1	REVISION 1
2	Word Count: 12085
3	Raman analysis of octocoral carbonate ion structural disorder along a natural depth
4	gradient, Kona coast, Hawaiʻi
5	Kyle Conner ¹ , Shiv Sharma ¹ , Ryohei Uchiyama ² , Kentaro Tanaka ³ , Naoko Murakami-Sugihara ³ ,
6	Kotaro Shirai ³ , Samuel Kahng ¹
7	1. School of Ocean and Earth Science and Technology, University of Hawai'i at Manoa,
8	Honolulu, Hawaii 96822, U.S.A.
9	2. Graduate School of Science, Hokkaido University, Kita-10 Nishi-8 Kita-ku, Sapporo 060-
10	0810, Japan
11	3. Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha,
12	Kashiwa-shi, Chiba 277-8564, Japan
13	
14	Abstract
15	Both environmental and physiological factors cause carbonate ion structural disorder in
16	biogenic Mg-calcites. A major component of this disorder is driven by the incorporation of Mg
17	through environmental forcing and growth rate kinetics although non-Mg factors (e.g., other
18	cation/anion impurities, organic molecules) also contribute. Understanding the drivers of Mg
19	content in biogenic calcite and its effects on disorder has implications for octocoral Mg paleo-
20	proxies and the stability and diagenetic alteration of their calcitic skeletons. However, prior
21	studies of biogenic Mg-calcites have often been complicated by sampling inconsistencies over
22	space and time and potential intra-sample Mg variability. This study aims to analyze the relative
23	contributing factors of octocoral Mg-calcite structural disorder along gradients of both depth and

24 growth rate. Calcitic octocorals (Corallidae and Isididae, N = 28) were collected from 221–823 25 m depths across a natural gradient in biogeochemical parameters (pH: 7.4-7.9, T: $5-16^{\circ}$ C) off 26 the Kona coast of Hawai'i Island and analyzed using Raman spectroscopy. Samples were 27 collected during the same month, controlling for potential seasonal variability. Raman spectral 28 parameters from the v_1 peak quantified total carbonate ion structural disorder (full width at half 29 maximum height [FWHM] of v_1) and Mg content (v_1 position, Raman shift). The total structural 30 disorder was then partitioned into Mg-driven and non-Mg driven components (residual v1 31 FWHM). The total structural disorder and Mg content decreased significantly with increasing 32 depth, correlating with temperature and carbonate system parameters. The Mg-temperature 33 relationships from this study were also consistent with prior studies. Non-Mg structural disorder 34 did not correlate to any environmental parameters. When measured across an intra-sample 35 gradient of ontogenetic growth rate, total structural disorder, Mg content, and non-Mg structural 36 disorder increased with growth rate for all but one taxon, demonstrating the kinetic effect of 37 growth rate as well as potential taxon-specific physiological effects. These results provide insight 38 into how environmental and growth rate kinetic effects independently affect different 39 components of carbonate ion structural disorder (Mg content and non-Mg factors). These 40 findings also suggest that Raman spectroscopy may be helpful in quantifying solubility within 41 biogenic calcites. 42 **Keywords:** Octocorals, magnesian calcite, carbonate ion disorder, Raman spectroscopy, 43 depth gradient, growth rate kinetics

- 44
- 45

Introduction

46 Environmental and physiological (i.e., vital effects) factors can influence carbonate ion 47 structural disorder (referred to hereinafter as structural disorder) within biogenic calcium 48 carbonates (CaCO₃) through the incorporation of elemental impurities as well as growth rate 49 kinetics and organic molecules involved in biogenic calcification. CaCO₃ structural disorder 50 involves the orientation of carbonate ions relative to the c (vertical) and a (horizontal) unit cell 51 axes (Bischoff et al. 1985). Ideally, carbonate ions are symmetrically aligned with their 52 respective basal planes along the *a* axis, however, deviations from this symmetry occur at 53 varying extents within synthetic and biogenic CaCO₃. The incorporation of non-constituent ion 54 impurities (divalent cations with radii differing from Ca) such as Mg, Sr, and Ba results in 55 altered cation-oxygen bond lengths that can rotate carbonate ions out of the basal plane towards 56 the *c* axis (Bischoff et al. 1985; Urmos et al. 1991; Perrin et al. 2016; Farfan et al. 2018, 2021). 57 Large anions like sulfate (relative to carbonate ions) can also be substituted into the CaCO₃ 58 crystal structure and increase structural disorder (reviewed in Vielzeuf et al. 2018). Kinetic 59 effects influenced by growth rate as well as ambient temperature and pressure also promote 60 increased disorder because rapid crystallization reduces the symmetric alignment of carbonate 61 ions and increases the incorporation of impurities (Watson 2004; Morse et al. 2007; Mavromatis 62 et al. 2013; Farfan et al. 2018, 2021). CaCO₃ precipitation rates can be elevated through 63 favorable physicochemical conditions obtained either through the exterior environment or within 64 an organism's extracellular calcifying fluid (Al-Horani et al. 2003; Morse et al. 2006; McCulloch 65 et al. 2012). Organic molecules like skeletal organic matrices are crucial in regulating biogenic 66 crystal nucleation and can also introduce disorder by interacting with adjacent carbonate ions as well as other crystallographic features (Tambutté et al. 2011; Mass et al. 2013; DeCarlo et al. 67 68 2018; Coronado et al. 2019). Biogenic CaCO₃ are known to contain larger unit cell volumes and

69	c/a axis ratios relative to synthetic CaCO ₃ even with comparable concentrations of elemental
70	impurities such as Mg (Bischoff et al. 1985). However, it should be noted that Farfan et al.
71	(2021) observed similar unit cell volumes between biogenic (scleractinian coral) and synthetic
72	aragonites.
73	A major component of structural disorder within biogenic calcite (a polymorph of
74	CaCO ₃) involves the incorporation of Mg cations, which is largely driven by temperature,
75	carbonate system parameters, and skeletal growth rate. Although the exact mechanisms
76	influencing biogenic Mg incorporation are not well understood (Long et al. 2014), the
77	connection between temperature and Mg content in organisms such as octocorals has been well
78	established (Weinbauer et al. 2000; Thresher et al. 2004, 2010; Sherwood et al. 2005). Carbonate
79	system parameters such as saturation state (Ω) have also been correlated with Mg content
80	(Thresher et al. 2011) due to their thermodynamic and kinetic influence on calcite solubility
81	(Mackenzie et al. 1983; Mucci 1987; Morse et al. 2007). Other studies have also highlighted the
82	complications of skeletal growth rate effects on Mg content for calcite (Vielzeuf et al. 2013,
83	2018; Robinson et al. 2014; Chaabane et al. 2019; Flöter et al. 2019) as well as aragonite
84	(Gagnon et al. 2007; Rollion-Bard and Blamart 2015; Bell et al. 2017). The main factor
85	controlling Mg incorporation is still debated, although a combination of different environmental
86	factors (e.g., temperature) simultaneously influencing biological response and growth rate
87	kinetics is generally thought to be the case (Vielzeuf et al. 2018).
88	Understanding the drivers of octocoral Mg content and resulting structural disorder has
89	implications for mineral solubility and Mg paleo-proxies, yet prior studies have been
90	complicated by inconsistencies in sampling location and timeframes as well as potential Mg
91	variability within individual organisms. Higher calcite Mg content generates structural disorder

92 that decreases mineral stability and increases solubility across natural gradients in depth and 93 latitude (Andersson et al. 2008; Lebrato et al. 2016). Mg-temperature relationships are integral to 94 paleothermometry applications, yet the impact of vital effects on Mg incorporation and resulting 95 structural disorder confounds temperature reconstructions (Chaabane et al. 2019). Prior 96 geochemical studies on octocorals relied on limited or opportunistic sample sets lacking in 97 corresponding environmental data with specimens collected from a wide variety of locations and 98 timeframes (Robinson et al. 2014). As a result, attempts to distinguish Mg contributions from 99 different environmental and vital effects are fundamentally confounded. Specimens from 100 different oceanographic regimes contain a different combination of biogeochemical conditions 101 and food sources, which could impact the elemental geochemistry of octocoral skeletons 102 (Hasegawa et al. 2012). Not accounting for time-based variables such as seasonal growth rates 103 could also lead to inaccuracies if samples are collected at different times of the year. Spatial 104 variability in trace elements within individual octocoral skeletons has been analyzed through 105 radial cross section measurements for numerous species, revealing areas of relatively faster 106 growth (e.g., medullar zone for Corallium rubrum, Vielzeuf et al. 2008). However, intra-sample 107 variability has not been quantified on surface skeletons despite providing an opportunity to 108 observe the effects of variable growth rates (branches vs. base; Vielzeuf et al. 2008) for skeletons 109 precipitated concurrently under the same environmental conditions. Only a few studies have 110 analyzed octocoral geochemistry with respect to environmental gradients involving 111 corresponding oceanographic parameters (Thresher et al. 2011; Bostock et al. 2015), which have 112 better enabled the analysis of major environmental effects on measured Mg. 113 Raman spectroscopy can provide a fast, nondestructive method of quantifying octocoral 114 structural disorder from Mg and non-Mg sources as well as Mg content. The Raman spectra of

115	calcium carbonates contain six main peaks: two representing the intermolecular lattice vibration
116	modes (librational L peak and translational T peak) and four representing the internal vibration
117	modes $(v_1, 2v_2, v_3, v_4)$ (Bischoff et al. 1985, ¹ Fig. S1). The incorporation of smaller sized
118	(relative to Ca) Mg cations into calcite shortens cation-oxygen bonds, which then elevate the
119	vibrational frequencies and positional disorder of neighboring carbonate ions (Krishnamurti
120	1957; White 1974; Bischoff et al. 1985). Raman spectral parameters like peak position (Raman
121	shift, cm ⁻¹) and width (full width at half magnitude, FWHM, cm ⁻¹) increase predictably as a
122	function of Mg content (mol%, Bischoff et al. 1985; Perrin et al. 2016). Incorporated divalent
123	cations larger than Ca such as Ba and Sr generate longer, weaker bonds with oxygen that should,
124	in theory, oppose and suppress the Raman signal influenced by Mg. Analogous work on
125	aragonite minerals reported that v_1 Raman shift values decrease 0.0544 cm ⁻¹ per mmol/mol Sr/Ca
126	and 0.0004 $\rm cm^{-1}$ per µmol/mol B/Ca while increasing 0.0262 $\rm cm^{-1}$ per mmol/mol Mg/Ca (Farfan
127	et al. 2021). However, findings from Kaabar et al. (2011) demonstrated that considerable Ba and
128	Sr content (up to 33% of total cations) did not cause significant changes to calcite v_1 peak Raman
129	shift when the Ca fraction was 20% or higher. Previous Raman calibration of calcite Sr content
130	also observed no significant change in calcite v_1 peak characteristics even across a 0–13% range
131	in Sr content (Shibano et al. 2017). Sulfate anions thought to impact structural disorder did not
132	significantly change v_1 Raman shift in calcites with up to 20% CaSO ₄ (Kontoyannis et al. 1997).
133	While large fractions of Ba, Sr, and S can interact with Ca to significantly alter calcite FWHM
134	values (Kontoyannis et al. 1997; Kaabar et al. 2011), Ba, Sr, and S content within octocoral
135	calcite is negligible based on previous studies (Thresher et al. 2007; LaVigne et al. 2011; Sinclair
136	et al. 2011; Vielzeuf et al. 2018, see ¹ Supplementary Info., Figures, and Tables). Observed
137	Raman spectral changes from octocoral calcite can therefore be predominantly attributed to Mg.

