328 solids), and m_{clay} is an inert phase (g cm⁻³ of total solids). ϕ is the porosity, D_s is the 329 tortuosity-corrected diffusion coefficient for dissolved silica (cm² y⁻¹), k_s is the rate 330 constant for opal dissolution (y^{-1}) , and C_s is the saturation concentration of dissolved 331 silica. γ is the constant for unit conversion (0.0961 g mmol⁻¹), and $\rho_{b_{opal}}$ and $\rho_{m_{clay}}$ 332 is the intrinsic density of opal and inert material clay (g cm⁻³). F_b, F_m, and F_{er} are the 333

334	input fluxes of opal, clay, and input rain, respectively, for which all incoming opal
335	would dissolve and still succeed in saturating the porewater for a given set of
336	parameter values. Table 2 lists the parameter values applied to the model. Geothermal
337	fluids at approximately 80 °C have ~100 ppm (1.67 mmol/L) SiO ₂ (Wang et al.,
338	2015). Hence, C_s and C_w are 4.83 mmol/L and 1.67 mmol/L, respectively. The model
339	indicates that opal dissolution is less noticeable as F_m increases (Fig. 7b); therefore,
340	the clay mineral prevents amorphous silica dissolution.
341	

342 **5.2** The Cs-enrichment processes

343 5.2.1 Enrichment processes in low Cs-bearing ores

Silica sinters formed in modern geothermal systems under specific physical and chemical conditions primarily comprise amorphous silica opal-A (see the discussion in Section 5.1). The higher alkali and/or alkaline earth metal contents neutralize the negatively charged metastable SiO_2 particles and promote the coagulation of SiO₂·H₂O gel (Visser, 2018). Therefore, the silica gel can coprecipitate with these elements (Cs in this study) in a disordered structure (Fig. A3b).

Amorphous silica is made up of the silanol group (Si–OH) and H₂O, including Si–OH…nH₂O (H₂O_{SiOH}, Type A molecular water), individual water molecules (H₂O_{mol}, Type B molecular water), $-OH…nH_2O$ (Type A silanol group), and -OH(Type B silanol group) (Fig. A6a). Fourier transform infrared spectroscopy indicates the presence of water (Fig. A7), and Type A molecular water is much less mobile than

355	Type B (Zhuravlev, 2000). Essential property changes in opal-A and opal-CT are the
356	contents of H ₂ O and silicic bonds (siloxane bond, Si–OH and silanol bond, and Si–O–
357	Si). The total water content (Type A + Type B water) and Type B water content vary
358	significantly in opal-A and opal-CT, whereas opal-A contains a higher content of Type
359	A water than opal-CT (Table A5) (Day and Jones, 2008). Hence, the no correlation
360	between Cs and H_2O observed in this study indicates that there are no or only minor
361	differences in total water content in opal-A (av. 7.45 wt.%) and opal-CT (av. 7.00
362	wt.%) (Table A6).

The H₂O/Cs ratio decreases with increasing Cs content (Fig. A8a), reflecting a 363 364 condition with different water coordination numbers (CN) to cations. The negligible 365 contents of trivalent cations, such as Al, in low Cs-bearing ore and no apparent 366 relationship between positive and negative charges preclude Cs from being a chargebalancing cation (Fig. A8c-e). The only explanation is that Cs forms a mobile outer-367 368 sphere surface complex at the silica-water surface (Zhou et al., 2013). Deprotonation 369 of Si-OH (Types A and B silanol groups, Reactions 1 and 2) induces broken 370 crystallite edges with a negative charge, and the uptake of alkali ion Cs compensates 371 for the negative charge at the silica-water surface to yield a neutral suspension 372 (Reactions 3 and 4) (H site in Fig. A6a). The O atoms of the Si (Cs substitution –OH) 373 bind and coordinate the Cs. This mechanism was recognized in previous studies and has been evidenced using ¹³³Cs NMR spectra of samples from the Targejia Cs-bearing 374 375 deposit (Zhou et al., 2013) and of Cs absorbed into silica gel (Kim et al., 1996 a, b).

376	The low contents of Cs surrounded by a high-water CN with stronger hydrogen-
377	bonded hydroxyls (Reaction 4) have been verified using ¹ H NMR spectra by Zhou et
378	al. (2013). Because surface deprotonation induces the charge and no permanent
379	charge exists on the surface, the ability of Cs motion is closely related to the mobility
380	of surface water (Kim et al., 1996a, b). Consequently, the Cs reactivity in an
381	amorphous phase is because of a lower degree of ordering (Fig. A3b) and high-water
382	CN (Fig. A8a). It is reasonable to infer that a poor Cs-bearing ore with high Cs
383	motion moves easier at different mineralization stages (I-V) over time.
384	Si–OH \leftrightarrow Si–O ⁻ + H ⁺ (Reaction 1)
385	Si−OH···nH ₂ O \leftrightarrow Si−O ⁻ ···nH ₂ O + H ⁺ (Reaction 2).
386	$Si-O^{-} + Cs^{+} \leftrightarrow Si-OCs$ (Reaction 3)
387	$Si-O^{-}\cdots nH_2O + Cs^{+} \leftrightarrow Si-OCs\cdots nH_2O$ (Reaction 4)
388	Why was high Cs content of whole-rock opal-A observed in past studies? Two
389	reasons are plausible: (1) opal-A includes high H_2O content in previous studies, and
390	(2) the high Cs-bearing ore coexists with opal-A (Type M2) in this study (see the

