1	Revision 1
2	
3	Nazarovite, Ni ₁₂ P ₅ , a new terrestrial and meteoritic mineral structurally related to
4	nickelphosphide, Ni ₃ P
5	
6	Sergey N. Britvin ^{1,2} *, Mikhail N. Murashko ¹ , Maria G. Krzhizhanovskaya ¹ , Oleg S. Vereshchagin ¹ ,
7	Yevgeny Vapnik ³ , Vladimir V. Shilovskikh ⁴ , Maksim S. Lozhkin ⁵ , and Edita V. Obolonskaya ⁶
8	
9	¹ Institute of Earth Sciences, St. Petersburg State University, Universitetskaya Nab. 7/9, 199034 St.
10	Petersburg, Russia
11	² Kola Science Center, Russian Academy of Sciences, Fersman Str. 14, 184200 Apatity, Russia
12	³ Department of Geological and Environmental Sciences, Ben-Gurion University of the Negev,
13	P.O.B. 653, Beer-Sheva 84105, Israel
14	⁴ Centre for Geo-Environmental Research and Modeling, St. Petersburg State University,
15	Ulyanovskaya ul. 1, 198504 St. Petersburg, Russia
16	⁵ Nanophotonics Resource Centre, St. Petersburg State University, Ulyanovskaya ul. 1, 198504 St.
17	Petersburg, Russia
18	⁶ The Mining Museum, Saint Petersburg Mining University, 2, 21st Line, 199106 St. Petersburg,
19	Russia
20	
21	

22 Abstract

23	Nazarovite, $Ni_{12}P_5$, is a new natural phosphide discovered on Earth and in meteorites. Terrestrial
24	nazarovite originates from phosphide assemblages confined to pyrometamorphic suite of the
25	Hatrurim Formation (the Mottled Zone), the Dead Sea basin, Negev desert, Israel. Meteoritic
26	nazarovite was identified among Ni-rich phosphide precipitates extracted from the Marjalahti
27	meteorite (main group pallasite). Terrestrial mineral occurs as micrometer-sized lamella intergrown
28	with transjordanite (Ni ₂ P). Meteoritic nazarovite forms chisel-like crystals up to 8 μ m long. The
29	mineral is tetragonal, space group $I4/m$. The unit-cell parameters of terrestrial and meteoritic
30	material, respectively: a 8.640(1) and 8.6543(3), c 5.071(3) and 5.0665(2) Å, V 378.5(2) and
31	379.47(3) Å ³ , $Z = 2$. Crystal structure of terrestrial nazarovite was solved and refined on the basis of
32	X-ray single-crystal data ($R_1 = 0.0516$), whereas the structure of meteoritic mineral was refined by
33	the Rietveld method using an X-ray powder diffraction profile ($R_{\rm B} = 0.22$ %). The mineral is
34	structurally similar to phosphides of schreibersite-nickelphosphide join, Fe ₃ P-Ni ₃ P. Chemical
35	composition of nazarovite (terrestrial/meteoritic, electron microprobe, wt.%): Ni 81.87/78.59, Fe
36	<0.2/4.10; Co <0.2/0.07, P 18.16/17.91, Total 100.03/100.67, leading to the empirical formula
37	$Ni_{11.97}P_{5.03}$ and $(Ni_{11.43}Fe_{0.63}Co_{0.01})_{12.07}P_{4.94}$, based on 17 atoms per formula unit. Nazarovite
38	formation in nature, both on Earth and in meteorites, is related to the processes of Fe/Ni
39	fractionation in solid state, at temperatures below 1100 °C.
40	
41	

Keywords: Ni₁₂P₅, nickelphosphide, Fe–Ni–P system, crystal structure, pyrometamorphism,
meteorite, planetary interiors, nanoprecipitates

45

Introduction

46	Natural phosphides belonging to the ternary system Fe-Ni-P serve as a reservoir of reduced
47	(i.e., non-phosphate) phosphorus in the Solar System (Goldstein et al. 2009; Britvin et al. 2015;
48	Litasov and Shatskiy, 2016). In material science, the crystal chemistry of Fe-Ni phosphides is the
49	foundation for the development of advanced photocatalysts and electrocatalysts (Sun et al. 2016;
50	Sun et al. 2019). In spite of a seemingly compositional simplicity, Fe–Ni–P is a quite complex
51	multiphase field which can be divided into Fe–P and Ni–P subsystems (Table 1). Iron ($Z = 26$) and
52	nickel ($Z = 28$) are near-neighbour transition metals, but their phosphides exhibit substantially
53	different chemistry and crystal chemistry (Table 1). The crystal-chemical misfits result in
54	unexpectedly restricted Fe/Ni substitutions. In fact, the joins Fe ₃ P-Ni ₃ P (schreibersite-
55	nickelphosphide) and Fe ₂ P-Ni ₂ P (barringerite-transjordanite) are the only examples of continuous
56	Fe-Ni solid solutions (Britvin et al. 2020a, 2021a). A limited Fe-Ni miscibility was reported in
57	murashkoite (Vereshchagin et al. 2021), zuktamrurite, allabogdanite (Britvin et al. 2019b) and
58	melliniite, whereas other phosphides do not show traceable Fe/Ni substitutions. The phenomenon of
59	limited miscibility opens a way to crystal-chemical Fe/Ni fractionation within reduced systems. We
60	herein report a new natural phosphide, an extreme example of such fractionation. The mineral $Ni_{12}P_5$
61	is named nazarovite, in honour of Michail Alexandrovich Nazarov (1949-2016), Russian
62	mineralogist and petrologist, for his contributions to the research of reduced meteoritic assemblages
63	(e.g., Anand et al., 2004; Nazarov et al. 2009). Both the mineral and its name have been approved by
64	the Commission on New Minerals, Nomenclature and Classification, International Mineralogical
65	Association (IMA 2019-013). The holotype specimen of nazarovite from the Hatrurim basin is
66	deposited in the collection of the Fersman Mineralogical Museum, Russian Academy of Sciences,
67	Moscow, Russia, with the registration number 5381/1.
68	