138 The FWHM of biogenic calcite is consistently larger than that of synthetic calcites even at very 139 similar Mg content (Bischoff et al. 1985), suggesting that physiological factors aside from Mg 140 are contributing to overall disorder. As such, the overall v_1 FWHM signal can be partitioned into 141 Mg and non-Mg driven components (e.g., residual v₁ FWHM, Comeau et al. 2018; DeCarlo et al. 142 2019). The residual v_1 FWHM parameter quantifies structural disorder after the effects of Mg 143 incorporation on overall FWHM have been removed and has been employed in studies of Mg-144 calcite crustose coralline algae as a potential qualitative proxy of calcifying fluid Ω (Comeau et 145 al. 2018; Cornwall et al. 2018, 2020). 146 The goals of this study are to separate and analyze the relative contributions of structural 147 disorder with respect to environmental gradients and variable growth effects within octocoral 148 colonies to better understand the drivers of disorder within octocoral calcite. Structural disorder 149 (Mg and non-Mg) as well as Mg content were measured within the calcitic surface skeletons of 150 three Corallidae species and one Isididae genus collected along a natural gradient in depth and 151 environmental parameters (temperature, pH, Ω , salinity) off the Kona coast of Hawai'i Island 152 within the same month. The study area took advantage of the North Pacific's naturally 153 compressed vertical oceanographic gradients and shallow calcium carbonate saturation horizons 154 (Greenwood 2009). For the depth gradient Raman measurements, structural disorder and Mg 155 content were measured from the basal portion of skeleton using Raman spectroscopy and 156 compared to corresponding *in situ* oceanographic data to determine the effect of environmental 157 factors on structural disorder while controlling for seasonal and ontogenetic growth effects. 158 Intra-sample Raman measurements were conducted on specific octocoral specimens at varying 159 branch diameters to analyze disorder with respect to variable ontogenetic growth rates under 160 fixed environmental conditions.

7

161

162	Materials and Methods
163	Octocoral collection and oceanographic observations
164	Deep-sea octocorals of the families Corallidae and Isididae were collected live along a
165	natural depth gradient (221–823 m, nitrate maximum at \sim 800 m with pH = 7.35 and DIC = 2340
166	μ mol/kg) off the leeward coast of Hawai'i Island (Fig. 1, Table 1). Sample collections were
167	made using Pisces IV/V submersibles as part of the Hawai'i Undersea Research Laboratory
168	(HURL) cruises in 2011, 2016, and 2017. All Kona coast specimens were collected within the
169	same four-week period (August to September), thereby minimizing the impacts of seasonal
170	growth variations on Mg content and structural disorder (Mavromatis et al. 2013; Vielzeuf et al.
171	2013, 2018; Flöter et al. 2019). Moreover, the collection of specimens from the same
172	oceanographic regime minimizes differences in food sources (via surface primary productivity
173	and export) and biogeochemical conditions that can inherently confound results. By controlling
174	for spatial (e.g., sampling location and corresponding oceanography) and temporal (e.g., seasonal
175	growth) variables, environmental factors and species-specific effects can be better isolated. An
176	additional sample (M3) collected off Makapu'u, O'ahu at 417 m depth was used for the
177	calibration of Raman-based Mg content. All relevant octocoral specimens ($N = 28$) were
178	taxonomically identified by specialists at the University of Colombia, Bogotá (Luisa Dueñas;
179	Ardila et al. 2012, Dueñas et al. 2014) and the University of Zürich (Bertalan Lendvay; Lendvay
180	et al. 2020). Octocoral species in this sample set include Pleurocorallium cf. secundum,
181	Corallium tortuosum, Hemicorallium imperiale/laauense (a single species complex; Dueñas and
182	Lendvay, pers. comm.), and Acanella spp. (likely multiple species). Prior to geochemical
183	analysis, organic matter was removed from the skeletons by soaking and rinsing them in a

184	sodium hypochlorite (bleach) and water mixture and rinsing with fresh water. For a subset of
185	octocoral skeletons to be measured using Raman and LA-ICPMS (see "Calibration of Raman Mg
186	content" and Table 1), cross sections of the basal skeleton were also cut horizontally to the
187	growth axis using a diamond saw (Isomet 1000, Buehler) and then polished using imperial
188	polishing paper (30 μ m, 9 μ m, 3 μ m, and 1 μ m; 3M Inc., Maplewood, MN, USA). No additional
189	polishing of the surface skeleton was carried out (see ¹ Supplementary Info., Figures, and Tables).
190	At each sampling site, oceanographic parameters were measured from the surface down
191	to 1000 m to fully characterize water column chemistry. In the sites visited during the 2011
192	cruise (Ho'okena, Kealakekua, Wai'ahukini), CTD hydrocasts equipped with a Sea-Bird SBE-9,
193	SBE-18 pH probe, and a rosette of 24 Niskin bottles were conducted at 4–5 stations per site
194	along a 2 km transect perpendicular to the shore. Hydrocasts provided continuous measurements
195	of temperature, conductivity (salinity), and pH as well as discrete water samples ($N = 89$) that
196	were stored in borosilicate glass bottles in a cool dark container until chemical analysis.
197	Additional continuous temperature, salinity, and pH data were measured using SBE-25 CTD and
198	SBE-18 pH probes attached to the submersible during sample collection. At the Kailua-Kona
199	site, temperature loggers (Onset TidbiT v2) were deployed on the seafloor at nine stations from
200	200–900 m and collected data every 30 minutes for 12 months (Sept 2016 to Aug 2017, ¹ Fig.
201	S2). This additional data enabled the quantification of vertical oscillations in isopycnal depths
202	from internal tides, which aided with accurately aligning environmental parameters with
203	octocoral samples (discussed in ¹ Supplementary Info., Figures, and Tables).
204	Discrete seawater samples were analyzed for carbonate system parameters (pH, DIC, TA)
205	in accordance with standard operation procedures described in Dickson et al. (2007) and
206	Riebesell et al. (2010) with appropriate modifications for differences in our analytical equipment.

207	Dissolved inorganic carbon (DIC) was measured using an APOLLO SciTech DIC analyzer
208	(model AS-C3). Total alkalinity (TA) was measured using an automated open-cell
209	potentiometric titration method described in Dickson et al. (2007). Certified reference materials
210	(CRM) were measured routinely to confirm measurement accuracy. Spectrophotometric
211	measurements of pH were made using an m-cresol purple dye indicator on a temperature-
212	controlled spectrophotometer (Thermo Scientific TM Orion TM AquaMate 7000 Vis
213	Spectrophotometer). Tris standards (Dickson Lab, SIO) were used to verify dye quality and
214	measurement accuracy. Necessary temperature and salinity measurements were conducted using
215	a YSI multiparameter meter (YSI 5563). CO2SYS (Excel; Lewis and Wallace 1998) was used to
216	calculate calcite saturation state (Ω_{Cal}), [CO ₃ ²⁻], and [HCO ₃ ⁻] using K ₁ and K ₂ dissociation
217	constants from Mehrbach et al. (1973) refit by Dickson and Millero (1987), $K_{\rm HSO4}$ from Dickson
218	(1990), total boron from Uppström (1974), and seawater-scale pH. Potential density (σ_{θ}) was
219	calculated in MATLAB using the Gibbs-Seawater toolbox (McDougall and Barker 2011).
220	
221	Raman measurement and analysis of octocoral surface skeleton

222 Micro-Raman system. The micro-Raman system located in the Raman and Infrared 223 Spectroscopy Laboratory at the Hawai'i Institute of Geophysics and Planetology (HIGP) was 224 used to conduct Raman measurements in accordance with procedures used in Acosta-Maeda et 225 al. (2013). The instrument is comprised of a Kaiser Micro-Raman Spectrometer with a RAMAN RXN1TM Microprobe (Kaiser Optical Systems Inc.) and a Leica DMLB microscope with a 100x 226 227 maximum magnification objective, motorized x-y stage, Kaiser HoloSpec spectrometer, and 228 Andor CCD camera. The near-infrared excitation laser uses an external-cavity Invictus diode 229 laser with a maximum power of 66 mW. The laser wavelength was set at 785 nm to reduce

230 interference from octocoral skeletal organic matter via residual fluorescence (DeCarlo et al. 231 2017, 2018; Farfan et al. 2021). The system has a spatial resolution of $\sim 1 \mu m$ (using the 100x objective) with a Raman spectral lines measurement accuracy of ± 0.5 cm⁻¹ and a spectral range 232 of 150–3300 cm⁻¹. Cyclohexane Raman spectra (801.3 cm⁻¹ peak) were frequently measured to 233 234 check for instrument drift over time. The micro-Raman objective was properly focused for every 235 measurement taken. GRAMS/AI software (Thermo Fisher Scientific Inc.) was used to curve fit 236 the Raman v_1 peak with a mixed Gaussian-Lorentzian curve that allowed the extraction of 237 Raman shift and linewidth (peak width) parameters. Calculating the final FWHM required 238 deconvolving the Raman instrument linewidth from the raw measured linewidth. Deconvolutions 239 were done via Raman measurements of Neon lamp light and the equation: $\omega_{obs}^{2} = \omega_{actual}^{2} + \omega_{inst}^{2}$ 240 (1) 241 where ω_{obs} is the observed linewidth of the Raman peak, ω_{inst} is the instrument-based linewidth, 242 and ω_{actual} is the true linewidth (FWHM) from the analyzed sample. Using relevant v₁ peak equations from Perrin et al. (2016) (see ¹Supplementary Info., Figures, and Tables), octocoral 243 244 Mg content was predicted from Raman shift measurements. The resulting Mg value was then 245 used to predict the FWHM signal contributed by Mg (Mg-driven structural disorder, Perrin et al. 246 2016), which was then subtracted from the overall FWHM measurement to obtain the residual 247 FWHM value (non-Mg structural disorder). 248 Calibration of Raman Mg content. The accuracy of the calculated Mg values based on 249 the v_1 Raman shift equation from Perrin et al. (2016) was first verified through the pairing of

250 measurements from Raman spectroscopy and Laser Ablation Inductively Coupled Plasma Mass

- 251 Spectrometry (LA-ICPMS) on polished octocoral basal cross sections. Radial Mg measurements
- were conducted on a subset of depth gradient octocorals as well as sample M3 from Makapu'u

253 (N = 8, Table 1) using an Agilent 7700cs connected with an excimer laser (NWR-193, New 254 Wave Research) at the Atmosphere and Ocean Research Institute, The University of Tokyo. 255 Setup conditions included a 100-µm diameter laser spot, a pulse rate of 10 Hz and pulse energy of 3 mJ, using He as the carrier gas. The signal intensity of ions (²⁶Mg and ⁴³Ca) was calculated 256 257 by subtracting the background level of trace elements, which had been obtained empirically with the laser output set to 0%. Subsequently, the ratio of trace elements to 43 Ca was obtained and 258 259 compared to the signal intensities of standard reference materials (discussed in ¹Supplementary 260 Info., Figures, and Tables). Observable round craters in the cross-section surface from the 100-261 µm laser spot were used to align the subsequent Raman measurements. Raman measurements (N 262 = 10 per marker) were taken adjacent to each crater along the transects. Raman v_1 Mg estimates 263 were compared to LA-ICPMS Mg to generate a trendline between the two data sources to 264 validate the equations from Perrin et al. (2016) and adjust Raman v_1 Mg content for the octocoral 265 samples.