- discussion in Section 5.2.2).
- 392

393 5.2.2 Enrichment processes in high Cs-bearing ores

The Cs cation exchange capacity (CEC) for various minerals reported in the literature ranges from 0.5 wt.% to 8.0 wt.%. Montmorillonite reaches a maximum CEC, followed by illite, vermiculite, kaolinite, silica gel, boehmite, corundum, and

397 gibbsite (Table A7) (Kim et al., 1996a, b; Ejeckam and Sheeriff, 2005; Yuan et al.,

2020), the same as in this study. The good correlations between Cs and other
elements, especially Al (Fig. 6b–e), indicate that Cs enrichment is related to these
elements.

401 Three parameters affect the CEC. (1) the layer charge caused by substituting lower charged cations (A1³⁺, Mg²⁺) for Si⁴⁺ in the tetrahedral or octahedral sheets 402 creates a negative charge to absorb Cs (Kim et al., 1996a, b). In the high Cs-bearing 403 ore, CEC increases from 0.42 wt.% to 2.89 wt.% as Al₂O₃ increases from 1.37 wt.% 404 to 10.33 wt.%. The analysis using the charge balance method rules out Ca^{2+} 405 substitution for Si⁴⁺ because the positive and negative charges are unbalanced (Fig. 406 407 A8b-d). Cations were adsorbed preferentially close to the tetrahedral sites, where $[AlO_4]^{5-}$ tetrahedra produce a local charge imbalance, and Cs in such environments is 408 tightly bound to and coordinated by O atoms of the $[AlO_4]^{5-}$ tetrahedra (such as the K 409 site in Fig. A6b). Additional sources of surface charge attract Cs more effectively 410 411 (Guven, 1988). (2) The layer charge from mineral constructs, such as 1:1 vs. 2:1 layer 412 structures and the dioctahedral vs. trioctahedral. 1:1 layer structure, has a low CEC 413 due to the lack of exchangeable interlayer cations compared to the 2:1 layer structure (Ejeckam and Sheeriff, 2005). The significant structural differences (high-degree 414 415 disorder vs. high-degree order, Fig. A3) between Cs-bearing ore and barren ores significantly affect the CEC. (3) The absorption site is tightly bound to the basal 416 417 oxygen atoms (C1 site) and loosely bonded to H_2O molecules (C2 site), and the CEC

418	is higher for C1 than C2 (Kim et al., 1996a, b; Ejeckam and Sheeriff, 2005). Edge
419	sites and basal crystallite surfaces (or planar and surface sites) are essential adsorption
420	sites for Cs in illite, as evidenced using ¹³³ Cs NMR spectra (Kim et al., 1996b). The
421	Cs motion ability in the high Cs-bearing ore should be lower than in the low Cs-
422	bearing ore and is attributable to a low water CN (Fig. A8a), permanent charge caused
423	by Al (Fig. A8c), and high-degree order (Fig. A3d-f). In short, elemental
424	compositions and mineral constructs influence the enrichment mechanism and degree
425	of Cs in low and high Cs ores.

426

427 5.2.3 The behavior of other trace elements in Cs-bearing ores

428	The contents of Cs (up to ~5 ppm), Li (~5 ppm), and HBO ₄ (~100 ppm) in
429	geothermal or ore-forming fluids of the Tibetan geothermal area are several to dozens
430	of times the average abundance of the Earth's crust (Wang et al., 2019). Note the high
431	Li and B contents in geothermal fluids compared to Cs (Wang et al., 2019), but Li and
432	B are not in geyserite (Li, 0-44 ppm; B, 0-400 ppm, and Cs, Table A3). The
433	enrichment factor of Li and B is several times higher than that of fluids (Li up to nine
434	times; B up to four times). The contents of Be (~0.1 ppm), Ga (~0.1 ppm), Rb (~0.6
435	ppm), and Sr (~0.2 ppm) (Wang et al., 2019) in geothermal fluids are negligible, but
436	they can be enriched hundreds to thousands of times in ore (Be, 0.6-600 ppm, up to
437	6000 times; Ga, 0–585 ppm, up to 5850 times; Rb, 20–300 ppm, 33–500 times; Sr, 0–
438	625 ppm, up to 3000 times). The results imply the property of adsorption selectivity