69

70

Samples and methods

71 Terrestrial nazarovite (the holotype material)

The mineral was discovered among phosphide assemblages confined to the rocks of the
Hatrurim Formation (the Mottled Zone) – a huge pyrometamorphic complex spanning the Middle
East in Israel, West Jordan and West Bank (Gross 1977; Vapnik et al. 2007; Novikov et al. 2013).
Nazarovite occurs in the specimens of altered diopside microbreccia collected along the Halamish
wadi, Hatrurim basin, Negev desert, Israel (e.g., Britvin et al. 2021b). It was studied in conventional
polished thick rock sections.

78

79 Nazarovite from the Marjalahti pallasite

80 An acid-resistant precipitate was obtained from a piece of the metal taken from the same 81 meteorite slice where keplerite, $Ca_9(Ca_{0.5}\square_{0.5})Mg(PO_4)_7$, was recently described (specimen MM74/2, 82 the Mining Museum) (Britvin et al. 2021d). A ~0.5 cm (Fe,Ni) metal chunk, free of olivine and 83 chromite rims, was preliminarily treated in hot 10 % HCl for 1 minute, in order to clean it up from 84 surface contaminants. The etched piece was rinsed off by distilled water and then immersed into 10 85 mL of hot 10 % HCl. in 50 mL glass baker on a hot plate. After complete dissolution of acid-soluble 86 α -(Fe,Ni) (kamacite), the liquid with the insoluble residue was mixed with ~30 mL of methanol and 87 allowed to stay for 20 min, followed by gentle removal of the solution with a 20 mL syringe until ~ 1 88 cm level of residual liquid remained. This wash-up procedure was repeated 5 times, and after that 89 the remaining liquid with precipitate was transferred onto a watch glass and air-dried. The residue 90 was comprised by a few mm-sized grains of schreibersite, $(Fe,Ni)_3P$, and taenite, γ -(Fe,Ni). In addition, a tiny film of white color with straw-yellowish tint and metallic luster was observed at the 91 92 bottom of the glass. It was found that the film is a microgranular phosphide precipitate which was 93 harvested into a drop of epoxy resin. The soft acid treatment of meteoritic iron applied herein 94 follows the method used in the metallurgy for the liberation of phosphide precipitates from the Ni-

95	based alloys (e.g., Lee et al., 1996). It is noteworthy that this procedure does not lead to the
96	appearance of new phosphide phases, therefore nazarovite is not a newly formed phosphide. The
97	obtained phosphide precipitate sample was first subjected to X-ray powder diffraction study and
98	later on, after embedding and polishing procedures, to electron microprobe analysis.
99	
100	Electron microprobe analysis (EMPA) and electron backscatter diffraction (EBSD)
101	EMPA data were obtained using an Oxford Instruments AzTec Energy X-Max 20 EDX
102	spectrometer (20 kV, 1 nA) attached to a Hitachi S-3400N SEM. Cobalt was determined separately
103	using an INCA WAVE 500 WDX spectrometer (20 kV, 15 nA). Pure Ni, Fe and Co metals, along
104	with InP were used as standards. Electron backscatter diffraction (EBSD) mapping was carried out
105	on the section etched for 20 min with an Ar-ion beam generated by an Oxford Instruments IonFab-
106	300 instrument. Diffraction pattern acquisition was carried out with an Oxford Instruments Nordlys-
107	HKL detector operated at 30 kV and 1.5 nA on the sample coated with ~2 nm carbon film and glued
108	onto a 70 $^{\circ}$ tilted stage. The EBSD patterns matching and mapping were performed using the
109	structural models of $Ni_{12}P_5$ (Rundqvist and Larsson 1959) and transjordanite end-member, Ni_2P
110	(Britvin et al. 2020a).
111	
112	Powder X-ray diffraction (PXRD) and Rietveld refinement
113	Powder diffraction patterns were obtained by the use of a Rigaku RAXIS Rapid II
114	diffractometer (Table 2). The instrument has a CoKα-radiation source (rotating anode, 40 kV, 15

- 115 mA), microfocus mirror monochromator and semi-cylindrical imaging plate detector (r = 127.4
- 116 mm). The images were acquired in Debye-Scherrer geometry (Gandolfi-type rotation). A plate-to-
- 117 profile data conversion was performed with the osc2xrd program (Britvin et al. 2017). Further
- 118 processing of the pattern of the terrestrial nazarovite-transjordanite grain was carried out with Stoe
- 119 WinXPOW software (Stoe and Cie GmbH). Rietveld refinement of the powder profile obtained

