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Abstract 15 

Modified magnetite and hydrothermal apatite in banded iron-formations 16 

(BIFs) are ideal minerals for studying hydrothermal and metamorphic 17 

processes, and are applied to linking with high-grade Fe mineralisation and 18 

metamorphism in iron deposits hosted by BIFs. This study investigates the 19 

geochemical composition of modified magnetite and hydrothermal apatite, 20 

and in situ U–Pb geochronology on apatite from the Huogezhuang BIF-hosted 21 

Fe deposit in the northeastern China. The magnetite in metamorphosed BIF is 22 

modified, locally fragmented and forms mm- to μm-scale bands. The apatite is 23 

present surrounding or intergrowing with magnetite, and has corroded 24 

surfaces and contains irregularly impurities and fluid inclusions, indicating that 25 

it has been partly hydrothermal altered. Original element compositions (e.g., 26 

Fe, Al, Ti, K, Mg and Mn) of magnetite in BIFs have been modified during 27 

high-grade Fe mineralisation and retrogressive metamorphism with the 28 

temperature reduction and acids. The hydrothermally altered apatite has been 29 

relatively reduced in Ca, P, F, La, Ce, Nd, δCe, δEu, and total REEs contents 30 

compared to non-altered apatite. The magnetite and apatite in low-grade BIFs 31 

are poorer in FeOT than those of from the high-grade Fe ores, indicating that 32 

Fe is remobilised during the transition from BIFs to high-grade Fe ores. The 33 

magnetite and apatite in high-grade Fe ores are overgrown by greenschist-34 

facies minerals formed during retrograde metamorphism, suggesting that the 35 

high-grade Fe mineralisation may be related to retrogressive metamorphism. 36 

In situ U–Pb geochronology of apatite intergrown with magnetite and zircon 37 

LA–ICP–MS U–Pb dating at Huogezhuang deposit reveal that the BIF-hosted 38 

magnetite was altered and remobilised at ca. 1950–1900 Ma, and deposition 39 



of the BIF began during the Late Neoarchaean. The changes of elements in 40 

the modified magnetite, and different geochemical compositions of the altered 41 

and unaltered apatite confirm that the modified magnetite and hydrothermal 42 

apatite can be effective in tracing high-grade Fe mineralisation and 43 

retrogressive metamorphism in BIFs.  44 
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Introduction 47 

The banded iron-formations (BIFs)-hosted iron deposits are one of the 48 

important iron resources, with the quantity of both exploitation and resource 49 

reserve ranking as the first in the world (Zhang et al. 2014a, 2014b, 2021; Li 50 

et al. 2015a). The high-grade Fe ores in China only account for less than 2%, 51 

which is significantly different from other countries where the high-grade ores 52 

are mainly BIFs-type iron ores (Zhang et al. 2014a, 2014b, 2021; Li et al. 53 

2015a; 2016, 2019). Most of them are high-grade hematite deposits, with 54 

multistage fluids moved downward and leached the BIFs along deformation 55 

structures, including the Hamersley Province in Australia and the Quadrilátero 56 

Ferrífero region in Brazil (Hagemann et al., 2016; Sheppard et al. 2017a, 57 

2017b; Rasmussen and Muhling 2018; Li et al. 2019). However, the high-58 

grade Fe ores in China are related to magnetite deposits hosted by BIFs and 59 

have undergone retrograde metamorphism with fluid metasomatism (Li and 60 

Zhang 2013; Lan et al. 2019a, 2019b; Green et al. 2020). High-grade 61 

magnetite deposits hosted by BIFs have been mined mainly in the Anshan–62 

Benxi area and eastern Hebei province-Miyun Terrane of the North China 63 

(Wan et al. 2018; Wang et al. 2018). 64 

Magnetite and associated minerals (such as apatite, xenotime, and 65 

monazite intergrown with magnetite) are ideal provenance indicators for 66 

genetic studies of the Archaean to Early Palaeoproterozoic BIFs (Lan et al. 67 

2019a, 2019b). Compositions of these minerals have been successfully used 68 

for tracing the genesis of BIFs and enrichment mechanism of the BIFs-related 69 

high-grade Fe ores (e.g., James 1954; Gross 1980, 1983; Clout and 70 

Simonson 2005; Dai et al. 2014, 2017; Li et al. 2019; Aftabi et al. 2021; 71 



Pirajno and Yu 2021). Most BIFs have undergone retrograde metamorphism 72 

at various grades after diagenesis (Klein 1978; Klein and Beukes 1993; 73 

Mücke et al. 1996; Konhauser et al. 2009; Li and Zhang 2013; Lan et al. 74 

2019a, 2019b; Green et al. 2020). Magnetite (an abundant and widespread 75 

oxide mineral) and apatite (a common tracer mineral) in BIFs are ideal 76 

minerals to study the hydrothermal and metamorphic processes, and the 77 

genesis of high-grade iron ores of BIFs (Cook et al. 2016; Andersson et al. 78 

2019; Xing et al. 2020). The hydrothermal alteration and metamorphism can 79 

modify the structure of magnetite and alter the apatite in BIFs. Some trace 80 

elements (e.g., Mg, Mn, Al, Cr, V, and Ti) could partially exchange with Fe in 81 

magnetite (Skublov and Drugova 2003; Klein 2005; Zhang et al. 2011; 82 

Angerer et al. 2013, 2016; Deng et al. 2017; Lan et al. 2019a, 2019b; Green 83 

et al. 2020), and compositions of the apatite intergrowing or coexisting with 84 

magnetite would be partly or completely changed (Piccoli and Candela 2002; 85 

Andersson et al. 2019; Xing et al. 2020; Gillespie et al. 2021). Previous 86 

studies have found that the hydrothermally altered apatite has been relatively 87 

depleted in Sr from the BIFs in Pääkkö of Finland and Hamersley Basin of 88 

Australia (Alibert 2016; Azadbakht et al. 2018; Andersson et al. 2019; 89 

Wudarska et al. 2020).  90 

Some previous studies have confirmed that the high-grade Fe ores 91 

attributed to hypogene hydrothermal enrichment of BIFs (Li et al. 2019, 2020; 92 

Sun et al. 2020). The two contentious models proposed for the detailed 93 

process of high-grade Fe mineralisation by hydrothermal and metamorphic 94 

events in the North China are: (1) remobilisation and re-precipitation of iron, 95 

i.e., iron is dissolved and migrated by hydrothermal fluids and then 96 



precipitated under favourable conditions (Yang et al. 2019; Zhang et al. 2021); 97 

and (2) desiliconization and iron enrichment, i.e., silica is removed from the 98 

