Discrete Late Jurassic Sn Mineralizing Events in the Xianghualing Ore District, South China: Constraints from Cassiterite and Garnet U-Pb Geochronology

Kexin Wang¹, Degao Zhai¹*, Anthony E. Williams-Jones², Dengfeng Li³, Jiajun Liu¹

¹State Key Laboratory of Geological Processes and Mineral Resources, and School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China

²Department of Earth and Planetary Sciences, McGill University, Quebec, H3A 0E8, Canada

³School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China

*E-mail: dgzhai@cugb.edu.cn

Revised submission to: American Mineralogist

With 43 pages, 13 Figures and 2 Tables

24-May-2022
Numerous skarn-type Sn deposits have been identified in the Nanling Range (South China), of which the Shizhuyuan W-Sn-Bi-Mo, Xianghualing Sn, Jinchuantang Sn-Bi, and Hehuaping Sn deposits are the largest. The Xianghualing deposit, which is the focus of this study, hosts a resource of 0.17 Mt Sn grading 0.93-1.39 wt% SnO₂. Whether the distal skarn-type mineralization and the cassiterite-sulfide vein-type orebody in the Xianghualing district are genetically related to the Laiziling granitic pluton, which produced the proximal skarn-type Sn mineralization, however, is still unknown. The Xianghualing Sn mineralization occurs exclusively as cassiterite and has been subdivided into four ore-types: (1) lenticular proximal skarn ore (Cst I) containing the mineral assemblage cassiterite-pyrrhotite-chalcopyrite-actinolite-wollastonite; (2) layered distal skarn ore (Cst II) containing the mineral assemblage cassiterite-pyrrhotite-chalcopyrite-actinolite; (3) vein cassiterite-sulfide ore (Cst III) distal from the skarn and associated granite containing the mineral assemblage cassiterite-arsenopyrite-pyrrhotite-muscovite-fluorite; and (4) veinlet Sn-Pb-Zn ore (Cst IV) distal from the skarn and associated granite containing the mineral assemblage cassiterite-galena-sphalerite-topaz-quartz. Here, we report the results of in situ laser ablation inductively coupled plasma mass spectrometric (LA-ICP-MS) U-Pb age determinations for garnet from the Xianghualing skarn and the above four types of cassiterite. Our age determinations indicate that there were two independent magmatic-hydrothermal events at ~160 and 156~150 Ma, both of which led to Sn mineralization. The first Sn mineralization event at ~160 Ma (Cst IV U-Pb ages of
INTRODUCTION

Metal zonation at the deposit and ore district scale is a characteristic of skarn-dominated metallogenic provinces and is the result of processes ranging from those that lead to the development of skarn orebodies proximal to the causative granite to those forming distal skarns and hydrothermal vein-type orebodies (Newberry et al., 1991; Meinert, 2005; Williams-Jones et al., 2010; Mao et al., 2013; Chang et al., 2019). This zonation provides a potentially important tool for use in the exploration for skarn-hosted mineral deposits (Meinert et al., 1997; Wu S et al., 2018). However,
because the distal skarn and vein-type orebodies commonly lack an obvious spatial
association with granitic plutons and their distribution is controlled mostly by
stratigraphy and faults, the genetic relationships between these orebodies and the
causative plutons are difficult to determine (Newberry et al., 1991; Baker et al., 2004;
Wu S et al., 2018). This difficulty is compounded by the fact that the ages of distal
skarns and their associated mineralization are rarely known to the required degree of
accuracy (Chiaradia et al., 2009, 2013; Zhai et al., 2014, 2019; Zhao et al., 2021).

Skarns are among the most common hosts for economic mineralization in China
and contribute ~87% of the Sn resources of the country (~8.9 Mt) (Chang et al.,
2019). About 60% of these resources are located in the Nanling Range, South China
(Chen et al., 2013). The Shizhuyuan and the Xianghualing are the two largest skarn
tin deposits in the Nanling Range, and are considered to be genetically related to
proximal Mesozoic granites (Yuan et al., 2007, 2008, 2019; Mao et al., 2011; Wu S et
al., 2018; Zhao et al., 2018). Significantly, in the context of the zonation referred to
above, recent exploration has identified a series of Sn-Pb-Zn-Ag veins that are distal
to these Sn skarns and their associated granitic plutons (Zhong et al., 2014; Wu S et
al., 2018; Zhao et al., 2018; Chang et al., 2019). In the case of the Shizhuyuan district,
Wu S et al. (2018) and Zhao et al. (2018) used geochronological, fluid inclusion, and
stable isotope data to conclude that there is a genetic relationship between the distal
Pb-Zn-Ag veins and the skarn W-Sn-Mo-Bi mineralization that is proximal to its
 genetically-related granitic pluton. The possible relationship between the distal Sn-Pb-
Zn veins and the skarn type Sn mineralization in the Xianghualing district, however,
has not been investigated. This can be achieved through a combination of careful field investigation and precise radiometric age determinations aimed at determining the timing of ore mineral precipitation (Mathur et al., 2005; Chiaradia et al., 2009, 2013; Sillitoe, 2010; Zhai et al., 2017; Zhao et al., 2018).

In situ LA-ICP-MS dating of skarn minerals, such as garnet, can constrain the age of skarn formation directly (Deng et al., 2017; Li D et al., 2018, 2019; Marfin et al., 2020; Hong et al., 2021, 2022). This is because garnet may contain significant concentrations of U and has a high closure temperature (> 800°C; Mezger et al., 1989), especially the grossular-andradite series (Ca$_3$Al$_2$Si$_3$O$_{12}$-Ca$_3$Fe$_2$Si$_3$O$_{12}$) (DeWolf et al., 1996; Yudintsev et al., 2002). In the case of tin skarns, the mineralization can be dated directly because much of the tin occurs as cassiterite, which can incorporate significant U and has a high closure temperature (for a 1 μm diameter crystal this temperature can reach 560°C and for a 1mm diameter crystal it can reach 860°C, Zhang et al., 2011). Consequently, a number of studies have used garnet and cassiterite to investigate the geochronology of skarn-related Sn mineralization, including several applied to the deposits of the Nanling Range (Zhang et al., 2015; Li et al., 2019; Xiong et al., 2020).

In this contribution, we report the results of a detailed geochronological study using in situ LA-ICP-MS U-Pb radiometric methods applied to cassiterite and garnet in the Xianghualing skarn, cassiterite in Sn-Pb-Zn veinlets distal to the skarn, and zircon in the granite proximal to the skarn. These results show that the Xianghualing Sn mineralization was the product of two temporally separate late Jurassic mineralizing
events, which has helped us to develop a new genetic model for Sn mineralization in the Xianghualing district.

REGIONAL GEOLOGY SETTING

The Nanling Range (longitude 110°E-116°E, latitude 24°N-27°N) is located in the central part of the South China Block, which is composed of the Yangtze Block and the Cathaysia Block (Fig. 1A; Chen and Jahn, 1998; Li et al., 2002, 2008; Chen et al., 2013; Wang et al., 2013). The regional stratigraphy comprises a basement of Sinian to Ordovician clastic sedimentary rocks, which were overlain by Devonian to Triassic limestone, marlstone, and clastic sedimentary rocks, and, in turn, by Jurassic to Cretaceous clastic sedimentary rocks, volcanic rocks and red beds (Chen et al., 2013). The tectonic framework for the region is provided by three fault systems, which are mainly NE-, NNE-, and EW-trending. Among them, the dominant system is the NE-trending Chaling-Linwu system, which controlled the spatial distribution of granitic intrusions and their associated W-Sn deposits (Zhou and Li, 2000; Zhou et al., 2006; Hu and Zhou, 2012; Yuan et al., 2019). Mesozoic granitic intrusions are common in the region, especially Jurassic biotite and two-mica granites (Fig. 1B; Chen et al., 2013; Zhao et al., 2018; Yuan et al., 2019). The Sn-W mineralization is mainly related to the Jurassic granitic plutons, e.g., the Qianlishan, Qitianling, Huangshaping and Laiziling plutons, which are highly-evolved, Li- and F-bearing A-type granites (Shu et al., 2011; Sun et al., 2012; Li H et al., 2018; Xiao et al., 2019). Ore deposits in the region include Sn and W-Sn skarns (e.g., Shizhuyuan W-Sn-Mo-Bi, Wu S et al., 2018,
Xianghualing Sn-Pb-Zn, Yuan et al., 2008), Sn and W-Sn greisens (e.g., Da’ao Sn-W, Fu et al., 2007; Tiantangshan Sn, Jia et al., 2018), W-Sn quartz veins (e.g., Maoping W-Sn, Chen et al., 2019, Piaotang W-Sn, Zhang et al., 2017b), and porphyry Sn deposits (e.g., Jiepailing Sn-Be-F, Yuan et al., 2015; Yanbei Sn, Li Q et al., 2018). The tin mineralization is restricted to the western part of the region, where it occurs mainly in skarns hosted by carbonate rocks and to a much lesser extent in cassiterite-sulfide veins hosted by siliciclastic rocks (Yuan et al., 2019). Tin and tungsten deposits in the Nanling region vary in age from Silurian to Cretaceous, but most were emplaced in the late Jurassic (i.e., between 160 and 150 Ma; Hua et al., 2005; Mao et al., 2013).