120	from the meteoritic precipitate (Supplementary Fig. S1) was carried out with Bruker TOPAS v.5.0
121	software (Bruker AXS). The basic refinement details and refined fractional coordinates are given in
122	Supplemental Tables S1 and S2.
123	
124	Single-crystal X-ray diffraction (SCXRD)
125	SCXRD data were obtained only for terrestrial nazarovite; they were collected by means of a
126	Bruker Kappa APEX DUO diffractometer (1024K CCD detector). The crystal used for the study is
127	depicted in Figure 1. Because of the small size of nazarovite lamella, we did not extract them from
128	the surrounding transjordanite matrix. Instead, the whole two-phase grain was subjected to data
129	collection. A single-crystal nazarovite domain (UB-matrix) could be separated from several
130	transjordanite UB-matrices using CrysAlisPro software (Rigaku Oxford Diffraction), followed by a
131	standard set of data reduction procedures. The crystal structure of terrestrial nazarovite was solved
132	and refined to $R_1 = 0.0516$ using the SHELX-2018 set of programs (Sheldrick 2015) incorporated
133	into Olex2 GUI (Dolomanov et al. 2006). A summary of data collection and structure refinement
134	details is given is Supplementary Table 3. The detailed information can be retrieved from the CIF
135	file attached to Supplementary Data.
136	
137	Results
138	Occurrence and general appearance
139	Microcrystalline diopside constitutes up to 80 % of microbreccia containing phosphide
140	minerals, whereas the interstices are filled with secondary thaumasite, ettringite and unidentified
141	Mg-Fe hydrous silicates. The accessory minerals are comprised by hematite, magnetite, and diverse
142	Fe-Ni phosphides (Britvin et al. 2021c). Nazarovite occurs as single-crystal lamella up to 10 μ m
143	long penetrating the grain of transjordanite, Ni ₂ P (Fig. 1). EBSD mapping reveals that all nazarovite

145 surrounding transjordanite forms a patchy polycrystalline aggregate (Fig. 1d-f). Nazarovite-146 transjordanite intergrowths have white colour in reflected light; both minerals are indistinguishable 147 from each other under the polarizing microscope. Due to very small size of nazarovite lamella, the 148 microhardness and reflectance values of the mineral could not be measured. 149 Nazarovite of meteoritic origin was identified in microgranular precipitates obtained by 150 dissolution of α -(Fe.Ni) metal (kamacite) of the Marialahti meteorite (main-group pallasite). The 151 dominant phase of precipitates is acicular to thin-prismatic nickelphosphide. $(Ni,Fe)_3P$, which 152 accounts for 85-90 wt.% of acid-resistant residue (Supplementary Fig. S1). Nazarovite occurs as 153 chisel-like crystals up to 8 µm wide and 3 µm thick disseminated among nickelphosphide (Fig. 2). 154

155 Crystal struc

155 Crystal structure

156 The unit-cell parameters of terrestrial and meteoritic nazarovite are almost identical, in 157 agreement with the composition approaching pure $Ni_{12}P_5$ (Table 3). The crystal structure of the 158 mineral contains 2 independent Ni positions and 2 P sites (Table 4). The Ni(1) atom is coordinated 159 by 12 atoms – 5Ni(1), 3Ni(2), 3P(1), and 1P(2). Ni(2) has 15-fold coordination – by 6Ni(1), 5Ni(2), 160 and 4P(1). Phosphorus atoms, P(1) and P(2), are surrounded solely by Ni and have coordination 161 numbers 10 and 8, respectively. Due to a relative simplicity of the P-centered polyhedra, the 162 nazarovite structure can be better illustrated in a phosphorus-centered approach (Fig. 3), in contrast 163 to the early descriptions of synthetic $Ni_{12}P_5$ based on the metal-centered polyhedra (Rundqvist and 164 Larsson 1959; Larson 1965). The nazarovite framework (Fig. 3a,b) is topologically similar to that of 165 the minerals belonging to schreibersite-nickelphosphide join, Fe₃P-Ni₃P (Britvin et al. 2021a). Both 166 nazarovite and nickelphosphide are tetragonal, have very similar lattice metrics (Table 3), and the 167 relationship between their unit-cell contents can be expressed as $2 \times Ni_{12}P_5$ ($Ni_{24}P_{10}$) $\leftrightarrow 8 \times Ni_3P$ 168 $(Ni_{24}P_8)$. It can be seen that the nazarovite cell contains by 2 P atoms more than that of

169 nickelphosphide. These additional P(2) atoms are inserted approximately into the positions which

170	are vacant in the structure of nickelphosphide (Fig. 3). The P(2) coordination polyhedron of
171	nazarovite represents an almost perfect cube [PNi8]. The introduction of [PNi8] cubes into the lattice
172	results in its symmetrization, manifested by the conversion from the space group $I\overline{4}$ (Ni ₃ P) to $I4/m$
173	$(Ni_{12}P_5)$. The additional effect of phosphorus incorporation is a relative stretching of the lattice
174	along the <i>c</i> -axis that is manifested in the increase of the c/a ratio (Table 3).
175	
176	Chemical composition
177	The appearance of an additional P(2) site in nazarovite (relative to nickelphosphide) results
178	in the abrupt decrease of the structural tolerance towards Fe substitution. As was already mentioned,
179	Ni ₃ P (nickelphosphide) forms a continuous series of solid solutions with Fe ₃ P (schreibersite) (Table
180	1). In contrast, both occurrences of nazarovite show the compositions either approaching or exactly
181	matching end-member $Ni_{12}P_5$ (Table 5). The marked difference in the affinity of respective
182	phosphides towards Fe is illustrated by the comparison of both minerals from the Marjalahti
183	pallasite, where nazarovite has a Ni/Fe ratio of more than 18, whereas the same ratio in
184	nickelphosphide is just 2 (Table 5). Such a difference is not an occasional one, but is supported by
185	the studies on synthetic systems: $Fe_{12}P_5$ does not exist in the Fe–P phase diagram, and Fe does not
186	substitute for Ni in synthetic $Ni_{12}P_5$ (Drábek 2006). Therefore, the extreme Ni enrichment of natural
187	nazarovite can be considered as its intrinsic property rather than a geochemical curiosity.
188	
189	Discussion
190	Nazarovite is an example of the influence of crystal-chemical factors on the elemental
191	differentiation in the Fe-Ni-P system. In both terrestrial and meteoritic environments, the mineral
192	was evidently formed in the solid state at temperatures below 1100 °C, as it can be deduced from the
193	studies of the Ni–P phase diagram (Schmetterer et al. 2009). The results of EBSD and X-ray single-

