On the occurrence of Jahnsite/Whiteite phases on Mars: a thermodynamic study

Christophe Droueta, Matteo Locheb, Sébastien Fabreb, Pierre-Yves Meslinb

aCIRIMAT, Université de Toulouse, CNRS, Toulouse INP, UPS, 4 allée Emile Monso, 31030 Toulouse, France.

bInstitut de Recherche en Astrophysique et Planétologie, Université de Toulouse, UPS, CNRS, CNES, 9 Avenue du Colonel Roche, 31400 Toulouse, France.

Abstract

Jahnsites/Whiteites are a large family of phosphate hydrate minerals of relevance to Terrestrial and Martian mineralogy. It was recently hypothesized as being present in \textit{Gale Crater} sediments from XRD analyses performed by the \textit{CheMin} analyzer aboard the \textit{Curiosity} rover. However, the conditions of formation and thermodynamic properties of these compounds are essentially unknown to this day. In this work, we have optimized the \textit{ThermAP} predictive thermodynamic approach to the analysis of these phases, allowing us to estimate for the first time the standard formation enthalpy ΔH°_f, Gibbs free energy ΔG°_f and entropy S° of 15 Jahnsite/Whiteite end-member compositions, as well as of related phases such as Segelerite and Alluaudites. These estimations were then used to feed speciation/phase diagram calculation tools to evaluate the relative ease of formation and stability of these hydrated minerals, including considering present Martian conditions. Selected laboratory experiments confirmed calculation outcomes. All of our data suggest that the formation of Jahnsites is an unlikely process, and
point instead to the formation of other simpler phosphate compounds. The stability domain, as calculated here, also raises serious questions about the possible presence of Jahnsites on Mars as in *Gale Crater*, which appears rather improbable.

Keywords: Jahnsite; Whiteite; Thermochemistry; Phase diagram; ThermAP; PHREEQC; Stability; Curiosity rover; CheMin; Precipitation; Dehydration
The terms Jahnsite and Whiteite, as approved by the IMA Commission on New Minerals and Mineral Names, refer to a supergroup of phosphate hydrous compounds, initially described in 1974 from the analysis of the sample CaMnMg$_2$Fe$_2$(PO$_4$)$_4$(OH)$_2$: 8H$_2$O (Moore and Itô 1974). These minerals share the general formula XM$_1$M$_2$M$_3$(PO$_4$)$_4$(OH)$_2$: 8H$_2$O in which X, M$_1$ and M$_2$ represent mostly divalent cations and where M$_3$ is a trivalent cation in octahedral coordination, dominantly Fe$^{3+}$ for Jahnsites – named after Richard H. Jahns – and Al$^{3+}$ for Whiteites – named after John S. White.

The monoclinic symmetry, space group $P2/\alpha$, was assessed for all samples analyzed. The structure may accommodate a variety of substituting cations, hence the occurrence of several end-member compositions (often involving manganese) (Grey et al. 2020) and possibly solid solutions. Among reported substituting elements are Ca$^{2+}$, Mn$^{2+}$, Na$^{+}$ in X sites, Mg$^{2+}$, Mn$^{2+}$, Fe$^{2+}$ or Fe$^{3+}$ in M$_1$ sites and Mg$^{2+}$, Mn$^{2+}$, Fe$^{2+}$ (Fe$^{3+}$) or Zn$^{2+}$ in M$_2$ sites. While M$_1$ and M$_2$ involve divalent cations again in 6-fold octahedral coordination, X ions are located in 8-fold cages formed by adjacent phosphate oxygens. As a general observed trend, although exceptions may occur, the cations radii tend to follow an increasing tendency in the order M$_3$ < M$_2$ < M$_1$ < X (Kampf et al. 2019). The crystal structure (Figure 1) of several end-member compositions has been explored in detail, from the analysis of specimens from different terrestrial origins: Table 1 reports the main members of the Jahnsite and Whiteite subgroups known to date, along with typical localities where they were observed. Additional information on localities containing Jahnsites or Whiteites may be found for example in the MinDat.org online database, respectively with references No. 53039 and 29343. Although these compounds do not represent a high volumetric proportion of phosphate minerals on Earth (Treiman et al. 2021), they were nonetheless observed punctually at distinct places on several continents.
In spite of the above, the conditions of formation of Jahnsites/Whiteites remain highly unclear. No reports have been made available, to the best of our knowledge, neither on the preparation of pure Jahnsite/Whiteite synthetic analogs in view of systematic crystallization or dissolution studies, nor on the exploration of their thermodynamic properties (e.g. via calorimetry approaches), which remain essentially unknown. Only a single report addressed the thermal decomposition of one Jahnsite-(CaMnMn) and one Whiteite-(CaMnMg) specimen, pointing to a degradation pattern until complete dehydration/dehydroxylation (Grice, Dunn, and Ramik 1990). For the Jahnsite-(CaMnMn) compound, the authors mentioned an Alluaudite-like X-ray diffraction (XRD) pattern without further details. Unveiling the energetics of Jahnsites (in iron-rich contexts) and Whiteites (aluminum-rich) versus their chemical composition would allow understanding further their conditions of formation and exploring their related stability fields depending on local environmental constraints (past or present), not only on Earth but also in other contexts such as the surface of Mars.

Very recently, these phases have attracted attention as they were suspected, for the first time, to be potentially present on Mars, from XRD analyses carried out in the Glen Torridon area of Gale Crater, by the CheMin onboard instrument of the Curiosity rover (Treiman et al. 2021). Based on XRD data, a remarkable sharp peak corresponding to a d-spacing of ~9.22 Å, not easily assignable to other rock-forming minerals, was indeed detected and potentially assigned to the presence of Jahnsites/Whiteites. According to the authors of this communication, “it is conceivable that they could also form during diagenesis on Mars. There is ample evidence for diagenesis in the Murray formation mudstones, including mobility and recrystallization of iron oxides on Vera Rubin Ridge and formation of Mn-rich nodules in Glen Torridon. For the environments of Glen Torridon rocks, Jahnsite-Whiteite group minerals could have formed during low-temperature alteration of apatite by acid sulfate solutions rich in Mn (and possibly Fe). It is not clear why Jahnsite-Whiteite might be present alone, without detections of any other secondary phosphate minerals”. In addition, the dark polygonal objects analyzed by CheMin point to an enrichment
in Mn “which (by its several valence states) can serve as an energy source for chemosynthetic microorganisms” (Treiman et al. 2021); and the search for signs of Martian life has clearly been identified as an objective for the current/future investigations of Mars surface – e.g. via the Perseverance rover (landed on February 2021).

On Earth, Jahnsites/Whiteites are suspected to form by alteration of primary iron and/or manganese phosphates as in granitic pegmatites (Moore and Araki 1974; Kampf et al. 2018; Grey et al. 2010). They were reported as “late-stage hydrothermal products of the decomposition of triphylite-lithiophilite in pegmatites [occurring] in a paragenesis with laueite, strunzite, and stewartite” (Moore and Araki 1974). Their formation was suggested to have occurred in solution at low temperature (Moore and Itô 1974).

Another related hydrous mineral seems to be Segelerite CaMgFe\(^{III}\)(PO\(_4\))\(_2\)OH : 4H\(_2\)O whose thermochemistry is not known either. These phases have also been, at times, observed in sedimentary deposits (Elliott and Willis 2019). It may also be noted that Jahnsites have also been described in totally different settings, as in the composition of urinary stones, although on rare occasions (Abboud 2008).