GEOLOGY OF THE XIANGHUALING DEPOSIT

The Xianghualing ore district is located on the northern margin of the central part of the Nanling Range (Fig. 1C), which coincides with the intersection of the NE-trending Chenzhou-Linwu fault zone and a NS-trending fault zone. A conspicuous feature of the district is a tectono-magmatic dome that is composed mainly of Paleozoic rocks. The core of the dome is a Cambrian metamorphic rock series composed of sandstone and slate that were metamorphosed to greenschist facies. The flanks of the dome are composed of conglomerate, sandstone, siltstone and shale of the middle Devonian Tiaomajian formation (D2t), limestone and dolomitic limestone of the Qiziqiao formation (D2q), dolomitic limestone and sandstone of the upper Devonian Shetianqiao formation (D3s), and Carboniferous carbonate rocks, all of which form a
sedimentary package that is separated from the underlying basement by an angular unconformity (Figs. 1C and 2). The strata hosting the ores are mainly Devonian limestone and sandstone and Cambrian sandstone (Yuan et al., 2008; Jiang et al., 2018; Xie et al., 2018). The main ore-controlling faults are a group of tensional-shear conjugate normal faults, i.e., the NE-trending Xijianchong fault (F1) and Nanfengjiao fault (F101), the NW-trending Tieshaping fault (F2) and the Zimushan fault (F3) (Fig. 1C). The igneous rocks exposed in the general vicinity of the Xianghualing deposit are the Laiziling, Jianfengling, Tongtianmiao and Yaoshanli granites, which are of Jurassic age (Fig. 1C). A number of Sn-Pb-Zn ore deposits occur in or adjacent the Laiziling and Jianfengling granites (Fig. 1C).

The Xianghualing tin deposit has a close spatial, temporal and genetic relationship with the Laiziling biotite granite (Fig. 2; Yuan et al., 2007; Wu J et al., 2018). This granite is characterized by multiple intrusions and has been subdivided into four vertical zones (from bottom to top), i.e., a biotite granite zone, an albite granite zone, a greisen zone, and a pegmatite zone (Fig. 3A). The alteration and tin mineralization are zonally distributed from the pluton to the surrounding rocks, i.e., the dominant alteration assemblages are garnet-diopside-actinolite-vesuvianite, chlorite-carbonate and marble, and the corresponding metal associations are Sn (W), Sn-Pb-Zn, and Pb-Zn (Fig. 3B). Two skarn-types are observed in the Xianghualing tin district. The first is a proximal skarn, which occurs as layers, lenses and veins in the contact zone between granite and the Devonian wall rock, i.e., sandstone of the Tiaomajian formation (D2t) and carbonate of the Qiziqiao formation (D2q) (Fig. 2, 3B, 4A, 5A).
The principal skarn minerals are garnet, diopside, vesuvianite, tremolite, and actinolite (Fig 5B, C). The second type is the distal skarn, which is layer-like and occurs along the unconformity between sandstone of the Cambrian (Є) and sandstone of the Tiaomajian formation (D2t) (Fig. 4B, 5F); the main skarn mineral is actinolite (Fig. 5F).

The Xianghualing tin deposit is composed of three ore blocks that are distributed along and straddle the NE-trending Xijianchong fault (F1) (Fig. 2A), namely, the Xinfeng, Taiping and Tangguanpu ore blocks. Based on field observations, crosscutting relations and mineral assemblages, the Xianghualing mineralization has been subdivided into four stages (Fig. 6), namely prograde skarn (I), retrograde skarn (II), quartz-cassiterite-sulfide (III) and carbonate (IV) stages. In contrast to many other skarn-type deposits (Mei et al., 2014; Zhai et al., 2014), the oxide stage is poorly developed at Xianghualing, and only a small proportion of magnetite is present. Stage II and Stage III are the main Sn mineralization stages. Four types of Sn mineralization have been recognized: proximal skarns, distal skarns, cassiterite-sulfide veins, and distal Sn-Pb-Zn veinlets. Proximal skarn orebodies occur as lenticular structures varying in length from 100 to 3000 m and in thicknesses from 0.9 to 18.9 m (Fig. 3B, 4A, 5A, B). Their Sn grades vary between 0.02 and 3.97 wt% (Zhong et al., 2014) and the associated mineral assemblage is actinolite-biotite-cassiterite-pyrrhotite-chalcopyrite (Fig. 5C). The distal skarn orebodies are layered (Fig. 4B, 5F), vary in length from 1400 to 1700 m and range in thicknesses from 0.35 to 4.08 m. Their Sn grades are between 0.1 and 4.6 wt% (Zhong et al., 2014) and represent a rock
containing the mineral assemblage actinolite-tremolite-phlogopite-biotite-quartz-
cassiterite-pyrite-pyrrhotite-chalcopyrite (Fig. 5F). The cassiterite-sulfide vein
orebodies comprise the minerals cassiterite, arsenopyrite and pyrrhotite and are both
parallel to and cross-cut bedding structures, and are controlled by faults, such as F1
(Fig. 4A). They vary in length from 1100 to 2100 m and in thicknesses from 0.4 to
14.1 m. Their Sn grades vary between 0.12 and 10.29 wt% (Zhong et al., 2014) and,
in addition to cassiterite and the sulfides mentioned above, they contain quartz,
muscovite and fluorite (Fig. 5G, H). The distal Sn-Pb-Zn veinlet orebodies comprise
swarms of quartz veinlets (0.5 to 1.5 cm thick; Fig. 4C, 5I, J) that are located in the
hanging wall of the F1 fault in the Tangguanpu ore block, which is hosted by
sandstones of the Tiaomajian formation (D2t) (Fig. 4C, 5I, J). The distal Sn-Pb-Zn
veinlets are about 3 km horizontally from the Laiziling pluton (Fig. 2) and 100 m
vertically below the surface (Fig 4C), and there is no exposed proximal intrusion. In
addition to quartz, they contain cassiterite, topaz, galena, sphalerite and pyrite (Fig.
4C, 5I-K) and their integrated Sn grade ranges from 0.50 to 1.54 wt%.

SAMPLES AND ANALYTICAL METHODS

Samples for detailed geochronological study were collected from drill core and
underground workings in the Xianghualing deposit. Garnet and cassiterite-sulfide
samples were collected in the Xinfeng ore block and the proximal, distal skarn ores
and distal Sn-Pb-Zn veinlet ores were collected in the Tangguanpu ore block.
Zircon LA-ICP-MS U-Pb dating

Zircon crystals used for LA-ICP-MS U-Pb dating were separated from biotite granite in the Laiziling pluton (sample No. 19XHL-12), which was sampled on the 580 m level tunnel in the Tangguanpu ore block (Fig. 5A, D, E). The separation was conducted at the Langfang Tuoxuan Rock and Mineral Testing Service Co., Ltd., China. Zircon crystals were separated by standard heavy-liquid and magnetic techniques and further purified by handpicking under a binocular microscope. After separation, the zircon crystals were examined in transmitted light and reflected light using an optical microscope to determine the crystal morphology and cathodoluminescence (CL) images were prepared to observe the internal structure of the crystals. The CL images were acquired using a JEOL JXA-8900RL scanning electron microscope (SEM) at the Beijing GeoAnaly Technology Co. Ltd., China.