194 crystal study suggest that spatially separated nazarovite lamellae shown in Figure 1 represent the

195	subdomains (the remnants?) of the same single crystal. The latter implies that nazarovite may in fact
196	be a primary, earlier phase in the assemblage, whereas surrounding patchy transjordanite is a
197	subsequent one, possibly formed via solid-state substitution of nazarovite.
198	The Marjalahti is one of a few witnessed pallasite falls (see a historical summary in Britvin
199	et al. 2021d). The fragments of this meteorite, harvested immediately after the fall, were not affected
200	by terrestrial weathering; thereby nazarovite in the Marjalahti has a cosmic origin, rather than being
201	a product of surficial alteration of schreibersite (Fe,Ni) ₃ P, as it was discussed with respect to
202	barringerite, (Fe,Ni) ₂ P (Buseck 1969; Britvin et al. 2020a). The identification of nazarovite in
203	phosphide assemblages is hampered due to its compositional similarity to nickelphosphide,
204	(Ni,Fe) ₃ P, and transjordanite, (Ni,Fe) ₂ P. However, there is evidence that this phosphide may be
205	more widespread in nature. Armstrong et al. (1987) described mm-sized fremdlinge (sulphide- and
206	metal-rich droplets) within the B-type calcium-aluminium inclusion (CAI) of the Allende meteorite,
207	a CV3 carbonaceous chondrite. Among other opaque phases, Armstrong et al. (1987) reported a Ni
208	phosphide containing 80-81 wt.% Ni and less than 0.5 wt.% Fe. The authors calculated a phosphide
209	formula of Ni_5P_2 , but the assumed ideal Ni/P atomic ratio of 2.5 is quite close to that of 2.4 in
210	nazarovite (Table 1). Garvie (2019) described Ni-rich phosphide nanoprecipitates from the Odessa
211	octahedrite, containing both nickelphosphide (the major phase) and the second phosphide that can
212	be attributed to either $Ni_{12}P_5$ (i.e., nazarovite) or Ni_8P_3 . Taking into account that Odessa belongs to
213	the most common IAB group of iron meteorites whereas Marjalahti is a typical main-group pallasite,
214	we propose that the similar Ni-rich phosphide precipitates can be extracted from acid-resistant
215	residues of many metal-rich meteorites.
216	
217	Implications
218	The study of natural Ni and Fe phosphides expands our knowledge of the phase relations

220 bodies. The presence of nazarovite determines the upper thermal limit of 1100 °C for the formation 221 of its assemblages, and opens the opportunities for determination of pressure stability limits. The 222 influence of crystal-chemical factors on the processes of elemental differentiation in reduced 223 systems is a largely obscure field of mineralogy and geochemistry. Here the most prominent is the 224 Fe-Ni system (e.g., Goldstein et al. 2009), where the formation of γ -(Fe,Ni) (taenite) succeeds in 225 further selective enrichment of this phase in Ni relative to coexisting α -(Fe,Ni) (kamacite). The 226 much less studied are Fe-Ni carbide systems, where haxonite, $(Fe,Ni)_{23}C_6$, is always and 227 considerably enriched in Ni as compared to cohenite, (Fe,Ni)₃C (Krot et al. 1997; Scott and 228 Goldstein 2012), but the reason for such a behavior is unclear. Among natural phosphides, one can 229 mention the selective affinity of Co towards allabogdanite, the high-pressure modification of 230 (Fe,Ni)₂P (Britvin et al. 2019b). The present paper contributes to this area of planetary science, at 231 the junction between crystal chemistry and cosmochemistry. From the methodological point of 232 view, this study illustrates how advances in the X-ray instrumentation enhance the quality of crystal-233 chemical research, in particular in meteoritics and planetary science. The full-scale structural study 234 of µm-sized mineral grains is now achievable using standard in-house instruments – a step toward 235 complementary to the fingerprint techniques like EBSD and the Laue X-ray method. 236 237 Acknowledgments 238 This study was funded by the Russian Science Foundation, grant 18-17-00079. The authors are

indebted to the curators of the Mining Museum, St. Petersburg Mining Institute, for the specimen of the Marjalahti pallasite provided for this study. We gratefully acknowledge the referees, Laurence Garvie and Michael Zolensky, for helpful comments and suggestions, and the Technical Editor for the crystallographic data corrections. This paper has benefited from editorial handling by Daniel Hummer. The authors are thankful to the X-ray Diffraction Centre, Centre for Microscopy and

