
1 

 

 1 
 2 

The nyerereite crystal structure: a possible messenger from the deep Earth. 3 

Azzurra Zucchini 1*, Pavel N. Gavryushkin 2,3, Alexander V. Golovin 2, Nadezhda B. 4 

Bolotina 4, Paola Stabile 5, Michael Robert Carroll 5, Paola Comodi 1, Francesco Frondini 1, 5 

Daniele Morgavi 1, Diego Perugini 1, Fabio Arzilli 6, Marco Cherin 1, Emmanuel Kazimoto 6 

7, Konstantin Kokh 2,3,8, Artem Kuznetsov 2, Inna V. Medrish 9 7 

 8 

1 Department of Physics and Geology, University of Perugia, 06123 Perugia, Italy; 9 

2 Sobolev Institute of Geology and Mineralogy, Siberian Branch of Russian Academy of Sciences, 10 

630090 Novosibirsk, Russia; 11 

3 Novosibirsk State University, Novosibirsk 630090, Russia; 12 

4 Shubnikov Institute of Crystallography, Federal Scientific Research Centre ‘Crystallography and 13 

Photonics’ of Russian Academy of Sciences, Leninskii prosp. 59, 119333 Moscow, Russian 14 

Federation; 15 

5 School of Science and Technology, Geology Division, University of Camerino, 62032 Camerino, 16 

Italy; 17 

6 School of Earth and Environmental Sciences, University of Manchester, M139PL, Manchester, UK; 18 

7 Department of Geosciences, School of Mines and Geosciences, University of Dar es Salaam 16103, 19 

Uvumbuzi Rd, Dar es Salaam Tanzania; 20 

8 Kemerovo State University, 6 Krasnaya Str., Kemerovo, 650000, Russia. 21 

9 Samara Center for Theoretical Material Science (SCTMS), Samara State Technical University, 22 
Molodogvardeyskaya St. 244, Samara, Russia 443100 23 

 24 
(*correspondence: azzurra.zucchini@unipg.it) 25 



2 

 

Abstract 26 

Carbonates in the system Na2CO3–CaCO3 are nowadays suggested as having a wide stability 27 

field at conditions of the mantle transition zone. The proposed analysis of nyerereite crystal 28 

structure, that have limited stability fields at ambient conditions, and its similarities with 29 

already known carbonates stable at high pressure conditions, allowed to propose that nyerereite 30 

likely undergoes phase transition at both high-pressure/high-temperature conditions supporting 31 

the hypothesis that it takes part in the carbon transportation from the mantle/deep crust towards 32 

the surface with important implication for the deep carbon cycle associated with carbonatites. 33 

K-free nyerereite [Na2Ca(CO3)2] was synthesized both at hydrothermal conditions and from 34 

the melt. The crystal structure of nyerereite was here refined as a three-component twinned 35 

structure in the centrosymmetric Pbca space group with ratio of the three twinning components 36 

0.221(3):0.287(3):0.492(3). Twinning at micro- and nano- level can introduce some minor 37 

structural deformations that influence the likely occurrence of the inversion center as one of 38 

the symmetry elements in nyerereite crystal structure. Based on the automated topological 39 

algorithms we show that nyerereite has the unique crystal structure, not having analogues 40 

among the known crystal structures, except for the structure with similar composition 41 

K2Ca(CO3)2 - fairchildite. 42 

A comparison between the centrosymmetric Pbca nyerereite structure and that of aragonite 43 

(CaCO3, Pmcn space group) is proposed and two main scenarios arises for the high pressure 44 

form of Na2Ca(CO3)2: (1) polysomatic relations as the interlayering of the high pressure 45 

polymorph Na2CO3 and CaCO3 - aragonite, and (2) high pressure crystal structure with 9-fold 46 

coordinated Na and Ca sites resembling that of aragonite. The proposed discussion heightens 47 

the interest in the baric behavior of the nyerereite structure and strengthens the hypothesis about 48 

the possibility for the nyerereite crystal structure to be stable at high pressure/high temperature 49 

conditions. 50 
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Introduction 53 

 54 

The ubiquitous occurrence of Ca-Mg carbonates on Earth comes together with an intriguing 55 

paucity of alkaline and earth-alkaline carbonatites in the CaCO3-(Na,K)2CO3 system likely due 56 

to their ephemeral behavior. Minerals such as nyerereite [approximate chemical formula 57 

(Na1.64K0.36)Ca(CO3)2 (Bolotina et al., 2017)] and gregoryite [(NaCaxK)2-xCO3], at ambient 58 

conditions and in presence of meteoric water, rapidly transforms to the end-members Ca-59 

carbonatite rocks (Gavryushkin et al. 2016), through intermediate stages such as pirssonite-like 60 

structures [Na2Ca(CO3)2·2(H2O)] (Zaitsev and Keller, 2006; Zaitsev et al., 2008; Stoppa et al. 61 

2009 and references therein). The transformation is quite rapid, occurring over a few months 62 

to a couple of years (Zaitsev and Keller, 2006). 63 

 64 

Alkali-carbonates in the geological record 65 

Alkaline carbonatite magmas are of great interest because they may represent partial melts 66 

produced at significantly lower mantle melting temperatures compared with basaltic magmas 67 

