Pyrite geochemistry in a porphyry-skarn Cu (Au) system and implications for ore formation and prospecting: Perspective from Xinqiao deposit, Eastern China

Xin Xiao1,2,3, Taofa Zhou1,3*, Pete Hollings1,4, Noel C. White1,3,5, Yu Fan1,3, Lejun Zhang5, Bin Fu6

1Ore Deposit and Exploration Centre (ODEC), School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
2School of Earth Resources, China University of Geosciences, Wuhan 430074, China
3Anhui Province Engineering Research Center for Mineral Resources and Mine Environments, Hefei 230009, China
4Department of Geology, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario P7B 5E1, Canada
5Centre for Ore Deposit and Earth Sciences (CODES), University of Tasmania, Private Bag 79, Hobart, Tasmania 7001, Australia
6Research School of Earth Sciences, The Australian National University, Canberra, ACT 2601, Australia

*Corresponding author

E-mail address: tfzhou@hfut.edu.cn
Abstract

Stratabound ore has been recognized as an end member of porphyry copper systems, but pyrite chemistry has not been widely applied to linking stratabound ore with the related porphyry and skarn system. Stratabound ore is commonly developed around porphyry-skarn systems in eastern China, and is characterized by abundant colloform pyrite; however the origin of the colloform pyrite has been contentious. Xinqiao deposit is ideal for study of pyrite geology and geochemistry with the aim of elucidating formation of the stratabound ore and to decipher the evolution of pyrite compositions in a porphyry-skarn environment. The colloform pyrite paragenesis and S isotopes indicate that it formed during early skarn mineralization, based on its occurrence in stockwork veins cutting skarn minerals, and that it is replaced by later hypogene sulfides; the $\delta^{34}S$ of colloform pyrite (average 6.12‰) is close to the $\delta^{34}S$ value of both porphyry- (average 5.06‰) and skarn-type pyrite (average 4.65‰). The colloform texture formed as an aggregate of nanometer- or micrometer-sized (< 0.2 µm) pyrite cubes produced by rapid crystallization from a high f_{S_2}, low temperature, and supersaturated fluid. Supersaturation of the fluid was probably produced by rapid decompression that triggered fluid boiling and cooling when the magmatic-hydrothermal fluid (derived from Cretaceous magma) flowed along the Devonian-Carboniferous unconformity. Subsequently, the colloform pyrite was replaced by later stage pyrite with distinctive trace elements (Co, Ni and Se), indicating that the stratabound ore at Xinqiao formed from multiple pulses of magmatic-hydrothermal fluids derived from an Early Cretaceous stock. Cobalt, Ni and Se enrichment in porphyry- and proximal skarn-type pyrite suggests they formed at relatively high temperature, whereas the colloform pyrite shows trace element...
contents (Cu, Pb, Zn, Ag and Bi) similar to those in distal skarn pyrite, suggesting that they may have formed in the same fluid environment. The trace element variations in pyrite from stratabound, skarn and porphyry ore probably resulted from decreasing fluid temperature and increasing pH away from the source. Our data, combined with previous studies, show that Co and Ni in pyrite increase towards porphyry and skarn ore, whereas As, Sb, Pb, Ag and Bi are enriched in pyrite in distal stratabound ore, which extends for 1-2 km away from the intrusion. A plot of As/Se versus Co discriminates the three ore types that occur associated with porphyry-skarn Cu systems in the Middle and Lower Yangtze belt (MLYB). These results indicate pyrite chemistry can be effective in discriminating the genesis of different deposit types related to porphyry-skarn systems and can potentially be used as a vectoring tool during exploration in the MLYB and elsewhere.

Keywords: Colloform pyrite, Stratabound ore, Pyrite geochemistry, Porphyry-skarn deposit, The Middle–Lower Yangtze River metallogenic belt

Introduction

Stratabound massive sulfide ore has been recognized in a variety of deposit types, such as sedimentary exhalative deposit (SEDEX), volcanic hosted massive sulfide (VHMS), and Manto-type skarns, or as distal deposits associated with porphyry copper deposits (Laznicka et al. 1981; Meinert 1982; Fontboté et al. 1990; Sillitoe 2010). It is also widespread in the Middle-Lower Yangtze River metallogenic belt (MLYB), and as the most important resource of copper, gold and sulfur in eastern China, it has been the subject of abundant research and exploration during the past 40 years (Fig. 1; Chang et al. 1991; Mao et al. 2020). Stratabound...
sulfide ore in the MLYB is restricted to stratigraphic horizons that overlie the unconformity
between Devonian sandstone and Carboniferous carbonate units (Fig. 2). A ubiquitous feature
of the stratabound ore is the presence of abundant colloform pyrite, which has been
interpreted to have formed either by Carboniferous syn-sedimentary processes (Xie et al.
2014; Xu et al. 2020) or seafloor exhalative sedimentation (Gu et al. 2000). However, the
stratabound sulfide ores occur close to early Cretaceous porphyry-skarn systems, leading
other studies to conclude that initial syn-sedimentary or seafloor exhalative deposits may have
been overprinted by Cretaceous magmatic-hydrothermal fluids (Xu and Zhou 2001; Gu et al.
2007; Zhou et al. 2010; Guo et al. 2011), or that the deposits are solely related to Cretaceous

Pyrite is a dominate constituent of stratabound ore in the MLYB and has distinctive
textures (e.g., colloform pyrite and subhedral-euhedral pyrite). There have been extensive
studies on the mineralogy, morphology, trace elements, and isotopes of pyrite from
stratabound ores (Zhou et al. 2010; Guo et al. 2011; Zhang et al. 2017; Li et al. 2017, 2018;
Xu et al. 2020), but the origin and genesis of the colloform pyrite is still debated. In addition,
stratabound sulfide ore is generally distributed around early Cretaceous porphyry-skarn
systems, and pyrite is also widespread in porphyry and skarn ore. Although, stratabound ore
has been recognized as an end member of porphyry copper systems (Sillitoe 2010), pyrite
chemistry has not been widely applied to linking stratabound ore with their related porphyry
and skarn systems.

Xinqiao deposit in Tongling district was selected for study, based on (Fig. 1B): 1) it hosts
the largest stratabound ore in the MLYB, with mineralized horizons extending for 2600 m
horizontally and 1810 m vertically, with an average thickness of 21 m (e.g., Fig. 2; Chang et al. 1991; Pan and Dong 1999); 2) the colloform pyrite is well preserved, and developed multiple-stages of pyrite in the stratabound ore; 3) skarn and porphyry ore also contribute important copper and gold reserves at Xinqiao (e.g., Fig. 2; Chang et al. 1991; Tang et al. 1998; Xiao et al. 2021). These features make Xinqiao is an ideal target for studying the formation of stratabound ore in porphyry-skarn systems, and to determine systematic geochemical variations in pyrite from stratabound, skarn and porphyry ore. In this paper, we present new geological observations of the textures and paragenesis of colloform pyrite, in situ trace element data for pyrite and S isotopes of sulfides from the stratabound, skarn and porphyry ore, and S isotopes of regional sedimentary pyrite. Our results highlight: 1) the magmatic-hydrothermal origin of colloform pyrite; 2) the multi-stage formation of the stratabound ore; and 3) that pyrite chemistry (Co, Ni, As, Sb, Pb, Ag and Bi) can vector from stratabound ore to skarn and porphyry ore.