244	Microanalysis, Nanophotonics, Nanotechnology and Geomodel Resource Centres of St. Petersburg
245	State University for the access to instrumental and computational resources.
246	
247	References cited
248	Anand, M., Taylor, L.A., Nazarov, M.A., Shu, J., Mao, HK., and Hemley, R.J. (2004) Space
249	weathering on airless planetary bodies: Clues from the lunar mineral hapkeite. Proceedings of
250	the National Academy of Sciences of the United States of America, 101, 6847-6851.
251	Armstrong, T., Hutcheon, I.D., and Wasserburg, G.J. (1987) Zelda and company: petrogenesis of
252	sulfide-rich Fremdlinge and constraints on solar nebula processes. Geochimica et
253	Cosmochimica Acta, 51, 3155–3173.
254	Britvin, S.N., Kolomensky, V.D., Boldyreva, M.M., Bogdanova, A.N., Kretser, Yu.L., Boldyreva,
255	O.N., and Rudashevskii, N.S. (1999) Nickelphosphide, (Ni,Fe) ₃ P, the nickel analog of
256	schreibersite. Proceedings of Russian Mineralogical Society, 128, 64–72 (in Russian).
257	Britvin, S.N., Murashko, M.N., Vapnik, Ye., Polekhovsky, Yu.S., and Krivovichev, S.V. (2015)
258	Earth's phosphides in Levant and insights into the source of Archaean prebiotic phosphorus.
259	Scientific Reports, 5, 8355.
260	Britvin, S.N., Dolivo-Dobrovolsky, D.V., Krzhizhanovskaya, M.G. (2017) Software for processing
261	the X-ray powder diffraction data obtained from the curved image plate detector of Rigaku
262	RAXIS Rapid II diffractometer. Zapiski Rossiyskogo Mineralalogicheskogo Obshchestva,
263	146, 104–107 (in Russian).
264	Britvin, S.N., Murashko, M.N., Vapnik, Ye., Polekhovsky, Yu.S., Krivovichev, S.V., Vereshchagin,
265	O.S., Vlasenko, N.S., Shilovskikh, V.V., and Zaitsev, A.N. (2019a) Zuktamrurite, FeP ₂ , a new
266	mineral, the phosphide analogue of löllingite, FeAs ₂ . Physics and Chemistry of Minerals, 46,
267	361–369.

- 268 Britvin, S.N., Shilovskikh, V.V., Pagano, R., Vlasenko, N.S., Zaitsev, A.N., Krzhizhanovskaya,
- 269 M.G., Lozhkin, M.S., Zolotarev, A.A., and Gurzhiy, V.V. (2019b) Allabogdanite, the high-
- 270 pressure polymorph of (Fe,Ni)₂P, a stishovite-grade indicator of impact processes in the Fe–
- 271 Ni–P system. Scientific Reports, 9, 1047.
- 272 Britvin, S.N., Vapnik, Ye., Polekhovsky, Yu.S. and Krivovichev, S.V., Krzhizhanovkaya M.G.,
- 273 Gorelova L.A., Vereshchagin, O.S., Shilovskikh, V.V., and Zaitsev, A.N. (2019c)
- 274 Murashkoite, FeP, a new terrestrial phosphide from pyrometamorphic rocks of the Hatrurim
- Formation, Southern Levant. Mineralogy and Petrology, 113, 237–248.
- 276 Britvin, S.N., Murashko, M.N., Vapnik, Ye., Polekhovsky, Yu.S., Krivovichev, S.V.,
- 277 Krzhizhanovskaya, M.G., Vereshchagin, O.S., Shilovskikh, V.V., and Vlasenko, N.S. (2020a)
- 278 Transjordanite, Ni₂P, a new terrestrial and meteoritic phosphide, and natural solid solutions
- barringerite-transjordanite (hexagonal Fe₂P-Ni₂P). American Mineralogist, 105, 428-436.
- 280 Britvin, S.N., Murashko, M.N., Vapnik, Ye., Polekhovsky, Yu.S., Krivovichev, S.V., Vereshchagin,
- 281 O.S., Shilovskikh, V.V., Vlasenko, N.S., and Krzhizhanovskaya, M.G. (2020b) Halamishite,
- 282 Ni₅P₄, a new terrestrial phosphide in the Ni–P system. Physics and Chemistry of Minerals,
- 283 2020, 3.
- 284 Britvin, S.N., Murashko, M.N., Vapnik, Ye., Polekhovsky, Yu.S., Krivovichev, S.V., Vereshchagin,
- 285 O.S., Shilovskikh, V.V., and Krzhizhanovskaya, M.G. (2020c) Negevite, the pyrite-type NiP₂,

a new terrestrial phosphide. American Mineralogist, 105, 422–427.

- 287 Britvin, S.N., Krzhizhanovskaya, M.G., Zolotarev, A.A., Gorelova, L.A., Obolonskaya, E.V.,
- 288 Vlasenko, N.S., Shilovskikh, V.V., and Murashko, M.N. (2021a) Crystal chemistry of
- schreibersite, (Fe,Ni)₃P. American Mineralogist, 106, 10.2138/am-2021-7766
- 290 Britvin, S.N., Murashko, M.N., Vapnik , Ye., Vlasenko, N.S., Krzhizhanovskaya, M.G.,
- 291 Vereshchagin, O.S., Bocharov, V.N., and Lozhkin, M.S. (2021b) Cyclophosphates, a new