BIFs by fluids and the residual magnetite remains in situ to form high-grade 99 

Fe ores (Zhang et al. 2014a, 2014b, 2021; Li et al. 2015a). Furthermore, in 100 

situ U–Pb geochronology on monazite and xenotime intergrown with 101 

magnetite and hematite has been attempted to date the high-grade BIF-102 

hosted mineralisation (Li et al. 2015, 2016, 2019; Zi et al. 2015, 2018). 103 

Modified magnetite and hydrothermal apatite might offer insights into the 104 

intensity of chemical exchanges during the metamorphism of BIFs, and the 105 

metallogenic process of high-grade Fe ores (Urban et al. 1992; Duuring et al. 106 

2012, 2018; Bouzari et al. 2016; Adomako-Ansah et al. 2017; Soares et al. 107 

2017; Kumar et al. 2018; Chen et al. 2019; Lan et al. 2019a, 2019b; Green et 108 

al. 2020; Xing et al. 2020). However, how the original compositions in 109 

magnetite and apatite from BIFs have been modified in such process and its 110 

genetic link to high-grade Fe mineralisation remain unclear.  111 

The Huogezhuang BIF-hosted iron deposit is a large metamorphosed 112 

deposit with a resource of 180 Mt and average 26.7% Fe. The deposit is 113 

located in the Miyun Terrane of the northeastern North China Block (NCB; 114 

Figs. 1 and 2; Shi and Shi 2016; Fang et al. 2017). The type of the BIF 115 

deposit, source of the iron, age of the deposition and mineralisation are 116 

previous studied. (1) The protoliths of the Huogezhuang BIF are modified 117 

during granulite- to amphibolite-facies metamorphism and retrogressed at 118 

greenschist-facies (Shi and Shi 2016). (2) The mineralised zone includes low-119 

grade BIF and high-grade Fe ores (Fig. 2a; Shi and Shi 2016). (3) The 120 

magnetite in metamorphosed BIF is modified and locally fragmented, and the 121 



apatite is present surrounding or intergrowing with magnetite. These features 122 

make the Huogezhuang BIF-hosted Fe deposit an ideal target for studying the 123 

modification and remobilisation of iron, and hydrothermal alteration during the 124 

retrogressive metamorphism and high-grade Fe mineralisation. 125 

In this paper, we present mineralogy, laser-ablation inductively-coupled-126 

plasma mass-spectrometry (LA–ICP–MS) and electron probe micro-analysis 127 

(EPMA) of apatite and magnetite, and in situ apatite and zircon U–Pb 128 

geochronology from the Huogezhuang Fe deposit in the northeastern China. 129 

Systematic element compositions have been analysed in modified magnetite 130 

and hydrothermal apatite to reveal the high-grade Fe mineralisation and 131 

retrogressive metamorphism of the Huogezhuang BIF-hosted iron deposit. 132 

Apatite in situ U–Pb geochronology was used to date the hydrothermal and 133 

metamorphic events.  134 

Geological background 135 

The NCB associated with Archaean world-class metallogeny is a topic of 136 

widespread interest (Kusky et al. 2007, 2016; Zhai and Santosh 2011; Zhao 137 

and Zhai 2013; Zhai et al. 2005, 2015; Wang et al. 2015, 2016, 2018; Deng et 138 

al. 2017; Santosh et al. 2020). The continental-size region has been 139 

subdivided into the Western and Eastern zones separated by the ca. 1950–140 

1850 Ma Trans-North China Orogen (Zhao et al. 2001; Kusky and Li 2003; 141 

Zhao 2007; Santosh 2010; Santosh et al. 2013), and Proterozoic and 142 

Phanerozoic basins (Fig. 1). Both zones include Neoarchaean BIF 143 

mineralisation (Diwu et al. 2010, 2014; Zhai and Santosh 2011; Tang and 144 

Santosh 2018; Zhai et al. 2020; Duan et al. 2021). The NCB records a long 145 

and complex geological history spanning almost continuously from the 146 



Archaean to Cenozoic, including magmatism, sedimentation, metamorphism, 147 

and multiple deformation events extending into the Mesozoic (Bagas et al. 148 

2020). Zhai and Santosh (2011) proposed that the NCB was an amalgamation 149 

of the Archaean Qianhuai, Jiaoliao, Xuhuai, Xuchang, Alashan, Jining, and 150 

Ordos microblocks, which were strongly deformed metamorphosed up to 151 

granulite-facies. The proposed microblocks consist of orthogneiss, 152 

amphibolite and lenses of BIF-bearing metavolcanic and metasedimentary 153 

rocks (Zhai et al. 2015; Tang and Santosh 2018; Duan et al. 2021). The BIF-154 

hosted Fe deposits in the Eastern Zone are located at the Jianping, northern 155 

Liaoning, eastern Hebei and western Shandong provinces, and include the 156 

Anshan, Wuyang, and Miyun deposits (Fig. 1). The source of the iron is 157 

principally Neoarchaean to Early Palaeoproterozoic BIF (Fig. 1; e.g., Shen et 158 

al. 2011). 159 

The Miyun Terrane is located to the north of Beijing, where Archaean 160 

granulite- to amphibolite-facies orthogneiss and paragneiss crop out (Fig. 1; 161 

Wan et al. 2012; Shi and Shi 2016; Fang et al. 2017; Deng et al. 2018; 162 

Santosh et al. 2020). The orthogneiss includes monzogranite, granodiorite, 163 

trondhjemite, tonalite. The supracrustal rocks form NE-trending belts 164 

consisting of ultramafic to felsic metavolcanic rocks, and paragneiss (included 165 

metamorphosed BIF) intruded by Palaeoproterozoic mafic dykes (Shi and Shi 166 

2016; Fang et al. 2017; Tang et al. 2019; Santosh et al. 2020). The 167 

metamorphosed supracrustal rocks are assigned to the Miyun and Sihetang 168 

complexes (Shi and Shi 2016; Fang et al. 2017; Tang et al. 2019; Santosh et 169 

al. 2020). The Sihetang Complex is informally subdivided into the Yangpodi, 170 

Songyingzi, Xiwanzi and Shanshenmiao units (Shi and Shi 2016; Fang et al. 171 



2017), and the Miyun Complex is informable subdivided into the Shachang, 172 

Weiziyu, and Dacao units (Tang et al. 2019; Santosh et al. 2020). The Miyun 173 

Complex records multiple magmatic events, including Archaean to 174 

Palaeoproterozoic orthogneiss, supracrustal rocks, metapyroxenite and 175 

metagabbro, mafic dykes and porphyritic monzogranite, and Mesozoic 176 

monzogranite (Shi and Shi 2016; Fang et al. 2017; Tang et al. 2019; Santosh 177 

et al. 2020). The tectonic structures are complex and include multiple 178 

generations of folds and faults, including the Banchengzi, Qifengcha, 179 

Shicheng and Huolangyu faults. The faults trend northeastward and constitute 180 

the boundary of complexes (Fig. 1; Santosh et al. 2020). 181 

The Huogezhuang deposit is an example of a large, metamorphosed BIF-182 

hosted Fe deposit located in the Archaean Miyun Complex (Fig. 2; Zhang et 183 

al. 2012; Shi and Shi 2016; Fang et al. 2017). The host rocks are orthogneiss, 184 