Whether for Terrestrial or Martian investigations, better apprehending the thermodynamic properties of Mn-bearing phosphates such as Jahnsites and Whiteites is crucial in view of assessing their stability domains or proposing/explaining evolution trends. In particular, it may help to critically discuss the hypothesis of their presence on Mars, which is the purpose of this contribution. Since no experimental data are available to assess directly the thermodynamic properties of these compounds, we expanded here the “Applied Predictive Thermodynamics” model ThermAP (Drouet and Alphonse 2015) to such phases. This model was previously set up and applied successfully to the phosphate apatite group of minerals (Drouet 2015, 2019). To this aim, the model was based here on known thermodynamic data from a series of related mineral compounds (generally phosphates) involving ions relevant to the Jahnsite/Whiteite system and included in the Thermoddem mineralogical database, allowing calculations with speciation programs such as PHREEQC. Finally, based on our thermodynamic considerations and
Mars mineralogy around the *Gale Crater*, illustrative stability assessments will be made and the eventuality of presence of such phases on Mars will be discussed.

Materials and Methods

ThermAP predictive thermodynamic calculations for minerals

ThermAP is a predictive calculation tool aiming to estimate the standard properties of complex oxides (at 298 K and 1 bar) from a linear combination of the corresponding properties for constitutive simple oxides. Typical outcomes of the program are the standard formation enthalpy ΔH_f° and Gibbs free energy ΔG_f°, from the elements taken in their standard state, as well as the standard entropy S° of the complex oxide. For example, ΔG_f° of a complex oxide can be decomposed, in *ThermAP*, as follows:

$$\Delta G_f^\circ(\text{complex oxide}) = \sum_i v_i \cdot g_i = \sum_i v_i \cdot \left(a_{\text{corr},G_i} \cdot \Delta G_f^\circ(\text{binary oxide})\right)$$ \hspace{1cm} \text{Eq. 1}

where v_i denotes the stoichiometric coefficient for ion i in the chemical formula, g_i is the Gibbs free energy contribution of this ion, and a_{corr,G_i} is a corrective factor applicable to the simplest oxide formed with ion i (for halides, the diatomic molecule is taken as reference). This approach, inspired from other works on predictive thermodynamics (e.g., La Iglesia 2009) but further investigated, has been particularly developed so far in the illustrative case of phosphate apatites and led to ΔG_f°, ΔH_f° and S° estimates generally within 0.5 to 1% of relative error (Drouet 2019, 2015). For simplification of use, in the *ThermAP* formalism, each ion in the chemical formula is associated with a triplet (g_i, h_i, s_i) denoting their Gibbs free energy, enthalpy and entropy contributions; keeping however in mind that it originally refers to the corresponding simple oxide. For instance, values assigned as $g_{\text{Ca}^{2+}}$ and $g_{\text{PO}_4^{3-}}$ correspond respectively to $\Delta G_f^\circ(\text{CaO})$ and $\frac{1}{2} \cdot \Delta G_f^\circ(\text{P}_2\text{O}_5)$ to which corrective factors are associated to consider the
complex oxide characteristics. The core of this approach is the determination of the corrective factors, which are expected to differ from one subfamily of compounds to another. These factors were shown to be directly related to physicochemical characteristics of the elements considered, e.g. in terms of electronegativity (Drouet 2019, 2015).

In practice, the corrective factors to apply for a given family of compounds are accessed by multiple iterations (ion by ion) comparing the ThermAP-calculated values of ΔG°_f, ΔH°_f or S° to data accessible as “reference” in the literature. However, when no reference data are available, as is the case of Jahnsites and Whiteites, it remains possible to consider a subpopulation of related solid phases sharing similar compositional features (Drouet 2019). The 23 phosphate phases taken into account in the present work for assessing the (g_i, h_i, s_i) values to apply to Jahnsites/Whiteites are listed in Table S1 (Supporting Information); they were selected on the basis of their chemical composition involving ions relevant to Jahnsites/Whiteites (essentially based on Table 1) and for their known thermodynamic properties, including in the extensive and updated Thermoddem database of mineral phases (Blanc et al. 2012) usable in PHREEQC calculations.

PHREEQC speciation/phase predominance calculations

PHREEQC is a computer program for geochemical modeling in aqueous conditions, developed by the US Geological Survey (Parkhurst and Appelo 2013). It can perform a wide variety of calculations such as speciation, equilibrium between gas, solid and aqueous solution, reactions of dissolution and precipitation, and calculation of saturation index (SI). Calculations are based on the chemical properties of dissolved species, solids and gases from a given database, and can be performed over a quite large range of temperatures and pressures, provided that T-/P-specific data are available (Appelo, Parkhurst, and Post 2014). Here, we have used the Thermoddem database (Blanc et al. 2012), developed by the French geological survey, Bureau de Recherches Géologiques et Minières (BRGM). We selected this
database for the wide variety of solid species, including numerous secondary minerals with phosphorus, and for the regular update it receives, making it a solid base to perform geochemical modeling. Some of the database properties were verified by the ThermAP software (see below) allowing us to implement Jahnsite-Whiteite mineral, make punctual corrections for some minerals and confirm the solidity of the database. In addition, we used PHREEPLOT, a program with an embedded version of PHREEQC, to generate multiple plots to create predominance phase diagrams (Kinniburg and Cooper 2011).

For these calculations, the effective parameter used was log K, where K represents the solubility product of the considered solid phase (considering the speciation \(\text{H}_2\text{PO}_4^{\text{aq}} \) for aqueous phosphate ions). By definition of the solubility product, \(\log K \) is directly related to the change in Gibbs free energy of the dissolution reaction, \(\Delta G_{\text{disso}} \), itself being linked to the Gibbs free energy of formation of the given phase as follows:

\[
\Delta G_{\text{disso}}(\text{Jahnsite}) = \Delta G^\circ_{\text{disso}}(\text{Jahnsite}) + 2.3\ RT \log K = 0 \ (\text{solubility equilibrium}) \quad \text{Eq. 2}
\]

\[
\Delta G^\circ_{\text{disso}}(\text{Jahnsite}) = -2.3\ RT \log K = \Delta G_f^\circ(\text{Jahnsite}) - \sum_{\text{elements}} v_{\text{element}} \Delta G_f^\circ(\text{element}) \quad \text{Eq. 3}
\]

Calculations were made firstly by considering selected amounts of starting salts to dissolve, temperature (typically 100°C) and stoichiometry ratio, to mimic laboratory experiments run in this study. In particular, we worked here essentially with the Ca-MnII-Mg-FeIII-P-O-H system, aiming the formation of the “historical” Jahnsite-(CaMnMg) compound CaMnMg\textsubscript{2}Fe\textsubscript{2}(PO\textsubscript{4})\textsubscript{4}(OH)\textsubscript{2} : 8H\textsubscript{2}O (Moore and Araki 1974).

In a first stage, calculations were made starting from a stoichiometric mixture of precursor salts involving the ions in question here. Selected starting salts were those accessible for laboratory experiments and involving counter-ions such as nitrates or chlorides instead of sulfates for limiting the precipitation of undesirable secondary phases: Ca(NO\textsubscript{3})\textsubscript{2} : 4H\textsubscript{2}O, MnCl\textsubscript{2} : 4H\textsubscript{2}O, Mg(NO\textsubscript{3})\textsubscript{2} : 6H\textsubscript{2}O, FeCl\textsubscript{3} : 6H\textsubscript{2}O and KH\textsubscript{2}PO\textsubscript{4}.