439	of the ore, indicating the adsorption capacity of Be^{2+} , Ga^{3+} , Rb^+ , Sr^{2+} , and Cs^+ and no
440	adsorption capacity of Li^+ and B^{3+} . A poor correlation between Li, Be, B, Ga, and Cs
441	(Fig. A9a, b, c, d) and close relationships between Rb, Sr, and Cs (Fig. A9e, f) were
442	identified. Rb, Sr, and Cs are the most common elements. They show suitable
443	corresponding concentrations in the LCT-family pegmatites (Černý, 1978), attributing
444	to similar geochemical properties among these elements, such as their similar atomic
445	radii of Rb^+ (1.52 Å), Sr^{2+} (1.18 Å), and Cs^+ , (1.67 Å), but inconsistent values of Be^{2+}
446	(0.16 Å) and Ga ³⁺ (0.47 Å) (Shannon, 1976).

447

448 **5.3** The dissolution and reprecipitation of Cs ores

449 Clay minerals (illite) disappeared accompanied by Cs content reduction from 450 stage V to stage IV (0-4 ka to 4-17 ka) in this study. In stages I and II (>99 ka), even 451 though clays (kaolinite) reformed under weathering, there was no reenrichment of Cs 452 in clay minerals. Therefore, the ores formed in the early stages were isolated from the 453 Cs aqueous surroundings and could be affected by the uplifted Tibet. Tectonic and 454 deep magmatic activities control the hot-spring Cs deposit formation, corresponding 455 to the plateau's uplift (Tong et al., 1981). Therefore, extreme Cs enrichment only happened in the latest stage (< 17 ka), especially in Meghalayan (< 4ka). A common 456 mechanism for phase transformation from amorphous silica to crystalline quartz is 457 458 dissolution-reprecipitation (Lynne et al., 2007; Day and Jones, 2008). The mineral 459 dissolution-reprecipitation process produces a high-degree order in amorphous silica 460 (Langer and Flörke, 1974). The disappearance of illite because of dissolution induces

461 Cs to be excluded from the ore, and this point is evidenced below.

462	Geothermal fluids loaded the source of the massive metallogenic mass. What
463	types of fluids cause mineral dissolution in early mineralization? There are no active
464	geothermal fluids in the early stages, so the only fluid is meteoric water. The
465	reconstructed Holocene climate development of Nam Co, central Tibet, shows (1)
466	high rainfall and meltwater input at 7.2–5.4 ka, (2) drier climate with less monsoonal
467	precipitation, higher evaporation rates at 5.4-4.0 ka, (3) the driest periods were
468	recorded at 4.0–1.4 ka, (4) increased precipitation and runoff at 1.4–0.8 ka, and (5)
469	intense evaporation at 0.8 ka to present (Mügler et al., 2010). In the following section,
470	one chemical system, meteoric water, was modeled to examine how temperature and
471	pH affect mineral dissolution and reprecipitation under the following conditions:
472	temperature of 0 °C–85 °C and pH of 5–9.

473 A dynamic balance between supply, transport processes (e.g., burial), and474 dissolution determines the magnitude of mineral accumulation.

475 (1) Dissolution process

476 The Dissolution rates of natural illite (r_{illite}) and amorphous silica (r_{am}) were

- 477 calculated using empirical Eq. 1 (Köhler et al., 2003) and Eq. 2 (Rimstidt et al., 2016)
- 478 and were impacted by pH, temperature, and ion activity.

479
$$r_{illite} = A_H \exp\left(\frac{-E_{AH^+}}{RT}\right) a_{H^+}^{0.6} + A_{H_2O} \exp\left(\frac{-E_{AH_2O}}{RT}\right) + A_{OH} \exp\left(\frac{-E_{AOH^-}}{RT}\right) a_{OH^-}^{0.6}, \quad (Eq. 3)$$

480 where $A_{\rm H}$, $A_{\rm H2O}$, and $A_{\rm OH}$ are pre-exponential factors of 2.2×10^{-4} , 2.5×10^{-13} ,

481 and 0.27 mol m⁻² s⁻¹, respectively. E_{AH⁺}, E_{AH2O}, and E_{A, OH⁻} designate the apparent

482 activation energies of 46, 14, and 67 kJ mol⁻¹, respectively.

483
$$r_{Am} = 14.62(10^{-(\frac{77400}{2.303R})(\frac{1}{T})}) + 8.95(10^{-(\frac{77700}{2.303R})(\frac{1}{T})})(\frac{m_{Na^+}^{0.490}}{m_{H^+}^{0.377}}) \text{ (Eq. 4)}$$

484 where m_{Na^+} (mol kg⁻¹) is the sodium (Na) concentration and m_{H^+} is the hydrogen

485 ion activity
$$(a_{H^+})$$
.