garnet-bearing gneiss and BIF metamorphosed at granulite- to amphibolite-185 

facies and retrogressed at greenschist-facies (Shi and Shi 2016). The deposit 186 

is located at the intersection between E- and N-trending faults (Fig. 2). These 187 

structures are cross-cut by ENE-trending strike-slip faults (Fig. 2). The 188 

igneous rocks in the area are variably metamorphosed porphyritic 189 

monzogranite, gabbro and lamprophyre, and minor relatively later 190 

intermediate to felsic pegmatite veins and dykes that crosscut the deposit 191 

(Figs. 2 and 3a, b).  192 

The mineralised zone averages 26.7% Fe, including low-grade BIF 193 

(~20.0% Fe) and high-grade Fe ores (~50.0% Fe), consisting of three 194 

lensoidal and sigma-shaped orebodies with a thickness reaching ~10 m and a 195 

total length of around 10 km (Fig. 2a; Shi and Shi 2016). The occurrence of 196 



the high-grade Fe orebodies is roughly consistent with that of the BIFs, and 197 

there is a smooth transition from high-grade Fe ores to BIFs (Figs. 2 and 3c, 198 

e, f). The orebodies are bound by several normal faults (F1, F2, F3, F4) that 199 

dip 25°-45°SW and trend ~340° (Figs. 2 and 3a, b). The high-grade Fe ores 200 

are often close to the faults (Fig. 2). The orebodies are folded and locally form 201 

boudins (Figs. 2 and 3a, b). The Fe ores are mainly characterized by banded 202 

(BIFs) or massive (high-grade Fe ore) structure and granular texture (Fig. 3e, 203 

f). The mineralisation is hosted by interlayered granulite- to amphibolite-facies 204 

magnetite-bearing quartz mafic gneiss, and magnetite-bearing quartz 205 

amphibolite, which have retrogressed to greenschist-facies indicated by the 206 

presence of chlorite, epidote, allanite and titanite alteration (Fig. 4). The host 207 

sequence is interpreted as metamorphosed mafic volcanic and BIF units. The 208 

contact between the Fe-ore and garnet-bearing gneiss is rich in garnet and 209 

magnetite (Fig. 3c). The mineralisation and host rocks are altered by 210 

carbonate, chlorite, and titanite (Fig. 3c, d), and chlorite has also crystallised 211 

along the foliation in the wall rocks (Fig. 3b). The carbonate, chlorite and 212 

titanite alteration has significantly affected the orebodies and is indicative of a 213 

late greenschist-facies event. 214 

Samples and methods 215 

Samples 216 

Samples of BIF and high-grade Fe ore were collected from the Central 217 

ore block at the Huogezhuang deposit for analyses. A brief summary of the 218 

field occurrence and petrography of the samples is given below. The BIF 219 

sample is dark grey to black, fine-grained, has a gneissic texture, and consists 220 

magnetite (~55 vol.%), quartz (~25 vol.%), hornblende (~5 vol.%), 221 



clinopyroxene (~10 vol.%), apatite (~4 vol.%), and minor amounts of 222 

plagioclase, chlorite and epidote (up to 1 vol.%; Fig. 3e). The high-grade Fe 223 

ore sample is dark black, fine-grained, gneissic, and consists of magnetite 224 

(~65 vol.%), quartz (~15 vol.%), hornblende (~5 vol.%), clinopyroxene (~10 225 

vol.%), apatite (~4 vol.%), and minor amounts of plagioclase, chlorite, and 226 

epidote (up to 1 vol.%; Fig. 3f).  227 

The magnetite is fragmented (Fig. 4c). The apatite forms clusters or 228 

around and intergrowth with the magnetite and quartz, and contains irregularly 229 

minerals and fluid inclusions (Fig. 4g–i). Allanite, epidote and titanite have 230 

often crystallised around apatite grains (Fig. 4g–i). 231 

Backscattered electron and cathodoluminescence imaging 232 

Backscattered electron (BSE) and cathodoluminescence (CL) images 233 

were generated at the Beijing Research Institute of Uranium Geology using a 234 

Tescan GAIA3 scanning electron microscope (SEM) with a focused ion beam 235 

(FIB) and equipped with an Oxford Instruments CL detector. Polished 50 μm 236 

thick sections were carbon coated (15–20 nm) and analysed at 10 keV with a 237 

beam current of 0.5 to 5 nA. 238 

Electron probe micro-analysis and mapping 239 

Mineral chemical concentrations and mapping were analysed using a 240 

JEOL JXA-8230 EPMA at the Beijing Research Institute of Uranium Geology. 241 

The electron microprobe was optimized for non-destructive, high-sensitivity 242 

spot analyses and element mapping in order to reduce sample damage and 243 

preserve the samples for additional analyses. The elements Ca, P, F, Cl, La, 244 

Ce, Sm, Nd, Gd, Ho, Yb, and Y were chosen for analyses. The operation 245 

conditions included an acceleration voltage of 15 keV, a beam current of 200 246 



nA, a beam diameter of 5 μm, 300 s counting time on peak and 150 s on each 247 

background peak. High-sensitivity, low-resolution trace element mapping of 248 

one sample was carried out using a method of spot analyses, whereas 249 

counting times for Ca, P, F, Cl, La, Ce, Sm, Nd, Gd, Ho, Yb, and Y were 250 

reduced to 100 s on peak and 60 s off peak to decrease analysis time. The 251 

mapping consumed 12 hours of instrument time resulting in a small loss of 252 

sensitivity, based on 5 μm spot analyses within a 520 × 520 μm rectangle. 253 

Apatite in situ U–Pb geochronology and trace elemental analysis 254 

In situ LA–ICP–MS U–Pb geochronology of apatite was performed at the 255 

Nanjing Hongchuang Geological Exploration Technology Service Company. 256 

The Resolution SE model laser ablation system (Applied Spectra, USA) was 257 

equipped with a 193 nm ATL (ATLEX 300) excimer laser with spot sizes of 30 258 

μm at 5 Hz and a fluence of 2 J/cm2. The laser ablation system was coupled 259 

to an Agilent 7900 ICP–MS (Agilent, USA). Detailed tuning parameters were 260 

documented by Thompson et al. (2018). The Iolite software package was 261 

used for data reduction (Paton et al. 2010). Apatite Madagascar was used as 262 

a primary standard, and Apatite Durango was used as a secondary (McDowell 263 

et al. 2005). NIST 610 and 43Ca were used to calibrate the trace element 264 

concentrations as external and internal standard samples, respectively. 265 

Zircon U–Pb dating 266 

Zircons were separated from crushed rock samples using standard 267 

heavy-liquid and magnetic methods at the Beijing Geo-Analysis Company, 268 

Limited. The CL images were obtained prior to analysis, to reveal internal 269 

zonation and enhance analytical targeting. Zircon samples were selected for 270 

LA–ICP–MS zircon U–Pb dating at the Mineral Laser Micro-Analysis 271 



Laboratory, China University of Geosciences, Beijing. The zircon grains were 272 

ablated using a NewWave 193UC ArF excimer laser with a 35 μm diameter 273 

laser spot, 8 Hz laser repetition rate, and laser energy of 8.5 J/cm2. Isotopic 274 