266 Octocoral surface skeleton measurements. Raman measurements were taken on the 267 outermost, up current side of the basal portion (>3 mm diameter) of the octocoral skeleton 268 surface to capture the geochemical conditions at the time of sample collection. Octocorals tend to 269 display skewed growth patterns in their basal cross sections due to consistent variations in radial 270 growth rate in different directions (Luan et al. 2013; Vielzeuf et al. 2018). Growth rates are 271 fastest on the up current side of the corals (opposite of the feeding polyps) and produce relatively 272 thicker growth rings (Kahng, pers. obs.). The central portion of the cross sections contains the 273 fast-growing medullar region (Corallidae) or the central axis (Isididae), which is known to have 274 naturally higher Mg content than the surrounding growth rings (Vielzuef et al. 2008; Perrin et al. 275 2015; Flöter et al. 2019, Fig. 2). All depth gradient Raman measurements (N = 15 per sample: 3

276	five-point transects with ~100 μ m spacing) were taken from the up current side of the thicker
277	basal portion of skeleton (as opposed to younger, thinner branches that are likely comprised of
278	mostly medullar skeleton) to reduce potential growth rate bias in structural disorder and Mg
279	measurements across the depth gradient (Fig. 2). Preliminary sample size analysis demonstrated
280	that at least $N = 9$ Raman measurements per octocoral sample yield a negligible change in
281	standard error values of v_1 peak parameters (¹ Fig. S3).
282	Intra-sample Raman measurements were also taken across the surface skeleton of several
283	entire octocoral samples (P. cf. secundum from 273 m; C. tortuosum from 280 m; H.
284	<i>imperiale/laauense</i> from 444 m; <i>H. imperiale/laauense</i> from 472 m; <i>Acanella</i> spp. from 823m)
285	to investigate intra-sample variability in structural disorder and Mg content with respect to
286	ontogenetic skeletal growth rates. Because the medullar region/central axis grows relatively
287	faster than the outer annular region, it is assumed that surface skeleton grows relatively faster at
288	thinner branches where the medullar region/central axis is exposed at the surface than thicker
289	basal branches containing annular skeleton at the surface (Vielzeuf et al. 2008; Flöter et al.
290	2019). Five-point transects were taken on 20 different locations along the octocoral surface
291	skeleton (N = 100) to provide a wide coverage of thicker (slower-growing) basal regions and
292	thinner (faster-growing) branches. Branch diameter, the distance between the up current and
293	down current sides, was measured using digital calipers (0.01 mm resolution; Neiko Tools, USA)
294	and then compared to corresponding Raman measurements (ν_1 FWHM, ν_1 Raman shift Mg
295	content, residual v_1 FWHM) to ascertain variability in structural disorder relative to ontogenetic
296	growth rates.
297	Potential Mg and non-Mg disorder patterns along the depth gradient were compared with

298 corresponding oceanographic measurements to illuminate patterns between skeletal

13

299	geochemistry and environmental conditions. Univariate models were emphasized as temperature
300	and carbonate system parameters were highly collineated. All relevant statistical analyses were
301	conducted using R Studio (version 4.0.5, R Core Team 2021). For this study, significance was
302	defined as $P < 0.05$.
303	
304	Results
305	Environmental context
306	Oceanographic parameters (temperature, salinity, pH, Ω_{Cal}) decrease sharply at around
307	100 m depth, signifying the transition to denser water masses (¹ Fig. S4). Environmental
308	parameters begin to stabilize past 500 m. The calcite saturation horizon ($\Omega_{Cal} = 1$) is almost
309	reached at ~600 m. Collinearity was also observed in the oceanographic data, especially between
310	pH and temperature (¹ Fig. S4). The sampled octocorals displayed a clear depth zonation pattern
311	with P. cf. secundum and C. tortuosum inhabiting the shallowest areas from \sim 220 m to \sim 300 m
312	and <i>H. imperiale/laauense</i> observed in deeper regions from \sim 400 m to \sim 580 m. <i>Acanella</i> spp.
313	had a wider depth distribution from ~400 m to over 800 m. Depths from 221 m to 823 m
314	experienced temperature and pH values ranging from 16.37 to 4.99 °C and 7.94 to 7.41,
315	respectively. High-resolution temperature and potential density data are discussed further in the
316	¹ Supplementary Info., Figures, and Tables section.
317	
318	LA-ICPMS corrections to v ₁ Raman shift Mg content

- 319 Mg content displayed considerable scatter (~2.5 mol% range) around the linear trendline:
- 320 LA-ICPMS Mg = $(1.1116 \times v_1 \text{ Raman shift Mg}) + 3.0703 (R^2 = 0.77, N = 90)$ (2)

321	shown in Figure 3a. There was a noticeable grouping of data points corresponding with the two
322	octocoral species sampled (H. imperiale/laauense and P. cf. secundum). Although the LA-
323	ICPMS Mg values closely overlapped between the two species, Raman-derived Mg values
324	showed greater differences close to 2 mol%. The trendline slope did not differ greatly from the
325	1:1 line between v_1 Raman shift Mg and LA-ICPMS Mg, although there was an offset in Mg
326	indicated by the y-intercept where ν_1 underpredicted Mg by 3.86 \pm 0.74 mol% on average.
327	Henceforth, corrections based on the linear relationship between LA-ICPMS and Raman are
328	applied to the octocoral v_1 Raman shift Mg data (depth gradient and intra-sample measurements).
329	Raman-based Mg content appeared to increase significantly towards the medullar region of the
330	cross-section as exemplified with the slow growth axis of <i>P</i> . cf. secundum from 238 m (Dev.
331	Expl. = 0.94, R^2 = 0.92), which had a strong relationship with LA-ICPMS Mg data (R^2 = 0.79, P
332	< 0.001, Fig. 3b, c).
333	
334	Octocoral basal surface structural disorder and Mg along depth gradient
335	FWHM, Mg, and residual FWHM. Octocoral v_1 FWHM ranged from a high of 10.06 ±
336	0.03 cm ⁻¹ detected from <i>P</i> . cf. secundum at 221 m to a low of 9.11 ± 0.04 cm ⁻¹ from <i>H</i> .
337	<i>imperiale/laauense</i> at 574 m. v_1 FWHM across all octocoral species significantly decreases with
338	increasing potential density (Fig. 4). H. imperiale/laauense v_1 FWHM displayed a significant

339 correlation with potential density, while *Acanella* spp. did not appear to display any notable

340 FWHM patterns (¹Table S1). *P*. cf. secundum v_1 FWHM had an especially strong correlation

341 with potential density although only four samples were collected. Only two samples of *C*.

342 *tortuosum* were acquired so no species-specific trendline could be generated for any of the

Raman parameters. When only Corallidae octocorals are considered, the v₁ FWHM depth
 gradient correlation is further strengthened.

345 Octocoral Mg content (from v_1 Raman shift) along the depth gradient ranged from a high 346 of 11.54 ± 0.04 mol% MgCO₃ detected from *C. tortuosum* at 280 m to a low of 8.97 ± 0.09 347 mol% MgCO₃ from *H. imperiale/laauense* at 582 m. Mg content also significantly decreases 348 with increasing potential density (Fig. 4). H. imperiale/laauense Mg displayed a significant yet 349 weaker correlation with potential density compared to v_1 FWHM, while Acanella spp. Mg 350 displayed no significant pattern with potential density. P. cf. secundum Mg content was more 351 moderately correlated with potential density compared to v_1 FWHM (¹Table S2). The Mg depth 352 gradient correlation is again strengthened when only Corallidae octocorals are considered. Residual v₁ FWHM ranged from 1.73 ± 0.08 cm⁻¹ for *Acanella* spp. at 451 m to $1.21 \pm$ 353 0.04 cm⁻¹ for *H. imperiale/laauense* at 399 m and did not change significantly with potential 354 density (Fig. 4, ¹Table S3). Moreover, two-way ANOVA tests yielded no significant species-355 356 specific correlations between octocoral residual v_1 FWHM and those oceanographic parameters (best interaction was between Species and Ω_{Cal} ; $F_{3,20} = 1.54$, P = 0.23). 357

358

365	Mg content had similar correlation patterns compared to v_1 FWHM although R-values
366	were lower overall. $[CO_3^{2-}]$ and Ω_{Cal} (both R = 0.90) maintained the strongest positive
367	correlations with octocoral Mg content (Fig. 6, ¹ Table S2). In Acanella spp., the Mg content
368	displayed no significant correlations with any environmental parameter. H. imperiale/laauense
369	was moderately correlated with all environmental parameters except for salinity. P. cf. secundum
370	Mg was well correlated with all environmental parameters except for pH (only moderately
371	correlated), but all linear models had no significant p-values due to low sample size.
372	Residual v_1 FWHM was weakly correlated with all environmental parameters with the
373	highest correlation occurring with pH ($R = 0.34$, ¹ Table S3).
374	
375	Intra-sample octocoral structural disorder and Mg
376	v_1 FWHM of <i>P</i> . cf. <i>secundum</i> collected at 273 m consistently increases at smaller branch
377	diameters from 9.70 ± 0.05 cm ⁻¹ at 5.18 mm to 9.95 ± 0.04 cm ⁻¹ at 0.95 mm (Fig. 7a, ¹ S7a). Mg
378	content is mostly scattered between 11.22 ± 0.04 mol% and 11.63 ± 0.04 mol% with a notable
379	peak of 11.87 ± 0.08 mol% at 1.77 mm (Fig. 7a, ¹ S7a). Residual v ₁ FWHM also increases
380	somewhat both at the smallest branch diameters (from 1.27 \pm 0.03 cm $^{\text{-1}}$ at 5.64 mm to 1.48 \pm
381	0.04 cm ⁻¹ at 0.95 mm) and at high branch diameters (e.g., 1.43 ± 0.06 cm ⁻¹ at 10.13 mm). In <i>C</i> .
382	tortuosum from 280 m, both v_1 FWHM (9.76 ± 0.03 cm ⁻¹ to 9.76 ± 0.03 cm ⁻¹) and residual v_1
383	FWHM $(1.36 \pm 0.02 \text{ cm}^{-1} \text{ to } 1.59 \pm 0.05 \text{ cm}^{-1})$ increase nonlinearly with decreasing branch
384	diameter, while Mg content increases more linearly from 11.37 ± 0.09 mol% at 7.31 mm to
385	11.75 ± 0.13 mol% at 1.45 mm (¹ Fig. S7b).
386	Within the <i>H. imperiale/laauense</i> specimen collected at 444 m, v_1 FWHM sharply
387	increases to 9.87 ± 0.03 cm ⁻¹ at less than 0.5 mm compared to values of around 9.2–9.4 cm ⁻¹

388	from larger diameters (Fig. 7b, ¹ S7c). Mg content experiences a similar pattern with values
389	increasing to greater than 10.23 \pm 0.07 mol% at diameters less than 0.58 mm. Residual ν_{1}
390	FWHM increases with decreasing branch diameter at a consistent rate from 1.41 ± 0.01 cm ⁻¹ at
391	3.67 mm to 1.80 ± 0.02 cm ⁻¹ at 0.39 mm. In <i>H. imperiale/laauense</i> from 472 m, v ₁ FWHM (from
392	$9.14\pm0.02~\text{cm}^{-1}$ at 3.98 mm to $9.47\pm0.04~\text{cm}^{-1}$ at 0.73 mm) and Mg content (9.02 \pm 0.07 mol%
393	to 9.56 ± 0.02 mol% at those same diameters) also increase with decreasing branch diameter at a
394	consistent rate (¹ Fig. S7d). Its residual v_1 FWHM values follow a similar yet more scattered
395	gradual increase from 1.48 ± 0.02 cm ⁻¹ at 6.82 mm to 1.70 ± 0.04 cm ⁻¹ at 0.73 mm. The sharp
396	step-like v ₁ FWHM and Mg spikes observed within the <i>H. imperiale/laauense</i> specimens contrast
397	with the more linear and scattered changes within <i>P</i> . cf. secundum and <i>C</i> . tortuosum.
398	In Acanella spp. 823 m, a similar pattern is observed between branch diameter and Mg
399	content, which rises from 9.25 \pm 0.07 mol% at 8.61 mm to 9.88 \pm 0.09 mol% at 1.05 mm (Fig.
400	7c, ¹ S7e). However, v_1 FWHM (9.23 ± 0.03 cm ⁻¹ at 6.76 mm to 9.03 ± 0.05 cm ⁻¹ at 1.05 mm) and
401	residual v_1 FWHM (1.55 ± 0.04 cm ⁻¹ at 6.76 mm to 1.15 ± 0.04 cm ⁻¹ at 1.05 mm) contain
402	strikingly different patterns with branch diameter compared to v_1 FWHM and residual v_1 FWHM
403	from the other octocoral specimens.
404	Species-specific patterns between branch diameter and overall ν_1 FWHM, Mg-based ν_1
405	FWHM, and residual v_1 FWHM are apparent (Fig. 8, ¹ Table S4). Within <i>P</i> . cf. secundum from
406	273 m, Mg-based v_1 FWHM is moderately correlated with overall v_1 FWHM (R = 0.54), while
407	residual v_1 FWHM and overall v_1 FWHM are more strongly correlated (R = 0.77). FWHM values
408	from the H. imperiale/laauense specimen collected at 444 m were well correlated with both Mg-
409	based (R = 0.82) and residual v_1 FWHM (R = 0.82). Strong correlations (R = 0.72 and R = 0.79,
410	respectively) are also observed for <i>H. imperiale/laauense</i> from 472 m. v_1 FWHM has a very