Amorphous silica is more soluble than illite under the investigated conditions (Fig. 8a) because it has a higher dissolution rate than illite, and the lowest illite dissolution rate was observed at pH 6–9.

489 (2) Reprecipitation process

490 Meteoric water-rock interaction modeling involving conventional reaction path 491 simulations where water of meteoric origin was allowed to react with rock in steps is 492 described in detail by Kleine et al. (2018). Water was specified as an initial condition 493 to simulate the infiltration of meteoric water into the rock (Table 2). The solid part of 494 the model domain is obtained from the rock compositions of amorphous silica opal-A + clay (Table 2). As both parameters at the early mineralization stage are unknown, 495 simulations were run for pH 5 (average pH of meteoric water) to 9 (average pH of 496 497 geothermal fluids) and 40 °C (mineralization temperature of stage III) to 85 °C 498 (mineralization temperature of stage V) (Table 2, Fig. 8b). Amorphous silica was allowed to precipitate under specific conditions, consistent with findings that 499 500 amorphous silica formation can occur over several temperatures and pH values (see 501 the discussion in Section 5.1). However, illite could precipitate when the water-rock

502	interaction reaches a specific degree (at least 10^{-4} mol rock per kg solution), implying
503	that illite re-forms only if a specific amount of rock dissolution supplies enough
504	elements. At low temperatures (<100 °C), an increase in temperature has no or
505	negligible effect on the mineralization process. However, a pH shift to an alkaline
506	level can promote amorphous silica accumulation precipitation. Furthermore, illite
507	formation is challenging because of the necessary element supply for high water-rock
508	interaction at alkaline pH (Fig. 8b). Compared to geothermal fluids containing high
509	contents of Na and K (enough supply), the dissolution replenishment elemental
510	contents are insufficient for illite re-formation in the early stage.
511	The meteoric water-rock interaction modeling indicates that clay formed at a late

chemical properties, and clay might impede dissolution. 513

514

516

512

6. Implications for Geothermal Fluid Mineralization and 515 **Elemental Extraction and Use**

stage and redissolved in meteoric water. Amorphous silica can re-form owing to its

517 Geothermal fluid mineralization is vital for alkaline elements, such as Li 518 (Benson et al., 2017; Guo et al., 2019) and Cs (Zheng et al., 1995). Hydrothermal 519 fluids leach alkaline elements from host rocks and are structurally bound in clay and amorphous silica. These deposits have gained attention due to the high-speed 520 521 mineralization compared to pegmatite-type rare metal deposits (Guo et al., 2019). 522 This study presents an excellent example of a modern ore-forming process in the

523	Targejia area to study the alkaline elemental migration-precipitation-enrichment-
524	preservation mechanisms. Detailed petrographic and geochemical studies revealed
525	two primary ore growth minerals (amorphous silica and clay). The average Cs content
526	in amorphous silica for low Cs-bearing ore, including Type M1 in opal-A and opal-
527	CT, and low Cs zone in Type M2 in opal-A, is approximately 0.2 wt.%. The highest
528	enrichment degree of Cs in clay is up to 2.89 wt.%. Two enrichment mechanisms
529	cause the different enrichment degrees of different minerals. One is that Cs substitutes
530	-OH of amorphous silica, and the other is that Cs is absorbed by a negative charge
531	created by $A1^{3+}$ substituting more highly charged cations (Si ⁴⁺). The mineral
532	saturation index model and meteoric water-rock interaction model indicate that
533	mineral formation and disappearance reflect a dynamic physical-chemical condition
534	in the fluid system. Such a process might have occurred in many geothermal deposits
535	worldwide. Our observations provide new insights into elemental extraction and use
536	under geothermal conditions.

537

538 CRediT authorship contribution statement

539 WW: Methodology, Formal analysis, Investigation, Writing - Original Draft; SYJ:

540 Conceptualization, Resources, Supervision, Funding acquisition, Writing - Review &

541 Editing; HZW: Methodology, Resources, Writing - Review & Editing.

542

543 Declaration of competing interest

544 The authors declare that they have no known competing financial interests or

545 personal relationships that could have appeared to influence the work reported in this

546 paper.

547

548 Data and materials availability

All the data used in this paper are either listed as Table 1 and 2 in the main text or as an Appendix Supplementary Figures and Tables attached to this paper, and are also available from the corresponding author upon request.

552

553 Acknowledgments

This study was financially supported by the National Natural Science Foundation of China (nos. 42103063 and 92162323), the State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences (No. MSFGPMR03-2), and Key Laboratory of Mineralogy and Metallogeny, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences (No. KLMM20200203). We thank Yao Zhao and Yibo Lin for helping with sample collection. We also thank Barbara Kleine for help in geochemical modeling.