With this modeled replication of experiments, a predominance diagram for the solid and dissolved species in the Log f(O\textsubscript{2})/pH space was generated. Then, the salts are allowed to dissolve in pure water,
and activities of typically phosphorus, manganese, iron, magnesium and calcium species are derived.

When SI > 0 for a given solid, supersaturation is reached, meaning it is thermodynamically possible to precipitate it from the solution. Several minerals can reach supersaturation, but not all of them will precipitate because of the difference between kinetic rates for example. Finally, we authorized precipitation of the saturated minerals, targeting the same results as the predominance diagram, in addition to eventual secondary predominant species or minerals. Even though the kinetics of precipitation is not accounted for in such calculations, this method can show how likely it is to supersaturate species such as Jahnsite/Whiteite in our assumed favorable experimental conditions.

After the modeled replication of potential laboratory experiments, we applied the same methods for the ancient Mars conditions to assess the possibility of forming Jahnsite/Whiteite using our modeled alteration solution assuming that P and Mn were mobile and available at the same time as dissolved species in the solution.

Laboratory precipitation experiments

Selected laboratory experiments were run starting from stoichiometric proportions corresponding to the "historical" Jahnsite-(CaMnMg) CaMnMg₂Fe₂(PO₄)₄(OH)₂·8H₂O that gathers relevant ions for both Terrestrial and Martian contexts. The precursor powders used are as follows: Ca(NO₃)₂·4H₂O (typically 708.45 mg), MnCl₂·4H₂O (593.7 mg), Mg(NO₃)₂·6H₂O (1538.46 mg), FeCl₃·6H₂O (1621.8 mg) and KH₂PO₄ (1633.08 mg), involving counter-ions such as nitrates or chlorides instead of sulfates for limiting the precipitation of undesirable sulfated or chlorinated secondary phases. After preliminary dissolution of each salt separately in about 1.5 to 2 ml, all precursor solutions were rapidly mixed together and the total volume was adjusted to 10 ml. In some experiments, the natural pH of the obtained medium was left unaltered, typically around 0.4 (which is close to the pH used in other studies as for the precipitation of Jarosites to avoid iron III hydrolysis, (Drouet and Navrotsky 2003)). In other trials, up to +10 ml of a
concentrated solution of potassium hydroxide KOH (pH ~ 13) were progressively added to the medium to increase the amount of OH⁻ ions. After mixing the precursors, the precipitating medium was left to mature for about 24 hours, either at room temperature (about 20 °C) or 60°C or 100 °C prior to filtration, washing with deionized water and drying in an oven preset to 40 °C. The obtained precipitates were analyzed by X-ray diffraction (XRD) with an Equinox 100 INEL curved-counter diffractometer powered at 30 kV / 30 mA and using a cobalt anticathode (λ_Co = 1.78892 Å) with an acquisition time of ~ 1 hour per sample. XRD patterns were examined with the Match software exploiting the PDF-2 database.

Results

Development of the ThermAP model for Jahnsites/Whiteites

Gibbs free energy. With the view to ultimately run phase predominance calculations – for example via the PHREEQC software – and also because it embodies the thermodynamic driving force in a reaction or cycle, we chose to consider first the Gibbs free energy ΔGᵢ°, and thus the related log K values, as the parameter to be fitted first. We selected here a subpopulation of 23 phosphate minerals (listed on Table S1) involving relevant ions to Jahnsites/Whiteites. This allowed us to determine the gi ionic contributions leading, for this subpopulation of compounds, to the best fit between calculated and reference data (using the Thermoddem database), and these values are reported on Table 2 (second column).

Figure 2 shows the comparison between calculated and reference ΔGᵢ° values for the phases considered here, illustrating as expected the good match throughout this series of solid phases, with a mean relative error of 0.6 % (in absolute value). Note that for three phases the values of ΔGᵢ° compiled in Thermoddem were found somewhat different from other literature data: Vivianite Fe₃(PO₄)₂ · 8 H₂O, magnesium hydrogen phosphate MgHPO₄ and calcium aluminum phosphate CaAlH(PO₄)₂ · 6H₂O. For these phases,
the reference values listed by Vieillard and Tardy were selected instead, see Table S2 (Vieillard and Tardy 1984). The corresponding graph in terms of log K is shown in Figure S1. Although the calculation process to access log K from ΔG° involves several steps so as to consider the whole dissolution reaction, and thus further propagates uncertainties, there is still an appreciably good correspondence between calculated and reference data.

Entropy. Previous developments of the ThermAP approach on apatites showed that determining ΔH° from ΔG° and S° led to a better overall fit (especially for S° values) than drawing S° from ΔG° and ΔH° due to a difference in propagated uncertainties (Drouet 2015). Therefore, we also selected this methodology here and S° was thus considered as the second parameter to be fitted, after ΔG°.

Only few values of S° are however available in the literature concerning the 23 phases relevant to this study. For phases with missing entropy data, we evaluated S° using Helgeson’s method by considering theoretical equilibria involving only solid phases (Helgeson 1978). This method is quite common for the estimation of entropies of solids, and is based on the idea that the volume change along solid-state reactions remains very small, thus suggesting an entropy change ΔS of reaction also close to zero. Therefore, by assuming that the sum of entropies of the left members of the reaction equals that of the right members, it becomes possible to access the unknown S° term. An example may be given in the case of FePO$_4$: 2H$_2$O (Strengite or Phosphosiderite) for which the following theoretical reaction in solid state may be written:

$$\text{FePO}_4 \cdot 2\text{H}_2\text{O} + \text{Al(OH)}_3 \leftrightarrow \text{AlPO}_4 \cdot 2\text{H}_2\text{O} + \text{Fe(OH)}_3$$

Eq. 4

From the S° values of Variscite (AlPO$_4$: 2H$_2$O), aluminum and iron III hydroxides, respectively equal to 134.5 (Vieillard and Tardy 1984), 71.128 (Barin 1995a) and 106.7 (Barin 1995b) J.mol$^{-1}$.K$^{-1}$, one can estimate S°(FePO$_4$: 2H$_2$O) \approx 170.1, which is very close to the reference value of 171.25 J.mol$^{-1}$.K$^{-1}$.
(Vieillard and Tardy 1984), within 0.7 % of relative error in this case. The solid-state reactions considered
in this work for phosphate phases with missing entropy data are listed in Table S3.

Then, via multiple iterations as was done above for g_i, the ionic entropy contributions s_i were
determined by seeking the best fit between ThermAP-calculated S^o values and “reference” ones (i.e.
whether taken from the literature or accessed here by Helgeson’s method). These s_i values are also listed
in Table 2 and Figure 3 shows the comparison between these two sets of data. Again, a general good
match was obtained, with a mean relative error of 3.3 %.

Enthalpy. From the fits obtained above in terms of Gibbs free energy and entropy, it then
became possible to draw enthalpy contributions for the 23 phosphate phases of interest here, using the
general formula:

$$\Delta H_f^o = \Delta G_f^o + T \cdot \Delta S_f^o \quad \text{Eq. 5}$$

with $T = 298 \text{ K}$ in the present case and where ΔS_f^o refers to the entropy of formation of the considered
phase from the elements in their standard state.