411 strong correlation with residual v_1 FWHM (R = 0.95) and a strong correlation with Mg-based v_1 412 FWHM (R = 0.82) within C. tortuosum from 280 m. v_1 FWHM values measured from Acanella 413 spp. at 823 m are weakly correlated with Mg-based v_1 FWHM (R = 0.33) but strongly correlated with residual v_1 FWHM (R = 0.86). 414 415 Discussion 416 417 Quantifying Mg content from Raman measurements Raman spectral measurements of octocoral calcite should be largely representative of 418 419 changes in Mg content as opposed to other incorporated cations and anions (discussed in 420 Introduction). It should be noted that the range in measured Mg content within the octocorals is narrow, equating to a v_1 Raman shift range of only 1.09 cm⁻¹ for the LA-ICPMS corrections, 0.59 421 cm⁻¹ for the depth gradient, and 0.65 cm⁻¹ for the intra-sample measurements. However, 422 423 assuming similar elemental ratios between Mg and other ions like Sr, B, and Ba from Vielzeuf et 424 al. (2018), one would expect to see a range of around 1.92 mmol/mol Sr/Ca, 89.64 µmol/mol 425 B/Ca, and 0.012 µmol/mol Ba/Ca for a Mg/Ca range of 97 mmol/mol. Changes in Mg should again dominate the v_1 Raman signal (e.g., based on Farfan et al. 2021, +2.54 cm⁻¹ from Mg with 426 only -0.10 cm⁻¹ from Sr), yet the presence of non-Mg cations could lead to underestimated v_1 427 428 Raman shift Mg values. For this reason, the LA-ICPMS Mg correction is needed to obtain more 429 accurate Mg values from v_1 Raman shift. While the results of Farfan et al. (2021) provide a 430 potential detailed look into the effects of certain divalent cations on Raman spectral analysis of 431 CaCO₃, a detailed analogous analysis on calcite minerals is needed. 432 The trendline (Eqn. 2) comparing LA-ICPMS and v_1 Raman shift Mg displays a 433 consistent offset of around 3 mol% from the 1:1 line with Raman shift underestimating LA-

434 ICPMS Mg (Fig. 3a). The Raman-Mg calibration lines from Perrin et al. (2016) are based on 435 calcites synthesized under high pressure and temperature without the presence non-Mg 436 cations/anions, organic molecules, or other physiological factors that could impact the calcite 437 Raman signal. It is possible that the presence of non-Mg cations/anions in the octocoral skeleton 438 are contributing to the underestimated v_1 Raman shift Mg values in this case. Raman shift values 439 within biogenic Mg-calcites are also known to be slightly lower than their synthetic counterparts 440 at similar Mg content (Bischoff et al. 1985). The consistent offset of the LA-ICPMS and Raman 441 trendline suggests that these biogenic factors are largely similar across the octocoral species in 442 this study. There is a notable spread of data points around the trendline that could be due to the 443 differing spatial resolutions of LA-ICPMS (100 µm) and Raman (~2 µm). Octocoral skeletons 444 are known to contain fine-scale spatial variability in Mg content (Vielzeuf et al. 2008). While 445 smaller differences in Mg content are being masked by the spatial mismatch between the two 446 methods, larger Mg differences are better resolved. For instance, Figs. 3b-c highlight the sharp 447 increase in Mg content from the skeletal surface to the medullar region within a single cross 448 section sample of P. cf. secundum, resulting in a strong LA-ICPMS and v_1 Raman shift Mg 449 trendline with relatively less scatter. Nevertheless, a strong correlation exists between the two 450 methods with a consistent offset, thus allowing v_1 Raman shift Mg content to be corrected.

451

452 Environmental drivers of structural disorder and Mg

453 Overall v₁ FWHM and Mg content both decrease across the environmental gradient,
454 indicating an overall decrease in structural disorder correlating strongly with decreasing
455 temperature and carbonate system parameters. The relationship between potential density (depth)
456 and v₁ FWHM and Mg content agrees with prior findings along environmental gradients

457	(Andersson et al. 2008; Thresher et al. 2011). Lower temperatures at greater depth result in a
458	thermodynamically more soluble Mg-calcite structure relative to warmer, shallower waters
459	(Mucci 1987; Morse et al. 2007). Conditions less conducive to calcification at depth (reduced
460	pH, $[CO_3^{2-}]$, and Ω_{Cal}) would also lead to thermodynamically less stable calcite, which
461	discourages Mg incorporation (Mackenzie et al. 1983). Although the relationship between calcite
462	Mg content and temperature has received relatively more attention, carbonate system parameters
463	maintain the highest correlations with $\nu_1 FWHM$ and Mg in this study with strong temperature
464	correlations as well.
465	Non-Mg driven structural disorder measured using residual v_1 FWHM displayed no clear
466	pattern with depth or environmental parameters. Residual v_1 FWHM decreases slowly with depth
467	only among the shallowest C. tortuosum and P. cf. secundum specimens, yet the variable
468	clustering from deeper H. imperiale/laauense and Isididae disrupts any overall trends. The lack
469	of significant change in non-Mg disorder with depth suggests that the octocoral calcite stability
470	influenced by vital effects or growth rate kinetics not involving Mg are not sensitive to
471	environmental changes. In contrast, v_1 FWHM and Mg display strong patterns with depth, which
472	implies that skeletal structural disorder is due largely to Mg incorporation. If the majority of non-
473	Mg structural disorder is driven by variations in growth rate, then Mg should dominate the ν_1
474	FWHM signal given that seasonal growth rates are controlled through a consistent sampling
475	protocol over time and location within the sample (basal portion of surface skeleton). Another
476	possibility is that basal skeleton growth rate itself does not change significantly with depth,
477	which has been observed by Thresher et al. (2016) for Isididae.
478	ν_l FWHM could also be positively correlated with extracellular calcifying fluid $\Omega\left(\Omega_{ECF}\right)$
479	due to the well-recognized positive relationship between calcite growth rates and Ω (Morse et al.

480	2007). For biogenic calcifiers, higher Ω_{ECF} should drive faster skeletal accretion rates, which
481	would increase structural disorder and v_1 FWHM values. While this relationship has been well
482	demonstrated for aragonite and used to quantify shallow water coral Ω_{ECF} (DeCarlo et al. 2019),
483	it has not yet been verified for Mg-calcite. Prior studies have used residual ν_1FWHM as a
484	qualitative proxy for Ω_{ECF} within Mg-calcite calcifiers (e.g., crustose coralline algae, Comeau et
485	al. 2018; Cornwall et al. 2018, 2020) assuming that the Mg-calcite FWHM- Ω_{ECF} relationship
486	operates similarly to that of synthetic and coral aragonite (DeCarlo et al. 2017; Farfan et al.
487	2021). If true, then the results here would indicate that Ω_{ECF} is not sensitive to the environmental
488	gradient. While this result would have interesting implications for octocoral responses to
489	contemporary carbonate chemistry gradients as well as ongoing ocean acidification, a systematic
490	calibration between calcite Ω_{ECF} and Raman spectral parameters (e.g., FWHM) is needed to
491	confirm these results.

Mg-temperature relationships in this study align with relationships from prior studies of 492 synthetic and biogenic calcite (Fig. 9, ¹Table S6). The linear expression for skeletal Mg/Ca as a 493 function of temperature based on all available octocoral samples from this study ($R^2 = 0.70$, N = 494 28) as well as the one derived exclusively from Corallidae ($R^2 = 0.73$, N = 23) either overlapped 495 496 or were similar to those established for Corallium spp., C. rubrum, and Corallium spp. compiled 497 in previous studies (Chave 1954; Weinbauer et al. 2000; Yoshimura et al. 2011; Vielzeuf et al. 498 2013; Thresher et al. 2016; Chaabane et al. 2019). Only the model from Weinbauer et al. (2000) $(R^2 = 0.99, N = 3)$ had a very different slope and intercept. Isididae from this study $(R^2 = 0.20, N = 3)$ 499 500 = 5) did not display a strong relationship albeit with a low sample size. The Isididae model generated by Thresher et al. (2016) ($R^2 = 0.87$, N = 73) was similar to prior Corallidae models. 501 502 Inorganic high-Mg calcite experiments under varying temperatures (5–40°C) also yielded a slope

503	overlapping with the above octocoral studies although the intercept was much lower (Mucci
504	1987). The comparable Mg-temperature slopes between organic and inorganic calcite suggest a
505	similar kinetic Mg incorporation mechanism (Thresher et al. 2016). Meanwhile, differences in
506	intercept values among different octocoral Mg models could result from species-specific effects.
507	The lack of a consistent intra-annual Mg-temperature relationship in prior studies is likely driven
508	by interference from vital effects amplifying Mg content (Vielzeuf et al. 2013). Nevertheless,
509	vital effects can be a product of temperature as well as other environmental parameters. While
510	seasonal fluctuations in skeletal growth rate appear to drive intra-annual Mg variability, longer-
511	term mean temperature has been correlated with average octocoral Mg content (Chaabane et al.
512	2019), a result that could be observed here along the depth gradient.

513

514 Growth rate effects on structural disorder and Mg

515 Within individual octocoral specimens, the change in residual v_1 FWHM with respect to 516 branch diameter differs from that of Mg content despite experiencing the same environmental 517 history. Intra-sample Raman measurements can examine structural disorder as a function of 518 changes in skeletal growth rate driven entirely by organismal physiology and not by 519 environmental conditions. Octocoral branches grow lengthwise and radially (branch 520 width/diameter) over time. As branches increase in length, the medullar or central axis skeleton 521 is precipitated first. As the branch thickens via radial growth, the medullar skeleton eventually 522 transitions to an annular skeleton containing observable growth rings (Fig. 2). Because growth 523 rates are relatively higher within the interior medullar zone and central axis of Corallidae and 524 Isididae skeleton, respectively (Vielzeuf et al. 2008; Flöter et al. 2019), radial growth rates of 525 surface skeleton should be faster for smaller branch diameters and relatively slower at larger

526 ones. This pattern is further implied by the increase in residual v_1 FWHM (non-Mg disorder) 527 with decreasing branch diameter (Fig. 7). Linear changes in residual v_1 FWHM with respect to 528 branch diameter, as opposed to stepwise changes observed for Mg discussed later, could be a 529 result of ontogenetic growth effects where radial growth rates naturally and gradually decrease 530 with age and size (Sinclair et al. 2011; Farmer et al. 2015; Flöter et al. 2019). Thicker, older 531 sections of the branch with relatively slower surface skeletal growth rates would have less non-532 Mg structural disorder compared to thinner, younger branches. The differing residual v_1 FWHM pattern observed within Acanella spp. (Fig. 7c, ¹S7e) is puzzling since greater non-Mg disorder 533 534 was also expected within the faster growing central axis of Isididae. This inverted pattern is also 535 well manifested in the overall v_1 FWHM signal despite Mg content increasing with decreasing 536 branch diameter. Further intra-sample analysis of Acanella spp. surface skeleton is needed to 537 confirm whether this outcome is simply an anomaly or the result of a consistent taxon-specific 538 mineralogical difference. Ω_{ECF} could also at least partially contribute to these intra-sample 539 patterns although such interpretations must be approached with caution. It should also be noted 540 that ontogenetic skeletal growth rates are not necessarily the same as crystal growth rates which 541 influence structural disorder and Mg incorporation. For instance, crystal growth rates could occur 542 at the same gradual rate as the bulk skeleton or in spontaneous pulses (Vielzeuf et al. 2018). As 543 branch diameter (i.e., skeletal growth rate) varies, correlations between residual v_1 FWHM and v_1 FWHM are comparable to that of Mg content and v_1 FWHM (Fig. 8, ¹Table S4). Non-Mg growth 544 545 rate kinetics appears to contribute more towards overall intra-sample structural disorder relative 546 to the environmental gradient, where only Mg and v_1 FWHM were significantly correlated (Fig. 547 4).