561

562 **References**

- 563 Benson T.R., Coble M.A., Rytuba J.J., Mahood G.A. 2017. Lithium enrichment in
- 564 intracontinental rhyolite magmas leads to Li deposits in caldera basins. Nat.
- 565 Commun. 8. 270.
- 566 Boudreau B.P., 1990. Modelling early diagenesis of silica in non-mixed sediments.

- 567 Deep-sea Res. 37, 1543-1567.
- 568 Černý P., 1978. The tanco pegmatite at Bernic Lake, Maintiva X. Pollucite: present
- status of theanalcime-pollucite series. Can. Mineral. 16, 325-333.
- 570 Channing A. and Butler I.B., 2007. Cryogenic opal-A deposition from Yellowstone
- 571 hot springs. Earth Planet. Sci. Lett. 257, 121-131.
- 572 Day R. and Jones B., 2008. Variations in water content in opal-A and opal-CT from
- 573 geyser discharge aprons. J. Sediment. Res. 78, 301-315.
- 574 Ejeckam R.B. and Sherriff B.L., 2005. A ¹³³Cs, ²⁹Si and ²⁷Al MAS NMR
- spectroscopic study of Cs absorption by clay minerals: implications for the
 disposal of nuclear waste. Can. Mineral. 43, 1131-1140.
- 577 Guo X.H., Zheng M.P., Liu X.F., Ye Z. and Pu L.Z., 2008. Saline cesium resource and
- 578 prospect of its exploitation and utilization in Tibet. Salt & Chem. Industry 37, 8-
- 579 12.
- 580 Guo W.M., Ma S.C., Sun Y., Zhao Z., Zhong H.R., Yao L.S. 2019. Characteristics and
- significance of rare metal mineralization in hot-springs of Thengchong area,
 Yunnan, Acta Geol. Sin., 93, 1321-1330.
- 583 Guidry S. A. and Chafetz H. S., 2002. Factors governing subaqueous siliceous sinter
- 584 precipitation in hot springs: examples from Yellowstone National Park, USA.
 585 Sediment. 49, 1253-1267.
- 586 Han Y.X., Fang X.M., Zhao T.L., Bai H.Z., Kang S.C. and Song L.C., 2009.
- 587 Suppression of precipitation by dust particles originated in the Tibetan Plateau.

- 588 Atmo. Environ., 43, 568-574.
- 589 Hou Z.Q., Li Z.Q., Qu X.M., Gao Y.F., Hua L.C., Zheng M.P., Li S.R. and Yuan
- W.M., 2001. The uplifting processes of the Tibetan Plateau since 0.5 Ma B. P.evidence from hydrothermal activity in the Gangdise belt. Sci. China Ser. D 44,
- **592 35-44**.
- 593 Kastner M., Keene J.B. and Gieskes J.M., 1977. Diagenesis of siliceous oozes-1:
- 594 chemical controls on the rate of opal-A to opal-CT transformation- an 595 experimental study. Geochim. Cosmochim. Ac. 41, 1041-1059.
- 596 Kim Y., Cygan R. and Kirkpatrick R.J., 1996a. ¹³³Cs NMR and XPS investigation of
- 597 cesium absorbed on the clay minerals and related phases. Geochim. Cosmochim.
- 598 Ac. 60, 1041-1052.
- 599 Kim Y., Kirkpatrick R.J. and Cygan R., 1996b. ¹³³Cs NMR study of cesium on the
- surfaces of kaolinite and illite. Geochim. Cosmochim. Ac. 60, 4059-4074.
- 601 Kleine B.I., Stefánsson A., Halldórsson S.A., Whitehouse M.J., Jónasson K., 2018.
- 602 Silicon and oxygen isotopes unravel quartz formation processes in the Icelandic
- 603 crust. Geochem. Persp. Let. 7, 5-11
- Langer K., and Flörke O.W., 1974. Near infrared absorption spectra (4000-9000 cm)
- of opals and the role of "water" in the SiO₂ nH₂O minerals. Fortschritteder
 Mineralogie, 52, 17-51.
- Li Z.Q., 2002. Present Hydrothermal Activities during Collisional Orogenics of the
 Tibetan Plateau. Beijing.

- 609 Li Z.Q., Hou Z.Q., Nie F.J. and Yang Z.S., 2006. Enrichment of Element Cesium
- 610 during Modern Geothermal Action in Tibet, China. Acta Geol. Sin. 80, 1457-611 1464.
- 612 Li Z.Q., Hou Z.Q., Nie F.J. and Meng X.J., 2005. Characteristics and distribution of
- 613 the partial melting layers in the upper crust: evidence from active hydrothermal
- fluid in the southern Tibet. Acta Geol. Sin. 79, 68-76.
- Li Y.L., Wang C.S., Dai J.G., Xu G.Q., Hou Y.L. and Li X.H., 2015. Propagation of
- the deformation and growth of the Tibet-Himalayan orogen: A review. Earth-Sci.
- 617 Rev. 143, 36-61.
- 618 Luo W., Zhao Y.Y., Ren Z.F. and Li Y.T., 2012. ¹H and ²⁹Si MAS NMR of the
- 619 geyserite in Tibetan Gulu area, China. J. Salt Lake Res. 20, 43-62.
- 620 Lynne B.Y., Campbell K.A., James B.J., Browne P.R.J. and Moore J., 2007. Tracking

621 crystallinity in siliceous hot-spring deposits. Am. J. Sci. 307, 612-641.