The zircon U-Pb dating was carried out using LA-ICP-MS in the State Key Laboratory of Geological Processes and Mineral Resources at the China University of Geosciences, Beijing (CUGB). The crystals were ablated using an excimer laser ablation system (New-Wave 193ss). An Agilent 7500a four-stage ICP-MS instrument was used for the analyses. A laser spot size of 25 μm, a laser energy density of 8.5 J/cm², and a repetition rate of 10 Hz were employed during the analysis. Helium and argon were used as carrier and makeup gases, respectively, and were mixed via a T-connector before entering the ICP. Each analysis involved a 20 s gas blank and 45 s signal acquisition. Uranium, Th, and Pb concentrations were calibrated using ²⁹Si as an internal standard and NIST 610 glass as the reference standard. Zircon 91500 was
used as the external standard and was employed to correct for instrumental mass bias
and depth-dependent elemental and isotopic fractionation (Wiedenbeck et al., 1995).
The zircon standard, Qinghu, was used as a secondary standard to monitor any
deviation in the age measurement/calculation. The mean $^{206}\text{Pb} / ^{238}\text{U}$ age obtained for
Qinghu is 160.8 ± 1.6 Ma (MSWD = 0.25, $n = 6$), which is consistent with the
recommended age (159.5 ± 0.2 Ma; Li et al., 2013). The raw data reduction was
performed off-line using GLITTER 4.4.4 software developed by Macquarie
University. Age calculations were conducted and concordia plots prepared using
Isoplot 3.0 (Ludwig, 2003). The uncertainty in the age determinations corresponds to
the 95% confidence level and error ellipses represent the 1 sigma deviation.

Garnet LA-ICP-MS U-Pb dating

Uranium-lead age determinations were conducted on two garnet-bearing samples of
prograde skarn collected from the 0 m level tunnel in the Xinfeng ore block (19XHL-
18 and 19XHL-45-1). Backscattered electron (BSE) images of the garnet were
acquired using a TESCAN MIRA3 electron microprobe at the Guangzhou Tuoyan
Testing Technology Co., Ltd., China prior to LA-ICP-MS analysis.

The compositions of the minerals were determined using a JEOL EPMA-1720H
Superprobe at the electron microprobe laboratory, Zhejiang University, China. The
operating conditions were a 15 kV accelerating voltage, 20 nA beam current, 1-2 μm
beam diameter, 10 s counting time and the ZAF correction procedure for data
reduction. For further detail on the analytical procedure, readers are referred to Yu et
The garnet LA-ICP-MS U-Pb dating was carried out at the Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-sen University, China. The analyses were performed using a 193 nm ArF excimer laser ablation system (GeoLasPro) coupled with an Agilent 7700x ICP-MS. A spot size of 60 μm was used with an energy density of 5 J/cm² and a repetition rate of 5 Hz. Helium and argon were used as carrier and makeup gases, respectively, and were mixed via a T-connector before entering the ICP. Each spot analysis incorporated a background acquisition of approximately 20 s followed by 45 s of sample data acquisition. The glass, NIST SRM 610 (Pearce et al., 1997), was used as the external standard to calibrate the trace element analysis of the garnet, and ²⁹Si was used as an internal standard. Zircon 91500 (Wiedenbeck et al., 1995) was used as the external standard for the U-Pb dating as the matrix effect has been shown to be minor for garnet U-Pb dating (Deng et al., 2017). Garnet standards WS-20 and GRT-1 were used to monitor the garnet age determinations. They yielded Tera-Wasserburg concordia intercept ages of 1152.2 ± 5.8 and 137.0 ± 2.3 Ma, respectively, which are the same as the published ages within the analytical uncertainty (Li et al., 2022; Zhang et al., 2019). The raw data reduction was performed off-line using Iolite 4.0 software (Petrus and Kamber, 2012). The analytical results for GRT-1 and WS-20 are presented in Appendix Table 3. The program IsoplotR online toolbox (Vermeech, 2018) was used to calculate the U-Pb ages and draw Tera-Wasserburg concordia diagrams. The errors in the ages represent the 95 % confidence level and the error ellipses represent a 2 sigma
Cassiterite LA-ICP-MS U-Pb dating

Cassiterite samples for LA-ICP-MS U-Pb dating were collected from the proximal skarn-type orebody (sample 19XHL-10-6 on the 580 m level in the Tangguanpu ore block), the distal skarn-type orebody (sample 19XHL-3 on the 654 m level in the Tangguanpu ore block), the cassiterite-sulfide vein-type orebody (sample 19XHL-17-1 and 19XHL-24 on the 0 m level in the Xinfeng ore block), and the distal Sn-Pb-Zn veinlet-type orebody (sample ZK7003-11 from drill core ZK7003 in the Tangguanpu ore block). Cathodoluminescence (CL) images were obtained for the cassiterite crystals prior to LA-ICP-MS analysis. The CL images were taken at the Guangzhou Tuoyan Testing Technology Co., Ltd., China using a Zeiss Supra 55 field emission SEM equipped with a MonoCL4 luminoscope.

The cassiterite U-Pb ages (samples of 19XHL-10-6, 19XHL-17-1, 19XHL-24 and ZK7003-11) were determined at the Guangzhou Tuoyan Testing Technology Co., Ltd., China, using an iCAP RQ ICP-MA coupled to a 193 nm ArF Excimer laser ablation system (NWR193). A laser spot size of 50 μm, a laser energy density of 5 J/cm², and a repetition rate of 8 Hz were employed during the analyses. Helium and argon were used as carrier and makeup gases, respectively, and were mixed via a T-connector before entering the ICP. Each spot analysis involved a background acquisition of approximate 20 s followed by 40 s of sample data acquisition. The NIST SRM610 standard and an in-house cassiterite standard, AY-4, were used for
external elemental and isotopic calibration, respectively. The AY-4 standard was
collected from the Anyuan skarn-type tin deposit of the Furong tin ore field in the
middle Nanling Range. This cassiterite sample was analyzed by Yuan et al. (2011)
using ID-TIMS and returned an U-Pb age of 158.2 ± 0.4 Ma. Raw data reduction was
performed off-line using Isoplot 4.0 software (Petrus and Kamber, 2012). The
IsoplotR online toolbox (Vermeesch, 2018) was used to calculate the U-Pb ages and
draw Tera-Wasserburg concordia diagrams. The uncertainties in the ages correspond
to the 95% confidence level and the error ellipses represent 2 sigma deviations. The
cassiterite U-Pb age of sample 19XHL-3 was determined at Yanduzhongshi
Geological Analysis Laboratories Ltd., China, using an Analytikjena M90 quadrupole
ICP-MS equipped with a 193 nm NWR193 ArF excimer laser. A laser spot size of 42
µm, a laser energy density of 4 J/cm², and a repetition rate of 8 Hz were employed
during the analysis. Each cassiterite analysis began with a 20 s blank gas
measurement followed by 40 s of analysis with the laser switched on. The downhole
fractionation, instrument drift and mass bias correction factors for the Pb/U ratios of
the cassiterite were calculated from two analyses of the primary AY-4 standard (Yuan
et al., 2011), and analyses of secondary standards, i.e., the Cligga Head (Tapster and
Bright, 2020) and Emmaville cassiterites (Prichard, 2013). These analyses were
conducted at the beginning of each session and after 10 analyses of the cassiterite
samples. The data reduction was based on the method outlined in Meffre et al. (2008).
The uncertainties in the ages represent the 95% confidence and the error ellipses
correspond to the 1 sigma deviation.
RESULTS

Zircon LA-ICP-MS U-Pb dating

The zircon crystals of the biotite granite in the Laiziling pluton (sample No. 19XHL-12), for which U-Pb radiometric ages were determined, are euhedral and prismatic (Fig. 9), with obvious oscillatory zoning and no inherited cores, which is consistent with their magmatic origin (Davis et al., 2003; Hoskin and Schaltegger, 2003). The crystal length ranges from 60 to 120 μm and the length-to-width ratio varies from 1:1 to 3.5:1. Thorium and U concentrations vary considerably, from 222 to 3056 ppm (1230 ppm on average) and 422 to 9846 ppm (3652 ppm on average), respectively. The Th/U ratios range from 0.27 to 0.78 and average 0.42 (Table 1), which is typical of magmatic zircon (Belousova et al., 2002). The 206Pb/238U ages of the ten zircon crystals analyzed vary from 149 to 156 Ma and yield a weighted mean 206Pb/238U age of 152.8 ± 1.2 Ma (MSWD = 1.6) (Fig. 9). This age is interpreted to represent the crystallization age of the Laiziling granite.