548 Stepwise increases in Mg content with decreasing octocoral branch diameter are 549 indicative of faster-growing medullar or central axis skeleton, which typify ontogenetic growth 550 patterns in Corallidae and Isididae (Vielzeuf et al. 2008; Sinclair et al. 2011). Significant 551 increases in Mg content were observed with decreasing branch diameter, especially at diameters 552 smaller than 2 mm (Fig. 7). This value agrees with spatially mapped Electron Microprobe 553 Analysis (EMPA) data of Corallidae (C. rubrum) cross sections where the diameter of the 554 medullar region containing higher Mg was 1.0-2.0 mm with an irregular shape (Vielzeuf et al. 555 2008; Fig. 2, 3b). For Isididae, the central axis is known to be much rounder with a maximum 556 diameter of 1.0 mm (Flöter et al. 2019). The outer edge of the central axis skeleton in Acanella 557 spp. was likely detected through the sharp Mg peak at 1.05 mm diameter. As observed with 558 residual v_1 FWHM, the early growth medullar zone would intuitively be exposed at the branch 559 tip surface, resulting in Mg spikes at the smallest branch diameters. Elevated Mg content in these 560 regions is likely a product of kinetic effects driven by skeletal growth rates (reviewed in Vielzeuf 561 et al. 2018). In scleractinian skeletons, Gagnon et al. (2007) noted that high Mg regions (also 562 known as Centers of Calcification) were influenced by non-Rayleigh processes in contrast to the 563 rest of the skeleton. Mechanisms such as the growth entrapment model (Watson 2004) as well as 564 a more modified impurity incorporation/repulsion model (Vielzeuf et al. 2018) have been 565 proposed to explain the connection behind precipitation rate and Mg incorporation. The presence 566 of differing organic molecules within rapid growth zones is also thought to selectively enhance 567 Mg incorporation (Gagnon et al. 2007). Regardless of the exact mechanism, these differing 568 growth regions demonstrate the need to focus comparative octocoral surface Mg measurements 569 at the thicker basal portions of skeleton to avoid accidental sampling of the medullar zone. 570

571 Species-specific patterns

572	Analysis of intra-sample Mg and non-Mg structural disorder reveals potentially different
573	biomineralization patterns among closely related Corallidae species (H. imperiale/laauense, C.
574	tortuosum, P. cf. secundum; Ardila et al. 2012) as well as Isididae. Throughout most of the intra-
575	sample specimens, Mg-based v_1 FWHM and residual v_1 FWHM are both well correlated with
576	overall v_1 FWHM although the strength of these correlations varies by species. Some species
577	patterns (e.g., P. cf. secundum) appear to be more strongly influenced by non-Mg sources
578	compared to others (e.g., <i>H. imperiale/laauense</i>) (Fig. 8, ¹ Table S4). Mg and residual v_1 FWHM
579	are positively correlated within C. tortuosum and H. imperiale/laauense while being negatively
580	correlated in P. cf. secundum. The high variability between the two parameters, however,
581	resulted in no significant trends except for C. tortuosum. P. cf. secundum and C. tortuosum also
582	displayed relatively lower residual v_1 FWHM values despite having the highest Mg content. Mg
583	content and residual v_1 FWHM were expected to be positively correlated since both are
584	positively impacted by skeletal growth rates (DeCarlo et al. 2017; Vielzeuf et al. 2018). This
585	outcome is only seen within C. tortuosum where both Mg and non-Mg structural disorder
586	strongly contribute to overall structural disorder pattern. The lower residual v_1 FWHM values
587	within the P. cf. secundum and C. tortuosum specimens could be evidence of a species-specific
588	biomineralization effect given the concurrent similarity in v_1 FWHM results between the two <i>H</i> .
589	<i>imperiale/laauense</i> specimens. Despite this similarity in v_1 FWHM, C. tortuosum is
590	taxonomically more closely related to <i>H. imperiale/laauense</i> than <i>P.</i> cf. secundum (Ardila et al.
591	2012). Another instance of taxon-specific biomineralization is observed with Acanella spp.,
592	which displayed unforeseen v_1 FWHM and residual v_1 FWHM patterns with branch diameter.
593	Although these results were surprising considering the known radial growth patterns for Isididae

(Flöter et al. 2019), *Acanella* spp. resides in a different taxonomic family compared to theremaining specimens.

596	LA-ICPMS and v_1 Raman shift Mg data also display indications of species-specific
597	patterns in octocoral Mg and non-Mg disorder. H. imperiale/laauense and P. cf. secundum cross
598	sections from multiple depths were used in the analysis of LA-ICPMS and v_1 Raman shift Mg
599	data. Despite an overlap of LA-ICPMS Mg content between the two species (~10.5–11.2 mol%),
600	Mg content based on v_1 Raman shift forms two distinct species-specific groups (Fig. 3a).
601	Grouping is also observed with corresponding v_1 FWHM data, although residual v_1 FWHM does
602	not appear to show any significant patterns (¹ Fig. S8). Like the intra-sample analysis, residual v_1
603	FWHM values within P. cf. secundum are similar to those of H. imperiale/laauense despite the
604	former having greater v_1 FWHM and Mg content than the latter (¹ Fig. S9 and ¹ Table S5). Overall
605	structural disorder and vibrational frequencies are greater in P. cf. secundum compared to H.
606	imperiale/laauense even at areas with the same LA-ICPMS Mg content. Increasing calcite unit
607	cell volumes are thought to lead to lower vibrational frequencies (lower Raman shift) and
608	structural disorder (Bischoff et al. 1985). In this case, H. imperiale/laauense specimens could
609	have characteristically larger unit cell volumes compared to P. cf. secundum specimens. As
610	previously mentioned, the general discrepancies between LA-ICPMS and ν_l Raman shift Mg
611	content could be attributed to physiological mechanisms absent from the synthetic calcites used
612	in Perrin et al. (2016). Both v_1 Raman shift and v_1 FWHM-based trendlines are mostly offset
613	from the 1:1 line through the y-intercept, suggesting that physiological factors contributing to the
614	Mg discrepancy could be largely similar across different octocoral individuals and species.
615	However, the slope of the ν_1 FWHM trendline (0.79 \pm 0.04) is offset more compared to that of ν_1
616	Raman shift (1.11 \pm 0.06), indicating that different parts of the LA-ICPMS/Raman FWHM

617 signal (e.g., from different species) are being impacted differentially. The Mg-driven disorder

618 appears to be relatively higher for <i>P</i> . cf. <i>secundum</i> compared to <i>H. imperiale/laauense</i> .	
---	--

619 Skeletal morphologies could also explain observed differences in Mg and non-Mg driven620 disorder with respect to changes in branch diameter and growth rate. Stepwise increases in Mg

621 content are apparent within *H. imperiale/laauense* and *Acanella* spp. but occur to a lesser extent

622 within P. cf. secundum and C. tortuosum (Fig. 7, ¹S7).For instance, C. tortuosum exhibits linear

623 (or close to linear) trendlines for Mg and non-Mg structural disorder with respect to branch

624 diameter, which could be caused by a more gradual change in disorder and Mg content between

625 the medullar and annular zones (as opposed to sharper transitions in *H. imperiale/laauense*).

626 Faster-growing medullar zones may not be well defined for some individual octocorals, thereby

627 resulting in a less obvious change in structural disorder and Mg. While the intra-sample P. cf.

628 secundum specimen displayed inconsistent Mg patterns, one specimen of P. cf. secundum

629 analyzed by LA-ICPMS and Raman displayed a sharp radial increase in Mg content (Fig. 3b, c).

630 A possible explanation of this phenomenon could be connected to skeletal morphology rather

than inherent species-specific differences in medullar skeleton characteristics. For instance, the

632 robust skeletons of *P*. cf. secundum (as well as *C*. tortuosum) quickly transition from thick basal

633 branches to warped irregular branch tips compared to the smoother transitions in *H*.

634 *imperiale/laauense* (Fig. 7, ¹S7). Less consistent Mg patterns with branch diameter could be a

635 product of inconsistencies in the assumed relationship between ontogenetic growth rate and

- branch diameter caused by the irregular skeletal morphology itself. Based on the patterns
- 637 observed with P. cf. secundum and C. tortuosum, branch diameter may not be as reliable of a
- 638 growth rate metric for the irregular morphologies of those species compared to *H*.
- 639 *imperiale/laauense*. Whether the formation of this differing skeletal morphology significantly

640	alters any of the mechanisms (e.g., growth kinetics, non-Rayleigh mechanisms, biomolecules)
641	thought to influence structural disorder and Mg content within the medullar zone is unknown
642	(Gagnon et al. 2007; Tambutté et al., 2011).
643	
644	Implications
645	v1 FWHM, Mg, and calcite mineral stability
646	Mg measurements alone do not appear to entirely capture the factors impacting biogenic
647	Mg-calcite disorder and therefore stability. Mg has been demonstrated to be a major driver of
648	structural disorder within synthetic and biogenic calcites, although other sources of disorder can
649	originate from non-Mg sources such as organic molecules and other physiological effects from
650	calcification (Bischoff et al. 1985; Perrin et al. 2016). Data from this study has shown instances
651	where octocoral specimens of very similar Mg content differed in their overall v_1 FWHM, a
652	result likely to occur from additional structural disorder from non-Mg sources (residual ν_{l}
653	FWHM). For example, while the intra-sample Mg content from <i>P</i> . cf. <i>secundum</i> and <i>C</i> .
654	<i>tortuosum</i> overlapped heavily, v_1 FWHM values from the latter often exceeded that of the former
655	(Fig. 7, ¹ S7). v_1 Raman shift Mg and v_1 FWHM data from the depth gradient samples are well
656	correlated but express a nonlinear pattern indicating that there are factors influencing v_1 FWHM
657	differently from Mg. The EMPA-based Mg and v_1 FWHM calibration lines from Perrin et al.
658	(2016) are also nonlinear as opposed to their strongly linear v_1 Raman shift Mg calibration lines.
659	Intra-sample v_1 FWHM and Mg correlations also varied strongly among different species, which
660	is likely driven by variable species-specific skeletal growth rates. Clearly, non-Mg structural
661	disorder can impact the overall v_1 FWHM signal independently from Mg.

29

662 Raman spectroscopic measurements of calcite v_1 FWHM could theoretically provide a 663 quantitative proxy for solubility although empirical validations must first be performed. Mg has 664 served as a prominent proxy for synthetic and biogenic calcite solubility through its correlations 665 with carbonate chemistry along depth and latitudinal gradients (Andersson et al. 2008; Lebrato et 666 al. 2016). While Mg-based metrics of solubility are valid for synthetic calcites, biogenic calcites 667 are subject to significant variability in solubility estimates even for specimens of similar Mg 668 content (Morse et al. 2006). Because v_1 FWHM can quantify overall structural disorder within 669 carbonate minerals (Bischoff et al. 1985), the spectral parameter could provide a robust method 670 to incorporate non-Mg factors influencing calcite stability and therefore solubility. Increased 671 accuracy in determining biogenic calcite solubility could help determine which calcifying 672 organisms are most at risk from stressors like ocean acidification. Despite the logical connection 673 between structural disorder and mineral solubility, no experiments to date have quantified the 674 relationship between calcite solubility and v_1 FWHM.

675

676 Species-specific biomineralization

677 Biomineralization patterns differ by species, especially between those residing in 678 shallower and deeper water, respectively. Certain specimens (H. imperiale/laauense) displayed 679 structural disorder and Mg values anticipated from a sharp radial change in skeletal growth zones 680 (i.e., from annular to medullar). However, changes in structural disorder were less striking in 681 other specimens (P. cf. secundum, C. tortuosum) with some patterns (Acanella spp.) being 682 entirely different from expectations. Such differences could be linked to vital effects involving 683 organic molecules or larger calcification mechanisms that influence the specific manner of 684 calcite precipitation and subsequent Mg incorporation. Further clarification of these species-

685	specific biomineralization patterns could provide insight as to how certain species precipitate
686	skeleton differently than others as well as how such biominerals will react to future
687	environmental change. These inter-species differences in biomineralization may also impact how
688	useful different species are for paleo-proxy applications (reviewed in Thompson 2022).
689	
690	Mg paleo-proxies
691	A better understanding of calcite structural disorder will clarify applications of Mg paleo-
692	proxies. Vital effects interfere with the correlation between skeletal Mg and temperature since
693	faster growth also enhances Mg content (Vielzeuf et al. 2018). This interference is particularly
694	apparent in temperate waters where growth rate and temperature covary seasonally. The results
695	from this study demonstrate the effect that growth rates on different segments of octocoral
696	skeleton can have on Mg content despite experiencing the same environmental conditions.
697	Correcting Mg content for vital effects will likely require the quantification and removal of
698	growth rates with respect to changes in Mg to isolate the purely abiotic environmental effects.
699	
700	
701	Acknowledgements
702	Octocoral Raman analysis was supported by the Raman and Infrared Spectroscopy
703	Laboratory at the Hawai'i Institute for Geophysics and Planetary Sciences. We specifically thank
704	M. Egan for micro-Raman instrument training and troubleshooting. Collection of octocoral
705	samples and oceanographic data were made possible by the Hawai'i Undersea Research
706	Laboratory (HURL). Financial support for ship and submersible time were provided by the
707	NOAA Deep Sea Coral and Sponge Research and Technology Program. We thank J. Sanchez