Fitting via ThermAP the obtained ΔH_f^o values as was done earlier for g_i and s_i then allowed us to
determine the ionic contributions h_i that were added to Table 2. Note that it is also possible to reach
these same h_i values from the ionic contributions g_i and s_i. However, it is then important to keep in mind
that while h_i and g_i denote changes in enthalpy and free energy from the elements composing the
(corresponding simple oxide, in contrast s_i refers directly (as is customary) to the sole standard entropy.

Therefore, strictly speaking, the following relation applies:

$$h_i = g_i + T \cdot \left(s_i - \sum_{\text{elements from simple oxide}} S^o_{\text{elements}} \right) \quad \text{Eq. 6}$$
The comparison between the calculated ΔH_f° values obtained and reference data, when available, is shown in Figure 4. Again, a very good agreement is obtained between the two sets of data (mean relative error 0.2 %) when existing reference values are accessible.

Recommended thermodynamic properties for Jahnsites/Whiteites

The above findings allowed us to determine ionic energetic contributions in terms of Gibbs free energy (and related log K), enthalpy and entropy for 23 phosphate minerals comprising ions most relevant to the composition of Jahnsites and Whiteites, namely Ca^{2+}, Mg^{2+}, Mn^{2+}, Fe^{2+}, Fe^{3+}, Al^{3+}, PO_4^{3-}, OH$^-$ (see Table 2). Hydration H_2O was also included as fitted chemical species, along with secondary ions like H^+ and F^-, which were present in some of the minerals considered. Some other ions have also occasionally been reported in the composition of Jahnsites, such as Na^+ and Zn^{2+}. The energetic contributions of these cations were thus also calculated (based on phases listed in Table S1) and added to Table 2, along with those of potassium, another relatively common cation in minerals (e.g. as in Leucophosphite $\text{KFe}^{III}_2(\text{OH})(\text{H}_2\text{O})(\text{PO}_4)_2 : \text{H}_2\text{O}$), in case this ion may happen to be involved in further Jahnsite/Whiteite samples yet to discover.

Based on this ThermAP development for related phosphate phases, it then becomes possible to propose thermodynamic predictions for Jahnsites/Whiteites at 298 K / 1bar depending on their chemical composition. Taking into account the main end-members listed in Table 1, the corresponding values of ΔG_f°, ΔH_f°, S° and log K (dissolution constant using the H_2PO_4^- phosphate speciation) have for example been calculated, at 298 K and 1 bar, and gathered in Table 3. To the best of our knowledge, these are the first thermodynamic estimates reported for Jahnsites and Whiteites compounds.

From the ThermAP refined values of g_i, h_i, s_i tabulated in Table 2, it is also possible to draw estimates of any envisioned solid solutions within the Jahnsite/Whiteite system. For instance, the calculation of ΔG_f°...
for Jahnsite-(NaMnMn) reported from Quarry, Australia (Miyawaki et al. 2019), whose actual chemical formula was reported as NaMn(MnFeIII)FeII(PO$_4$)$_4$(OH)$_2$: 8H$_2$O (see Table 1) yields -7695 kJ/mol. Besides solid solutions, departure from stoichiometry and/or from the theoretical 8H$_2$O hydration may also be accounted for in the ThermAP approach (as was shown for example previously on apatites (Drouet 2015)). These refined (g_i, h_i, s_i) sets of ionic contributions for Jahnsites and Whiteites have now been added to the ThermAP program accessible from the internet (freely available to the scientific community, Drouet and Alphonse 2015).

We may also remark that no thermodynamic data appears to be available in the literature for related phosphate phases such as Segelerite CaMgFeIII(PO$_4$)$_2$OH : 4H$_2$O (orthorhombic, Pcca space group). In a similar way as was done for Jahnsites, the thermodynamic properties ΔG°, ΔH°, S° and log K at 298 K may be estimated using the g_i, h_i, s_i values refined here (see Table S4). Alluaudites are another family of phosphate minerals involving similar types of ions as Jahnsites and belonging to the general formula A1A2M1M2$_2$(PO$_4$)$_3$ although having large departures from this theoretical formula in terms of site occupations (e.g., Alhakmi et al. 2018). Additionally, Grice et al. (1990) reported that an Alluaudite phase formed upon Jahnsite dehydration (Grice, Dunn, and Ramik 1990). Based on the Jahnsite-(CaMnMn) composition studied by these authors, it is possible to assume the chemical composition of the Alluaudite phase obtained (not detailed in this referenced paper) by writing the decomposition pattern:

$$\text{CaMnMn}_2\text{Fe}_2(\text{PO}_4)_4(\text{OH})_2 : 8\text{H}_2\text{O} \rightarrow 4/3 \text{Ca}_{0.75}\text{Mn}_{0.75}\text{Mn}_{0.75}\text{Fe}_{1.50}^{III}(\text{PO}_4)_3 + \text{MnO} + 9 \text{H}_2\text{O}_{(gas)}$$

and the thermodynamic properties of this Alluaudite “CaMnMnFeIII” may then be estimated with our ThermAP refinement as well (added to Table S4). Note indeed that exsolution of some Mn$^{2+}$ ions into MnO as a secondary phase is more thermodynamically favored than exsolution of Ca$^{2+}$ into CaO, as
suggested by the smaller value of ΔG° of reaction (that we can calculate to 151 kJ/mol versus 215 kJ/mol). If a similar dehydration pattern into an Alluaudite phase is also valid for other Jahnsites, then similar calculations can be made on the basis of their chemical compositions. For example, it may be suggested that the “historical” Jahnsite-(CaMnMg) would lead to an Alluaudite “CaMnMgFe” whose composition and ThermAP-calculated thermodynamic properties have been added to Table S4.

In all these calculations, it is difficult to state the absolute error being made since no experimental thermodynamic data are available on these complex phases. However, as shown during the ThermAP refinement in this work, the ΔG°, ΔH° and S° values for the 23 phosphate phases used in the refinement were systematically close to the experimental reference data, typically within 0.6 % of relative error for Gibbs free energies, 0.2 % for enthalpies and 3.3 % for entropy (keeping in mind that the entropy contribution $T \cdot \Delta S^\circ$ for such complex oxides, high large ionic contents remains usually significantly lower than the enthalpy contribution ΔH° in the calculation of ΔG°). Therefore, we can consider reasonably – as was found previously on apatite phosphates (Drouet 2015) – that the ΔG°, ΔH° and S° values recommended here for Jahnsites/Whiteites (Table 3) and related phases probably stand within about 1 % of relative error.

Speciation/phase predominance calculations

Now that estimates of the thermodynamic properties for the formation of Jahnsite/Whiteite phases have become available via ThermAP, it is possible to add these phases in the database of speciation/phase predominance programs so as to run phase speciation/predominance calculations. We have here selected the PHREEQC / PHREEPLOT software to this aim, and added the Jahnsite/Whiteite phases to the Thermoddem database. In particular, we selected the Ca-MnII-Mg-FeIII-P-O-H system, aiming the formation of the “historical” Jahnsite-(CaMnMg) compound CaMnMg$_2$Fe$_2$(PO$_4$)$_2$(OH)$_2$: 8H$_2$O.
(Moore and Araki 1974), involving ions particularly relevant to putative phosphate phases observed in Gale Crater.