intensities were measured using an Agilent 7900 quadrupole ICP–MS. The 275 

ablated material was carried in a high-purity helium gas into the ICP–MS. The 276 

integration time of Th is 10 ms, the integration time of U and 208Pb is 15 ms, 277 

the integration time of 207Pb is 30 ms, the integration time of 204Pb and 206Pb is 278 

20 ms, and the integration time of all other elements is 6 ms. The international 279 

glass standard NIST 610 was used as the primary standard to calculate most 280 

elemental concentrations and to correct for instrument drift. The U–Pb isotope 281 

fractionation effects were corrected using the zircon 91500 as an external 282 

standard (Wiedenbeck et al. 2004). The zircon GJ-1 standard was used for 283 

data quality assessment (Jackson et al. 2004). Mass bias, laser-induced mass 284 

fractionation and instrument drift were corrected using ICPMSDataCal 10.2 285 

(Liu et al. 2010). 286 

Results 287 

Magnetite and apatite texture 288 

The metamorphosed BIF is commonly banded, fine-grained, and consists 289 

of quartz, magnetite, clinopyroxene, hornblende, plagioclase, and minor 290 

amounts of biotite and apatite (Fig. 4). The magnetite is modified and locally 291 

fragmented, subhedral to anhedral measuring ~1.5 mm across, and forms 292 

mm- to μm-scale bands (Fig. 4c). Subhedral to anhedral, 0.3-0.03 mm wide 293 

apatite commonly forms clusters or is present surrounding or intergrowing 294 

with magnetite and quartz, which is indicative of a contemporary mineralising 295 

event (Fig. 4d, e). The apatite grains have corroded surfaces and contain 296 



irregularly impurities and fluid inclusions, and are overgrown by chlorite, 297 

allanite, epidote, and titanite (Fig. 4g–i), showing partly hydrothermal 298 

alteration features. 299 

Magnetite and apatite chemistry 300 

The geochemistry of the magnetite and apatite is listed in Supplementary 301 

Tables S1–S2. 302 

The magnetite grains from the BIF assay average 0.06 wt.% Na2O + K2O, 303 

average 1.28 wt.% Al2O3, average 0.81 wt.% TiO2, and average 90.29 wt.% 304 

FeOT (Supplementary Table S1; Fig. 5).  305 

The magnetite grains from the high-grade Fe ore assay average 0.04 wt.% 306 

Na2O + K2O, average 0.35 wt.% Al2O3, average 0.25 wt.% TiO2, and average 307 

92.98 wt.% FeOT (Supplementary Table S1; Fig. 5). 308 

The apatite grains in the samples of BIF and high-grade Fe ore have both 309 

been partly hydrothermal altered and are characterised on Cl images by dark-310 

grey zones corresponding to alteration and light-grey apatite zones 311 

representing non-altered areas (Figs. 6b, 7b and 8b). The altered apatite is 312 

relatively reduced in La, Ce, Nd and total REEs compared with the non-313 

altered apatite (Supplementary Tables S1–S2). 314 

Apatite in situ U–Pb geochronology 315 

The apatite grains from the high-grade Fe ore (Sample D01B6) are light 316 

brown, euhedral to subhedral, ranging up to 100 μm long with a length to 317 

width ratio of ~2:1. Some of the apatite grains are partly rounded and decayed 318 

(Fig. 9a). Thirteen analysed spots assay 0.1 to 6.6 ppm Th and 0.4 to 2.6 ppm 319 

U with Th/U ratios of 0.4–2.7 (Supplementary Table S3), and yielded a lower 320 



intercept age of 1902 ± 18 Ma with a 2σ error and MSWD value of 2.4 (Fig. 321 

9a).  322 

The apatite grains from the BIF sample (Sample D01B5) are light brown, 323 

euhedral to subhedral, range up to 200 μm long, and have a length to width 324 

ratio of 4:1. The apatite is partly rounded and decayed (Fig. 9b). Nineteen 325 

spots assay 0.2 to 5.3 ppm Th and 2.8 to 14.2 ppm U with a Th/U ratio of 326 

0.04–0.37 (Supplementary Table S3), and yielded a lower intercept age of 327 

1951 ± 29 Ma with a 2σ error and MSWD value of 2.5 (Fig. 9b). 328 

Zircon U–Pb dating 329 

Twenty-six zircons from the high-grade Fe ore (Sample D01B3) were U-330 

Pb dated (Supplementary Table S4). The zircons are colourless or brownish, 331 

with a maximum length of 150 μm and a length to width ratio of 3:1 to 1:1 (Fig. 332 

10a). Twenty-six analysed spots assay 7–234 ppm Th, and 14–599 ppm U 333 

with a Th/U value of 0.11–2.95. The analyses form three age groups within 334 

analytical error, with an upper intercept age of 2495 ± 64 Ma and a lower 335 

intercept age of 1849 ± 100 Ma (MSWD = 2.0; Fig. 10a). The first group 336 

yielded a weighted mean 207Pb/206Pb age of 2511 ± 47 Ma (MSWD = 2.1; Fig. 337 

10a). The second group yielded a weighted mean 207Pb/206Pb age of 2226 ± 338 

78 Ma (MSWD = 2.0; Fig. 10a). The third group yielded a weighted mean 339 

207Pb/206Pb age of 1855 ± 43 Ma (MSWD = 1.5; Fig. 10a).  340 

Twenty-eight zircons from the BIF sample (Sample D01B5) are 341 

colourless or brownish, with a maximum length of 120 μm and a length to 342 

width ratio of 2.5:1 to 1:1 (Fig. 10b). Twenty-eight analysed spots assay 57–343 

320 ppm Th and 94–944 ppm U with a Th/U value of 0.33–3.73. Twenty-six 344 

analyses yielded an upper intercept age of 2496 ± 76 Ma, a lower intercept 345 



age of 1969 ± 77 Ma (MSWD = 2.7), and a weighted mean 207Pb/206Pb age of 346 

2497 ± 16 Ma (MSWD = 2.8; Fig. 10b). Another two analyses yielded 347 

weighted mean 207Pb/206Pb ages of 2883 ± 19 and 2084 ± 34 Ma (Fig. 10b). 348 

The density probability plot in Fig. 10c highlights two major peaks at ca. 349 

2500 and 1900 Ma. 350 

Discussion 351 

Ages of BIFs deposition and remobilisation 352 

There have been many studies aiming to date BIF-hosted Fe deposits 353 

throughout the northeastern China and other terranes in the world using U–Pb 354 

zircon geochronological analyses (e.g., Klein 2005; Li et al. 2010, 2011, 2012, 355 