Geological setting

The MLYB is the one of the most important producers of copper, iron, and gold in China, and has been extensively studied and explored during the past 60 years (Chang et al. 1991; Zhou et al. 2015; Mao et al. 2011, 2020). The MLYB occurs between the Yangtze Block (to the south), the North China Block (to the north) and the Triassic Qinling-Dabieshan Ultra-High Pressure Belt (to the northwest). The boundaries of the MLYB are the Xiangfan-Guangji (XGF), Tan-Lu (TLF) and Chongyang-Changzhou faults (CCF) (Figs. 1A, B; Chang et al. 1991; Pan and Dong 1999). The regional stratigraphy consists of Archean to
Late Proterozoic metamorphic basement rocks, Cambrian to Early Triassic submarine sedimentary rocks, and thick sequences of Middle Triassic terrestrial sedimentary and volcanic rocks (Chang et al. 1991). The main tectonic framework developed in the Middle Triassic and comprises a series of faulted uplifted and depressed zones that control the distribution of magmatic rocks and ore deposits (Pan and Dong 1999; Mao et al. 2011). A total of 200 Fe-Cu-Au polymetallic ore deposits have been recognized in the MLYB, including magnetite-apatite, porphyry, skarn and stratabound Cu-Fe-Au deposits that cluster in seven districts (from west to east Edong, Jiurui, Anqing-Guichi, Luzong, Tongling, Ningwu and Ningzhen (Fig. 1B; Chang et al. 1991; Pan and Dong 1999). There have been three related magmatic and metallogenic events in the MLYB: Cu-Au mineralization formed at 148-135 Ma, mainly in porphyry, skarn, and strata-bound deposits associated with high-K calc-alkaline dioritic or granodioritic intrusions; Fe mineralization mainly formed at 135-123 Ma with calc-alkaline dioritic intrusions; and minor uranium-gold mineralization formed at 127-123 Ma with A-type granitoids (Tang et al. 1998; Zhou et al. 2010; Mao et al. 2011).

The Tongling district is located in the center of the MLYB and contains many Cu-Au (Fe) deposits (Figs. 1B, C). The copper and gold resources mainly occur in stratabound, skarn, and porphyry ore deposits, with Silurian to Middle Triassic marine sedimentary rocks being the main host rocks for the ore deposits. Mesozoic intrusions (granodiorite, pyroxene diorite, quartz diorite) and Cu-Au (Fe) deposits are mainly associated with NE-trending folds and a series of NE-, NNE-, NW-, and NNW-trending faults (Fig. 1C; Tang et al. 1998). The stratabound sulfide ores in the Tongling district are commonly associated with skarn and porphyry ore deposits, which is an unusual association when compared with global...
porphyry-skarn Cu-Au deposits. The stratabound sulfide ore is the most economically significant ore type at Xinqiao, Dongguashan, and Tianmashan, and is present to a minor extent in the Tongguanshan skarn Cu-Au deposit (Fig. 1C, Tang et al. 1998).

Deposit geology

The stratigraphic units exposed near the Xinqiao deposit range from Middle–Upper Silurian to Lower Triassic, but lack Lower to Middle Devonian rocks (Fig. 2). Silurian and late Devonian formations predominantly consist of sandstone, and occur as the footwall to the stratabound sulfide ore. Carboniferous units consist of silty shale, sandstone and siltstone, overlain by thick limestone or dolomitic limestone, and form the hanging wall to the stratabound ore. The overlying Permian stratigraphy is widespread at Xinqiao, with a total thickness of more than 400 m. It consists of limestone interbedded with sandstone and siltstone. The Xinqiao deposit is located at the intersection of the NE-trending Dachengshan anticline and the NNE-trending Shenchong syncline (Xu and Gu 2001). These structures influenced the location of both the magmatic intrusions and the orebodies. A quartz monzodiorite (the Jitou Stock) outcrops over 1.2 km² where it intruded into sedimentary rocks, and is closely associated with skarn and porphyry mineralization (Xiao et al. 2021). SHRIMP zircon U-Pb dating of the quartz monzodiorite yielded an age of 140.4 ± 2.2 Ma (Wang et al. 2004).

The Xinqiao deposit consists of one large and several small orebodies, with estimated metal reserves of >0.5 Mt Cu @ 0.71%, 11.2 t Au @ 4.7g/t, 25 Mt Fe @ 46%, plus Pb and Zn by-products (Xu and Zhou 2001; Zhang et al. 2020). The main orebody is stratabound and
extends along the unconformity surface between Devonian sandstone and Carboniferous carbonate units (Figs. 2A, B); locally the orebody intrudes into the hanging wall limestone (Pan and Dong 1999; Li et al. 2017). The stratabound ore extends for 2600 m horizontally, and 1810 m vertically, with an average thickness of 21 m, and locally, close to the quartz monzodiorite intrusion, can be more than 70 m thick (Xu and Gu 2001). The stratabound ore is the main economic resource at Xinqiao, and contains >70% of the copper, gold, and sulfur reserve (Chang et al. 1991). It consists of dark-grey colloform pyrite ore and massive coarse-grained pyrite ore (Figs. 3A, B). The colloform pyrite ore mainly occurs in the southwest part of the stratabound ore and has a sharp contact with massive pyrite (Xu and Zhou 2001; Li et al. 2019). The sulfide ores are massive or laminated in texture, and are composed of pyrite (>60%), chalcopyrite (20%) and quartz (15%), with minor calcite and siderite (Figs. 3A, B).

The skarn orebodies closely follow the contact between the intrusion and the host limestones (Fig. 2B) and are composed of massive or disseminated pyrite, chalcopyrite, and magnetite (Figs. 3C, D). Recent drilling indicates that the porphyry copper-gold mineralization at Xinqiao is generally hosted in quartz-pyrite-chalcopyrite stockwork veins or disseminated in the deeper parts of the Jitou stock with average Cu grade 0.3–0.6 wt% (Figs. 2B and 3E-F; Xiao et al. 2021). In general, the stratabound orebody shows weak alteration and replacement by hematite, siderite, quartz and calcite with silicic and sericitic alteration developed in the footwall to the stratabound ore (Li et al. 2017; Zhang et al. 2017). In the skarn ore zone there is strong retrograde alteration with epidote-chlorite or chlorite-pyrite-calcite veins replacing the garnet skarn (Xiao et al. 2018). The porphyry ore at
Xinqiao displays characteristic porphyry-style alteration, with a potassic core surrounded by a phyllic zone with a poorly developed outer zone of propylitic alteration (Fig. 2B). Phyllic alteration is widely developed and contains quartz-pyrite-chalcopyrite veins (Fig. 3E). The potassic alteration zone is characterized by quartz-chalcopyrite-pyrite veins and veinlets (Fig. 3F).