708	and L. Dueñas at the Universidad de Los Andes in Colombia and B. Lendvay at the University of
709	Zürich for morphological and genetic identification of the octocoral specimens. Sample M3 was
710	provided by F. Parrish from the Pacific Islands Fisheries Science Center.
711	
712	
713	References Cited
714	Acosta-Maeda, T.E., Scott, E.R.D., Sharma, S.K., and Misra, A.K. (2013) The pressures and
715	temperatures of meteorite impact: Evidence from micro-Raman mapping of mineral
716	phases in the strongly shocked Taiban ordinary chondrite. American Mineralogist, 98,
717	859-869.
718	Al-Horani, F.A., Al-Moghrabi, S.M., and de Beer, D. (2003) The mechanism of calcification and
719	its relation to photosynthesis and respiration in the scleractinian coral Galaxea
720	fascicularis. Marine Biology, 142, 419-426.
721	Andersson, A.J., Mackenzie, F.T., and Bates, N.R. (2008) Life on the margin: implications of
722	ocean acidification on Mg-calcite, high latitude and cold-water marine calcifiers. Marine
723	Ecology Progress Series, 373, 265-273.
724	Ardila NE, Giribet G, and Sánchez JA (2012) A time-calibrated molecular phylogeny of the
725	precious corals: reconciling discrepancies in the taxonomic classification and insights
726	into their evolutionary history. BMC Evolutionary Biology, 12, 246.
727	Bell, T., Nishida, K., Ishikawa, K., Suzuki, A., Nakamura, T., Sakai, K., Ohno, Y., Iguchi, A.,
728	and Yokoyama, Y. (2017) Temperature-controlled culture experiments with primary
729	polyps of coral Acropora digitifera: Calcification rate variations and skeletal Sr/Ca,
730	Mg/Ca, and Na/Ca ratios. Palaeogeography, Palaeoclimatology, Palaeoecology, 484, 129-

135.

732	Bischoff, W.D., Sharma, S.K., and Mackenzie, F.T. (1985) Carbonate ion disorder in synthetic
733	and biogenic magnesian calcites: a Raman spectral study. American Mineralogist, 70,
734	581-589.
735	Borromeo, L., Zimmermann, U., Andò, S., Coletti, G., Bersani, D., Basso, D., Gentile, P.,
736	Schulz, B., and Garzanti, E. (2017) Raman spectroscopy as a tool for magnesium
737	estimation in Mg-calcite. Journal of Raman Spectroscopy, 48, 983-992.
738	Bostock, H.C., Tracey, D.M., Currie, K.I., Dunbar, G.B., Handler, M.R., Mikaloff Fletcher, S.E.,
739	Smith, A.M., and Williams, M.J.M. (2015) The carbonate mineralogy and distribution of
740	habitat forming deep-sea corals in the southwest Pacific region. Deep Sea Research Part
741	I: Oceanographic Research Papers, 100, 88-104.
742	Calil, P.H.R., Richards, K.J., Jia, Y., and Bidigare, R.R. (2008) Eddy activity in the lee of the
743	Hawaiian Islands. Deep Sea Research Part II: Topical Studies in Oceanography, 55,
744	1179-1194.
745	Chaabane, S., López Correa, M., Ziveri, P., Trotter, J., Kallel, N., Douville, E., McCulloch, M.,
746	Taviani, M., Linares, C., and Montagna, P. (2019) Elemental systematics of the calcitic
747	skeleton of Corallium rubrum and implications for the Mg/Ca temperature proxy.
748	Chemical Geology, 52, 237-258.
749	Chave, K.E. (1954) Aspects of biogeochemistry of magnesium 1. Calcareous marine organisms.
750	Journal of Geology, 62, 266–283.
751	Comeau, S., Cornwall, C.E., DeCarlo, T.M., Krieger, E., and McCulloch, M.T. (2018) Similar
752	controls on calcification under ocean acidification across unrelated coral reef taxa. Global
753	Change Biology, 24, 4857-4868.

754	Cornwall, C., Comeau, S., DeCarlo, T., Moore, B., D'alexis, Q., and McCulloch, M. (2018)
755	Resistance of corals and coralline algae to ocean acidification: physiological control of
756	calcification under natural pH variability. Proceedings of the Royal Society B: Biological
757	Sciences, 285, 20181168.
758	Cornwall, C., Comeau, S., DeCarlo, T.M., Larcombe, E., Moore, B., Giltrow, K., Puerzer, F.,
759	D'Alexis, Q., and McCulloch, M.T. (2020) A coralline alga gains tolerance to ocean
760	acidification over multiple generations of exposure. Nature Climate Change, 10, 143-146
761	Coronado, I., Fine, M., Bosellini, F.R., and Stolarski, J. (2019) Impact of ocean acidification on
762	crystallographic vital effect of the coral skeleton. Nature Communications, 10, 2896.
763	DeCarlo, T., D'Olivo, J., Foster, T., Holcomb, M., Becker, T., and McCulloch, M. (2017) Coral
764	calcifying fluid aragonite saturation states derived from Raman spectroscopy.
765	Biogeosciences, 14, 5253-5269.
766	DeCarlo, T.M., Ren, H., and Farfan, G.A. (2018) The origin and role of organic matrix in
767	coral calcification: Insights from comparing coral skeleton and abiogenic aragonite.
768	Frontiers in Marine Science, 5, 170.
769	DeCarlo, T.M., Comeau, S., Cornwall, C.E., Gajdzik, L., Guagliardo, P., Sadekov, A.,
770	Thillainath E.C., Trotter, J., and McCulloch, M.T. (2019) Investigating marine bio
771	calcification mechanisms in a changing ocean with in vivo and high-resolution ex vivo
772	Raman spectroscopy. Global Change Biology, 25, 1877-1888.
773	Dickson, A.G. (1990) Thermodynamics of the dissociation of boric acid in synthetic seawater
774	from 273.15 to 318.15 K. Deep Sea Research, 37, 755-766.
775	Dickson, A.G., and Millero, F.J. (1987) A comparison of the equilibrium constants for the
776	dissociation of carbonic acid in seawater media. Deep Sea Research, 34, 1733-1743.

777	Dickson, A.G., Sabine, C.L., and Christian, J.R. (2007) Guide to best practices for ocean CO_2
778	measurements, 191 p. PICES, Sidney.
779	Dueñas, L.F., Alderslade, P., and Sánchez, J.A. (2014) Molecular systematics of the deep-sea
780	bamboo corals (Octocorallia: Isididae: Keratoisidinae) from New Zealand with
781	descriptions of two new species of Keratoisis. Molecular Phylogenetics and Evolution,
782	74, 15-28.
783	Farfan, G.A., Cordes, E.E., Waller, R.G., DeCarlo, T.M., and Hansel, C.M. (2018) Mineralogy
784	of deep-sea coral aragonites as a function of aragonite saturation state. Frontiers in
785	Marine Science, 5, 473.
786	Farfan, G.A., Apprill, A., Cohen, A., DeCarlo, T.M., Post, J.E., Waller, R.G., and Hansel, C.M.
787	(2021) Crystallographic and chemical signatures in coral skeletal aragonite. Coral Reefs,
788	41, 19-34.
789	Farmer, J.R., Hönisch, B., Robinson, L.F., and Hill, T.M. (2015) Effects of seawater-pH and
790	biomineralization on the boron isotopic composition of deep-sea bamboo corals.
791	Geochimica et Cosmochimica Acta, 155, 86-106.
792	Flöter, S., Fietzke, J., Gutjahr, M., Farmer, J., Hönisch, B., Nehrke, G., and Eisenhauer, A.
793	(2019) The influence of skeletal micro-structures on potential proxy records in a bamboo
794	coral. Geochimica et Cosmochimica Acta, 248, 43-60.
795	Gagnon, A.C., Adkins, J.F., Fernandez, D.P., and Robinson, L.F. (2007) Sr/Ca and Mg/Ca vital
796	effects correlated with skeletal architecture in a scleractinian deep-sea coral and the role
797	of Rayleigh fractionation. Earth and Planetary Science Letters, 261, 280-295.
798	Greenwood, J. (2009) Shallow water dissolution of settling calcite at station ALOHA.
799	Limnology and Oceanography, 54, 1420-1424.

800	Hasegawa, H., Rahman, M.A., Luan, N.T., Maki, T., and Iwasaki, N. (2012). Trace elements in
801	Corallium spp. as indicators for origin and habitat. Journal of Experimental Marine
802	Biology and Ecology, 414, 1–5.

- 803 Hennige, S.J., Wicks, L.C., Kamenos, N.A., Perna, G., Findlay, H.S., and Roberts, J.M. (2015)
- Hidden impacts of ocean acidification to live and dead coral framework. Proceedings of
 the Royal Society of London B: Biological Sciences, 282, 20150990.
- Kaabar, W., Bott, S., and Devonshire, R. (2011) Raman spectroscopic study of mixed carbonate
 materials. Spectrochimica Acta A, 78, 136-141.
- 808 Kamenos, N.A., Burdett, H.L., Aloisio, E., Findlay, H.S., Martin, S., Longbone, C., Dunn, J.,
- Widdicombe, S., and Calosi, P. (2013) Coralline algal structure is more sensitive to rate,
 rather than the magnitude, of ocean acidification. Global Change Biology, 19, 3621-3628.
- 811 Kamenos, N.A., Perna, G., Gambi, M.C., Micheli, F., and Kroeker, K.J. (2016) Coralline algae
- 812 in a naturally acidified ecosystem persist by maintaining control of skeletal mineralogy
- and size. Proceedings of the Royal Society of London B: Biological Sciences, 283,
- 814 20161159.
- 815 Kontoyannis, C.G., Orkoula, M.G., and Koutsoukos, P.G. (1997) Quantitative analysis of
- 816 sulfated calcium carbonates using Raman spectroscopy and X-ray Powder Diffraction.
- 817 Analyst, 122, 33-38.
- Krishnamurti, D. (1957) The Raman spectrum of calcite and its interpretation. Proceedings of the
 Indian Academy of Sciences, A46, 183-202.
- 820 LaVigne, M., Hill, T.M., Spero, H.J., and Guilderson, T.P. (2011) Bamboo coral Ba/Ca:
- 821 calibration of a new deep ocean refractory nutrient proxy. Earth Planetary Science
- 822 Letters, 312, 506-515.

823	Lebrato, M., Andersson, A.J., Ries, J.B., Aronson, R.B., Lamare, M.D., Koeve, W., Oschlies, A.,
824	Iglesias-Rodriguez, M.D., Thatje, S., Amsler, M., Vos, S.C., Jones, D.O.B., Ruhl, H.A.,
825	Gates, A.R., and McClintock, J.B. (2016) Benthic marine calcifiers coexist with CaCO ₃ -
826	undersaturated seawater worldwide. Global Biogeochemical Cycles, 30, 1038-1053.
827	Lendvay, B., Cartier, L.E., Gysi, M., Meyer, J.B., Krzemnicki, M.S., Kratzer, A., and Morf, N.V.
828	(2020) DNA fingerprinting: an effective tool for taxonomic identification of precious
829	corals in jewelry. Science Reports, 10, 1-12.
830	Lewis, E., and Wallace, D. (1998) Program developed for CO ₂ system calculations: Carbon
831	Dioxide Information Analysis Center, Oak Ridge National Laboratory, ORNL/CDIAC
832	105.
833	Long, X., Ma, Y., and Qi, L. (2014) Biogenic and synthetic high magnesium calcite-A review.
834	Journal of Structural Biology, 185, 1-14.
835	Luan, N.T., Rahman, M.A., Maki, T., Iwasaki, N., and Hasegawa, H. (2013) Growth
836	characteristics and growth rate estimation of Japanese precious corals. Journal of
837	Experimental Marine Biology and Ecology, 441, 117-125.
838	Mackenzie, F.T., Bischoff, W.D., Bishop, F.C., Loijens, M., Schoonmaker, J., and Wollast, R.
839	(1983) Magnesian calcites: low temperature occurrence, solubility and solid-solution
840	behavior. In R.J. Reeder, Ed., Carbonates: Mineralogy and Chemistry, 11, p. 97-143.
841	Reviews in Mineralogy, Mineralogical Society of America, Washington, DC.
842	Mass, T., Drake, J.L., Haramaty, L., Kim, J.D., Zelzion, E., Bhattacharya, D., and Falkowski,
843	P.G. (2013) Cloning and characterization of four novel coral acid-rich proteins that
844	precipitate carbonates in vitro. Current Biology, 23, 1126-1131.
845	Mavromatis, V., Gautier, Q., Bosc, O., and Schott, J. (2013) Kinetics of Mg partition and Mg