2014, 2015a, 2015b; Shen et al. 2011, 2015; Zhang et al. 2012; Wang et al. 356 

2014, 2015; Sheppard et al. 2017a, 2017b). Meso– to Neoarchean rocks of 357 

the Yilgarn Craton located in Western Australia consist of granite–greenstone 358 

lithologies and BIFs. The BIF metallogenic age is indirectly constrained to be 359 

ca. 2800–2600 Ma by the ages of syenogranitic to tonalitic orthogneiss and 360 

greenstones (e.g., Angerer et al. 2013; Haugaard et al. 2017; Soares et al. 361 

2017; Rasmussen and Muhling 2018; Perring et al. 2020). The BIF–hosted Fe 362 

mineralisation in the NCB is hosted by the Meso- to Neoarchaean gneisses 363 

and supracrustal rocks. Zhang et al. (2012) proposed that the age of the peak 364 

deformation affecting BIF horizons in the region was ca. 2560–2520 Ma with 365 

the earliest BIF-hosted Fe deposit being Palaeoarchaean in age and the 366 

youngest was early Palaeoproterozoic dated at ca. 2400 Ma. Most of the BIFs 367 

in eastern Hebei Province were deposited in the Late Neoarchaean peaking 368 

at ca. 2600–2500 Ma, and there is only one BIF horizon in the area dated at 369 

ca. 3400 Ma (e.g., Zhang et al. 2012; Wang et al. 2018). The age of the BIFs 370 



at the Anshan–Benxi area in the Liaoning Province is also Late Neoarchaean 371 

dated at ca. 2550–2500 Ma, and one dated at ca. 3100 Ma (e.g., Wan et al. 372 

2018; Wang et al. 2018). Wan et al. (2012) proposed that the BIF units in the 373 

eastern NCB were formed between ca. 2550 and 2500 Ma. These ages, 374 

however, only limit the upper and lower ages of the BIFs. The gneisses and 375 

supracrustal rocks were deformed, metamorphosed at granulite- to 376 

amphibolite-facies and retrograded to greenschist-facies during ca. 2500–377 

1800 Ma (Deng et al. 2017). These events might lead to the deformation, 378 

metamorphism, and remobilisation of the Fe deposits hosted by BIFs (Shi et 379 

al. 2019a). 380 

This study focuses on a rare example of BIF in the Miyun Terrane. Shi 381 

and Shi (2016), Fang et al. (2017) and Shi and Zhao (2017) documented that 382 

the BIF units in the Miyun Terrane yielded LA–ICP–MS U–Pb zircon dates of 383 

ca. 2550–2450 Ma, based on the dates obtained from BIF ore and the host 384 

rocks. The granite, gneiss, amphibolite, and hornblendite in the Miyun Terrane 385 

reveal emplacement ages from 2594 to 2496 Ma, and record metamorphic 386 

events at ca. 2550, 2440, 1950 and 1820 Ma (Shi and Zhao 2017). In this 387 

study, zircon U–Pb dating of the high-grade Fe ore and BIF sample from the 388 

Huogezhuang deposit yields dates of ca. 2500–1850 Ma (Fig. 10a–c). Apatite 389 

in situ U–Pb geochronology shows lower intercept ages of ca. 1950–1900 Ma 390 

(Fig. 9). The results indicate that the Huogezhuang BIF-hosted iron deposit 391 

formed ca. 2500 Ma, and was altered and remobilised during ca. 1950–1900 392 

Ma. In addition, Li et al. (2019) described the Gongchangling BIF-hosted Fe 393 

deposit in the Anshan-Benxi area of the northeastern NCB, and concluded 394 

that the high-grade iron ore in this deposit formed at ca. 1860 Ma based on in 395 



situ U–Pb geochronology of monazite and zircon. Sun et al. (2020) tested the 396 

garnet from the altered wall rock of high-grade iron ore in the Gongchangling 397 

BIF-hosted Fe deposit. These garnets yielded a Sm–Nd isochron age of 1888 398 

± 77 Ma, interpreted as the time of metamorphism in this area, which further 399 

confirmed that the remobilisation of high-grade iron ore in the deposit was 400 

later than the late Neoarchean. Li et al. (2020) reported an age of 1940 Ma 401 

represented the metamorphic-hydrothermal monazite/xenotime growth after 402 

deposition of the BIFs, based on in situ U-Pb geochronology of monazite and 403 

xenotime intergrown with hematite from the Yuanjiacun BIF-hosted Fe deposit 404 

in the central NCB. These ages are similar to the ca. 1950–1900 Ma date 405 

mentioned above, which are coincident with the major regional metamorphic 406 

events (1950–1850 Ma in the Miyun Terrane) and related to amalgamation of 407 

the Western and Eastern zones of the NCB along the Trans-North China 408 

orogen. Besides, the orebodies are bound by several normal faults and the 409 

high-grade Fe ores are often close to the faults in the Huogezhung area (Fig. 410 

2). The results may provide new clues to the age of BIFs and Fe 411 

mineralisation in eastern NCB. The close relationship in time and space 412 

between metamorphism of BIFs and host rocks in the Huogezhung area and 413 

remobilisation of the Huogezhung BIF iron ores indicates a genetic link. The 414 

metamorphism may induce a metamorphic-hydrothermal event and drive the 415 

remobilisation of BIF iron. It is possible to be a potential for prospecting for 416 

high-grade iron ores hosted by BIFs in the metamorphic region and faults. 417 

Modified magnetite and hydrothermal apatite in BIFs 418 

Magnetite is an ideal indicator of the provenance of BIF deposits (Lan et 419 

al. 2019a). However, many BIF-hosted Fe deposits in the NCB have 420 



undergone various degrees of metamorphism, recrystallisation, and 421 

hydrothermal alteration (Deng et al. 2017; Rasmussen and Muhling 2018; Lan 422 

et al. 2019b). It is still unclear whether the original magnetite compositions in 423 