Garnet petrography, chemical composition and LA-ICP-MS U-Pb ages

Three types of garnet were identified using BSE images and an optical microscope (Fig. 7). Crystals of Type I garnet (Grt-I; e.g., sample 19XHL-45-1) are euhedral, brown to yellow in color, homogeneous and between 0.5 and 1.0 mm in diameter. This garnet type is overgrown by Type II garnet (Grt-II) (Fig. 7A, B), which is lighter than Grt-I (from light brown yellow to grayish white) and also homogeneous, but
more abundant (0.5 to 3.0 mm in diameter) (Fig. 7A - E). Type II garnet coexists with diopside, both of which were replaced by fluorite (Fig. 7B). Type III garnet (Grt-III) is grayish white (Fig. 7D), homogeneous and has a prismatic morphology (~2 mm × 300 μm). It is interspersed with Grt-II (Fig. 7D, E). No cassiterite was found in these samples.

Electron microprobe analyses show that the three types of garnets have similar chemical compositions (Table 2). Their main components are SiO₂ (35.69 wt%), CaO (33.06 wt%), Al₂O₃ (15.86 wt%) and FeO⁴ (5.93 wt%); the values in parentheses are their average concentrations. The three types of garnet are members of the grossular-andradite solid solution series; they are grossular-rich (73.09 - 76.92 mol%) and contain minor pyralspite (the sum of pyrope, spessartine, almandine and uvarovite; < 8.0 mol%) (Table 2; Fig. 7F).

The results of the LA-ICP-MS U-Pb analyses for the garnet samples are summarized in Appendix Table 1. The Grt-I, Grt-II and Grt-III yielded Tera-Wasserburg concordia intercept ages of 153.6 ± 7.6 Ma (MSWD = 1.3; n = 58; Fig. 10A), 153.0 ± 17 Ma (MSWD = 1.7; n = 85; Fig. 10B) and 151.5 ± 3.5 Ma (MSWD = 1.3; n = 59; Fig. 10C), respectively.

Cassiterite petrography and LA-ICP-MS U-Pb ages

Four types of cassiterite were distinguished from the different ore types (Fig. 8). Type I cassiterite occurs as disseminations in the proximal skarn-type ore (Cst I, e.g., sample 19XHL-10-6). This cassiterite type has been subdivided into early (Cst I-1)
and late (Cst I-2) stages. The Cst I-1 crystals are dark brown, anhedral and homogeneous, and occur as irregular aggregates, in which the individual crystals vary from 50 to 600 μm in diameter (Fig. 5C, 8A). The Cst I-1 variety was replaced by Cst I-2, a bright luminescing variety, which fills embayments and fractures in Cst I-1 (Fig 8B). Type I cassiterite is accompanied by actinolite, wollastonite, muscovite, quartz and pyrrhotite (Fig. 5C, 8B, C). Type II cassiterite occurs as disseminations in the distal skarn-type ore (Cst II, e.g., sample 19XHL-3). The Cst II variety is light brown, anhedral with a diameter of ~100 μm (Fig. 8D). Parts of crystals display zoning patterns in CL images (Fig. 8E). This cassiterite is commonly associated with actinolite, quartz, pyrrhotite, and chalcopyrite (Fig. 8D, F). Type III cassiterite is disseminated in the cassiterite-sulfide vein ore (Cst III, e.g., sample 19XHL-17-1 and 19XHL-24). The Cst III variety is light yellow brown and occurs as euhedral crystals with a diameter of 1000-1500 μm (Fig. 5G, 8G). It displays weak oscillatory zoning in CL images (Fig. 8H) and is commonly associated with arsenopyrite, pyrrhotite, fluorite, muscovite and quartz (Fig. 5H, 8G, H, I). Type IV cassiterite occurs in the distal Sn-Pb-Zn veinlet ore (Cst IV, e.g., sample ZK7003-11). As is the case for Cst I, there were two stages of Cst IV development, Cst IV-1 and Cst IV-2. The Cst IV-1 cassiterite is represented by brown, euhedral crystals 500-700 μm in diameter (Fig. 8J). It displays color zoning under both plane polarized transmitted light (Fig. 8J) and in CL images (Fig. 8K). The edges of early Cst IV-1 crystals were replaced by Cst IV-2, which also fills cracks in Cst IV-1 (Fig. 8K). The Cst IV variety coexists with pyrite, arsenopyrite, galena, sphalerite, topaz, and quartz (Fig. 4C, 5I, J, K, 8L).
The results of LA-ICP-MS U-Pb analyses of the cassiterite samples are summarized in Appendix Table 2. The Cst I-1 sample (34 spots for sample 19XHL-10-6) yielded a Tera-Wasserburg concordia intercept age of 155.4 ± 0.8 Ma (MSWD = 3.3; Fig. 11D). The Cst II sample (39 spots for sample 19XHL-3) yielded a Tera-Wasserburg concordia intercept age of 155.9 ± 0.7 Ma (MSWD = 1.4; Fig. 11E). Two Cst III samples (26 spots for sample 19XHL-17-1 and 22 spots for sample 19XHL-24) yielded Tera-Wasserburg concordia intercept ages of 154.2 ± 0.9 (MSWD = 2.1; Fig. 11F) and 152.3 ± 1.1 Ma (MSWD = 3.5; Fig. 11G), respectively. Two Cst IV-1 crystals from sample ZK7003-11 yielded Tera-Wasserburg concordia intercept ages of 159.3 ± 1.5 (MSWD = 0.66; Fig. 11A) and 158.5 ± 0.8 Ma (MSWD = 1.7; Fig. 11B), respectively. Forty-one spots of Cst IV-2 yielded a Tera-Wasserburg concordia intercept age of 159.6 ± 1.4 Ma (MSWD = 2.6; Fig. 11C).

DISCUSSION

Reliability of garnet and cassiterite U-Pb geochronology

Minerals suitable for robust geochronology are commonly absent from skarns (Deng et al., 2017) and consequently, the age data for them are often acquired from minerals not directly related to skarn formation. This makes interpretation of the ages ambiguous (Yuan et al., 2011; Li et al., 2019; Marfin et al., 2020). Mezger et al. (1989) recognized the potential of garnet as a U-Pb geochronometer firstly because of the variable U contents and a high closure temperature of U-Pb isotopes (>800°C). However, garnet from magmatic and hydrothermal conditions usually contains a
variety of U-rich mineral inclusions and, thus, may pose problems for U-Pb geochronological analysis (Dewolf et al., 1996; Lima et al., 2012). Such problems can be solved by in situ analytical techniques (Liu et al., 2010). Higher U and lower common Pb concentrations have been shown to be important for obtaining more accurate garnet U-Pb ages (Deng et al., 2017; Gevedon et al., 2018; Li D et al., 2018, 2019; Hong et al., 2022). Li et al. (2019) concluded that the U concentration should be >1 ppm and the 204Pb content should be <10% of the U concentration when using the ICP-MS. Garnet with a variety of U concentrations has been successfully applied to date hydrothermal ore deposits. Examples include the Shuiquangou Au deposit (U = 0.11 to 20.30 ppm, Deng et al., 2017), the Haobugao Zn-Pb-Sn deposit (U = 0.54 to 5.32 ppm, Hong et al., 2021), the Big Gossan Cu-Au deposit (U = 0.50 to 199.90 ppm, Wafforn et al., 2018), and the Pingbao Pb-Zn district (U = 1.11 to 579.00 ppm, Li et al., 2019). The U concentrations of the Xianghualing garnet vary from 1 to 114 ppm (Appendix Table 1), which enables this mineral to produce robust geochronological data.