Samples and analytical methods

Sampling

To constrain the metal source and genesis of the stratabound ore in Xinqiao deposit, seventeen samples were selected for this study. Four samples were from outcrops of unmineralized sedimentary formations that are the main host rocks of the stratabound ore (Fig. 1C), including the late Devonian Wutong Formation (D₃w), early Carboniferous Gaolishan Formation (C₁g), late Carboniferous Chuanshan Formation (C₂c) and early Permian Qixia Formation (P₁q) (Fig. 4). Thirteen samples were from Xinqiao drill core, open pit and underground mine (Fig. 2), and included stratabound ore (dark-grey colloform pyrite ore; Figs. 3A and 7; massive coarse pyrite ore; Fig. 3B), skarn ore (distal magnetite-pyrite-calcite ore; Fig. 3C; proximal massive pyrite-chalcopyrite ore; Figs. 3D and 7A) and porphyry ore (quartz-pyrite-chalcopyrite veins with muscovite halos; Fig. 3E; quartz-pyrite-chalcopyrite veins where K-feldspar mainly occurs as veinlets or vein halos; Fig. 3F). All samples were mounted in epoxy resin pucks and polished.

Methods

NaClO etching of pyrite
Polished mounts were etched using sodium hypochlorite solution (6–14% w/v active chlorine; NaOCl) to reveal pyrite internal textures. NaOCl was dropped on the sample surface and left for periods of 1 to 2 minutes, until the color of the pyrite changed, then rinsed immediately with cold tap water and dried (Sykora et al. 2018).

SEM and EDS analysis

Detailed investigation of the morphology of pyrite was performed using a Hitachi SU-70 scanning electron microscope (SEM) at the University of Tasmania. Secondary-electron mode was used at 3-5 kV to observe the surface structure of colloform pyrite and at higher voltages (20 kV) for high resolution imaging. BSE images and energy-dispersive X-ray spectroscopy (EDS) at 15 kV was used to measure the chemical composition of the pyrite.

Micro-Raman spectroscopy

Micro-Raman spectroscopic analyses of stratabound ore samples were carried out using a WITec alpha300-R confocal Raman system coupled with a Peltier cooled EMCCD detector at the State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Wuhan). The instrument was equipped with a 532-nm wavelength laser and set at a power of 5 mW. Raman spectra were obtained at magnifications of 50×(N.A.=0.75) and with a focus spot size of 1μm. The Raman spectra were collected in the 0–3500 cm⁻¹ range using 600 lines per millimeter grating, which yielded a spectral resolution of 4 cm⁻¹.

LA-ICP-MS (laser ablation-inductively coupled plasma-mass spectrometry)

Trace element analyses and mapping of representative pyrite grains from Xinqiao was done using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) at the Centre for Ore Deposit and Earth Sciences (CODES), University of Tasmania, Australia.
using an Agilent 7700 quadrupole ICP-MS coupled with a 193 nm Coherent Ar-F excimer laser and an ASI Resolution S155 ablation cell. Trace element analyses were performed with a uniform spot diameter of 29 µm at 5 Hz with energy of 3.0 J/cm² in a helium atmosphere flowing at 0.35 L/min, mixed with argon flowing at 1.05 L/min immediately after the ablation for 60s after measuring the gas blank for 30s. STDGL2b2, GSD-1G and Peru Py were used as primary standards (Jochum et al. 2005; Danyushevsky et al. 2011). The in-house software (CODES, UTAS; unpublished) was employed for data reduction. Thirty-six trace elements were measured in pyrite but only 14 elements (Co, Ni, Cu, Zn, As, Se, Ag, Sb, Te, W, Au, Tl, Pb and Bi) are presented in this paper, as these elements were consistently above the detection limit and displayed significant variability in different pyrite grains (Fig. 10). Trace element mapping was conducted under similar conditions with a 9 µm spot size and 10 Hz pulse rate at an ablation speed of 6 µm/s. Detailed descriptions of the laser mapping and spot analysis methodology are given in Large et al. (2009) and Gregory et al. (2016).

SHRIMP-SI (Sensitive high-resolution ion-micro-probe-Stable isotope)

In situ sulfur isotopes of selected pyrite grains from regional sedimentary rocks and sulfides (pyrite, pyrrhotite and chalcopyrite) from Xinqiao were measured using the SHRIMP SI at the Research School of Earth Sciences, Australian National University (RSES, ANU) (Ireland et al. 2008; Tanner et al. 2016), utilizing a spot diameter of 10µm for pyrite, pyrrhotite and chalcopyrite. Detailed descriptions of the methodology are presented by Ireland et al. (2014) and Philippot et al. (2018). Ruttan pyrite (δ³⁴Sᵥ CDT value of +1.2‰, Crowe and Vaughan 1996) was the primary standard used to normalize the pyrite sulfur isotope data; the sulfur isotope data of chalcopyrite and pyrrhotite were normalized using
Norilsk chalcopyrite (δ^{34}S_{V-CDT} value of +8.0‰) and Anderson pyrrhotite (δ^{34}S_{V-CDT} value of +1.4‰) respectively (Crowe and Vaughan 1996). Analyses of reference materials were performed after every three or four sample analyses.

Results

Pyrite petrology and morphology

Pyrite is dispersed and commonly occurs disseminated in regional sedimentary rocks and does not show internal textures (Fig. 4). Pyrite disseminated in Permian carbonaceous limestone (Qixia Formation, P_{1q-Py}) is typically fine-grained (50-100 μm) with euhedral and subhedral crystals (Figs. 4A, B). Subhedral fine-grained pyrite (50-100 μm) occurs as clusters in Carboniferous limestone/dolomite (Chuanshan Formation, C_{2c-Py}; Figs. 4C, D). The pyrite in Carboniferous silty shale (Gaolishan Formation, C_{1g-Py}; Figs. 4E, F) is fine-grained (less than 100 μm) and anhedral. In the Devonian sandstone (D_{3w-Py}) pyrite ranges from 50 to 300 μm in size and is euhedral (Figs. 4G, H).

Three types of pyrite can be identified in the stratabound sulfide ore (Py1/2/3) at Xinqiao (Fig. 5). Py1 displays distinct colloform textures or aggregates in veins cutting pyrrhotite (Figs. 5A, E and 7D-F) and magnetite (Figs. 7G, H). Scanning electron microscope imaging and Raman results showed that the colloform zone consisted of aggregates of abundant micron or nanometer (< 2 μm) sized cubic pyrite grains (Fig. 6); the changes of brightness that cause the colloform texture are caused by variations in the grain size of the pyrite. Py2 is coarse-grained (300 μm-2 mm), euhedral to subhedral and commonly replaces colloform pyrite (Py1; Figs. 5A, C, D and 7). Medium- to fine-grained (50-400 μm) subhedral pyrite
(Py3) occurs with chalcopyrite and quartz as veins cutting Py2 and Py1 (Figs. 5A, B, E and 7).