Calculations were made considering a stoichiometric mixture Ca-Mn-Mg-Fe-P of precursor salts. Although these calculations cannot take into account kinetic factors, this approach can illustrate how likely it is to supersaturate Jahnsite in our assumed favorable experimental conditions. First, the saturation index SI versus relevant phases was calculated, whether in equilibrium with or isolated from the Terrestrial atmosphere (to mimic potential laboratory experiments) as shown in Figure 5a. Several phases exhibit a significantly positive SI value such as Hematite Fe$_2$O$_3$, Strengite FePO$_4$: 2H$_2$O, Lepidocrocite/Goethite FeO(OH) or manganese hydrogen phosphate MnHPO$_4$. In this scheme, Jahnsite on the contrary only appears very minor. Then, precipitation of phases was allowed in the software, unveiling Strengite and potentially MnHPO$_4$ as the most probable final products (Figure 5b).

In addition, predominance diagrams for solid and dissolved species were calculated using the whole Thermoddem database and plotted using PHREEPLOT, in the Log f(O$_2$)/pH space (Figure 6). These diagrams show predominance domains for the cationic elements involved in the composition of Jahnsite, namely Ca$^{2+}$, Mn$^{2+}$, Fe$^{3+}$ and Mg$^{2+}$, starting from concentrations and elemental ratios similar to Figure 5. We can infer that Jahnsite precipitation never occurred in any of our phase diagram calculations.

Laboratory precipitation experiments

To complement our calculations, selected laboratory experiments were run in the same stoichiometric conditions as for the above PHREEQC calculations, focusing on the precipitation of the “historical” Jahnsite-(CaMnMg). In order to allow the initial dissolved salts to react, and to attain thermodynamic equilibrium faster, a reference experiment was run at 100°C for 24 hours without external alteration of pH (initial pH measured to ~ 0.4). Pictures of the obtained precipitate after thorough washing are shown.
for illustrative purpose in Figure S2. The XRD pattern obtained by analyzing the precipitate (Figure 7) clearly demonstrated the presence of iron III phosphate dehydrate FePO$_4$: 2H$_2$O as essential constituent (sum of the two polymorphs Strengite and Phosphosiderite). These results are in accordance with our PHREEQC calculations pointing to FePO$_4$: 2H$_2$O as the predominant expected compound. The co-

presence of secondary phases containing Mn remains possible, either as minor crystalline phase(s) or amorphous, or else via Mn$^{2+}$ doping into the iron phosphates. The purplish color of the precipitate suggests indeed the presence of this element within the sample despite non-specific XRD peaks. The absence of Jahnsite appears however quite clearly by the absence of any detectable XRD feature around 2θ = 11° ($\lambda$$_{k\alpha}$ cobalt anticathode) corresponding to the typical Jahnsite d-spacing at ~ 9.22 Å (most intense peak in the Jahnsite pattern, see Power Diffraction File (PDF) 01-070-2079). Despite the stoichiometric initial elemental ratios corresponding strictly to the composition of Jahnsite-(CaMnMg), namely CaMnMg$_2$Fe$_2$(PO$_4$)$_4$(OH)$_2$: 8H$_2$O, and despite supersaturation conditions with respect to this phase (Figure 5a), it did not precipitate experimentally.

Variations of the precipitation conditions were also tested in terms of maturation temperature (by lowering the maturation temperature to potentially facilitate the precipitation of hydrated phases such as Jahnsites) and/or via the addition of an alkaline solution of potassium hydroxide (so as to add OH$^{-}$ ions to the medium and potentially facilitate the formation of Jahnsite which is a hydroxy-phosphate compound). The modification of the maturation temperature from 100 °C down to 60 or 20 °C, however did not result in precipitation of Jahnsite. At 60 °C, the analysis of the precipitate by XRD (Figure S3a) showed the formation of iron III phosphate in the form H$_3$Fe(PO$_4$)$_2$: 2.5H$_2$O (PDF 00-044-0812) – which may be seen as a hydrated precursor to Strengite/Phosphosiderite – in addition to a remaining amorphous phase. At 20 °C, only a minor amount of precipitate was observed at 24 hours. Therefore, lowering the temperature probably essentially affected the kinetics of evolution of the precipitate, but Jahnsite was never detected. The addition of KOH, even if dropwise and independent of the maturation
temperature, instantly led to the formation of a brownish precipitate while the supernatant overall pH did not rise. These observations suggest the immediate combination of the added OH⁻ ions with ionic species to form OH-bearing phases. Analysis by XRD (Figure S3b) evidenced the amorphous nature of this precipitate, as only halos were observable around 2θ = 33° (major) and 16° (secondary). No crystallized phase formed at these conditions.

Discussion

Jahnsites/Whiteites constitute a large family of phosphate hydrated minerals sharing the same global structure (Figure 1). These phases were observed on Earth on several places/continents (Table 1), although they only represent a small volumetric portion of phosphate minerals. Recently, they have been suspected to be present on the surface of Mars, based on an XRD peak noticed at ~9.22 Å by the CheMin apparatus aboard the rover Curiosity while analyzing samples from the Glen Torridon area of Gale Crater, containing dark-toned nodules whose chemical analyses indicated the concomitant presence of manganese and phosphorus (Treiman et al. 2021; Lanza et al. 2021). However, to this day, their conditions of formation and thermodynamic properties remain totally unknown. To shed light on these aspects, and potentially favor or disfavor the hypothesis of their presence on Mars, we have expanded in this study the ThermAP predictive thermodynamic approach to the case of these compounds. Comparisons between theoretical and calculated values on 23 related phosphate mineral phases involving ions relevant to Jahnsites/Whiteites, shown in Figs 2,3,4, indicate a very good match. Optimization of ThermAP to this subpopulation of compounds thus allowed us to ultimately derive the ionic enthalpy, Gibbs free energy and entropy contributions, respectively h_i, g_i, and s_i (Table 2) to apply to the chemical formula of any given Jahnsite/Whiteite phase so as to estimate their ΔG°_f, S° and ΔH°_f and
log K properties, at 298 K and 1bar – typically within about 1 % of relative error. Hence, the values that we recommend in this work for the end-members listed in Table 1 are given in Table 3.

Thanks to these estimations, and in particular of ΔG_f° and the related log K values, it then became possible to add these data to thermodynamic databases in order to run speciation/phase diagrams. We selected the PHREEQC software and the Thermoddem database for their robustness, relevance to the mineralogy field and regular updates. Our speciation calculations (Figure 5) considering the “historical” Jahnsite-(CaMnMg) strongly suggest that it is not a favorable phase expected to precipitate even in potentially advantageous conditions such as stoichiometric proportions in the initial solution, while other compounds such as FePO$_4$: 2H$_2$O (e.g. Strengite) or MnHPO$_4$ clearly appear as preferential phases. Temperature and pH did not affect our results significantly. Although kinetic factors are not accounted for in such calculations, it allows identifying which mineral phase should more likely precipitate. Our mimicking laboratory experiments starting from stoichiometric conditions indeed pointed out from XRD analyses the absence of a Jahnsite phase in the precipitate and revealed the formation of FePO$_4$: 2H$_2$O as crystalline phase (Figure 7). Phase predominance diagrams considering one by one each type of cation involved in the composition of Jahnsite-(CaMnMg) were also plotted (Figure 6). Again, Jahnsite did not appear as a favorable phase to be formed.