BIFs were modified during secondary processes and, if so, to what extent 424 

have the compositions been modified (c.f. Lan et al. 2019a, 2019b). In this 425 

study, we completed mineralogical and EPMA trace elemental analyses of 426 

magnetite from the BIFs and high-grade Fe ores, northeastern NCB. The 427 

results were compared with those of unmetamorphosed BIFs worldwide to 428 

understand how the original compositions of magnetite in BIFs were modified 429 

during different metamorphic grades (Chung et al. 2015). The high-grade 430 

metamorphic and modified magnetite in the BIFs and high-grade Fe ores of 431 

the eastern NCB is locally fragmented or fractured, embayed, forms mm- to 432 

μm-scale bands (Fig. 4c), which is significantly different from the primary, fine-433 

grained, granular magnetite in unmetamorphosed BIFs (Chung et al. 2015). 434 

Furthermore, the modified magnetite in the high-grade Fe ores of the eastern 435 

NCB has elevated Fe and reduced Al, Ti, K, Mg and Mn compared with that in 436 

BIFs (Supplementary Table S1; Fig. 11). Such a change in the magnetite 437 

composition is largely controlled by silicate and retrograde greenschist-facies 438 

minerals that formed during retrogressive metamorphism with the decreasing 439 

temperature (Rasmussen and Muhling 2018). For example, our EPMA trace 440 

element map shows that the edges of magnetite grains in the high-grade Fe 441 

ore are in contact with retrograde greenschist-facies minerals such as epidote 442 

and allanite, and the rims are remarkably enriched in Al, Ti, K, and Mg 443 

compared to the cores (Fig. 5). The magnetite in the high-grade Fe ore is also 444 

enriched in Fe locally (Fig. 5a). All these features indicate that elemental 445 



diffusion and exchange have proceeded between magnetite and retrograde 446 

mineral assemblages during high-grade Fe mineralisation and retrogressive 447 

metamorphism. These metamorphic events have resulted in the extensive 448 

modification of the original compositions of magnetite in BIFs (c.f. Rasmussen 449 

and Muhling 2018; Lan et al. 2019a, 2019b). Other examples of the high-450 

grade mineralisation and retrogressive metamorphic magnetite in modified 451 

BIF-hosted iron deposits along the southern margin of the NCB have similar 452 

characteristics (Lan et al. 2019a, 2019b). These results remind us that it is 453 

necessary to calibrate the original experimental data of Al and Ti when 454 

determining the metamorphosed magnetite in the BIFs (Fig. 11). The 455 

compositions of these elements from magnetite in the BIFs were modified 456 

during remobilisation and retrogressive metamorphism. 457 

Apatite is relatively stable over a wide variety of geological processes 458 

including weathering, transport, and weak hydrothermal alteration (Cook et al. 459 

2016; Andersson et al. 2019; Xing et al. 2020; Cao et al. 2021). However, it 460 

has also been noted that acids can alter apatite and, as a result, the 461 

compositions would be partly or completely modified (Peng et al. 1997; Piccoli 462 

and Candela 2002; Andersson et al. 2019; Xing et al. 2020; Gillespie et al. 463 

2021). Apatite that has experienced significant hydrothermal alteration might 464 

offer insight into the intensity of chemical exchanges during alteration (e.g., 465 

Bouzari et al. 2016; Xing et al. 2020; Yu et al. 2021). In this study, altered 466 

zones in apatite are reduced in Ca, P, F, La, Ce, Nd, δCe, δEu, and total 467 

REEs contents compared with the non-altered zones in apatite (Figs. 12 and 468 

13). The altered zones display sharp compositional boundaries with the non-469 

altered zones (Figs. 6, 7 and 8). They also have pervasive micro-porosities 470 



and fluid inclusions (Fig. 4g–i). Such features are consistent with a fluid-471 

driven, coupled dissolution-reprecipitation process (Harlov et al. 2005; Li and 472 

Zhou 2015; Zeng et al. 2016; Azadbakht et al. 2018). During dissolution and 473 

reprecipitation, elements can be redistributed from the original apatite to 474 

newly crystallised apatite through hydrothermal fluids, and a series of complex 475 

chemical exchanges take place between apatite and the reactive fluid 476 

(Prowatke and Klemme 2006; Putnis 2009; Andersson et al. 2019). As a 477 

result, many trace elements such as Ca, P, F, La, Ce, Nd, and total REEs are 478 

leached out from the altered apatite zones (Figs. 12 and 13). This is 479 

consistent with the coexistence of apatite and greenschist-facies minerals that 480 

formed during retrograde metamorphism (e.g., epidote, allanite and titanite; 481 

Figs. 4g–i, 6a, 7a and 8a). Epidote, allanite and titanite can form in retrograde 482 

metamorphism when the REEs are released during fluid-driven alteration 483 

immediately reprecipitating into new zones (Harlov and Förster 2003; Harlov 484 

2015; Andersson et al. 2019). The different geochemical compositions of the 485 

altered and non-altered apatite zones confirm that the Huogezhuang BIF-486 

hosted iron deposit has undergone extensive metasomatism, during which 487 

some of the apatite grains have been hydrothermally altered.  488 

Magnetite-apatite assemblage in BIFs and insights into high-grade Fe 489 

mineralisation during retrogressive metamorphism 490 

Many authors have discussed source of iron and process of high-grade 491 

Fe mineralisation in BIFs based on studies involving trace element and 492 

isotope geochemistry, statistics, and thermodynamics (Alibo and Nozaki 1999; 493 

Li et al. 2008; Shi et al. 2019a, 2019b; Yang et al. 2019). The common 494 

proposed source of iron is from continents, sites of submarine hydrothermal 495 



activities, the mixture of seawater and high-temperature hydrothermal fluids, 496 

and submarine hydrothermal leaching of the oceanic crust, and most of the 497 

magnetite (being the mixed ferrous and ferric Fe3O4) is formed by the 498 

replacement of siderite (FeCO3) and other Fe-rich minerals after burial (e.g., 499 