Pyrite4/4a from distal skarn ore can be recognized by its occurrence (Fig. 3C); Py4 is medium- to coarse-grained (200-500 μm) with sub-angular to sub-rounded edges, is disseminated with calcite, and is cut by fine-grained (50-100 μm) pyrite veins (Py4a, Figs. 3C and 5F). Py5 occurs in the massive pyrite-chalcopyrite ore from the proximal skarn zone (Fig. 3D) and is characterized by subhedral medium- to coarse-grained crystals (Fig. 5G). Py6 is from a quartz-pyrite vein with a muscovite halo from the phyllic alteration zone (Fig. 3E); the pyrite ranges in diameter from <300μm to 2mm and has angular to rounded edges (Fig. 5H).

Py7 is subhedral and coarse-grained and is found in quartz-pyrite-chalcopyrite-molybdenite veins (Fig. 3F). NaOCl etching revealed strong oscillatory zoning in Py7 (Fig. 5I).

Trace element compositions of pyrite

A total of 213 spots on pyrite from Xinqiao deposit were measured by LA-ICP-MS; detailed results are reported in Appendix Table 1A and shown in Figure 10. LA-ICP-MS element mapping was conducted to characterize the distribution of trace elements in different textures of pyrite from Xinqiao deposit (Fig. 9).

The trace elements in pyrite from Xinqiao vary with the different types (Fig. 10). Py1 (colloform texture) contains high As, Cu, Pb and Ag with values between 100 and 1000 ppm (Pb is above 1000 ppm; Sb and Bi are between 10 and 100 ppm; Co, Ni, Se, and Te are less than 10 ppm; Au is near 0.1 ppm). Most trace elements in Py2 and Py3 are below 10 ppm, apart from As in Py2, which is above 500 ppm, and Py3 is enriched in Co (average 133 ppm).

Py4 and Py4a have similar geochemistry with most trace elements ranging from 10 to 100
ppm, apart from Co (less than 1 ppm). However, Py4a has higher Cu (average is 1863 ppm) and Zn (average is 359 ppm) than the other pyrite types. Most trace elements in Py5 from the massive skarn-type pyrite-chalcopyrite ore have low trace element concentrations typically less than 10 ppm. Py6/7 from the porphyry ore is enriched in Co, Ni, and Se, with Py7 having the highest Co (164-2365 ppm) and Ni (25-740 ppm) concentrations, whereas other trace elements are less than 10 ppm (Fig. 10).

LA-ICP-MS mapping suggests that the trace elements in pyrite are part of the crystal lattice rather than occurring as inclusions (Fig. 9). Copper, Zn, Pb, Bi and Ag are concentrated in Py1 and are homogeneously distributed in bands (Figs. 9A, B); Py2 grains have higher As concentration (Fig. 9B), and Co is enriched in the cores of Py3 grains (Fig. 9A). Py7 grains from the porphyry ore display obvious oscillatory zoning of Co and Ni (Fig. 9C).

SHRIMP in situ sulfur isotopes

In situ SHRIMP sulfur isotope data for sulfides from Xinqiao (pyrite, pyrrhotite and chalcopyrite) and sedimentary rocks (pyrite) are shown in Appendix Table 2A and Figure 11. The δ³⁴S values of pyrite from the stratabound, skarn and porphyry ores are similar and fall in a narrow range with Py1 having δ³⁴S values of 3.21 - 8.58‰ (mean 6.12‰, n=28), Py2 displaying a narrow δ³⁴S range of 3.19-7.46‰ (n=15), and Py3 varying from 3.88 to 7.75‰ (n=14). The δ³⁴S values of Py4a, Py4 and Py5 from the skarn ore are 2.74-5.83‰ (n=7), 0.81-4.83‰ (n=6), 1.15-7.59‰ (n=8), respectively. Py6 and 7 from the porphyry ore has δ³⁴S values of 4.95-6.08‰ (n=8) and 3.53-6.58‰ (n=8). Chalcopyrite and pyrrhotite from Xinqiao have δ³⁴S values of 0.20 - 4.76‰ (n=11) and 1.92 - 5.38‰ (n=9).
Pyrite from the sedimentary rocks has negative δ^{34}S values. P$_{1q}$-Py, C$_{2c}$-Py, C$_{1g}$-Py and D$_{3w}$-Py yielded values of -26.27 to -20.10‰ (n=6), -45.56 to -22.84‰ (n=4), -33.34 to -20.44‰ (n=4) and -43.61 to -42.30‰ (n=8).

Discussion

New insights into the origin and paragenesis of colloform pyrite

A unique character of the stratabound sulfide ore deposits of the MLYB is the presence of colloform pyrite, which is especially well preserved at Xinqiao. Three models have been proposed for the origin of the colloform pyrite in the stratabound ore: 1) it formed by primary sedimentary precipitation in the Carboniferous, based on the micro-textures and nano-morphological characteristics of colloform pyrite under TEM, which have been used to suggest that the nano particles of pyrite formed from bacterial activity (Xie et al. 2014; Xu et al. 2020); 2) they formed in a late Carboniferous seafloor exhalative (SEDEX) system (Gu et al. 2000), given that Re-Os dating of pyrite from a footwall mineralization zone beneath stratabound ore yielded ages of 319 ± 13 Ma (Guo et al. 2011); 3) they formed in the Cretaceous, based on Re-Os isochron ages and the isotope (S and Os) characteristics of the colloform pyrite (136.6 ± 4.6 Ma; Zhang et al. 2017; Li et al. 2018, 2019). The range of genetic models is partly due to the lack of robust constraints on the origin and genesis of colloform pyrite in stratabound ore systems.

It is commonly believed that the colloform pyrite ore is mainly developed far from igneous rocks, and is intensively replaced by later massive euhedral coarse pyrite ore (Pan and Dong 1999; Xu and Zhou 2001; Zhang et al. 2017; Li et al. 2018, 2019). No direct
relationship between the colloform pyrite assemblage and skarn/porphyry related minerals have previously been recorded at Xinqiao. Here, we document the geological relationship between colloform pyrite and skarn minerals; our results show that colloform pyrite has complex relationships with Cretaceous skarn minerals (Fig. 7). For example, colloform pyrite aggregates (Py1) fill the interstices between pyroxene crystals in pyroxene skarn (Figs. 7A-C), indicating that the colloform pyrite crystallized later than the pyroxene. Colloform pyrite assemblages also occur in hydrothermal stockworks and veins, where the colloform pyrite veins are 0.5 - 2 cm wide and cut early massive pyrrhotite (Figs. 3A, 5A and 7D-F) or occur as veinlets cutting magnetite ore (Figs. 7G, H). In addition, relict colloform pyrite aggregates are found in the massive lead-zinc ore and are extensively replaced by coarse-grained pyrite, chalcopyrite, and sphalerite (Figs. 7J-L). The paragenesis of the colloform pyrite indicates that it is associated with Cretaceous skarn mineralization, and formed during the early sulfide stage of the Xinqiao porphyry-skarn system (Fig. 8).