	846 stable iso	ope fractionation	during its incor	poration in ca	lcite. Geochimica et
--	----------------	-------------------	------------------	----------------	----------------------

- 847 Cosmochimica Acta, 114, 188-203.
- 848 McCulloch, M., Falter, J., Trotter, J., and Montagna, P. (2012) Coral resilience to ocean
- acidification and global warming through pH up-regulation. Nature Climate Change, 2,623-627.
- McDougall, T.J., and Barker, P.M. (2011) Getting started with TEOS-10 and the Gibbs Seawater
 (GSW) Oceanographic Toolbox, 28pp., SCOr/IAPSO WG127.
- 853 Mehrbach, C., Culberson, C.H., Hawley, J.E., and Pytkowicx, R.M. (1973) Measurement of the
- apparent dissociation constants of carbonic acid in seawater at atmospheric pressure.
 Limnology and Oceanography, 18, 897-907.
- Merrifield, M.A., and Holloway, P.E. (2002) Model estimates of M2 internal tide energetics at
 the Hawaiian Ridge. Journal of Geophysical Research, 107, 3179.
- 858 Morse, J.W., Andersson, A.J., and Mackenzie, F.T. (2006) Initial responses of carbonate-rich
- shelf sediments to rising atmospheric pCO₂ and "ocean acidification:" role of high Mg
 calcites. Geochimica et Cosmochimica Acta, 70, 5814–5830.
- Morse, J.W., Arvidson, R.S., and Lüttge, A. (2007) Calcium carbonate formation and
 dissolution. Chemical Reviews, 107, 342-381.
- Mucci, A. (1987) Influence of temperature on the composition of magnesian calcite overgrowths
 precipitated from seawater. Geochimica et Cosmochimica Acta, 51, 1977-1984.
- 865 Murakami-Sugihara, N., Shirai, K., Hori, M., Amano, Y., Fukuda, H., Obata, H., Tanaka, K.,
- 866 Mizukawa, K., Sano, Y., Takada, H., and Ogawa, H. (2019) Mussel shell geochemical
- analyses reflect coastal environmental changes following the 2011 Tohoku tsunami. ACS
- Earth and Space Chemistry, 3, 1346-1352.

lock ist, D1, vr
lock ist, D1, vr
ist, D1, vr
01, vr
01, or
01, or
٥r
or
r
or
de
ffects
in
on into
zetsu
ture.
1070
-1079,
n e s z a

892	Shibano.	Υ	Takahata.	Κ.	. Kawano, J	Ι	Watanabe.	Τ.,	Enomoto.	D.	Kagi	Н.,	Kamiy	va.	N	and
~~~	DITIONITON		1 01101100000								A TENET		I LOVIIII	,	±	

893 Yamamoto, J. (2017) Raman spectroscopic determination of Sr/Ca ratios of calcite

samples. Journal of Raman Spectroscopy, 48, 1755-1761.

- Sinclair, D.J., Williams, B., Allard, G., Ghaleb, B., Fallon, S., Ross, S.W., and Risk, M. (2011)
- Reproducibility of trace element profiles in a specimen of the deep-water bamboo coral
  Keratoisis sp. Geochimica et Cosmochimica Acta, 75, 5101-5121.
- 898 Tambutté, S., Holcomb, M., Ferrier-Pagés, C., Reynaud, S., Tambutté, E., Zoccola, D., and
- Allemand, D. (2011) Coral biomineralization: from gene to the environment. Journal of
  Experimental Marine Biology and Ecology, 408, 58-78.
- 901 Thompson, D.M. (2022) Environmental records from coral skeletons: A decade of novel insights
  902 and innovation. Wiley Interdisciplinary Reviews: Climate Change, 13, e745.
- 903 Thresher, R., Rintoul, S.R., Koslow, J.A., Weidman, C., Adkins, J., and Proctor, C. (2004)

904 Oceanic evidence of climate change in southern Australia over the last three centuries.
905 Geophysical Research Letters, 31, L07212.

- 906 Thresher, R.E., MacRae, C.M., Wilson, N.C., and Gurney, R. (2007) Environmental effects on
- 907 the skeletal composition of deep-water gorgonians (Keratoisis spp.; Isididae). Bulletin of
  908 Marine Science, 81, 409-422.
- 909 Thresher, R.E., Wilson, N.C., MacRae, C.M., and Neil, H. (2010) Temperature effects on the
- 910 calcite skeletal composition of deep-water gorgonians (Isididae). Geochimica et
- 911 Cosmochimica Acta, 74, 4655-4670.
- 912 Thresher, R.E., Tilbrook, B., Fallon, S., Wilson, N.C., and Adkins, J. (2011) Effects of chronic

913	low carbonate saturation levels on the distribution, growth and skeletal chemistry of
914	deep-sea corals and other seamount megabenthos. Marine Ecology Progress Series, 442,
915	87-99.
916	Thresher, R.E., Fallon, S.J., and Townsend, A.T. (2016) A "core-top" screen for trace element
917	proxies of environmental conditions and growth rates in the calcite skeletons of bamboo
918	corals (Isididae). Geochimica et Cosmochimica Acta, 193, 75-99.

- 919 Uppström, L.R. (1974) The boron/chlorinity ratio of deep-sea water from the Pacific Ocean.
  920 Deep Sea Research and Oceanographic Abstracts, 21, 161-162.
- 921 Urmos, J., Sharma, S.K., and Mackenzie, F.T. (1991) Characterization of some biogenic
  922 carbonates with Raman spectroscopy. American Mineralogist, 76, 641-646.
- 923 Vielzeuf, D., Garrabou, J., Baronnet, A., Grauby, O., and Marschal, C. (2008) Nano to
- 924 macroscale biomineral architecture of red coral (Corallium rubrum). American925 Mineralogist, 93, 1799-1815.
- 926 Vielzeuf, D., Garrabou, J., Gagnon, A., Ricolleau, A., Adkins, J., Günther, D., Hametner, K.,
- 927 Devidal, J-L., Reusser, E., and Perrin, J. (2013) Distribution of sulphur and magnesium in
  928 the red coral. Chemical Geology, 355, 13-27.
- 929 Vielzeuf, D., Gagnon, A.C., Ricolleau, A., Devidal, J-L., Balme-Heuze, C., Yahiaoui, N.,

930 Fonquernie, C., Perrin, J., Garrabou, J., and Montel, J-M. (2018) Growth kinetics and
931 distribution of trace elements in precious corals. Frontiers in Earth Science, 6, 167.

- 932 Wang, D., Hamm, L.M., Bodnar, R.J., and Dove, P.M. (2012) Raman spectroscopic
- 933 characterization of the magnesium content in amorphous calcium carbonates. Journal of
  934 Raman Spectroscopy, 43, 543-548.
- 935 Watson, E.B. (2004) A conceptual model for near-surface kinetic controls on the trace-element

936	and stable isotope composition of abiogenic calcite crystals. Geochimica et
937	Cosmochimica Acta, 68, 1473-1488.
938	Weinbauer, M., Brandstätter, F., and Velimirov, B. (2000) On the potential use of magnesium
939	and strontium concentrations as ecological indicators in the calcite skeleton of the red
940	coral (Corallium rubrum). Marine Biology, 137, 801-809.
941	White, W. (1974) The carbonate minerals. In E.V.C. Farmer, Ed., The Infrared Spectra of
942	Minerals, Mineralogical Society Monograph, 4, p. 87-110, Mineralogical Society,
943	London.
944	Yoshimura, T., Tanimizu, M., Inoue, M., Suzuki, A., Iwasaki, N., and Kawahata, H. (2011) Mg
945	isotope fractionation in biogenic carbonates of deep-sea coral, benthic foraminifera, and
946	hermatypic coral. Analytical and Bioanalytical Chemistry, 401, 2755-2769.
947	
948	
949	Figure Captions
950	
951	Figure 1. Octocoral and oceanographic sampling sites including the Makapu'u site for sample
952	M3.
953	
954	Figure 2. Spatially mapped relative Mg content (color-coded, count/count) of a Corallidae
955	octocoral cross section taken using Electron Microprobe Analysis (EMPA, see Supplementary ¹
956	Info., Figures, and Tables) and a corresponding photograph of the sample. The central medullar
957	region of skeleton contains elevated Mg content and is surrounded by annular skeleton

958 (annotated in the EMPA image). Up current and down current sides of axial skeleton are959 annotated in the photograph.

960

**Figure 3.** (a) Relationship between Mg content calculated from  $v_1$  Raman shift (Perrin et al.

- 962 2016) and Mg measured using LA-ICPMS (N = 90). The 1:1 line is shown in black. (b) Radial
- 963 measurements of octocoral Mg content from P. cf. secundum 238 m (slow-axis) taken using the
- 864 Raman  $v_1$  peak (black, N = 26) and LA-ICPMS (blue, N = 26) (c) as well as the relationship
- between the two. All error bars represent  $\pm 1$  SD with the shaded regions representing the 95%
- 966 CI. Note that the data from subplot (b) was taken along a radial transect from the cross section
- 967 surface to the inner medullar region (see Fig. 2 for a visual example).

968

- 969 Figure 4. Mean  $v_1$  FWHM, Mg content (from  $v_1$  Raman shift), and residual  $v_1$  FWHM of
- 970 octocoral surface skeleton (N = 28) with respect to potential density (an analog of depth). Error

971 bars represent  $\pm 1$  SD and the shaded regions represent the 95% CI.

972