Cassiterite (SnO$_2$), the main tin ore mineral, is common in skarn-type, greisen-type and other type tin deposits (Gulson and Jones, 1992; Yuan et al., 2011). It is characterized by relatively high U contents, stable chemical properties and a high closure temperature for U-Pb isotope system (this temperature can reach 560°C for a 1 μm diameter crystal and 860°C for a 1mm diameter crystal; Zhang et al., 2011). Therefore, cassiterite U-Pb geochronology can constrain the timing of tin mineralization accurately and directly, making cassiterite the most ideal dating
mineral for tin deposits (Gluson and Jones, 1992; Zhang et al., 2015; Neymark et al., 2018, 2021). Isotope dilution-thermal ionization mass spectrometry (ID-TIMS) and laser ablation inductively coupled plasma-mass spectrometry (LA-ICP-MS) cassiterite U-Pb dating techniques have been developed to constrain tin mineralization events (Gluson and Jones, 1991, Yuan et al., 2008, 2011; Neymark et al., 2018), and LA-ICP-MS techniques are now widely applied to obtain reliable ages of tin deposits (Zhang et al., 2015, 2017a, b; Guo et al., 2019, Xiong et al., 2020). Studies have also shown that cassiterite U-Pb geochronology can be used to identify multiple mineralization events (Zhang et al., 2015; Xiong et al., 2020). Therefore, a combination of the two geochronological methods mentioned above could help to identify the timing of both skarn formation and Sn mineralization directly.

Discrete mineralization events at Xianghualing

The Xianghualing tin deposit consists not only of proximal Sn skarn ores, but also of distal Sn skarn ores and Sn-Pb-Zn veinlets. Whether the distal Sn skarn ores and Sn-Pb-Zn veinlets are genetically related to the proximal skarn mineralization, i.e., whether both were products of the Laiziling magmatic-hydrothermal system, however, has been unclear due to the lack of precise geochronological data for the different Sn ore stages.

The zircon U-Pb age of the Laiziling granite obtained in this study is 152.8 ± 1.2 Ma (Fig. 9B). Based on this and previously determined ages, the Laiziling granite is interpreted to have been intruded between ~156 and 150 Ma (e.g., biotite K-Ar
method, Hu et al., 1984; zircon U-Pb method, Liu, 2011; Zhu et al., 2011; Lai, 2014; Li H et al., 2018; Yang et al., 2018; Xiao et al., 2019). Yuan et al. (2008) and Guo et al. (2019) dated cassiterite from a cassiterite-arsenopyrite-pyrrhotite vein in the Xinfeng ore block and the Laiziling granite, respectively, and obtained U-Pb ages for them of 156 ± 4 and 149.0 ± 1.8 Ma, respectively. These previous geochronological studies did not consider the skarn-type mineralization, and ignored the temporal relationships between the distal Sn-Pb-Zn veinlets, skarn mineralization, and the intrusion.

In this study, we have reported garnet U-Pb ages for the prograde skarn (153.6 ± 7.6 to 151.5 ± 3.5 Ma, Fig. 10) and U-Pb ages of cassiterite (155.9 ± 0.7 to 155.4 ± 0.8 Ma, Fig. 11D, E) from proximal and distal retrograde skarn ores. These age data record the timing of skarn formation and skarn-hosted Sn mineralization and show that the events were essentially coeval with the emplacement of the Laiziling pluton.

We have also shown from the ages of two cassiterite-arsenopyrite-pyrrhotite veins, which we dated at 154.2 ± 0.9 and 152.3 ± 1.1 Ma (Fig. 11F, G), that this mineralization was also coeval with the emplacement of the Laiziling granite and associated skarn mineralization (Fig. 12). As a result, we have been able to establish the temporal evolution for the Sn mineralizing system produced by the Laiziling granite, i.e., from the emplacement of Laiziling granite (152.8 ± 1.2 Ma), prograde skarn alteration (153.6 ± 7.6 to 151.5 ± 3.5 Ma), to tin mineralization in retrograde skarn and the cassiterite-sulfide stage (155.9 ± 0.7 to 152.3 ± 1.1 Ma).

The ages obtained in this study for the distal Sn-Pb-Zn veinlet Sn mineralization
(159.6 ± 1.4 to 158.5 ± 0.8 Ma, Fig. 11A-C) show that there was a tin mineralizing event in the Xianghualing ore district that preceded emplacement of the Laiziling pluton (Fig. 12). As there is W-Sn-Pb-Zn mineralization (161.3 ± 1.1 and 158.7 ± 1.2 Ma, muscovite Ar-Ar, Yuan et al., 2007) around the Jianfengling granitic intrusion, which is located ~4 km laterally from the Laiziling pluton (Fig. 1C) and zircon U-Pb ages of 165.2 ± 1.4 to 160.7 ± 2.2 Ma have been reported for the Jianfengling intrusion (Xuan et al., 2014, Yang et al., 2018), we attribute the distal Sn-Pb-Zn veinlets to the Jianfengling intrusion. We therefore conclude that there were two Sn mineralizing events in the Xianghualing ore field, an early event represented by distal Sn-Pb-Zn veinlet mineralization related to the Jianfengling intrusion and a subsequent skarn-type Sn mineralizing event related to the Laiziling intrusion (Fig. 12).

Owing to their similar geochemical characteristics and an age difference of ~10 Ma, less attention has been paid to mineralization between the Laiziling and Jianfengling plutons (Xuan et al., 2014; Yang et al., 2018). Previous studies have shown that the two plutons may have originated from the same magma chamber (Yang et al., 2018). Regional geophysical data suggest that the two plutons are connected at depth (Lai, 2014; Zhong, 2014), raising the possibility of earlier (~165-160 Ma) magmatism in the Laiziling pluton. Therefore, we speculate that a hidden granitic intrusion coeval with the Jianfengling granite intrusion was responsible for the early Sn mineralizing event in the Xianghualing deposit (Fig. 13). The results of our study show that there were two episodes of tin mineralization at Xianghualing, i.e., at ~160 Ma (Sn I) and 156-150 Ma (Sn II), and that these episodes were related to
the magmas that formed the Jianfengling granite and Laiziling granite, respectively.

Significance for regional Sn mineralization

In the Xianghualing deposit, the early mineralization event (~160 Ma) only accounts for ≤ 5% of the total Sn resource, and the younger main Sn mineralization event (156-150 Ma) contributes ~>95% of the total Sn resource. Previous studies have shown that formation of the Sn deposits in the Nanling Range was relatively continuous from the Silurian to the Cretaceous, and concluded that the period between 160 and 150 Ma was a time of major W-Sn mineralization (Chen et al., 2013; Mao et al., 2013; Yuan et al., 2019). We have roughly calculated the total Sn reserve emplaced in the Nanling Range between 160 and 150 Ma to be 2.78 Mt, which accounts for ~80% of the total Sn reserves in this area (3.27 Mt, Cao et al., 2015, Yuan et al., 2019). Among them, the Sn reserves introduced at ~160 Ma are 1.02 Mt (Furong with 0.70 Mt, Hehuaping with 0.2 Mt, and Jinchuantang with 0.12 Mt, Yuan et al., 2019 and references therein), whereas the Sn reserves introduced between 156 and 150 Ma amount to 1.56 Mt (Shizhuyuan with 0.80 Mt, Xitian with 0.59 Mt, and Xianghualing with 0.17 Mt, Yuan et al., 2019 and references therein). Therefore, we can infer that ~160 Ma and 156-150 Ma were both major periods of Sn mineralization in the Nanling Range.