Implications

The results reported in this work can be applied to current and past Martian conditions to question the possible occurrence of Jahnsite in Gale Crater. As expected, our calculations for different CO$_2$ pressures (~6 mbars for present-day Mars and ~500 mbars for ancient Mars (Kurokawa, Kurosawa, and Usui 2018)) did not change the predominance diagrams (Figure 6) significantly and exclude the formation of Jahnsite under these conditions. In terms of oxygen fugacity, the present-day Martian conditions (log $f(O_2)$ = -5.02...
(Trainer et al. 2019)) correspond to the upper part of the diagrams in Figure 6 and do not appear to favor Jahnsite precipitation either. Although the past \(f(\text{O}_2) \) is unknown, these diagrams cover a very wide range of fugacities, ruling out an effect of this parameter on Jahnsite formation.

The solution used to obtain these diagrams is thermodynamically favorable for Jahnsite precipitation, with elemental stoichiometric proportions and high concentrations of its constituents. Since weathering fluids under ancient Martian conditions are not expected to contain such elevated concentrations of these elements (Bridges et al. 2015), direct Jahnsite precipitation was very unlikely.

Even though Jahnsite had formed by other indirect pathways, our model also allows investigating its stability under present-day Mars conditions. The single literature report dealing with the thermal degradation of Jahnsite-(CaMnMn) showed a start of degradation at a quite low temperature, with a first peak maximum at 125 °C, and the formation of an Alluaudite phase after complete dehydration/dehydroxylation (Grice, Dunn, and Ramik 1990). Considering this observation and the ThermAP-derived thermodynamic properties of Jahnsites and Alluaudites (see Table S4), including their anticipated temperature dependence based on isobaric heat capacity \(C_p \) considerations (Table S5), it is possible to plot stability curves of the Jahnsite-Alluaudite system in the \(f(\text{H}_2\text{O})\)-T space, as was done previously on Jarosites on Meridiani Planum (Navrotsky, Forray, and Drouet 2005) – where \(f(\text{H}_2\text{O}) \) denotes water fugacity. Figure 8 illustrates the example of three Jahnsites (CaMnMn), (CaMnMg) and (MnMnMg). These phases were chosen because they cover compositions relevant to in situ observations (Treiman et al., 2021; Lanza et al., 2021). As water fugacity drops, the stability temperature significantly decreases, reaching negative values for \(\log f(\text{H}_2\text{O}) \) lower than -4, i.e., under 0.1 mbar. Taking into account the “typical” low water vapor on the present Martian atmosphere in Gale crater, e.g. ~ 0.5 \(\times 10^{-3} \) mbar (\(\log f(\text{H}_2\text{O}) = -6.3 \) (McConnochie et al. 2018)), these findings suggest that Jahnsite dehydration is expected to occur above -43 °C for Jahnsite-(CaMnMn) and above -47 °C for Jahnsites-(CaMnMg) and (MnMnMg). The ground temperature at Gale Crater was measured by Curiosity to range from...
-93°C and to 10°C (Vasavada et al. 2017). Under these conditions, Jahnsites present at the surface of Mars would regularly encounter periods of unstable conditions leading to their progressive dehydration.

All of our data unanimously suggest that Jahnsites are not favorable phases to precipitate directly, even starting from a stoichiometric mixtures, and that other phases should probably be expected to form instead, e.g. more simple phases such as iron phosphate dehydrate or MnHPO$_4$. Extrapolation of our results to present and past Martian conditions, which are even less favorable than our laboratory and numerical experiments, also argues against their direct precipitation at the surface of Mars. Moreover, any Jahnsite formed by other indirect pathways and brought to or formed at the surface of Mars would undergo a progressive dehydration process, which further suggests that the XRD peak detected by the CheMin instrument onboard Curiosity at 9.22 Å is very unlikely explained by the presence of such a mineral phase. The detailed XRD data have not been released to the public yet, so we did not have access to that data. We based our discussion on the preliminary interpretations given by the MSL/CheMin team at the Lunar and Planetary Science Conference earlier this year. We will need to wait for further analyses and communications by this team to identify the nature of the 9.22 Å peak that was initially reported as being potentially Jahnsite.

Acknowledgements

We acknowledge the support from the Agence Nationale de la recherche (ANR) under the contract ANR-16-CE31-0012 entitled Mars-Prime. We would also like to thank David Kinniburgh for helpful discussions about PHREEPLOT. Finally, we thank Allan Treiman (plus an anonymous reviewer) for reviewing this work.
References

Table captions

Table 1. Overview of the main Jahnsite and Whiteite end-member compositions established to-date: reference names, chemical compositions, illustrative localities on Earth and related references.

Table 2. Values g_i, h_i, and s_i as determined by the ThermAP predictive model, for the estimation of ΔG°, ΔH° or S° of Jahnsites/Whiteites (at $T = 298$ K, 1 bar) from their ionic composition.

Table 3. Recommended thermodynamic properties for several Jahnsite/Whiteite end-members based on ThermAP refinements.
Figure captions

Figure 1. Jahnsite/Whiteite structure of phases viewed along the direction [010]. The dashed line refers to one unit cell. The a and b lettering for M2 and M3 sites denote two existing orientations. Used by permission of Mineralogical Association of Canada, from Kampf et al. (2018), The Canadian Mineralogist, vol. 56 (6), Fig. 5, p. 881.

Figure 2. Comparison of ΔG° values as calculated via ThermAP (using the g_i values tabulated in Table 2) with reference data (Thermoddem database).

Figure 3. Comparison of S° values as calculated via ThermAP (using the s_i values tabulated in Table 2) with reference data (Thermoddem database).

Figure 4. Comparison of ΔH° values as calculated via ThermAP (relating to the h_i values tabulated on Table 2) with available reference data (Thermoddem database). The notation “n.d.” stands for “not determined” due to unknown reference enthalpy data for these compounds.

Figure 5. (a) Saturation index (pH not fixed) without allowing precipitation, in equilibrium with or isolated from the terrestrial atmosphere (to potentially mimic laboratory experiments). (b) Precipitation of predominant phases (same conditions but enabling phase precipitation). The notation “cor” refers to the phases that have been “corrected” compared to the Thermoddem database (see text).

Figure 6. Predominance diagrams in the log $f(\text{O}_2)$-pH space (PHREEPLOT), starting from similar concentration and elemental ratios to Figure 5 (Fe 0.6 / Mg 0.6 / Mn 0.3 / Ca 0.3 / P 1.2 mol/kg), and considering a terrestrial pCO$_2$ of 400 ppm.

Figure 7. XRD pattern for the experimentally precipitated compound, starting from the initial stoichiometry of Jahnsite-(CaMnMg), at 100°C for 24 hours. Letters “S” and “P” refer to the FePO$_4$:2H$_2$O polymorphs Strengite and Phosphosiderite, respectively.

Figure 8. Evaluation of the stability fields of Jahnsites-(CaMnMn), (CaMnMg) and (MnMnMg) and corresponding Alluaudites in the $f(\text{H}_2\text{O})$-T space. The dotted grey lines represent, for information, the H$_2$O phase diagram. The yellow dotted box shows the typical min and max temperature and $f(\text{H}_2\text{O})$ values measured by Curiosity at Gale Crater (McConnachie et al. 2018).
Similarly, for this compound, additional ions occur in the structure to maintain the electroneutrality such as Fe. For instance, the following formula was given for the Brazilian sample (Na0.25Ca0.25Mn0.56Ca0.21Mn0.25Fe0.47)(Mg0.15Fe0.13Fe0.13Al0.21)(PO4)0.4(PO4)0.4(OH)2.8H2O.H2O8.17.