Ghosh and Baidya 2017; Haugaard et al. 2017; Rasmussen and Muhling 500 

2018; Tong et al. 2021). Two controversial models have been proposed for 501 

the process of high-grade Fe mineralisation induced by hydrothermal and 502 

metamorphic events: (1) iron is dissolved and migrated by hydrothermal 503 

fluids, and then precipitated under favourable conditions (Yang et al. 2019; 504 

Zhang et al. 2021); and (2) silica is removed from the BIFs by fluids, and the 505 

residual magnetite remains in situ to form high-grade Fe ores (Zhang et al. 506 

2014a, 2014b, 2021; Li et al. 2015a). An analogy of the deformation of the 507 

BIFs in the NCB may help explain whether what is seen in this area is similar 508 

to the BIFs in Western Australia. Egglseder et al. (2017) combined micro-509 

tectonic, field geology and 3D implicit modelling techniques to establish a link 510 

between deformation structures at various scales from the BIF-hosted high-511 

grade iron deposits of the Hamersley Province in Australia, and concluded 512 

that the deformation not only formed suitable fluid channels, but that folding 513 

and shearing also resulted in significant synkinematic removal of gangue 514 

minerals. Angerer and Hagemann (2010) proposed that a late-stage brittle 515 

segmentation of BIF and reactivation of faults due to deformation of the 516 

Koolyanobbing greenstone belt in Western Australia. At the alteration stage, 517 

the silicon is leached out from the iron formation, a thin layer of residues of 518 

iron oxides and carbonate rocks have been hydrothermally altered (Egglseder 519 

et al. 2017). The hydrothermal alteration zones record the transformation of 520 



low-grade BIF to high-grade iron ore (Thorne et al. 2014; Perring et al. 2020). 521 

Li et al. (2019, 2020) and Sun et al. (2020) further proposed that faults in the 522 

BIFs acted as channels through which silica undersaturated alkaline meteoric 523 

fluids moved downward and leached the BIFs during tectonic extension.  524 

Experimental studies by Hou et al. (2018, 2020) on the immiscible 525 

hydrous Fe–Ca–P melts provide new evidence for the generation of iron 526 

oxide-apatite (IOA) mineralisation. They proposed the possibility that iron-527 

magma was either formed by liquid immiscibility or magnetite-bubble flotation. 528 

Crystallizing magnetite and apatite grains are preferentially wetted by 529 

immiscible Fe-rich melts, and complete crystallisation of a crystal Fe-rich melt 530 

mush leads to the formation of IOA mineralisation (Hou et al. 2018, 2020). 531 

The intergrowth of the magnetite-apatite assemblage is widely developed at 532 

the Huogezhuang BIF deposit, and may provide new clues to the initial 533 

hydrothermal genesis of the BIFs. As the precursor phase to the BIF minerals, 534 

ferrihydrite has acted as a carrier of Fe, Si and P elements to the seafloor 535 

(Alibert 2016). The material source of magnetite and apatite would be from 536 

Fe-rich silicate melts, and then the hydrothermal Fe + Si + P fluids mixed with 537 

seawater to crystallize the magnetite and apatite (Figs. 14 and 15a). The 538 

systematically analyses show the magnetite and apatite in BIFs are relatively 539 

richer in Na2O + K2O and Al2O3, and poorer in FeOT + CaO + P2O5 than those 540 

of from the high-grade Fe ores (Supplementary Table S1; Fig. 14). The 541 

contents of SiO2 in magnetite + apatite from BIFs and high-grade Fe ores are 542 

almost the same. These geochemical features may indicate remobilisation of 543 

Fe and immobility of silicon during the transition from BIFs to high-grade Fe 544 

ores. In addition, the magnetite and apatite in BIFs and high-grade Fe ores 545 



are overgrown by greenschist-facies minerals formed during retrograde 546 

metamorphism (e.g., chlorite, epidote, allanite and titanite; Figs. 4g–i, 5a, 6a, 547 

7a and 8a), suggesting that the high-grade Fe mineralisation may be related 548 

to retrogressive metamorphism. This is consistent with the later regional 549 

metamorphic event (ca. 1950–1850 Ma) in the Miyun Terrane of the eastern 550 

NCB. The retrograde metamorphism may induce and drive the remobilisation 551 

of iron in BIFs, making it high-grade Fe ores. 552 

Therefore, we propose that the high-grade Fe ores represent products 553 

after leaching of iron during breakdown of the BIFs, the reprecipitation of iron 554 

is mainly responsible for the remobilisation and formation of magnetite during 555 

retrogressive metamorphism. Meanwhile, the remnant Na2O + K2O + Al2O3 556 

with the REEs likely formed accessory silicate minerals (such as chlorite, 557 

epidote, allanite and titanite) within the BIFs and wall rocks (Fig. 15b). 558 

Implications 559 

The chemical compositions recorded in modified magnetite and 560 

hydrothermal apatite from BIFs provide essential insights into the supernormal 561 

enrichment of iron during retrogressive metamorphism of BIFs. Compared 562 

with low-grade BIFs, the modified magnetite in high-grade Fe ore has an 563 

increase in Fe, and decreases in Al, Ti, K, Mg, and Mn, which are controlled 564 

by breakdown of BIFs, and silicate and retrograde greenschist-facies minerals 565 

formed during retrogressive metamorphism with the decreasing temperature 566 

and acids. Retrograde metamorphism drives the remobilisation of iron in BIFs, 567 

and the high-grade iron ores are formed by leaching of iron during breakdown 568 

of BIFs. Diffusion and exchanges of elements between modified magnetite 569 

and retrograde mineral assemblages effectively demonstrate the high-grade 570 



Fe mineralisation during retrogressive metamorphism, during which some of 571 

the apatite grains have been hydrothermally altered. REEs are leached out 572 

from the hydrothermal apatite and enter the retrograde greenschist-facies 573 

minerals during retrogressive metamorphism. Furthermore, in situ U–Pb 574 

geochronology on apatite intergrown with magnetite has also dated the high-575 

grade BIF-hosted mineralisation. Modified magnetite and hydrothermal apatite 576 

in BIFs are ideal indicator minerals to study the enrichment mechanism from 577 

low-grade BIFs to high-grade Fe ores during retrograde metamorphism, which 578 

enables us to better understand the remobilisation of iron, and metamorphism 579 

of iron deposits hosted by BIFs. 580 
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Figure captions 1073 

Figure 1. (a) Geological and tectonic framework showing the BIF-hosted Fe 1074 

deposits in the North China Block (modified after Zhao et al. 2001; Zhao 2007; 1075 