In summary, a new genetic model involving two discrete Sn mineralizing events is proposed to explain the Sn mineralization of Xianghualing district (Fig. 13). This model provides an important new guide for tin ore exploration in the Xianghualing
district and the Nanling Range, generally, i.e., the targeting of skarn- and cassiterite-
sulfide vein-type orebodies related to the emplacement of ~160 Ma intrusions and
superimposed cassiterite mineralization introduced by the 156-150 Ma magmatic-
hydrothermal system.

IMPLICATIONS

The new cassiterite and garnet LA-ICP-MS U-Pb ages coupled with field
observations and core-logging lead to the conclusion that there were two tin
mineralization events in the Xianghualing ore district, South China. The early event
occurred between 159.6 ± 1.4 and 158.5 ± 0.8 Ma based on cassiterite U-Pb
geochronology, and was likely caused by a hidden granitic intrusion coeval with the
nearby Jianfengling intrusion. This event only accounts for ≤5% of the total tin
resource. The main Sn mineralization event occurred between 155.9 ± 0.7 and 152.3 ±
1.1 Ma based on cassiterite and garnet LA-ICP-MS U-Pb ages, and is genetically
related to the Laiziling granitic intrusion (zircon U-Pb age of 152.8 ± 1.2 Ma). This
event contributed >95% of the total tin resources. Our new geochronological results
provide evidence of a superimposed tin mineralizing system in the Xianghualing ore
district, a finding that is of great significance to the regional tin exploration. This
study demonstrates the reliability of cassiterite and garnet U-Pb geochronology in
identifying discrete tin mineralizing events in complex metallogenic systems.

ACKNOWLEDGMENTS AND FUNDING
This study was financially supported by the National Natural Science Foundation of China (Grants 42122012 and 92062219), the National Key R&D Program of China (Grant 2018YFC0603901), the Fundamental Research Funds for the Central Universities (Grants QZ05201904, 2652018169), and the 111 Project of the Ministry of Science and Technology (BP0719021). We thank the leaders and employees of the Xianghualing tin Industry Co., Ltd. for their wholehearted support during the field investigation. We appreciate Hongyu Zhang, Yubo Yang, Huan Wang, and Can Rao for their help during the analysis. We thank Donald W. Davis and Ryan Mathur for their insightful reviews, which considerably improved this paper. Associate Editor Daniel Gregory is thanked for his editorial help and useful suggestions.

REFERENCES

Economic Geologists, Special Publication, 22, 189-234.

Deng, X.D., Li, J.W., Luo, T., and Wang, H.Q. (2017) Dating magmatic and
hydrothermal processes using andradite-rich garnet U–Pb geochronometry.

Contributions to Mineralogy and Petrology, 172, 1-11.

(2022) In situ LA-ICP-MS U-Pb geochronology and geochemical characteristics of garnet from the Zhuxi skarn W-Cu deposit, South China. Ore Geology Reviews, 140, 104577.

and Chenery, S.P. (1997) A compilation of new published major and trace
element data for NIST SRM 610 and NIST SRM 612 glass reference materials.
Geostandards and Geoanalytical Research, 21, 114-115.

ICP-MS U-Pb geochronology data reduction. Geostandards and Geoanalytical
Research, 36(3): 247-270.

Prichard, J. (2013) The geochemistry and geochronology of cassiterite from the New

ages and Hf isotopes of zircons from Mesozoic granites in the western Nanling
Range, South China: Implications for petrogenesis and W-Sn mineralization.
Lithos, 127, 468-482.

magmatism and mineralization in South China: Preface. Lithos, 150, 1-5.

systematics using a low-contamination hydrothermal decomposition:
implications for LA-ICP-MS and ore deposit geochronology. Geochronology, 2,
425-441.

Geoscience Frontiers, 9, 1479-1493.

Wafforn, S., Seman, S., Kyle, J.R., Stockli, J.R., Leys, C., Sonbait, D., and Cloos, M.

Wangxianling area, Nanling Range, South China. Ore Geology Reviews, 65, 1021-1042.

FIGURE CAPTIONS

FIGURE 1. (A) A tectonic map of China (Xiong et al., 2020); (B) The distribution of granite and associated tungsten-tin deposits in the Nanling Range (modified after Chen et al., 2013 and Yuan et al., 2019); (C) A regional geological map of the Xianghualing ore field (modified after Yuan et al., 2007 and Wu J et al., 2018).

FIGURE 2. A geological map of the Xianghualing Sn deposit (modified after Wu J et al., 2018).

FIGURE 3. The vertical zonation of rock types in the Laiziling pluton (A) (Xiong et al., 2002) and metal zoning of the Xianghualing tin deposit (B) (Lai, 2014).
FIGURE 4. Geological cross sections of No. 49 exploration line in the Xinfeng ore block (A) (Wu J et al., 2018), No. 88 exploration line in the Tangguanpu ore block (B) (Lai, 2014) and (C) the distribution of Sn-Pb-Zn mineralization in drill hole of ZK7003 in the Tangguanpu ore block.

FIGURE 5. Photographs showing different ore types for the Xianghuaing Sn deposit. (A) The contact between biotite granite and marble in the 580 m level tunnel of the Tangguanpu ore block; (B) Massive skarn-type ore; (C) Actinolite associated with biotite and cassiterite in proximal skarn ore (plane polarized light); (D) Biotite granite; (E) Granular quartz and sericitized K-feldspar in biotite granite (crossed polarized light); (F) Distal skarn ore at the contact zone between Devonian sandstone and Cambrian sandstone; (G) Disseminated arsenopyrite and cassiterite in a cassiterite-sulfide vein; (H) The assemblage cassiterite-arsenopyrite-pyrrhotite-chalcopyrite-fluorite (reflected light); (I) Sn-Pb-Zn veinlets in the drill core of ZK6601 in the Tangguanpu ore block; (J) Sn-Pb-Zn veinlets in the drill core of ZK7003 in the Tangguanpu ore block, containing coexisting pyrite and galena (reflected light); (K) The coexistence of cassiterite, arsenopyrite, and topaz in Sn-Pb-Zn veinlets (plane polarized light). Abbreviations: Act = actinolite, Apy = arsenopyrite, Bi = biotite, Ccp = chalcopyrite, Cst = cassiterite, Di = diopside, Fl = fluorite, Gn = galena, Grt = garnet, Kfs = K-feldspar, Pl = plagioclase, Po = pyrrhotite, Qtz = quartz, Sp = sphalerite, Tpz = topaz.

FIGURE 6. The paragenetic sequence of minerals in the Xianghualing tin deposit.

FIGURE 7. Photomicrographs and backscattered electron (BSE) images for garnet from the...
Xianghualing tin deposit. (A) Stage I garnet hosted in Stage II garnet (plane polarized light); (B) Stage I garnet replaced by Stage II garnet, both of which were replaced by fluorite (BSE); (C) Stage II garnet intergrown with diopside (BSE); (D) Granular Stage II garnet replaced by tabular Stage III garnet (plane polarized light); (E) Granular Stage II garnet replaced by tabular Stage III garnet (BSE); (F) A ternary diagram illustrating the composition of the Xianghualing garnet. Abbreviations: Alm = almandine, And = andradite, Ep = epidote, Gro = grossular, Pyr = pyrope, Spe = spessartine and Uva = uvarovite (modified after Meinert et al., 2005).