- 622 Lynne B.Y., 2015. Impact of three common post-depositional environmental settings
- 623 on siliceous sinter diagenesis: an eight-year experiment. J. Volcanol. Geotherm.
- 624 Res. 292, 84-101.
- 625 Mügler I., Gleixner G., Günther F., Maüsbacher R., Daut G., Schütt B., Berking J.,
- 626 Schwalb A., Schwark L., Xu B., Yao T., Zhu L., Yi C., 2010. A multi-proxy
- 627 approach to reconstruct hydrological changes and Holocene climate development
- 628 of Nam Co, Central Tibet. J. Paleolimnol. 43, 625-648.
- 629 Parkhurst D.L. and Appelo C.A.J., 2013. Description of input and examples for

- 630 PHREEQC version 3: a computer program for speciation, batch-reaction, one-
- 631 dimensional transport, and inverse geochemical calculations. U.S. Geological
- 632 Survey Water-Resources Investigations Report.
- 633 Rimstidt J.D., Zhang Y.L. and Zhu C., 2016. Rate equations for sodium catalyzed
- amorphous silica dissolution. Geochim. Cosmochim. Ac. 195, 120-125.
- Rui Z.Y. and Shen J.Z., 1992. Research progress of hot spring type ore deposits. Bull.
- 636 Miner. Petrol. Geochem. 3, 147-152.
- 637 Shannon R.D., 1976. Revised effective ionic radii and systematic studies of
- 638 interatomic distances in halides and chalcogenides. Acta. Crystallogr. A. 32, 751-639 767.
- 640 Sherlock R.L. and Lehrman N.J., 1995. Occurrences of dendritic gold at the
- 641 McLaughlin mine hot-spring gold deposit. Miner. Deposita. 30, 323-327.
- 642 Sherlock R.L., 2005. The relationship between the McLaughlin gold-mercury deposit
- and active hydrothermal systems in the Geysers-Clear Lake area, northern Coast
- Ranges, California. Ore Geol. Rev. 26, 349-382.
- 645 Shi J., Jin, Z., Liu Q., Fan T. and Gao Z., 2021. Sunspot cycles recorded in Eocene
- 646 lacustrine fine-grained sedimentary rocks in the Bohai Bay Basin, eastern China,
- 647 Global Planet. Change, 103614.
- Tan H.B., Zhang Y.F., Zhang W.J., Kong N., Zhang Q. and Huang J.Z., 2014.
- 649 Understanding the circulation of geothermal waters in the Tibetan Plateau using
- 650 oxygen and hydrogen stable isotopes. Appl. Geochem. 51, 23-32.

- 651 T'ung W. and Zhang J., 1981. Characteristics of geothermal activities in Xizang
- 652 Plateau and their controlling influence on Plateau's tectonic model. In: Gordon,
- Breach, eds. Geological and Ecological studies of the Qinghai-Xizang Plateau.
- 654 New York: Science Publishers Inc. 841-846.
- 655 Tong W., Zhang M.T., Zhang Z.F., Liao Z.J., You M.Z., Zhu M.X., Guo J.Y., and Liu
- 656 S.B. 1981, Geotherm in Xizang, Beijing: Science press.
- 657 Van Cappellen P., Dixit S. and van Beusekom J., 2002. Biogenic silica dissolution in
- the oceans: reconciling experimental and field-based dissolution rates. Global
- 659 Biogeochem. Cycles 16, 23-1-23-10.
- 660 Visser J.H.M., 2018. Fundamentals of alkali-silica gel formation and swelling:
- 661 Condensation under influence of dissolved salts. Cement Concrete Res. 105, 18-662 30.
- 663 Wang W., Wei H.Z., Jiang S.Y., Tan H.B., Eastoe C.J., Williams-Jones A.E., Hohl S.V.
- and Wu H.P., 2019. The origin of rare alkali metals in geothermal fluids of
 southern Tibet, China: A silicon isotope perspective. Sci. Rep. 9, 7918.
- 666 Wang Z.B., Shen L.C., Liang Z.B., Jiang Z.L. and Liao Y., 2015. Characteristics of
- 667 hydrochemical compositions and stable carbon isotope of natural water in the
- 668Daggyia geothermal field, Tibet, China. Carsologica Sin. 34, 201-208.
- 669 Yan K.T., Guo Q.H. and Liu M.L., 2019. Geochemical anomalies of arsenic and its
- 670 speciation in Daggyai geothermal springs, Tibet. J. Jilin Univ. (Earth Sci. Ed.) 49,
- **671 548-558**.