The source of sulfur

New SHRIMP in situ sulfur isotope data for sulfides from stratabound, skarn and porphyry ore at Xinqiao and regional sedimentary rocks are presented here (Fig. 11). Previous studies found no hydrothermal sulfate that crystallized during the ore-forming stage, meaning that there was no fractionation of S isotopes between sulfate and sulfide at Xinqiao, and consequently the S isotope ratios of the sulfides can provide insights into the ore fluid sources (Ohmoto 1972; Li et al. 2017). The δ34S value of fluids derived from magma at Xiqiao is close to 5‰, based on the δ34S values of Py6/7 from the porphyry ore (Fig. 11). The δ34S values of pyrite from the stratabound ore at Xinqiao deposit fall in a narrow range from +3.19‰
to +8.58‰ (mean = +5.89‰; Fig. 11), and S isotopic compositions of chalcopyrite (mean = +3.57‰) and pyrrhotite (mean = +3.84‰) show normal distribution with no significant difference, suggesting that they have similar S sources. The δ^{34}S values of sulfides from the stratabound ore overlap with the range of δ^{34}S from porphyry- (mean = +5.06‰) and skarn-type pyrite (mean = +4.65 ‰), and also with the whole-rock sulfur isotopic compositions (δ^{34}S: +0.3 to +7.0 ‰; Chang et al. 1991) of Mesozoic intermediate-felsic intrusions in the Tongling district. These results indicate that the colloform pyrite stockworks formed from a Cretaceous magmatic S source rather a sedimentary source, given that pyrite from the sedimentary rocks is characterized by strongly negative δ^{34}S values (-45.56‰ to -20.10‰; Fig. 11). The narrow range of δ^{34}S of pyrites from the stratabound ore at Xinqiao are markedly different from typical Devonian-Carboniferous SEDEX deposits where the pyrite shows a wide range of δ^{34}S values (-40‰ to +30‰). In SEDEX systems it is generally accepted that the sulfur was ultimately derived from seawater sulfate by either bacterial sulfate reduction (BSR: negative δ^{34}S value) or thermochemical sulfate reduction (TSR: positive δ^{34}S value) (e.g., the Carboniferous Red Dog deposit δ^{34}S value of pyrite is -45.8 to +9.9‰, Kelley et al. 2004; the late Devonian Dajiangping pyrite deposit δ^{34}S value of pyrite is -28.7‰ to +23.6‰, Qiu et al. 2018).

The formation of colloform pyrite

Formation of colloform pyrite at Xinqiao by sedimentary processes has been proposed (Xie et al. 2014; Xu et al. 2020), however, we believe a sedimentary origin for the colloform pyrite is unlikely because: 1) the textures observed are consistent with typical hydrothermal occurrences of colloform pyrite (Figs. 5 and 7); 2) our chemical data plotted on the pyrite
trace element classifier of Mukherjee et al. (2017) and Gregory et al. (2019) displayed no
pyrite analysis that classified as sedimentary pyrite (Figs. 10A-E), and the S isotopes of the
colloform pyrite are also distinctly different from those of sedimentary pyrite (Fig. 11). In
addition, colloform pyrite is common in hydrothermal ore deposits and has been shown that
it can form by both supergene and hypogene processes. For example, previous studies have
demonstrated that colloform pyrite can occur as a secondary sulfide formed in supergene
profiles of VHMS deposits (Belogub et al. 2008) and in the Kotana Fe-skarn deposit (Çiftçi
2011). It can also form by alteration of pyrrhotite where supergene alteration is intense, and
it is commonly surrounded by marcasite and various Fe-oxides-hydroxides rims, or it can
occur as veins crosscutting pyrrhotite (Ramdohr 1980; Çiftçi 2011). Although some of the
colloform pyrite at Xinqiao occurs along cracks in pyrrhotite and shows textures similar to
supergene ore (Figs. 5A, 6A and 7E; Ramdohr 1980), but we reject supergene formation of
this colloform pyrite, based on this evidence: 1) SEM and Raman result indicate these
colloform textures consist of pyrite, not marcasite and/or Fe-oxides (Fig. 6); 2) The presence
of euhedral fine-grained pyrite rims at the replacement front between the colloform pyrite
and pyrrhotite distinguishes it from colloform pyrite in supergene ore (Fig. 6C); 3) The
stratabound ore has massive texture and lacks evidence for supergene leaching and related
secondary porosity or minerals (Figs. 3 and 7); 4) Previous studies revealed that secondary
sulfide minerals are characterized by light sulfur isotope compositions (−8.1 to −17.2‰;
Belogub et al. 2008), whereas our results show the colloform pyrite and pyrrhotite have
uniform positive sulfur isotope values (Fig. 11); 5) The colloform pyrite has no special
relationship with pyrrhotite, and it also occurs as veins cutting magnetite, or as infill around
pyroxenes, and as clusters replaced by pyrite and chalcopyrite (Fig. 7). All these features indicate the colloform pyrite at Xinqiao is hypogene. Colloform pyrite in hypogene ore deposits generally occurs as primary sulfides that are widespread in SEDEX or VMS deposits (Barrie et al. 2009; Piercey 2015; Velasco-Acebes et al. 2019; Nozaki et al. 2021), and a few studies documented that colloform pyrite at Xinqiao has features similar to SEDEX deposits (Gu et al. 2000; Guo et al. 2011). However, the trace elements and S isotope of colloform pyrite from this study all plot outside the SEDEX fields (Figs. 10A-E and 11). Therefore, bringing together evidence from the geology, textures and geochemistry (trace elements and S isotopes) of the colloform pyrite, we propose that the colloform pyrite at Xinqiao is a product of the skarn ore system.