FIGURE 8. Photomicrographs and cathodoluminescence (CL) images for cassiterite from the Xianghualing tin deposit. (A) Cassiterite (Cst I) in close association with actinolite in proximal skarn ore (plane polarized light); (B) Relatively dark cassiterite (Cst I-1) in proximal skarn ore replaced by late light colored cassiterite (Cst I-2) (CL); (C) Cassiterite (Cst I) intergrown with actinolite and pyrrhotite in proximal skarn ore (reflected light); (D) Cassiterite (Cst II) coexisting with actinolite and quartz in distal skarn ore (plane polarized light); (E) Cassiterite (Cst II) grains in distal skarn ore (CL); (F) Cassiterite (Cst II) intergrown with pyrrhotite and chalcopyrite in distal skarn ore (reflect light); (G) Cassiterite (Cst III) in cassiterite-sulfide ore with growth zones replaced by muscovite (plane polarized light); (H) Cassiterite in cassiterite-sulfide ore (Cst III) showing growth zones (CL); (I) Cassiterite (Cst III) in contact with pyrrhotite and arsenopyrite in cassiterite-sulfide ore (reflected light); (J) Cassiterite (Cst IV) displaying growth zones surrounded by topaz in a Sn-Pb-Zn veinlet (plane polarized light); (K) Dark cassiterite (Cst IV-1) in a Sn-Pb-Zn veinlet showing growth zones and filled and later cassiterite (Cst IV-2) along cracks (CL); (L) Cassiterite (Cst IV) intergrown with arsenopyrite, pyrite, galena, and topaz (reflected light).
Abbreviations: Act = actinolite, Apy = arsenopyrite, Cst = cassiterite, Fl = fluorite, Gn = galena, Ms = muscovite, Po = pyrrhotite, Qtz = quartz, Tpz = topaz.

FIGURE 9. (A) Cathodoluminescence (CL) images of representative zircon crystals separated from the Laiziling granite showing the locations of the analyses (circles) and corresponding U-Pb ages; (B) A concordia diagram and weighted mean age of zircon crystals from sample 19XHL-12 of the Laiziling granitic pluton.

FIGURE 10. Tera-Wasserburg U-Pb intercept ages for garnet in the Xianghualing Sn deposit. (A) Euhedral garnet (Grt-I); (B) Granular garnet (Grt-II); (C) Tabular garnet (Grt-III).

FIGURE 11. Tera-Wasserburg U-Pb intercept ages for cassiterite in the Xianghualing Sn deposit. (A) The U-Pb age for dark cassiterite (Cst IV-1) in a Sn-Pb-Zn veinlet ore from sample ZK7003-11; (B) The U-Pb age for a second cassiterite crystal (Cst IV-1) from sample ZK7003-11; (C) The U-Pb age of the late light colored cassiterite (Cst IV-2) from sample ZK7003-11; (D) The U-Pb age for dark cassiterite (Cst I) in proximal skarn ore from sample 19XHL-10-6; (E) The U-Pb age for cassiterite (Cst II) in distal skarn ore from sample 19XHL-3; (F) The U-Pb age for cassiterite (Cst III) in cassiterite-sulfide ore from sample 19XHL-17-1; (G) The U-Pb age for cassiterite (Cst III) in cassiterite-sulfide ore from sample 19XHL-24.

FIGURE 12. A diagram illustrating the distribution of age determinations for the Jianfengling and Laiziling granites and the early and late Sn mineralizing events in the Xianghualing ore field. The
zircon U-Pb ages are from Liu, 2011; Shu et al., 2011; Zhu et al., 2011; Lai, 2014; Xuan et al., 2014; Li H et al., 2018; Yang et al., 2018; Xiao et al., 2019; the muscovite Ar-Ar ages are from Hu et al., 1984; Yuan et al., 2007; and the cassiterite U-Pb ages are from Yuan et al., 2008a; Guo et al., 2019 and this study.

FIGURE 13. A proposed genetic model for Sn mineralization in the Xianghualing ore district.

TABLES

TABLE 1. LA-ICP-MS U-Pb data for zircon in the Laiziling granitic pluton

TABLE 2. A summary of the major element compositions of the Xianghualing garnet (wt%)

APPENDIX TABLES

APPENDIX TABLE 1. LA-ICP-MS U-Pb isotope data for garnet from the Xianghualing Sn deposit

APPENDIX TABLE 2. LA-ICP-MS U-Pb isotope data for cassiterite from the Xianghualing Sn deposit

APPENDIX TABLE 3. LA-ICP-MS U-Pb isotope data for garnet standards GRT-1 and WS-20
Table 1. LA-ICP-MS U-Pb data for zircons in the Laiziling granitic pluton

<table>
<thead>
<tr>
<th>Sample</th>
<th>Contents (ppm)</th>
<th>Th/U</th>
<th>Isotopic ratios</th>
<th>Ages (Ma)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pb</td>
<td>Th</td>
<td>U</td>
<td>207Pb/206Pb</td>
</tr>
<tr>
<td>XHL12-01</td>
<td>11.85</td>
<td>222.20</td>
<td>421.81</td>
<td>0.53</td>
</tr>
<tr>
<td>XHL12-04</td>
<td>29.23</td>
<td>768.02</td>
<td>986.27</td>
<td>0.78</td>
</tr>
<tr>
<td>XHL12-09</td>
<td>17.62</td>
<td>277.16</td>
<td>655.97</td>
<td>0.42</td>
</tr>
<tr>
<td>XHL12-22</td>
<td>37.68</td>
<td>529.21</td>
<td>1379.38</td>
<td>0.38</td>
</tr>
<tr>
<td>XHL12-34</td>
<td>70.96</td>
<td>803.52</td>
<td>2769.62</td>
<td>0.29</td>
</tr>
<tr>
<td>XHL12-36</td>
<td>253.36</td>
<td>1958.49</td>
<td>7211.36</td>
<td>0.27</td>
</tr>
<tr>
<td>XHL12-46</td>
<td>270.14</td>
<td>3055.95</td>
<td>9845.57</td>
<td>0.31</td>
</tr>
<tr>
<td>XHL12-48</td>
<td>174.69</td>
<td>2393.32</td>
<td>6016.88</td>
<td>0.40</td>
</tr>
<tr>
<td>XHL12-50</td>
<td>25.36</td>
<td>510.24</td>
<td>895.70</td>
<td>0.57</td>
</tr>
<tr>
<td>XHL12-52</td>
<td>163.32</td>
<td>1785.43</td>
<td>6333.59</td>
<td>0.28</td>
</tr>
</tbody>
</table>

Table 2. A summary of the major element compositions of the Xianghualing garnets (wt%)

<table>
<thead>
<tr>
<th>Sample</th>
<th>SiO2</th>
<th>TiO2</th>
<th>Al2O3</th>
<th>Cr2O3</th>
<th>Fe2O3</th>
<th>FeO</th>
<th>MnO</th>
</tr>
</thead>
<tbody>
<tr>
<td>19XHL-4</td>
<td>35.94</td>
<td>1.04</td>
<td>15.38</td>
<td>0.02</td>
<td>0.00</td>
<td>6.09</td>
<td>0.25</td>
</tr>
<tr>
<td>5</td>
<td>35.59</td>
<td>0.83</td>
<td>15.73</td>
<td>0.00</td>
<td>0.00</td>
<td>5.51</td>
<td>0.25</td>
</tr>
<tr>
<td>5</td>
<td>35.31</td>
<td>0.86</td>
<td>17.76</td>
<td>0.00</td>
<td>0.00</td>
<td>7.04</td>
<td>1.63</td>
</tr>
<tr>
<td>5</td>
<td>37.23</td>
<td>0.94</td>
<td>18.07</td>
<td>0.00</td>
<td>0.00</td>
<td>6.98</td>
<td>1.56</td>
</tr>
<tr>
<td>5</td>
<td>38.03</td>
<td>1.02</td>
<td>18.88</td>
<td>0.00</td>
<td>0.00</td>
<td>7.23</td>
<td>1.58</td>
</tr>
<tr>
<td>5</td>
<td>34.37</td>
<td>0.78</td>
<td>11.70</td>
<td>0.00</td>
<td>0.00</td>
<td>4.98</td>
<td>0.27</td>
</tr>
<tr>
<td>5</td>
<td>34.37</td>
<td>0.88</td>
<td>1.17</td>
<td>0.00</td>
<td>0.00</td>
<td>5.30</td>
<td>0.26</td>
</tr>
<tr>
<td>5</td>
<td>33.51</td>
<td>0.70</td>
<td>0.70</td>
<td>0.00</td>
<td>0.00</td>
<td>5.96</td>
<td>0.30</td>
</tr>
<tr>
<td>5</td>
<td>35.07</td>
<td>0.70</td>
<td>0.70</td>
<td>0.00</td>
<td>0.00</td>
<td>6.06</td>
<td>0.27</td>
</tr>
<tr>
<td>5</td>
<td>35.96</td>
<td>2.62</td>
<td>1.23</td>
<td>0.00</td>
<td>0.00</td>
<td>2.48</td>
<td>0.24</td>
</tr>
<tr>
<td>5</td>
<td>33.81</td>
<td>1.17</td>
<td>1.17</td>
<td>0.00</td>
<td>0.00</td>
<td>1.92</td>
<td>0.19</td>
</tr>
</tbody>
</table>