- 672 Yang, S.Y., Jiang, S.Y., Mao, Q., Chen, Z.Y., Rao, C., Li, X.L., Li, W.C., Yang, W.Q.,
- He, P.L. and Li, X., 2022. Electron probe microanalysis in geosciences: Analytical
- 674 procedures and recent advances. Atomic Spectroscopy 43, 186-200.
- 675 Yuan T.Y., Chen Q.D. and Shen S.H., 2020. Adsorption of cesium using mesoporous
- silica gel evenly doped by Prussian blue nanoparticles. Chinese Chem. Lett. 31,
- **677** 2835-2838.
- 678 Zeeck L.R., Monecke T., Reynolds T.J., Tharalson E.R., Pfaff K., Kelly N.M. and
- 679 Hennigh Q.T., 2021. Textural characteristics of Barren and Mineralized colloform
- 680 quartz bands at the low-sulfidation epithermal deposits of the Omu Camp in
- Hokkaido, Japan: implications for process resulting in Bonanza-Grade precious
 metal enrichment. Econ. Geol. 116, 407-425.
- 683 Zhang, R.X. and Yang, S.Y., 2016. A mathematical model for determining carbon
- 684 coating thickness and its application in electron probe microanalysis. Microscopy
- 685 and Microanalysis 22, 1374-1380
- 686 Zhao Y.Y., Zhao X.T. and Ma Z.B., 2006a. Study on chronology for hot spring typed
- 687 Cs-deposite of Targjia, Tibet. Acta Petrol. Sin. 22, 717-724.
- 688 Zhao Y.Y., Nie F.J., Hou Z.Q., Li Z.Q., Zhao X.T. and Ma Z.B., 2006b. Isotope
- 689 characteristics and formation process of hot spring type cesium deposit in
- 690Targejia, Tibet. Mineral Deposits 25, 614-619.
- 691 Zhao Y.Y., Han J.Y., Guo L.H., Qian Z.H., Zhou Y.Z., Nie F.J. and Li Z.Q., 2008.
- 692 Characteristics and geological significance of mineralogy and fabrics for the hot

- 693 spring cesium deposit occurring within the Targejia district, Tibet. Acta Petrol.
- 694 Sin. 24, 519-530.
- 695 Zhao Y.Y., Zhao X.T., Ma Z.B. and Deng J., 2010. Chronology of Gulu hot spring
- 696 cesium deposit in Nagqu, Tibet and it geological significance. Acta Geol. Sin. 84,
- **697** 211-220.
- 698 Zhuo B., Ren E., Sherriff B.L. and Yao Y., 2013. Multinuclear NMR study of Cs-
- bearing geyserites of the Targejia hot spring cesium deposit in Tibet. Am. Mineral.
- **700 98**, **907-913**.
- 701 Zheng M.P., Wang Q.X., Duo J., Liu J., Ping Cuo, W.J. and Zhang S.C., 1995. A New
- 702 Type of Hydrothermal Deposit- Cesium- Bearing Geyserite in Tibet. Geological
 703 Publishing House, Beijing (in Chinese).
- 704 Zhong D.L, and Ding L., 1996. Uplifting process and mechanism of Qinghai-Xizang
- 705 (Tibetan) Plateau. Sci. China 26, 289-295 (in Chinese).
- 706 Zhuravlev L.T., 2000. The surface chemistry of amorphous silica. Zhuravlev model.
- 707 Colloids Surf. A 173, 1-38.
- 708
- 709

710 FIGURE AND TABLE CAPTIONS

- 711 Figure 1. (a) Hot-spring deposits distributed globally; (b) A geological map of Tibet;
- (c) A geological map of the Targejia deposit (modified by Zheng et al., 1995); (d) A
- r13 simplified geological section shows the five mineralization stages in the Targejia