- class of native phosphorus compounds, and some insights into prebiotic phosphorylation on
- 293 early Earth. Geology, 49, 382–386.
- 294 Britvin, S.N., Vereshchagin, O.S., Shilovskikh, V.V., Krzhizhanovskaya, M.G., Gorelova, L.A.,
- 295 Vlasenko, N.S., Pakhomova, A.S., Zaitsev, A.N., Zolotarev, A.A., Bykov, M., Lozhkin, M.S.,
- and Nestola, F. (2021c) Discovery of terrestrial allabogdanite (Fe,Ni)₂P, and the effect of Ni
- and Mo substitution on the barringerite-allabogdanite high-pressure transition. American
- 298 Mineralogist, 106, 944–952.
- 299 Britvin, S.N., Galuskina, I.O., Vlasenko, N.S., Vereshchagin, O.S., Bocharov, V.N.,
- 300 Krzhizhanovskaya, M.G., Shilovskikh, V.V., Galuskin, E.V., Vapnik, Ye., and Obolonskaya,
- 301 E.V (2021d) Keplerite, $Ca_9(Ca_{0.5}\square_{0.5})Mg(PO_4)_7$, a new meteoritic and terrestrial phosphate
- 302 isomorphous with merrillite, Ca₉NaMg(PO₄)₇. American Mineralogist, 106, 10.2138/am-2021-
- 303 7834
- Buseck, P.R. (1969) Phosphide from meteorites: Barringerite, a new iron-nickel mineral. Science,
 165, 169–171.
- 306 Dolomanov, O.V., Bourhis, L.J., Gildea, R.J., Howard, J.A., and Puschmann, H. (2009) OLEX2: a
- 307 complete structure solution, refinement and analysis program. Journal of Applied
- 308 Crystallography, 42, 339–341.
- 309 Dowty, E. (2006). ATOMS for Windows. Shape Software, Kingsport, Tennessee, USA.
- 310 Drábek, M. (2006) Phosphide solid-solutions within the metal-rich portion of the quaternary system
- 311 Co–Fe–Ni–P AT 800°C, and mineralogical implications. Canadian Mineralogist, 44, 399–408.
- 312 Garvie, L.A.J. Germanium- and gallium-rich nickel phosphide "Ni₃P" nanoprecipitates from the
- 313 Odessa (IAB-MG) iron meteorite. 50th Lunar and Planetary Science Conference, Abstract
 314 #2639.
- 315 Goldstein, J.I., Scott, E.R.D., and Chabot, N.L. (2009) Iron meteorites: Crystallization, thermal
- history, parent bodies, and origin. Chemie der Erde, 69, 293–325.

- 317 Gross, S. (1977) The mineralogy of the Hatrurim Formation, Israel. Geological Survey of Israel
- 318 Bulletin, 70, 1–80.
- 319 Ilnitskaya, O.N., Akselrud, L.G., Mikhalenko, S.I., and Kuzma, Yu.B. (1987) Crystal structure of
 320 alpha-Ni₈P₃, Kristallografiva, 32, 50–54 (in Russian).
- 321 Jeitschko, W., and Braun, D.J. (1978) Synthesis and crystal structure of the iron polyphosphide
- 322 FeP₄. Acta Crystallographica, B34, 3196–3201.
- 323 Krot, A.N., Zolensky, M.E., Wasson, J.T., Scott, E.R.D., Keil, K., and Ohsumi, K. (1997) Carbide
- magnetite assemblages in type 3 ordinary chondrites. Geochimica et Cosmochimica Acta, 61,
 219–237.
- Larsson, E. (1965) An X-ray investigation of the Ni-P system and the crystal structures of NiP and
 NiP₂. Arkiv för Kemi, 23, 335–365.
- 328 Lee, H.-J., Akiyama, E., Habazaki, H., Kawashima, A., Asami, K., and Hashimoto, K. (1996) The
- 329 effect of phosphorus addition on the corrosion behavior of arc-melted Ni-10Ta-P alloys in 12
- 330 M HCl. Corrosion Science, 38, 469–485.
- Litasov, K., and Shatskiy, A. (2016) Composition of the Earth's core: a review. Russian Geology
 and Geophysics, 57, 22–46.
- 333 Nazarov, M.A., Kurat, G., Brandstaetter, F., Ntaflos, T., Chaussidon, M., and Hoppe, P. (2009)
- Phosphorus-bearing sulfides and their associations in CM chondrites. Petrology, 17, 101–123.
- 335 Novikov, I., Vapnik, Ye., and Safonova, I. (2013) Mud volcano origin of the Mottled Zone,
- 336 Southern Levant. Geoscience Frontiers, 4, 597–619.
- 337 Oryshchyn, S., Babizhetskii, V.S., Chikhrii, S.I., Akselrud, L.G., Stojko, S., Bauer, D., Guerin, P.,
- and Kuzma, Yu.B. (2004) Crystal structure of Ni₅P₂. Neorganicheskie Materialy, 40, 450–456
 (in Russian).

- 340 Pratesi, G., Bindi, L., and Moggi-Cecci, V. (2006) Icosahedral coordination of phosphorus in the
- 341 crystal structure of melliniite, a new phosphide mineral from the Northwest Africa 1054
- 342 acapulcoite. American Mineralogist, 91, 451–454.
- 343 Rundqvist, S., and Ersson, N.O. (1969) Structure and bonding in skutterudite-type phosphides.
- 344 Arkiv för Kemi, 30, 103–115.
- Rundqvist, S., and Larsson, E. (1959) The crystal structure of Ni₁₂P₅. Acta Chemica Scandinavica,
 13, 551–560.
- 347 Schmetterer, C., Vizdal, J., and Ipser, H. (2009) A new investigation of the system Ni–P.
- 348 Intermetallics, 17, 826–834.
- Scott, E.R.D., and Goldstein, J.I. (2012) Occurrence of carbides and graphite in iron meteorites and
 origin of C-rich irons. Lunar Planetary Science, 43, #2671 (abstract).
- Sheldrick, G.M. (2015) Crystal structure refinement with *SHELXL*. Acta Crystallographica, C71, 3–
 8.
- 353 Skála, R., and Drábek, M. (2003) Nickelphosphide from the Vicenice octahedrite: Rietveld crystal
- 354 structure refinement of a synthetic analogue. Mineralogical Magazine, 67, 783–792.
- Sugitani, M., Kinomura, N., Koizumi, M., and Kume, S. (1978) Preparation and properties of a new
 iron phosphide FeP₄. Journal of Solid State Chemistry, 26, 195–201.
- 357 Sun, M., Liu, H., Qu, J., and Li, J. (2016) Earth-Rich Transition Metal Phosphide for Energy
- 358 Conversion and Storage. Advanced Energy Materials, 6, 1600087.
- 359 Sun, Z., Zhu, M., Lv, X., Liu, Y., Shi, C., Dai, Y., Wang, A, and Majima, T. (2019) Insight into Iron
- 360 Group Transition Metal Phosphides (Fe₂P, Co₂P, Ni₂P) for Improving Photocatalytic
- 361 Hydrogen Generation. Applied Catalysis B: Environmental, 246, 330–336.
- 362 Vapnik, Ye., Sharygin, V.V., Sokol, E.V., and Shagam, R. (2007) Paralavas in a combustion
- 363 metamorphic complex: Hatrurim Basin, Israel. The Geological Society of America, Reviews in
- Engineering Geology, 18, 133–153.