Previous studies proposed that colloform pyrite and corresponding trace element enrichment (i.e., As, Au, Mo, Tl, etc.) are common in porphyry-related epithermal environments, and suggest it probably resulted from rapid disequilibrium precipitation and high growth rates in a relatively low temperature environment (Fleet et al. 1989; Huston et al. 1995; Peterson and Mavrogenes 2014; Franchini 2015; Sykora et al. 2018). We infer that the colloform textures and chalcophile element enrichment in pyrite from the stratabound ore at Xinqiao is consistent with rapid disequilibrium precipitation. This rapid precipitation is supported by the abundant micron- or nanometer-sized (200nm to 2 μm) cubic pyrite {100+111} aggregates that form the colloform texture observed in this study (Fig. 6) and previous papers (Xie et al. 2014; Zhang et al. 2017; Li et al. 2018). In addition, fluid inclusions in quartz from colloform pyrite ore indicate that it formed at around 200~300℃ (Li et al. 2017), consistent with previous experiments that indicated that the pyrite cubes with
smooth α{100} faces and small o{111} formed at 250°C and moderately supersaturated conditions (Murowchick and Barnes 1987). Abraitis et al. (2004) further suggested that fast crystallization helps incorporate trace elements by adsorption into pyrite, as at slower rates Fe and S atoms are likely to displace other ions and form more thermodynamically stable cubic pyrite. Notably, the supersaturated crystallization of pyrite at Xinqiao was mainly caused by abrupt change in physic-chemical conditions of the ore-bearing hydrothermal fluid when the magmatic-hydrothermal fluid (derived from Cretaceous magma) flowed along the Devonian-Carboniferous unconformity.

Systematic geochemical variations of pyrite and their implications

Our point and element mapping geochemical data show that the greatest trace element variation of pyrites from stratabound, skarn, and porphyry ore are in Co, Ni, Se, As, Cu, Pb, Zn, Ag, and Bi (Figs. 9 and 10). LA-ICP-MS time-resolved signal spectra and mapping indicate these elements are homogeneously distributed in the lattice of most analyzed pyrites, whereas Pb-bearing inclusions (probably galena) are common in Py2/4/5 and Pb-Bi-Ag-Te bearing sub-microscopic inclusions also occurs in a few Py4 grains (Fig. 12). These differences in trace element compositions in pyrite can be controlled by fluid composition, fluid conditions, kinetic processes and the co-precipitating minerals (Large et al. 2009; Sykora et al. 2018).

A significant decrease in Co, Ni, and Se is observed from Py7/6 to Py1 at Xinqiao, with the contents of Co, Ni, and Se in Py7/6 from the porphyry ore being two orders of magnitude higher than in Py1 from the stratabound ore (Figs. 10A, F). The enrichment of Co, Ni and Se in pyrite from the porphyry mineralization zone is consistent with pyrite formed at high
temperature in a porphyry environment (e.g., Dexing deposit, Reich et al. 2013; Lihir deposit, Sykora et al. 2018), based on observations that Co, Ni, and Se tend to be more efficiently incorporated into pyrite under high temperature conditions (Hanley and MacKenzie 2009; Gregory et al. 2013; Reich et al. 2013; Sykora et al. 2018). The K-feldspar and actinolite selvages to the quartz-pyrite veins also indicate that the fluid responsible for the potassic mineralization was relatively high temperature (Xiao et al. 2021). However, most metallic elements (e.g., Cu, Pb, Zn and Ag) are depleted in Py7/6 (Fig. 10G), possibly due to the fluid conditions and the nature of the co-precipitating minerals, because Cu was mainly deposited as chalcopyrite in the porphyry-type mineralization zone, and Pb, Zn, Ag remained in solution in the high T magmatic-hydrothermal fluid (Kouzmanov and pokrovski 2012). In addition, NaOCl etching and trace element LA-ICP-MS images revealed strong oscillatory zones in Py7 grains (Fig. 9C); the inhomogeneous oscillatory distribution of Co, Ni and Se may indicate local episodic fluctuations in fluid composition. Most trace elements in Py5 from the massive skarn-type pyrite-chalcopyrite ore have low concentrations, typically less than 10 ppm (Fig. 10), which may have resulted from precipitation of large amounts of sulfide (pyrite-chalcopyrite) in the porphyry ore and coexistence of chalcopyrite in skarn ore. However, Py4/4a from distal skarn ore has higher concentrations of Zn, Cu, Pb, Bi and Ag, whereas they are depleted in Co, Ni, and Se compared to pyrite from the porphyry and proximal skarn ore (Fig. 10). Previous studies have interpreted this change as resulting from decreasing ore-forming fluid temperature (Fleet et al. 1989; Reich et al. 2013; Sykora et al. 2018; Keith et al. 2018; Steadman et al. 2020). At the same time, increasing fluid pH where intense fluid-rock reaction occurred in distal skarn may have also contributed to Zn
enrichment in Py4 (Fig. 10B); thermodynamic data indicate pH increase aids Zn precipitation from both high and low temperature fluids (Kouzmanov and Pokrovski 2012; Zhang et al. 2022).

Three pyrite types from the stratabound ore display differences in trace element contents (Figs. 9 and 10). Colloform pyrite (Py1) is enriched in most chalcophile elements (Cu, Pb, Zn, Ag, Bi, Sb, As and Tl, Fig. 10), but depleted in Co, Ni and Se (all less than 10 ppm). It has trace element concentrations similar to pyrite from the distal marble zone, suggesting that they may have formed in the same fluid environment (Fig. 10), and further supporting a magmatic-hydrothermal origin as the metallic elements were probably derived from magmas (Li et al. 2018). In addition, the sharp contact relationship between Py1 and Py2, and the fact that both are cut by Py3, indicate they formed from multi-stage hydrothermal fluids (Fig. 5). Py2 is enriched in As and Py3 has high Co and Ni contents compared to Py1 (Figs. 9 and 10); the changes of trace elements suggest they formed from fluids with different compositions and/or physicochemical conditions (Large et al. 2009; Smith et al. 2014). Py3 shows geochemistry (Co, Ni and Se) similar to pyrite from the porphyry ore, suggesting it may have crystallized from a later stage high-T hydrothermal fluid, as Co, Ni and Se are strongly associated with high-T environments in porphyry systems (Hanley and MacKenzie, 2009; Gregory et al., 2013; Reich et al., 2013). These compositional variations in different stages of pyrite are compelling evidence for multi-stage mineralization of the stratabound ore at Xinqiao.

The formation of stratabound ore and implications

The geological (textures and paragenesis) and chemical (trace elements and S isotope)
evidence indicate that the stratabound ore in the Tongling district has a Cretaceous magmatic origin formed during multiple mineralization stages (Figs. 13A-C). The first stage formed distal colloform-texture pyrite ore (Fig. 13C), which aggregated from abundant nanometer-scale pyrite cubes (Fig. 6). The pyrite cubes probably formed by rapid nucleation from a high f_{S_2} and low temperature supersaturated solution (Murowchick and Barnes 1987; Butler and Rickard 2000; Abraitis et al. 2004) that probably formed by two processes: 1) rapid decompression of magmatic-hydrothermal fluids derived from the Cretaceous intrusions, flowing along the unconformity between the Devonian and the Carboniferous; 2) intensive water-rock interaction between early Cretaceous magmatic-hydrothermal fluids and Carboniferous-Permian reduced wall rocks, which promoted reduction of the sulfur. Water-rock interaction at Xinqiao was proved by the highly radiogenic Os$_i$ value of colloform pyrite reported by Li et al. 2018. Later addition of magmatic-hydrothermal fluids formed the massive coarse-grained pyrite (Py2) that replaced/overprinted the early colloform pyrite (Py1) ore, and ultimately formed the chalcopyrite-pyrite (Py3)-quartz veins that cut Py1 and Py2 (Fig. 13B). These multi-stage pyrite + chalcopyrite veins comprise the most economically important part of the stratabound ore (Fig. 13).