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld
<p>| | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>MgO</td>
<td>1.77</td>
<td>1.76</td>
<td>0.16</td>
<td>0.18</td>
<td>0.07</td>
<td>1.52</td>
<td>1.68</td>
<td>1.19</td>
<td>1.71</td>
<td>1.69</td>
</tr>
<tr>
<td>CaO</td>
<td>34.20</td>
<td>34.33</td>
<td>32.69</td>
<td>33.16</td>
<td>33.21</td>
<td>31.66</td>
<td>31.01</td>
<td>31.69</td>
<td>33.97</td>
<td>34.32</td>
</tr>
<tr>
<td>Total</td>
<td>94.68</td>
<td>94.00</td>
<td>97.59</td>
<td>99.05</td>
<td>98.81</td>
<td>89.20</td>
<td>87.56</td>
<td>89.29</td>
<td>93.27</td>
<td>94.32</td>
</tr>
<tr>
<td>Si</td>
<td>2.92</td>
<td>2.91</td>
<td>2.96</td>
<td>2.97</td>
<td>2.96</td>
<td>2.94</td>
<td>3.00</td>
<td>2.88</td>
<td>2.90</td>
<td>2.92</td>
</tr>
<tr>
<td>Ti</td>
<td>0.06</td>
<td>0.05</td>
<td>0.04</td>
<td>0.05</td>
<td>0.11</td>
<td>0.08</td>
<td>0.05</td>
<td>0.17</td>
<td>0.08</td>
<td>0.07</td>
</tr>
<tr>
<td>Al</td>
<td>1.47</td>
<td>1.52</td>
<td>1.65</td>
<td>1.65</td>
<td>1.54</td>
<td>1.54</td>
<td>1.47</td>
<td>1.49</td>
<td>1.46</td>
<td>1.52</td>
</tr>
<tr>
<td>Cr</td>
<td>0.00</td>
</tr>
<tr>
<td>Fe$^{3+}$</td>
<td>0.41</td>
<td>0.38</td>
<td>0.35</td>
<td>0.34</td>
<td>0.41</td>
<td>0.36</td>
<td>0.38</td>
<td>0.38</td>
<td>0.41</td>
<td>0.34</td>
</tr>
<tr>
<td>Fe$^{2+}$</td>
<td>0.00</td>
<td>0.00</td>
<td>0.11</td>
<td>0.11</td>
<td>0.06</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Mn</td>
<td>0.02</td>
<td>0.02</td>
<td>0.11</td>
<td>0.10</td>
<td>0.10</td>
<td>0.11</td>
<td>0.10</td>
<td>0.10</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>Mg</td>
<td>0.21</td>
<td>0.21</td>
<td>0.02</td>
<td>0.02</td>
<td>0.01</td>
<td>0.19</td>
<td>0.22</td>
<td>0.15</td>
<td>0.21</td>
<td>0.21</td>
</tr>
<tr>
<td>Ca</td>
<td>2.98</td>
<td>3.01</td>
<td>2.76</td>
<td>2.75</td>
<td>2.77</td>
<td>2.91</td>
<td>2.90</td>
<td>2.92</td>
<td>3.01</td>
<td>2.99</td>
</tr>
<tr>
<td>And</td>
<td>19.33</td>
<td>17.44</td>
<td>17.56</td>
<td>17.10</td>
<td>21.22</td>
<td>17.15</td>
<td>18.27</td>
<td>18.48</td>
<td>19.09</td>
<td>16.08</td>
</tr>
<tr>
<td>Gro</td>
<td>73.40</td>
<td>75.39</td>
<td>74.44</td>
<td>75.02</td>
<td>73.09</td>
<td>75.88</td>
<td>74.16</td>
<td>75.87</td>
<td>73.73</td>
<td>76.92</td>
</tr>
<tr>
<td>Pyr+Spe+Alm+Uva</td>
<td>7.27</td>
<td>7.17</td>
<td>8.00</td>
<td>7.87</td>
<td>5.69</td>
<td>6.98</td>
<td>7.57</td>
<td>5.65</td>
<td>7.17</td>
<td>7.01</td>
</tr>
</tbody>
</table>

Note: Total Fe are measured and represented as FeO. All the calculations were based on 12 oxygens. Abbreviation: Alm = almandine; And = andradite; Gro = grossular; Pyr = pyrope; Spe = spessartine; and Uva = uvarovite.
Fig. 6

<table>
<thead>
<tr>
<th>Stages Minerals</th>
<th>Prograde skarn</th>
<th>Retrograde skarn</th>
<th>Quartz-cassiterite -sulide</th>
<th>Carbonate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Garnet</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diopside</td>
<td>Me</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wollastonite</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vesuvianite</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Actinolite</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tremolite</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Muscovite</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phlogopite</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorite</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magnetite</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cassiterite</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quartz</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fluorite</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Topaz</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calcite</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pyrite</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chalcopyrite</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arsenopyrite</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pyrrhotite</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sphalerite</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Galena</td>
<td>U-Pb dating</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

U-Pb dating
Fig. 7

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld
Fig. 8

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld
Fig. 9

(A) Images of the analyzed zircons. The sizes of the images are 50 µm. The number of analyses per zircon is indicated in the figure.

(B) Zircon U-Pb age data for sample 19XHL-12. The mean age is 152.8 ± 1.2 Ma with N = 10, MSWD = 1.16.
Fig. 11

A. ZK7003-11
Cst IV-1 (1)
Intercepts at 159.3 ± 1.5 Ma
MSWD = 0.66, N = 33

B. ZK7003-11
Cst IV-1 (2)
Intercepts at 158.5 ± 0.8 Ma
MSWD = 1.7, N = 34

C. ZK7003-11
Cst IV-2
Intercepts at 159.6 ± 1.4 Ma
MSWD = 2.6, N = 41

D. 19XHL-10-6
Cst I-1
Intercepts at 155.4 ± 0.8 Ma
MSWD = 3.3, N = 34

E. 19XHL-3
Cst II
Intercepts at 155.9 ± 0.7 Ma
MSWD = 1.4, N = 39

F. 19XHL-17-1
Cst III
Intercepts at 154.2 ± 0.9 Ma
MSWD = 2.1, N = 26

G. 19XHL-24
Cst III
Intercepts at 152.3 ± 1.1 Ma
MSWD = 3.5, N = 22

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld
Fig. 12

Jianfengling granite

Early mineralization

Laiziling granite

Main mineralization

- Zircon U-Pb (published)
- Mica Ar-Ar (published)
- Cassiterite U-Pb (published)
- Zircon U-Pb (this study)
- Cassiterite U-Pb (this study)
- Garnet U-Pb (this study)

Age / Ma

180 175 170 165 160 155 150 145 140 135 130
Fig. 13

A ~160Ma B ~152Ma

- Inferred Jianfengling granite
- Laiziling granite
- Skarn
- Inferred skarn
- Sn-I orebody
- Inferred Sn-I orebody
- Sn-II orebody
- Sn-I? orebody
- Sn-I?
- Sn-II
- Sn-I?
- Sn-II
- Fault
- Hydrothermal fluid
- Meteoric water
- Present surface

500m 2km