Similarly, for this compound, additional ions occur in the structure to maintain the electroneutrality such as Fe in M2 sites, giving the overall formula NaMn(MnFe)3(PO4)4(OH)2 : 8H2O.

Table 1. Overview of the main Jahnsite and Whiteite end-member compositions established to-date: reference names, chemical compositions, illustrative localities on Earth and related references.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Composition</th>
<th>Origin (locality)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jahnsites</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jahnsite-(CaMnMg)</td>
<td>CaMnMg2Fe2(PO4)4(OH)2 : 8H2O</td>
<td>Custer County, South Dakota, USA</td>
<td>(Moore and Araki 1974)</td>
</tr>
<tr>
<td>Jahnsite-(CaMnMn)</td>
<td>CaMnMn2Fe2(PO4)4(OH)2 : 8H2O</td>
<td>Manguade, Portugal</td>
<td>(Grice, Dunn, and Ramik 1990)</td>
</tr>
<tr>
<td>Jahnsite-(CaFeMg)</td>
<td>CaFeMg2Fe2(PO4)4(OH)2 : 8H2O</td>
<td>Mt Lofty Ranges, Australia</td>
<td>(Elliott 2016)</td>
</tr>
<tr>
<td>Jahnsite-(MnMnMg)</td>
<td>MnMnMg2Fe2(PO4)4(OH)2 : 8H2O</td>
<td>Minas Gerais, Brazil</td>
<td>(Vignola et al. 2019)</td>
</tr>
<tr>
<td>Jahnsite-(NaMnMg)</td>
<td>*</td>
<td>Minas Gerais, Brazil; Quarry, Australia</td>
<td>(Kampf et al. 2018)</td>
</tr>
<tr>
<td>Jahnsite-(NaMnMn)</td>
<td>**</td>
<td>Quarry, Australia</td>
<td>(Miyawaki et al. 2019)</td>
</tr>
<tr>
<td>Jahnsite-(CaMnFe)</td>
<td>CaMnFe2Fe2(PO4)4(OH)2 : 8H2O</td>
<td>Minas Gerais, Brazil</td>
<td>(Cassadanne and Baptista 1999)</td>
</tr>
<tr>
<td>Jahnsite-(MnMnMn)</td>
<td>MnMnMn2Fe2(PO4)4(OH)2 : 8H2O</td>
<td>Minas Gerais, Brazil</td>
<td>(Bajiot et al. 2014)</td>
</tr>
<tr>
<td>Jahnsite-(MnMnZn)</td>
<td>MnMnZn2Fe2(PO4)4(OH)2 : 8H2O</td>
<td>Herdade dos Penedoes, Portugal</td>
<td>(Kampf et al. 2019)</td>
</tr>
<tr>
<td>Jahnsite-(NaFeIII)Mg</td>
<td>NaFeIII2Mg2Fe2(PO4)4(OH)2 : 8H2O</td>
<td>Custer County, South Dakota, USA</td>
<td>(Kampf, Steele, and Loomis 2008)</td>
</tr>
<tr>
<td>Jahnsite-(CaMnZn)</td>
<td>CaMnZn2Fe2(PO4)4(OH)2 : 8H2O</td>
<td>Hagendorf-Süd, Bavaria, Germany</td>
<td>(Grey et al. 2020)</td>
</tr>
<tr>
<td>Jahnsite-(CaMnMn/Fe) aka Keckite</td>
<td>CaMn(Mn/Fe)2Fe2(PO4)4(OH)2 : 8H2O</td>
<td>Hagendorf-Süd, Bavaria, Germany</td>
<td>(Kampf, Steele, and Loomis 2008; Mücke 1979)</td>
</tr>
<tr>
<td>Whiteites</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Whiteite-(CaMnMn)</td>
<td>CaMnMn2Al2(PO4)4(OH)2 : 8H2O</td>
<td>Hagendorf-Süd, Bavaria, Germany</td>
<td>(Grey et al. 2010)</td>
</tr>
<tr>
<td>Whiteite-(MnMnMg)</td>
<td>MnMnMg2Al2(PO4)4(OH)2 : 8H2O</td>
<td>Iron Monarch, Australia</td>
<td>(Elliott and Willis 2019)</td>
</tr>
<tr>
<td>Whiteite-(MnMnFe) aka Rittmannite</td>
<td>MnMnFe2Al2(PO4)4(OH)2 : 8H2O</td>
<td>Manguade, Portugal</td>
<td>(di Cossato, Orlandi, and Vezzalini 1989)</td>
</tr>
<tr>
<td>Whiteite-(CaFeMg)</td>
<td>CaFeMg2Al2(PO4)4(OH)2 : 8H2O</td>
<td>Crosscut Creek, Canada</td>
<td>(Capitelli et al. 2011)</td>
</tr>
<tr>
<td>Whiteite-(CaMnMg)</td>
<td>CaMnMg2Al2(PO4)4(OH)2 : 8H2O</td>
<td>Custer County, South Dakota, USA</td>
<td>(Grice, Dunn, and Ramik 1989)</td>
</tr>
<tr>
<td>Whiteite-(CaMgMg)</td>
<td>CaMgMg2Al2(PO4)4(OH)2 : 8H2O</td>
<td>Candelaria, Nevada, U.S.A.</td>
<td>(Kampf, Adams, and Nash 2016)</td>
</tr>
</tbody>
</table>

*The authors named this compound in link with ions predominant occupation in the X, M1, M2 and M3 sites; however additional ions occurred in the chemical formula to allow electroneutrality. For instance, the following formula was given for the Brazilian sample (Na0.55Ca0.25Mn0.025)[Mn0.85Fe0.15][Mg0.13Fe0.13][Fe0.13Al0.21](PO4)4(OH)2.8H2O.H2O8.17.

**Similarly, for this compound, additional ions occur in the structure to maintain the electroneutrality such Fe in M2 sites, giving the overall formula NaMn(MnFe)3(PO4)4(OH)2 : 8H2O.
Table 2. Values g_i, h_i, and s_i as determined by the ThermAP predictive model, for the estimation of ΔG°_f, ΔH°_f or S° of Jahnsites/Whiteites (at $T = 298$ K, 1 bar) from their ionic composition.

Contributing ions at 298 K, 1 bar	g_i (kJ/mol)	h_i (kJ/mol)	s_i (J.mol$^{-1}$.K$^{-1}$)	
Cations				---
Ca$^{2+}$	-747.1	-776.4	47.2	---
Mg$^{2+}$	-638.0	-669.3	30.2	---
Mn$^{2+}$	-443.0	-462.1	70.5	---
Fe$^{2+}$	-279.0	-290.8	90.2	---
Zn$^{2+}$	-350.7	-367.1	70.0	---
Fe$^{3+}$	-353.1	-391.5	52.0	---
Al$^{3+}$	-796.2	-845.9	15.3	---
Na$^+$	-334.6	-353.6	39.1	---
K$^+$	-375.5	-398.0	40.6	---
H$^+$	-110.4	-137.7	25.1	---
Anions				---
PO$_4^{3-}$	-821.7	-897.3	44.0	---
OH$^-$	-115.8	-140.6	33.4	---
F$^-$	-278.1	-287.1	19.9	---
Hydration				---
H$_2$O	-237.1	-295.4	37.6	---

This is the peer-reviewed, final accepted version for American Mineralogist, published by the Mineralogical Society of America. The published version is subject to change. Cite as Authors (Year) Title. American Mineralogist, in press. DOI: https://doi.org/10.2138/am-2022-8174. http://www.minsocam.org/
Table 3. Recommended thermodynamic properties for several Jahnsite/Whiteite end-members based on ThermAP refinements.