Pyrite chemistry indicators of mineralization styles and exploration in porphyry Cu systems

Stratabound ore has been recognized as an end member in some porphyry copper systems (Sillitoe 2010) and is well documented in north-central Chile (Reyes 1991). Stratabound Cu deposits similar to the one at Xinqiao are widespread in the MLYB, and show affinities to the early Cretaceous porphyry-skarn Cu systems that cluster in the Tongling and
Jiurui districts (Fig. 1; Pan and Dong 1999; Mao et al. 2009). Pyrite is the main sulfide mineral in stratabound, skarn and porphyry ores, and shows varied textures and chemistry that can be used to identify different ore types in the porphyry Cu systems, based on our data and previously published data from stratabound, skarn, and porphyry ore from several deposits in the MLYB (Tongling district: Taoyuan, Xinqiao, Dongguashan, Shujiadian, Fenghuangshan; Jiurui district: Chengmenshan and Jinjiwo).

Overall, pyrite from skarn ore and porphyry ore show similar geochemical character, with higher concentration of Co and Ni than stratabound ore, whereas As, Sb, Pb, Bi, and Ag are relatively enriched in pyrite from stratabound ore (Fig. 14). As discussed above, temperature exerts a first-order control on the trace elements trend in pyrite from stratabound, skarn and porphyry ore; the lowering of fluid temperature from porphyry/skarn ore to stratabound ore has been demonstrated by fluid inclusion data in previous studies (Li et al. 2017). We use a plot of As/Se versus Co to discriminate the three ore types (Fig. 14C), as these elements are abundant, they are sensitive to fluid condition (especially T; Migdisov et al. 2011; Deditius et al. 2014), and they mainly occur in the pyrite crystal lattice, rather than in mineral inclusions. In addition, Herazo et al. (2021) showed that pyrite in volcanic-hosted stratabound ore deposits in northern Chile has significant levels of Cu, As, Mn, Pb, Ti, Co, Ni, V, and Mo, with high Ag/Co and low Co/Cu and Co-Ni ratios compared to high-T iron oxide-apatite and iron oxide copper-gold systems.

Cobalt, Ni, and Se are higher in porphyry- and skarn-type pyrite in deposits in the MLYB, and stratabound ore has the highest As/Se ratio and low Co values, making them readily distinguished from skarn and porphyry ore; in addition, stratabound ore commonly
extends for 1-2 km away from the intrusion, suggesting potential to use trace elements such as As, Sb, Pb, Bi, and Ag in pyrite as distal pathfinder elements during exploration in the MLYB and elsewhere.

Conclusion and Implication

Colloform pyrite has been commonly considered to form as a result of seafloor exhalative sedimentary processes, and reports claim it is rare in porphyry-skarn systems. Colloform pyrite is abundant in the stratabound ore of the Middle-Lower Yangtze River metallogenic belt, eastern China. Based on the typical hydrothermal stockwork occurrence of colloform pyrite and its geochemical signatures (trace elements and S isotopes) at Xinqiao we propose the colloform pyrite is related to Cretaceous porphyry-skarn mineralization, rather than Carboniferous syn-sedimentary or seafloor sedimentary exhalative processes. We suggest that Co, Ni, and Se substituted into porphyry- and skarn-type pyrite at high temperature, whereas the As, Cu, Pb, Zn, Ag and Bi were incorporated into colloform pyrite during rapid crystallization. This study shows that colloform pyrite can occur in porphyry-skarn ore systems, and various features of the pyrites can effectively fingerprint the stratabound mineralization and show that it formed from multiple influxes of magmatic-hydrothermal fluids derived from an Early Cretaceous stock. Furthermore, pyrite trace elements are shown to be useful indicators of mineralization type in porphyry-skarn Cu systems, with Co and Ni increasing towards porphyry and skarn ore, whereas As, Sb, Pb, Ag and Bi are enriched in pyrite from distal stratabound ore. These results indicate pyrite chemistry can as an effective indicator of deposit type and provides potential vectors for exploration in porphyry-skarn systems in the MLYB and elsewhere.
Acknowledgments

We thank Yixia Wang at the Xinqiao mine for help with sampling, and Sebastien Meffre, Sandrin Feig, Karsten Goemann, Jay Thompson and Paul Olin at CODES and the Central Science Laboratory (CSL), University of Tasmania, for their help with samples and analyses. This work was financially supported by the National Natural Science Foundation of China (grants 91962218, 41320104003).

References

Fontboté, L., and Gorzawski, H. (1990) Genesis of the Mississippi Valley-type Zn-Pb deposit
of San Vicente, central Peru; geologic and isotopic (Sr, O, C, S, Pb) evidence. Economic
Geology, 85(7), 1402-1437.

Franchini, M., McFarlane, C., Maydagán, L., Reich, M., Lentz, D. R., Meinert, L., and
Bouhier, V. (2015) Trace metals in pyrite and marcasite from the Agua Rica
porphyry-high sulfidation epithermal deposit, Catamarca, Argentina: Textural features
and metal zoning at the porphyry to epithermal transition. Ore Geology Reviews, 66,
366-387.

Gregory, D.D., Cracknell, M.J., Large, R.R., McGoldrick, P., Kuhn, S., Maslennikov, V.V.,
Deposit Type and Barren Sedimentary Pyrite Using Laser Ablation-Inductively Coupled
Plasma-Mass Spectrometry Trace Element Data and Statistical Analysis of Large Data

W., Holden, P., and Ireland, T.R. (2016) Trace Element Content of Pyrite from the Kapai
Slate, St. Ives Gold District, Western Australia: Economic Geology, 111(6), 1297-1320.

porphyry copper-gold-molybdenum deposit, Alaska: Implications for gold distribution
and paragenesis. Economic Geology, 108(3), 463-482.

and fluid features of massive sulphide deposits in South China: implications for genetic
modelling. Episodes 23, 110–118.

Distinctive features of Late Palaeozoic massive sulphide deposits in South China. Ore Geology Reviews, 31(1-4), 107-138.

Large, R.R., Danyushevsky, L., Hollit, C., Maslennikov, V., Meffre, S., Gilbert, S., Bull, S.,

Mineralium Deposita, 49(6), 667-692.

Xie, J.C., Ge, L.K., Fang, D., Li, Q.Z., Qian, L., Li, Z.S., Yan, J and Sun, W.D., (2020b) Geochemistry of pyrite from stratabound massive sulfide deposits, Tongling region, China: Implication for their genesis. Ore Geology Reviews, 120, 103430.