```
973 Figure 5. Mean v_1 FWHM of octocoral surface skeleton with respect to major oceanographic
```

974 variables covered in this study (N = 28). Error bars represent  $\pm 1$  SD and the shaded regions

975 represent the 95% CI.

976

977 Figure 6. Mean Mg content (from  $v_1$  Raman shift) of octocoral surface skeleton with respect to 978 major oceanographic variables covered in this study (N = 28). Error bars represent ±1 SD and the 979 shaded regions represent the 95% CI.

980

981	Figure 7. Mean intra-sample octocoral $v_1$ FWHM, Mg content (from $v_1$ Raman shift, abbreviated
982	as "RS"), and residual $v_1$ FWHM with respect to octocoral branch diameter for three of the five
983	specific samples (each with $N = 100$ ) (a) <i>P</i> . cf. secundum from 273 m; (b) <i>H</i> . imperiale/laauense
984	from 444 m; (c) Acanella spp. from 823 m. All specimens are shown in ¹ Fig. S7. Each
985	measurement location (a five-point transect) is shown by the red markers. Branch diameter
986	serves as a proxy for ontogenetic growth rates (e.g., smaller branches = faster skeletal growth). A
987	general additive model was used for the trendlines where error bars are $\pm 1$ SD, shaded regions
988	are the 95% CI, and DevExpl represents the deviance explained by the model.
989	
990	Figure 8. (a) Mean $v_1$ FWHM compared to mean Mg-based $v_1$ FWHM, (b) mean $v_1$ FWHM
991	compared to mean residual $v_1$ FWHM, and (c) mean Mg content (from $v_1$ Raman shift) compared
992	to mean residual $v_1$ FWHM for the five octocoral specimens used during the intra-sample
993	variability measurements (N = 100 for each specimen). Error bars are $\pm 1$ SD while shaded
994	regions are the 95% CI.
995	
996	Figure 9: Mg-temperature relationships from this study and other relevant octocoral or inorganic
997	calcite studies (authors annotated). Data from this study are shown with triangle markers. Shaded
998	regions represent the 95% CI around the trendlines. The red dashed line represents the
999	relationship from Mucci (1987). N-values and trendline statistics are displayed in ¹ Table S6.
1000	A: Chave 1954; Weinbauer et al. 2000; Yoshimura et al. 2011; Thresher et al. 2016
1001	B: Yoshimura et al. 2011; Vielzeuf et al. 2013; Chaabane et al. 2019
1002	
1003	

1004	Deposit Items
1005	¹ Deposit Item, Supplementary Info.
1006	Oceanographic data adjustments using seawater potential density
1007	Oceanographic data were adjusted as the CTD casts and discrete bottle samples only
1008	provide a depth-based snapshot of mid-water environmental conditions. While sessile benthic
1009	organisms like octocorals are fixed at depth, oceanographic parameters are tightly fixed to
1010	density-specific water masses, which can undergo constant vertical oscillations from physical
1011	forcing, thereby exposing octocorals to a range of environmental conditions over short
1012	timescales. Inertial oscillations in seawater masses are apparent through high-resolution
1013	temperature data collected from Kailua-Kona, which can be driven by factors such as lunar tides
1014	and larger mesoscale eddies. Such oscillations also visibly attenuate with increasing depth and
1015	can influence oceanographic measurements conducted at a fixed depth depending on the time of
1016	sampling. The temperature time-series data, as well as correlations between temperature and
1017	potential density ( $\sigma_{\theta}$ , kg/m ³ ) from the CTD casts, provided insight on the magnitude of water
1018	mass oscillations over different depths and times and allowed for CTD measurement
1019	adjustments. A temperature and $\sigma_{\theta}$ correlation converted high-resolution temperature data over
1020	multiple depths into high-resolution $\sigma_{\theta}$ data which was then averaged by depth over a 24-hour
1021	composite period (e.g., changes in $\sigma_{\theta}$ relative to mean $\sigma_{\theta}$ ( $\Delta \sigma_{\theta}$ ) as a function of time of day). The
1022	depth and timing of specific oceanographic measurements were inserted into the 24-hour
1023	averaged curves to calculate $\Delta \sigma_{\theta}$ . A more accurate $\sigma_{\theta} (\sigma_{\theta,True})$ was then calculated through
1024	$\sigma_{\theta,\text{True}} = \sigma_{\theta,\text{Measured}} + \Delta \sigma_{\theta} $ (S1)
1025	which approximated a more accurate corresponding oceanographic parameter depending on the
1026	relationship between said parameter and $\sigma_{\theta,True}$ .

1027 Temperature data from multiple depths ranging from 220 to 900 m depict short-term ( $M_2$ 1028 semidiurnal tidal cycles; Merrifield and Holloway 2002) and long-term (mesoscale eddies; Calil 1029 et al. 2008) variability resulting from the oscillations of water masses with different densities over a yearlong interval (¹Fig. S2). Deviations from the average potential density were relatively 1030 small (~0.01 kg/m³ at most) and resulted in few adjustments in depth-based oceanographic data 1031 (¹Fig. S5). Power spectral density analysis revealed consistent tidal patterns dominated by the M₂ 1032 semidiurnal tide, which decreased rapidly with increasing depth (¹Fig. S6). Average temperatures 1033 1034 decreased rapidly after the 220 m logger (average temperature of  $16.29 \pm 1.32$  °C compared to 1035  $11.02 \pm 0.79$  °C from 302 m) but then stabilized at 506 m and greater (6.80 ± 0.29 °C). 1036 1037 **LA-ICPMS Reference Materials** 1038 For LA-ICPMS measurements, the reference material NIST SRM 612 was used as an 1039 external standard, with the reference materials coral powder JCp-1 and giant clam powder JCt-1 1040 (National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan) measured 1041 to confirm accuracy. The reference materials were analyzed three times before and after every 1042 50-100 sample spots to monitor instrument drift. The Mg/Ca ratio calculations were based on the 1043 analyses of NIST SRM 612, standard glass, and reproducibility (percent relative standard

1044 deviation [%RSD]), measured at <5%. The Mg/Ca ratio of JCp-1 (certified value of Mg/Ca = 4.2

1045 mmol/mol) was determined to be Mg/Ca =  $4.5 \pm 0.2$  (1 $\sigma$ , N = 26) mmol/mol. Detailed analytical

1046 conditions are reported in the literature (e.g., Murakami-Sugihara et al. 2019).

1047

#### 1048 Raman measurements of octocoral Mg and FWHM using the v₁ peak

1049	The $v_1$ peak is the strongest in the Mg-calcite spectrum and has been measured in								
1050	numerous studies of biogenic aragonite (Kamenos et al. 2013, 2016; Hennige et al. 2015; Pauly								
1051	et al. 2015; DeCarlo et al. 2017, 2018, 2019; Comeau et al. 2018; Cornwall et al. 2018, 2020;								
1052	Farfan et al. 2018, 2021) and Mg-calcite (Bischoff et al. 1985; Urmos et al. 1991; Borromeo et								
1053	al. 2017; Comeau et al. 2018; Cornwall et al. 2018, 2020). $v_1$ has also been measured for								
1054	amorphous calcium carbonate (Wang et al. 2012) and was noted by Borromeo et al. (2017) to be								
1055	the most reliable peak (along with $v_4$ ) for distinguishing Mg content in biogenic calcites. While								
1056	the $v_1$ peak is a non-degenerate (singlet) peak corresponding to the symmetric stretching								
1057	vibrational mode of oxygen with respect to the carbon atom, high Mg content (~30 mol%) is								
1058	known to cause asymmetry in the $v_1$ peak leading to the fitting of two peaks (Perrin et al. 2016								
1059	supplementary materials). However, the octocoral Mg content measured in this study does not								
1060	exceed 14.5 mol%, meaning that the $v_1$ peak doubling phenomenon and resulting inaccuracies in								
1061	fitting Raman shift and FWHM parameters should be minimal.								
1062	The intensities of the Raman spectral lines are sensitive to crystallite orientation within								
1063	the analyzed sample. However, the positions (Raman shift) and line widths (FWHM) are								
1064	independent of crystallite orientation. Because of this reason, Raman spectroscopy is considered								
1065	a suitable technique for analyzing octocoral samples without polishing the surface skeleton.								
1066	Polishing the surface skeleton would require removing sample material which would disrupt the								
1067	connection between skeletal geochemistry and environmental to be measured at the time of								
1068	octocoral sample collection.								
1069	The Mg content of the octocoral surface skeleton was calculated using the $v_1$ peak								
1070	calibration lines from Perrin et al. (2016). The calibration line for $v_1$ Raman shift was								
1071	Raman shift (cm ⁻¹ ) = $0.256 \times [MgCO_3 \text{ (mol\%)}] + 1085.71 \text{ (R}^2 = 0.988, N = 20)$ (S2)								

47

which covers a range of 0 to 50 mol% MgCO₃. Overall v₁ FWHM can be partitioned into a Mg-

1073driven component (Mg-driven  $v_1$  FWHM) and a non-Mg component (residual  $v_1$  FWHM). Mg-1074driven  $v_1$  FWHM is calculated by applying the Mg content from the  $v_1$  Raman shift calibration1075line to the  $v_1$  FWHM calibration line:1076FWHM (cm⁻¹) = -0.00787 × [MgCO₃ (mol%)]² + 0.51 × [MgCO₃ (mol%)] + 3.611077(R² = 0.973, N = 15)

1078 Residual  $v_1$  FWHM is the difference between the overall  $v_1$  FWHM signal and Mg-driven  $v_1$ 

1079 FWHM.

1072

Since concentrations and variability of Mg in octocoral skeleton are notably greater than
that of other seawater ions (e.g., Sr, Ba, B), observed changes in v₁ Raman shift should be
predominantly driven by incorporated Mg. For instance, octocoral Sr/Ca and B/Ca had ranges of

1083 only around 1.26 mmol/mol and 59 µmol/mol, respectively (Farmer et al. 2015; Vielzeuf et al.

1084 2018). Using the ratios from Farfan et al. (2021), this translates to Raman shift decreases of

1085  $0.069 \text{ cm}^{-1}$  and  $0.023 \text{ cm}^{-1}$ , which are small compared to the expected 1.67 cm⁻¹ increase from

1086 Mg based on Mg/Ca ranges (~64 mmol/mol) from Vielzeuf et al. (2018). A similar outcome is

1087 reached with respect to FWHM for those ranges in Mg/Ca (+1.91 cm⁻¹), Sr/Ca (-0.047 cm⁻¹), and

1088 B/Ca (-0.018 cm⁻¹). Farfan et al. 2021 did not measure Ba/Ca, but its concentration in octocorals

1089 (range of 8.1  $\mu$ mol/mol) is less than that of B/Ca (Vielzeuf et al. 2018).

1090

## 1091 EMPA measurement of octocoral cross section

1092High-resolution spatial patterns in Mg were measured within single cross section sample

1093 of Corallidae (species unknown, Taiwan). The octocoral cross section was first polished and

1094 coated with Pt-Pd before analysis. The two-dimensional distribution of Mg and Ca of the cross

1095 section was observed using an electron microprobe analyzer (JXA-8900, JOEL) at the

1096 Atmosphere and Ocean Research Institute, The University of Tokyo. The analysis was carried

1097 out with the following settings: 15 kV accelerating voltage; 200 nA probe current; 150 sec dwell

1098 time; and 10 µm probe diameter. The distribution of Mg/Ca count ratios was visualized using

- 1099 ImageJ software (NIH, USA).
- 1100
- 1101

## Tables

1102	Table 1:	Metadata	for all	depth	n gradient	octocoral	sampl	les and	M3	from Makar	ou'u.
------	----------	----------	---------	-------	------------	-----------	-------	---------	----	------------	-------

Sample	Date/Time Sampled	Depth	Location	Species	LA-
ID#		(m)			ICPMS?
108	9/5/2016, 3:34pm	221	Kailua-Kona	Pleurocorallium cf. secundum	Yes
107	9/5/2016, 2:29pm	238	Kailua-Kona	Pleurocorallium cf. secundum	Yes
204	9/5/2016, 3:12pm	269	Kailua-Kona	Pleurocorallium cf. secundum	No
106	9/5/2016, 2:06pm	273	Kailua-Kona	Pleurocorallium cf. secundum	No
1105	9/28/2011, 12:33pm	280	Kealakekua	Corallium tortuosum	No
105	9/5/2016, 1:40pm	293	Kailua-Kona	Corallium tortuosum	No
1124	9/30/2011, 2:00pm	395	Wai'ahukini	Hemicorallium imperiale/laauense	Yes
1126	9/30/2011, 2:44pm	396	Wai'ahukini	Acanella spp.	No
1101	9/28/2011, 1:45pm	399	Kealakekua	Hemicorallium imperiale/laauense	Yes
1112	9/29/2011, 11:28am	401	Hoʻokena	Hemicorallium imperiale/laauense	No
1114	9/29/2011, 12:22pm	402	Hoʻokena	Hemicorallium imperiale/laauense	No
104	9/5/2016, 1:16pm	405	Kailua-Kona	Acanella spp.	No
1121	9/30/2011, 9:44am	444	Wai'ahukini	Hemicorallium imperiale/laauense	No
1120	9/30/2011, 8:56am	445	Wai'ahukini	Hemicorallium imperiale/laauense	No
1104	9/28/2011, 10:00am	446	Kealakekua	Hemicorallium imperiale/laauense	No
314	8/30/2017	447	1919 Lava Flow*	Hemicorallium imperiale/laauense	No
1109	9/29/2011, 9:18am	449	Hoʻokena	Hemicorallium imperiale/laauense	No
1110	9/29/2011, 10:01am	449	Hoʻokena	Hemicorallium imperiale/laauense	No
1117	9/29/2011, 3:29pm	449	Hoʻokena	Hemicorallium imperiale/laauense	No
1103	9/28/2011, 9:47am	451	Kealakekua	Acanella spp.	No
103	9/5/2016, 12:30pm	472	Kailua-Kona	Hemicorallium imperiale/laauense	No
202	9/5/2016, 1:49pm	506	Kailua-Kona	Hemicorallium imperiale/laauense	No
304	8/29/2017, 12:57pm	544	Kailua-Kona	Hemicorallium imperiale/laauense	No
313	8/30/2017	560	1919 Lava Flow*	Hemicorallium imperiale/laauense	Yes
312	8/30/2017	574	1919 Lava Flow*	Hemicorallium imperiale/laauense	Yes
102	9/5/2016, 11:45am	582	Kailua-Kona	Hemicorallium imperiale/laauense	Yes
303	8/29/2017, 11:27am	753	Kailua-Kona	Acanella spp.	No
101	9/5/2016, 10:56am	823	Kailua-Kona	Acanella spp.	No
M3	2/5/2000	417	Makapuʻu	Hemicorallium imperiale/laauense	Yes

1103 Note: The 1919 Lava Flow site was just south of the Ho'okena site.

1104

1105



Figure 1



Figure 2





Figure 4



Figure 5



Figure 6





Figure 8



Figure 9