<table>
<thead>
<tr>
<th>Compound at 298 K, 1 bar</th>
<th>ΔG° (kJ/mol)</th>
<th>ΔH° (kJ/mol)</th>
<th>S° (J.mol$^{-1}$.K$^{-1}$)</th>
<th>log K *</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jahnsites</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jahnsite-(CaMnMg)</td>
<td>-8588</td>
<td>-9594</td>
<td>826</td>
<td>10.4</td>
</tr>
<tr>
<td>Jahnsite-(CaMnMn)</td>
<td>-8198</td>
<td>-9179</td>
<td>906</td>
<td>-0.1</td>
</tr>
<tr>
<td>Jahnsite-(CaFeMg)</td>
<td>-8424</td>
<td>-9422</td>
<td>845</td>
<td>14.6</td>
</tr>
<tr>
<td>Jahnsite-(MnMnMg)</td>
<td>-8283</td>
<td>-9279</td>
<td>849</td>
<td>7.2</td>
</tr>
<tr>
<td>Jahnsite-(CaMnFe)</td>
<td>-7870</td>
<td>-8837</td>
<td>946</td>
<td>8.3</td>
</tr>
<tr>
<td>Jahnsite-(MnMnMn)</td>
<td>-7893</td>
<td>-8865</td>
<td>930</td>
<td>-3.3</td>
</tr>
<tr>
<td>Jahnsite-(MnMnZn)</td>
<td>-7709</td>
<td>-8675</td>
<td>929</td>
<td>-0.1</td>
</tr>
<tr>
<td>Jahnsite-(NaFe$^\text{III}$Mg)</td>
<td>-8085</td>
<td>-9100</td>
<td>799</td>
<td>9.9</td>
</tr>
<tr>
<td>Jahnsite-(CaMnZn)</td>
<td>-8013</td>
<td>-8989</td>
<td>905</td>
<td>3.1</td>
</tr>
<tr>
<td>Whiteites</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Whiteite-(CaMnMn)</td>
<td>-9084</td>
<td>-10088</td>
<td>833</td>
<td>9.8</td>
</tr>
<tr>
<td>Whiteite-(MnMnMg)</td>
<td>-9170</td>
<td>-10188</td>
<td>776</td>
<td>17.1</td>
</tr>
<tr>
<td>Whiteite-(MnMnFe) aka Rittmannite</td>
<td>-8452</td>
<td>-9431</td>
<td>896</td>
<td>15.1</td>
</tr>
<tr>
<td>Whiteite-(CaFeMg)</td>
<td>-9310</td>
<td>-10331</td>
<td>772</td>
<td>24.5</td>
</tr>
<tr>
<td>Whiteite-(CaMnMg)</td>
<td>-9474</td>
<td>-10502</td>
<td>752</td>
<td>20.3</td>
</tr>
<tr>
<td>Whiteite-(CaMgMg)</td>
<td>-9669</td>
<td>-10710</td>
<td>712</td>
<td>25.5</td>
</tr>
</tbody>
</table>

*log K values refer to the dissolution of the phase considering the H_2PO_4 phosphate speciation.
Figure 1. Jahnsite/Whiteite structure of phases viewed along the direction [010]. The dashed line refers to one unit cell. The a and b lettering for M2 and M3 sites denote two existing orientations. Used by permission of Mineralogical Association of Canada, from Kampf et al. (2018), The Canadian Mineralogist, vol. 56 (6), Fig. 5, p. 881.
Figure 2. Comparison of ΔG_f° values as calculated via ThermAP (using the g_i values tabulated on Table 2) with reference data (Thermoddem database).
Figure 3. Comparison of S^* values as calculated via Thermap (using the s_i values tabulated in Table 2) with reference data (Thermoddem database).
Figure 4. Comparison of ΔH_f values as calculated via ThermAP (relating to the h_i values tabulated on Table 2) with available reference data (Thermoddem database). The notation “n.d.” stands for “not determined” due to unknown reference enthalpy data for these compounds.
Figure 5. (a) Saturation index (pH not fixed) without allowing precipitation, in equilibrium with or isolated from the terrestrial atmosphere (to potentially mimic laboratory experiments). (b) Precipitation of predominant phases (same conditions but enabling phase precipitation). The notation “cor” refers to the phases that have been “corrected” compared to the Thermoddem database (see text).
Figure 6. Predominance diagrams in the log $f(O_2)$-pH space (PHREEPLOT), starting from similar concentration and elemental ratios to Figure 5 (Fe 0.6 / Mg 0.6 / Mn 0.3 / Ca 0.3 / P 1.2 mol/kg), and considering a terrestrial pCO$_2$ of 400 ppm.
Figure 7. XRD pattern for the experimentally precipitated compound, starting from the initial stoichiometry of Jahnsite-(CaMnMg), at 100°C for 24 hours. Letters “S” and “P” refer to the FePO$_4$·2H$_2$O polymorphs Strengite and Phosphosiderite, respectively.
Figure 8. Evaluation of the stability fields of Jahnsites-(CaMnMn), (CaMnMg) and (MnMnMg) and corresponding Alluaudites in the f(H₂O)-T space. The dotted grey lines represent, for information, the H₂O phase diagram. The yellow dotted box shows the typical min and max temperature and f(H₂O) values measured by Curiosity at Gale Crater (McConnochie et al. 2018).
Figure 2
Figure 3
Figure 4
Figure 5

(a) Saturation index (without precipitation)

(b) Precipitation of secondary phases
Figure 6

Ca-Mn-Fe-Mg-Jahnsite Predominance

logO₂(g)

CH₄(g) > 1 atm

H₂(g) > 1 atm

pH

0.1 2.1 4.1 6.1 8.1

Ca²⁺

Chlorapatite(Synth)

Hydroxypatite(Natur)

Ca-Mn-Fe-Mg-Jahnsite Predominance

logO₂(g)

CH₄(g) > 1 atm

H₂(g) > 1 atm

pH

0.1 2.1 4.1 6.1 8.1

Fe₂(PO₄)²⁺

Hematite

Magnetite

Ca-Mn-Fe-Mg-Jahnsite Predominance

logO₂(g)

CH₄(g) > 1 atm

H₂(g) > 1 atm

pH

0.1 2.1 4.1 6.1 8.1

FeCl⁺

FeH₂PO₄⁺

Strength

Ca-Mn-Fe-Mg-Jahnsite Predominance

logO₂(g)

CH₄(g) > 1 atm

H₂(g) > 1 atm

pH

0.1 2.1 4.1 6.1 8.1

MgCl⁺

Farringtonite

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld
Figure 7

S : Strengite (PDF 15-0513)
P : Phosphosidérite (PDF 33-0666)
Figure 8

The diagram shows the relationship between the activity of water ($\log f(\text{H}_2\text{O})$) and temperature ($T(°\text{C})$) for the minerals Jahnsite and Alluaudite. The different phases of water ($H_2O(s)$, $H_2O(l)$, $H_2O(g)$) are also indicated.

The graph plots the activity of water on a logarithmic scale against temperature. The shaded region indicates the stability field of Jahnsite-(CaMnMn) compared to Jahnsite-(CaMnMg) and Jahnsite-(MnMnMg).