- district (modified by Zhao et al., 2008); (f) A field photo of stage III to V for Targejia.
- 715 Figure 2. Photomicrographs of textures (a–d) and SEM images (e–h) of ore samples
- from Targejia. (a, e) Type M1 in colloid opal-CT and opal-A; (b, c, f, g) Type M2 of
- 717 zones comprising alternating, irregular concentric bands or shells of color in opal-A;
- 718 (d, h) Type M3 of quartz cemented by amorphous opal.
- 719 Figure 3. Electron probe microanalyzer (EPMA) mapping of Type M1 (from Fig 2a,
- e), with distribution maps of Si, Na, Al, K, Ca, and Cs.
- Figure 4. Electron probe microanalyzer (EPMA) mapping of Type M2 (from Fig 2b,
- 722 c, f, g), with distribution maps of Si, Na, Al, K, Ca, and Cs.
- 723 Figure 5. Electron probe microanalyzer (EPMA) mapping of Type M3 (from Fig. 2d,
- h), with distribution maps of Si, Na, Al, K, Ca, and Cs.
- 725 Figure 6. Correlation diagrams between Cs₂O and (a) SiO₂, (b) Na₂O, (c) K₂O, (d)
- Al₂O₃, (e) CaO, (f) H₂O. The blue line represents the correlation in low Cs-bearing
- 727 ore. The red line represents the correlation in the high Cs zone in high Cs-bearing ore.
- 728 The light green area denotes the area of low Cs-bearing ore.
- 729 Figure 7. (a) Mineral saturation indices (SI) with different pH values and
- 730 temperatures; (b) The relationship between clay input (F_m) and the ratio of the rain
- 731 and opal inputs (F_{er}/F_m) .
- **Figure 8.** (a) The dissolution rates of amorphous silica and illite at pH 1–14; (b)
- 733 Minerals formed upon meteoric water–rock interaction.
- 734

- **Table 1.** Parameter values applied in the diageneses model.
- 736 Table 2. Input values of meteoric water and rock for geochemical meteoric water-
- 737 rock modeling.

738

Figure 1. (a) Hot spring deposits distributed in the world; (b) The geological map of
Tibet; (c) The geological map of Targejia deposit (modified by Zheng et al., 1995); (d)
Simplified geological section shows the five mineralization stages in the Targejia
district (modified by Zhao et al., 2008); (f) the field photo of stage III to V for

Targejia.

Figure 2. Photomicrographs of textures (a-d) and SEM characteristics (e-h) present in ore samples from the Targejia. (a, e) type M1 in colloid opal-CT and opal-A; (b, c, f, g) type M2 of zones consist of alternating, irregular concentric band or shells of color

in opal-A; (d, h) type M3, quartz cemented by amorphous opal.

Figure 3. EPMA mapping of type M1 (from Fig 3a, e) with distribution map of Si,

Na, Al, K, Ca and Cs, respectively.

Figure 4. EPMA mapping of type M2 (from Fig 3b, c, f, g) with distribution map of

Si, Na, Al, K, Ca and Cs, respectively.

Figure 5. EPMA mapping of type M3 (from Fig. 3d, h) with distribution map of Si,

Na, Al, K, Ca and Cs, respectively.

Figure 6. Correlation diagrams between Cs₂O and SiO₂ (a), Na₂O (b), K₂O (c), Al₂O₃
(d), CaO (e), H₂O (f). Blue line represents correlation in low Cs-bearing ore. Red line represents correlation in high Cs zone in high Cs-bearing ore. Light green area

denotes the area of low Cs-bearing ore.

Figure 7. (a) Mineral saturation indices (SI) with different pH and temperature; (b) the relationship between clay input (F_m) and ratio of the rain input and opal input

 (F_{er}/F_m) .

Figure 8. (a) The dissolution rates of amorphous silica and illite at pH of 1-14; (b)

mineral formed upon meteoric water-rock interaction.

Parameter	Symbol	Value
Rate constant for opal dissolution	ks	30 y ⁻¹
Saturation concentration of dissolved silica	Cs	$\label{eq:cs} \begin{split} logC_{s} = -8.476 - 485.24 \times T^{-1} - 2.268 \times 10^{-6} \\ \times T^{2} + 3.068 \times logT \end{split}$
Si diffusion coefficient	D_s	$100 \text{ cm}^2 \text{ y}^{-1}$
Intrinsic density of opal	$ ho_{b_{opal}}$	2.1 g cm^{-3}
Intrinsic density of clay	$ ho_{m_{clay}}$	2.6 g cm^{-3}
Porosity	φ	0.8
Input fluxes of opal	F_b	1-30
Input fluxes of clay	$\mathbf{F}_{\mathbf{m}}$	5-500

 Table 1. Parameters values applied in the diageneses model.

Parameter	Value ^a	Rock parameter	Value
Temperature	5	Temperature	40-85
pH	5	pН	5-9
Major elements (ppm)		Major elements (wt.%) ^b	
SiO_2	0	SiO ₂	0.86
Na	15	Al_2O_3	0.028
\mathbf{K}^+	18	CaO	0.009
Cl	14	Na ₂ O	0.008
Ca ²⁺	46	K_2O	0.007
Mg^{2+} SO_4^{2-}	3	Fe ₂ O ₃	0.002
SO_4^{2-}	60		
\mathbf{F}	3		

Table 2. Input values of meteoric water and rock for geochemical meteoric water-rock

modelling.

^a is physical and chemical condition of meteoric water from Wu et al. (2014).^b is the

average elements composition of ore at stage V from Table A1.