- 365 Vereshchagin, O.S., Pankin, D.V., Smirnov, M.B., Vlasenko, N.S., Shilovskikh, V.V., and Britvin,
- 366 S.N. (2021) Raman spectroscopy: A promising tool for the characterization of transition metal
- 367 phosphides. Journal of Alloys and Compounds, 853, 156468.

368 List of figure captions

369

370 **Figure 1.** Nazarovite in the phosphide assemblage of the Hatrurim Basin. (a) Polished section in 371 reflected light. Phosphide grain within the weathered silicate paralava. (b) The same grain, BSE 372 image with enhanced contrast. A series of tiny nazarovite lamellae (light) penetrate transiordanite 373 matrix. The biggest lamella was used for the structure solution and refinement. (c) EBSD phase map 374 of the same grain (nazarovite is yellow, transjordanite is green). (d) EBSD map in inverse pole 375 figure (IPF) colouring. Note that all nazarovite lamellae (blue) are represented by single crystals, 376 whereas encasing transjordanite forms a polycrystalline aggregate (patchy areas). (e) EBSD pole 377 figure of nazarovite in the area depicted in (d), projection onto {001}. Note that all nazarovite 378 lamellae have coincident crystallographic orientation, with the *c*-axis approximately parallel to the 379 image plane. (f) EBSD pole figure of transfordantie in the same area -a polycrystal consisting of at 380 least 3 randomly oriented domains. Abbreviations: Nz – nazarovite, Tj – transjordanite (Ni₂P), Mgt 381 – magnetite.

382

Figure 2. Nazarovite crystal (Nz) among an aggregate of nickelphosphide crystals. Polished section
 of acid-resistant precipitate encapsulated into epoxy resin. SEM BSE image. The Marjalahti
 pallasite.

386

Figure 3. Crystal structures of nazarovite, Ni₁₂P₅, and nickelphosphide, Ni₃P, in a phosphorus-

388 centered representation. (a) Nazarovite, a slice on (001). Framework of edge-sharing P(1)-centered

polyhedra $[PNi_{10}]$ (yellow) and perfect P(2)-centered cubes $[PNi_8]$ (green). (b) A cut of the

390 nazarovite framework illustrating the alternation of $[PNi_8]$ and empty $[\Box Ni_8]$ cubes interleaved along

391 the *c*-axis. (c) Nickelphosphide, a slice on (001) in the same orientation as of nazarovite. A

- 392 framework of edge-sharing polyhedra [P(Ni₇P₂)], with the narrow open channels propagating along
- the *c*-axis. Drawn in ATOMS v.6 (Dowty 2006).

395 Tables

<i>M</i> :P atomic ratio	Fe–P join		Ni–P join			
	Mineral	Ideal	formula	Mineral	Struct. type	Ref. ^b
4			Ni ₄ P	Melliniite	Al ₄ Au	[1]
3	Schreibersite	Fe ₃ P	Ni ₃ P	Nickelphosphide	Ni ₃ P	[2]
2.67			Ni ₈ P ₃		Ni ₈ P ₃	[3]
2.5			Ni ₅ P ₂		Ni ₅ As ₂	[4]
2.4			$Ni_{12}P_5$	Nazarovite	$Ni_{12}P_5$	[5]
2	Barringerite	Fe ₂ P	Ni ₂ P	Transjordanite	Fe ₂ P	[6]
2	Allabogdanite	Fe ₂ P	Ni ₂ P	Orishchinite	Co ₂ Si	[7]
1.25			Ni ₅ P ₄	Halamishite	Ni ₅ P ₄	[8]
1	Murashkoite	FeP			MnP	[9]
1			NiP		NiP	[10]
0.5	Zuktamrurite	FeP ₂			Marcasite	[11]
0.5			NiP ₂	Negevite	Pyrite	[12]
0.33			NiP ₃		Skutterudite	[13]
0.25		FeP ₄			FeP ₄	[14]
0.25		FeP ₄			CrP ₄	[15]

396	Table 1.	Juxtaposition	of natural a	and synthetic	phosphides	in the system	Fe–Ni–P ^a .
		1			1 1		

397

^a The phases which can exist under ambient conditions (either in stable or in quenched state).

^bReferences: [1] Pratesi et al. 2006; [2] Britvin et al. 1999, 2021a; [3] Ilnitskaya et al. 1987; [4]

400 Oryshchyn et al. 2004; [5] This work; [6] Britvin et al. 2020a; [7] Britvin et al. 2021c; [8] Britvin et

401 al. 2020b; [9] Britvin et al. 2019c; [10] Larsson 1965; [11] Britvin et al. 2019a; [12] Britvin et al.

402 2020c; [13] Rundqvist and Ersson 1969; [14] Jeitschko and Braun 1978; [15] Sugitani et al. 1978.