Zhang et al. 2012; Wang et al. 2018; Deng et al. 2018, 2020). Abbreviations 1076 

of complexes: AS = Anshan; CD = Chengde; DF = Dengfeng; EH = Eastern 1077 

Hebei; ES = Eastern Shandong; FP = Fuping; GY = Guyang; HA = Huai’an; 1078 

HL = Helanshan; HS = Hengshan; JN = Jining; JP = Jianping; LL = Lvliang; 1079 

MY = Miyun; NH = Northern Hebei; NL = Northern Liaoning; QL = Qianlishan; 1080 

SJ = Southern Jilin; SL = Southern Liaoning; TH = Taihua; WD = Wulashan–1081 

Daqingshan; WL = Western Liaoning; WS = Western Shandong; WY = 1082 

Wuyang; WT = Wutai; XH = Xuanhua; ZH = Zanhuang; ZT = Zhongtiao. 1083 

Abbreviations of blocks: ALS = Alashan; JL = Jiaoliao; JN = Jining; OR = 1084 

Ordos; QH = Qianhuai; XC = Xuchang; XH = Xuhuai. (b) Geological map of 1085 

the Miyun area (modified after Beijing Bureau of Geology and Mineral 1086 

resources 1991).  1087 

Figure 2. Geological map (a) and section (b) of the Huogezhuang Fe deposit 1088 

(modified after Beijing Bureau of Geology and Mineral resources 1991). 1089 

Figure 3. Geological sections, field photographs and hand specimens of the 1090 

ore samples and wall rock from the Huogezhuang BIF-hosted Fe deposit. (a-1091 

b) Geological sections showing the ore body with porphyritic granite, chlorite-1092 

alteration, and faults. (c) Garnet and calcite distributed in the contact of ore 1093 

body and garnet gneiss. (d) Calcite vein from the high-grade Fe ore with 1094 

chlorite-alteration. (e) BIF. (f) High-grade Fe ore.  1095 

Figure 4. Representative microphotographs under cross-polarized light and 1096 

backscattered electron images of the ore samples from the Huogezhuang 1097 



BIF-hosted Fe deposit. (a) Magnetite-rich and quartz layers with granulite- to 1098 

amphibolite-facies (clinopyroxene and hornblende) and greenschist-facies 1099 

minerals (chlorite and epidote). (b) Magnetite, quartz, apatite, and epidote. (c) 1100 

Magnetite showing destruction texture. (d-e) Magnetite and coexisting apatite. 1101 

(f-i) Apatite showing partly altered zones with greenschist-facies minerals 1102 

(epidote, allanite and titanite). Mineral abbreviations: Mt = magnetite; Ap = 1103 

apatite; Qtz = quartz; Cpx = clinopyroxene; Hbl = hornblende; Pl = plagioclase; 1104 

Chl = chlorite; Ep = epidote; Aln = allanite; Ttn = titanite. 1105 

Figure 5. Backscattered electron images (a-b) and distributions of selected 1106 

elements (c-j) in the magnetite grain from the high-grade Fe ore. Mineral 1107 

abbreviations: Mt = magnetite; Ap = apatite; Qtz = quartz; Ep = epidote. 1108 

Figure 6. Backscattered electron images (a), CL images (b) and distributions 1109 

of selected elements (c-i) in the apatite grain from the high-grade Fe ore. 1110 

Mineral abbreviations: Mt = magnetite; Ap = apatite; Ep = epidote; Aln = 1111 

allanite. 1112 

Figure 7. Backscattered electron images (a), CL images (b) and distributions 1113 

of selected elements (c-i) in the apatite grain from the BIF. Mineral 1114 

abbreviations: Mt = magnetite; Ap = apatite; Ep = epidote; Ttn = titanite. 1115 

Figure 8. Backscattered electron images (a), CL images (b) and distributions 1116 

of selected elements (c-i) in the apatite grain from the BIF. Mineral 1117 

abbreviations: Mt = magnetite; Ap = apatite; Ep = epidote; Ttn = titanite. 1118 

Figure 9. Representative backscattered electron images and U–Pb concordia 1119 

plots for apatite in situ from the Huogezhuang BIF-hosted Fe deposit. (a) 1120 

High-grade Fe ore (Sample D01DB6). (b) BIF (Sample D01DB5). 1121 



Figure 10. Geochronology of high-grade Fe ore and BIF from the 1122 

Huogezhuang BIF-hosted Fe deposit showing: (a) U–Pb concordia plot for 1123 

high-grade Fe ore (Sample D01B3) and representative CL images of zircons; 1124 

(b) U–Pb concordia plot for BIF (Sample D01B5) and representative CL 1125 

images of zircons; and (c) combined probability density plot for samples 1126 

D01B3 and D01B5. 1127 

Figure 11. (a) Normalised multi-elemental patterns of magnetite from the 1128 

Huogezhuang BIFs. Normalization values are the average composition of 1129 

magnetite from the unmetamorphosed BIF in the Sokoman Iron Formation 1130 

(Chung et al. 2015; Ti = 31 ppm, Al = 128 ppm, Mn = 291 ppm, Mg = 153 1131 

ppm, Ca = 84 ppm, V = 23 ppm, Cr = 6 ppm, Co = 14 ppm, Cu = 1 ppm, Zn = 1132 

10 ppm). (b) Ti/100–Al/30–Mg + Mn diagram (after Nadoll et al. 2012, 2014). 1133 

(c-d) Ti/100 + V/10 vs. Al/30 + Mn diagrams (after Nadoll et al. 2012, 2014).  1134 

Figure 12. (a) Chondrite-normalised REE patterns of the apatite in the 1135 

Huogezhuang BIF-hosted Fe deposit. Chondrite normalization values are 1136 

after Sun and McDonough 1989. (b) Total REE contents in altered and 1137 

unaltered zones of the apatite. (c) δCe and δEu values in altered and 1138 

unaltered zones of the apatite. (d) Concentrations of selected elements in 1139 

altered and unaltered zones of the apatite.  1140 

Figure 13. Concentrations of selected elements in altered and unaltered 1141 

zones of the apatite in the Huogezhuang BIF-hosted Fe deposit. 1142 

Figure 14. Geochemical diagrams. (a) TiO2 + FeOT + MnO + MgO + CaO + 1143 

P2O5–Na2O + K2O + Al2O3–SiO2 diagram (after Hou et al. 2017, 2018). (b) 1144 

Al2O3 vs. Na2O + K2O diagram (after Hou et al. 2017, 2018).  1145 



Figure 15. Schematic model for BIF-hosted high-grade magnetite 1146 

mineralisation and modification of the Huogezhuang Fe deposit (after Shi et 1147 

al. 2019a; Li et al. 2019). (a) BIF deposition. (b) BIF deposition at ca. 2500-1148 

1900 Ma, and high-grade magnetite mineralisation during retrogressive 1149 

metamorphism, modification, and alteration of BIFs at < 1900 Ma. 1150 



Supplementary table captions 1151 

Supplementary Table S1. Mineral chemical concentrations under electron 1152 

probe micro-analysis of the magnetite and apatite from the BIF and high-1153 

grade Fe ore. 1154 

Supplementary Table S2. LA–ICP–MS trace elemental analysis of the 1155 

apatite in situ. 1156 

Supplementary Table S3. LA–ICP–MS apatite in situ U–Pb dating results. 1157 

Supplementary Table S4. LA–ICP–MS zircon U–Pb dating results from the 1158 

BIF and high-grade Fe ore. 1159 
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