Figure Captions

Figure 1. (A) Location of the Middle–Lower Yangtze River metallogenic belt; (B) Geological map of magmatic rocks and deposits in the Middle-Lower Yangtze River Valley metallogenic belt (modified after Pan and Dong 1999); (C) Geological map of Tongling district, Anhui, eastern China (modified after Chang et al. 1991). TLF: Tancheng-Lujiang fault; XGF: Xiangfan-Guangji fault; HPF: Huanglishu-Poliangting fault; CHF: Chuhe fault; CCF: Chongyang-Changzhou fault; JNF: Jiangnan fault

Figure 2. (A) Geological sketch map of the Xinqiao ore deposit (after Tang et al. 1998); (B) Representative cross sections of Xinqiao deposit (after 803-Geological-Team 1971).

Figure 3. Representative examples of pyrite in stratabound, skarn and porphyry ore in Xinqiao deposit. (A) Stratabound ore consist of massive dark-grey colloform pyrite ore replacing massive pyrrhotite and (B) massive pyrite-quartz (chalcopyrite) ore; (C) distal skarn ore (magnetite and pyrite in marble); (D) massive pyrite-chalcopyrite skarn ore; (E) quartz-pyrite-hematite (chalcopyrite) vein with muscovite halos in the phyllic alteration zone; (F) quartz-pyrite-chalcopyrite vein with K-feldspar halos in potassic alteration zone.

Figure 4. The petrology of sedimentary pyrite in regional sedimentary rocks. (A) Permian Qixia Formation (P₁q) limestone; (B) Disseminated fine-grained subhedral pyrite in Qixia limestone; (C) Carboniferous Chuanshan-Huanglong Formation (C₂c); (D) Fine-grained
anhdral pyrite cluster in Chuanshan-Huanglong limestone; (E) Carboniferous Gaolishan
Formation (C1g); (F) Fine-grained oolitic pyrite cluster in Gaolishan silty shale; (G) Upper
Devonian Wutong Formation (D3w); (H) Coarse-grained euhedral pyrite in Wutong
sandstone.

Figure 5. Microscopic characteristics and types of pyrite in stratabound (Py1, 2 and 3), skarn
(Py4a, 4 and 5) and porphyry ore (Py6 and 7) from the Xinqiao deposit. (A) Py1 (colloform
pyrite) occurs as stockwork replacing pyrrhotite; (B-E) Py1 replaced by coarse-grained
anhdral pyrite (Py2) and fine-grained pyrite (Py3)-chalcopyrite-vein; (F) Subhedral coarse
pyrite (Py4) and fine-grained pyrite vein (Py4a) in pyrite vein from distal skarn ore; (G)
Subhedral coarse pyrite (Py5) in massive pyrite-chalcopyrite ore; (H) Subhedral coarse pyrite
(Py6) in phyllic alteration zone; (I) NaOCl etched subhedral coarse pyrite (Py7) in potassic
alteration zone showing oscillatory zones.

Figure 6. The Raman spectra, BSE and SEM images of colloform pyrite from Xinqiao. (A)
Colloform pyrite occurs as vein cutting pyrrhotite and showing obvious zoning; (B) Raman
spectra of colloform pyrite bands; (C) BSE image showing colloform pyrite has a sharp
contact with pyrrhotite and micro euhedral pyrite present in replacement front; (D, E) SEM
images showing colloform pyrite consists of nanometer-scale pyrite cubes.

Figure 7. Photomicrographs showing petrological features of colloform pyrite and its
relationship with oxide and sulfide assemblages in Xinqiao deposits. (A) Colloform pyrite
(Py1) with chalcopyrite replacing pyroxene skarn; (B-C) Colloform pyrite (Py1) infilling between hedenbergite crystals; (D-F) Colloform pyrite (Py1) as veins cutting massive pyrrhotite; (G-H) Colloform pyrite (Py1) vein cutting magnetite, and replaced by fine-grained pyrite (Py3) and chalcopyrite (I); (J) Colloform pyrite (Py1) ore replaced by massive sphalerite-galena; (K-L) Coarse-grained pyrite (Py2), sphalerite and calcite replace colloform pyrite (Py1).

Figure 8. Summary of hydrothermal mineral paragenesis at Xinqiao deposit.

Figure 9. LA-ICP MS trace element maps of pyrite from stratabound (A, B) and porphyry ore (C) from Xinqiao deposit.

Figure 10. Trace-element compositions of the studied pyrite samples from stratabound, skarn and porphyry ore from the Xinqiao deposit (outline of pyrite data from porphyry Cu deposit, SEDEX deposit and sedimentary from Mukherjee et al. (2017) and Gregory et al. 2019). Colloform pyrite (Py1) is characterized by high abundances of Cu, Pb, Zn, Ag, Bi, W, Tl, and Sb, and low Co, Ni, Se; Py4/4a have similar contents of Cu, Pb, Zn, Ag, Bi, W, Tl, and Sb as Py1. In contrast, pyrite from the porphyry ore (Py6/7) is enriched in Co, Ni, Se.

Figure 11. Sulfur isotope compositions from the Xinqiao deposit. The δ^{34}S values of Mesozoic magmatic rocks and sedimentary sulfides and sulfates from the Tongling district are from Pan and Dong (1999); the δ^{34}S data of pyrite from typical Devonian-Carboniferous
SEDEX deposits are from the Carboniferous Red Dog deposit (Kelley et al. 2004) and the late Devonian Dajiangping deposit (Qiu et al. 2018).

Figure 12. Representative LA-ICP-MS time-resolved signals of the Xinqiao pyrite.

Figure 13. Genetic model for the stratabound ore at Xinqiao. (A) Schematic model for stratabound ore showing massive colloform ore (dark) and massive coarse-grained pyrite ore (yellow); (B) later magmatic-hydrothermal fluid (enriched in Co, Ni, and As) forms the massive coarse-grained pyrite (Py2) and fine-grained pyrite (Py3) with chalcopyrite, and overprints colloform pyrite (Py1); (C) early magmatic-hydrothermal fluid (enriched in base metals) migrate along Carboniferous-Devonian detachment surface and formed colloform pyrite (Py1).

Figure 14. Element concentration scatterplots for pyrite from stratabound, skarn and porphyry ore in MLYB (data source from Wang (2015), Zhang et al. (2017), Du et al. (2020), Han (2020); Xie et al. (2020a, b)). (A) Co versus Ni; (B) Co+Ni versus As+Sb+Pb+Ag+Bi; (C) Co versus As/Se; (D) Co/Cu versus Ag/Co. Field for Northern Chile from (Herazo et al. 2021)

Table Captions

Appendix Table 1A. In situ trace elements of pyrite from Xinqiao deposit.

Appendix Table 2A. In situ sulfur isotope data of pyrite (from regional sedimentary rock) and sulfides from Xinqiao deposit.
Figure 6