403

405

406

Table 2. Powder X-ray diffraction data for nazarovite (d in Å)

]	Hatruri	n basin	l	Marjalahti pallasite					
Iobs	$d_{\rm obs}$	Icalc	<i>d</i> _{calc}	Iobs	$d_{\rm obs}$	I _{calc}	<i>d</i> _{calc}	hkl	
5	4.374	3	4.374	3	4.370	2	4.372	101	
		3	4.320					200	
		2	3.073	3	3.080	4	3.076	211	
		2	3.054	5	3.062	4	3.060	220	
		11	2.732	15	2.736	13	2.737	310	
5	2.503	9	2.504	8	2.508	6	2.507	301	
54	2.341	39	2.342	43	2.339	40	2.341	112	
		16	2.187	b		18	2.186	202	
		17	2.167	b		14	2.169	321	
13	2.160	23	2.160	b		21	2.164	400	
15 ^a	2.040	19	2.036	27	2.038	22	2.040	330	
		7	1.937			4	1.939	411	
40 ^{<i>a</i>}	1.931	59	1.932	69	1.934	62	1.935	420	
100	1.860	100	1.859	100	1.858	100	1.859	312	
		7	1.694	10	1.696	8	1.697	510	
		3	1.644	5	1.643	3	1.645	402	
				5	1.637	6	1.638	501	
		8	1.636					431	
		3	1.588					332	
		5	1.537			8	1.538	422	
		2	1.409	5	1.410	4	1.410	512	
		3	1.381			3	1.381	323	
		5	1.366	6	1.368	5	1.368	620	
		9	1.279	b		11	1.281	532	
		9	1.268	b		10	1.267	004	
		6	1.222	b		9	1.224	710	
		3	1.208			2	1.209	433	
		13	1.203	14	1.204	18	1.204	622	

407 408

^{*a*} The line partially overlaps with the reflection from transjordanite. ^{*b*} Line completely overlaps with the reflection from nickelphosphide, (Ni,Fe)₃P.

411

- 412 413

Table 3. Crystal parameters of nazarovite and synthetic end-member nickelphosphide.

Mineral	Nazarovite			Nickelphosphide
Locality	Hatrurim	Hatrurim	Marjalahti	Synthetic
Method	SCXRD	PXRD	Rietveld	Rietveld
Formula	$Ni_{12}P_5$	$Ni_{12}P_5$	$(Ni_{11.43}Fe_{0.67})_{12}P_5$	Ni ₃ P
Space group	<i>I</i> 4/m	<i>I</i> 4/m	<i>I</i> 4/m	ΙΨ
a (Å)	8.640(1)	8.639(5)	8.6543(3)	8.9546(1)
<i>c</i> (Å)	5.071(3)	5.072(3)	5.0665(2)	4.3871(1)
<i>c/a</i> ×10	5.869	5.871	5.853	4.899
$V(\text{\AA}^3)$	378.5(2)	378.6(6)	379.47(3)	351.78(2)
Ζ	2	2	2	8
$D_{\rm x} ({\rm g \ cm}^{-1})$	7.54	7.54	7.55	7.82
Reference	This work	This work	This work	Skála and Drábek 2003

414

 Table 4. Selected interatomic bond distances (Å) for nazarovite.

Bond	Distance		
	Hatrurim	Marjalahti	
Ni1-Ni1	2.522(3)	2.53(2)	
Ni1–Ni1	2.549(3)	2.54(2)	
Ni1-Ni1	2.587(3)	2.605(10)	
Ni1-Ni1	2.639(2) ×2	2.647(7) ×2	
Ni1-Ni2	2.540(2)	2.531(10)	
Ni1-Ni2	2.574(2)	2.556(10)	
Ni1-Ni2	2.705(2)	2.716(10)	
Ni1–P1	2.222(3)	2.340(14)	
Ni1–P1	2.424(3)	2.350(15)	
Ni1–P1	2.455(3)	2.556(15)	
Ni1–P2	2.252(1)	2.262(7)	
Ni2–Ni2	2.544(4)	2.574(16)	
Ni2–P1	2.240(4)	2.083(17)	
Ni2–P1	2.242(4)	2.206(19)	
Ni2–P1	2.600(2) ×2	2.571(3) ×2	

424 Table 5. Chemical composition (wt. %) of nazarovite and associated phosphides.

	Hatrurim basin		Marjalahti pallasite	Marjalahti pallasite	
	Nazarovite	Transjordanite	Nazarovite	Nickelphosphide	
	n = 7 (range)	n = 6 (range)	n = 4 (range)	n = 5 (range)	
Ni	81.87 (81.39-82.29)	79.04 (78.26–79.73)	78.59 (78.01–79.42)	59.35 (52.90-63.92)	
Fe	< 0.2	< 0.2	4.10 (3.46–5.13)	25.81 (21.22–31.37)	
Co	< 0.2	< 0.2	0.07 (0.00-0.29)	0.23 (0.20-0.27)	
Р	18.16 (18.01–18.35)	21.01 (20.85–21.12)	17.91 (17.52–18.23)	15.01 (14.89–15.21)	
Total	100.03	100.05	100.67	100.40	
Formula amounts					
	$\Sigma = 17 apfu$	$\Sigma = 3 apfu$	$\Sigma = 17 apfu$	$\Sigma = 4 apfu$	
Ni	11.97	1.99	11.43	2.06	
Fe			0.63	0.94	
Со			0.01	0.01	
Σ	11.97	1.99	12.07	3.01	
Р	5.03	1.01	4.94	0.99	

435 Figures

439

440

Figure 2

441

- 442
- 443
- 444