(e.g. Golubkova et al. 2015) and they may represent a powerful agent promoting mantle 68 

metasomatism (Rosatelli et al., 2007). Different geological settings host carbonatites, including 69 

intra-plate magmatism in continental areas and along continental rifts (Mattsson et al. 2018 and 70 

references therein) raising important questions on the geodynamic significance of carbonatite 71 

magmatism. 72 

The only active carbonatite volcano on the Earth, erupting significant amount of 73 

natrocarbonatite magmas (Na2O + K2O ~ 40 wt%, Keller and Zaitsev, 2012), is the Oldoinyo 74 

Lengai volcano (East African Rift System, northern Tanzania). The erupted products are 75 
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predominantly composed of phonolitic and nephelinitic pyroclasts and lesser amounts of lava 76 

flows (Mattsson et al. 2018). The carbonatite lavas present the lowest temperature (>600 °C) 77 

and the lowest viscosity (Krafft and Keller, 1989; Dawson, et al., 1990; Oppenheimer, 1998) 78 

and the main rock-forming minerals of these natrocarbonatites are (orthorhombic) nyerereite 79 

and gregoryite (e.g. McKie and Frankis, 1977; Peterson, 1990; Zaitsev et al., 2009; Mitchell 80 

and Kamenetsky, 2012). 81 

One of the most interesting occurrences of Na-Ca carbonates is in mantle-derived melt 82 

inclusions, which pose important constraints to the composition and origin of kimberlites and 83 

mantle-derived melts and provide information on the nature of primary melts and deep Earth 84 

composition (Sharygin et al., 2017; Giuliani et al., 2020). 85 

Nyerereite-like carbonates were identified as daughter minerals within primary/secondary melt 86 

inclusions in rock-forming minerals of kimberlites from Udachnaya-East, Gahcho Kué, 87 

Jericho, Aaron, Leslie, Koala, Roger, Monastery, Bultfontein pipes, Majuagaa dike, Mark 88 

kimberlite hypabyssal body and Benfontein kimberlite sill complex (e.g. Golovin et al., 2003, 89 

2007, 2017a; Kamenetsky et al., 2009, 2013; Giuliani et al., 2017; Abersteiner et al., 2018a, 90 

2018b, 2019, 2020). These kimberlite emplacements are located practically within all 91 

worldwide ancient cratons. Moreover, nyerereite-like carbonates were found among the 92 

daughter minerals within high-pressure mantle origin primary/secondary carbonatite melt 93 

inclusions in minerals of the mantle xenoliths from kimberlites Bultfontein and Udachnaya-94 

East pipes (Giuliani et al., 2012; Golovin et al., 2017a, 2018, 2020) and even as minerals from 95 

multiphase solid inclusions in diamonds from the Juina area, Brazil (Kaminsky et al., 2009). 96 

A further example is the kamafugite-melilitite-carbonatite lime-rich igneous rocks outscopping 97 

in the italian Umbria-Latium ultra-alkaline province and the Intramontane Ultra-alkaline 98 

province (Panina et al., 2003; Isakova et al., 2017; Isakova et al., 2019). In this area, nyerereite, 99 

in the form of crystalline inclusions, was identified in the minerals of rocks from Vulture 100 
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(Stoppa et al., 2009), as well as in other alkaline volcanic complexes around the world, e.g. 101 

Kerimasi (Zaitsev, 2010), and Tinderet (Zaitsev et al., 2013), from the Guli pluton (Kogarko 102 

et al., 1991) and in minerals of the Afrikanda ultramafic–alkaline complex (Zaitsev and 103 

Chakhmouradian, 2002). 104 

Nyerereite is also present as a daughter mineral within melt inclusions in minerals from the 105 

Gardiner and Kovdor сarbonatite-bearing ultramafic alkaline complexes (Veksler et al., 1998; 106 

Sokolov et al., 2006), calcite-rich carbonatites from the Oka carbonatite complex (Chen et al., 107 

2013), carbonatitic lavas in Catanda (Campeny et al., 2015) and calciocarbonatite and 108 

jacupirangite from Kerimasi volcano (Guzmics et al., 2011; Káldos et al., 2015). 109 

 110 

Nyerereite crystal structure and open questions 111 

The crystal structure solution of nyerereite has been the subject of several studies (e.g. Frankis 112 

and McKie 1973, Gavryushkin et al. 2016, Bolotina et al., 2017). Difficulties in the final 113 

solution of the nyerereite crystal structure were overcome by using K-free synthetic samples 114 

(Frankis and McKie, 1973; Gavryushkin et al., 2016; Song, 2017) where incommensurate 115 

modulation is not present (Frankis and McKie, 1973; Gavryushkin et al., 2016; Bolotina et al., 116 

2017). Synthetic nyerereite showed good crystallinity and the crystal structure was refined as 117 

a three-component orthorhombic twins with either P21ca (Gavryushkin et al., 2016) (Figure S1 118 

deposited in the Supplemental Materials section) or Pbca (Song et al., 2017) space groups 119 

(Figure S2 deposited in the Supplementary Materials section). Two high temperature phase 120 

transitions were observed in nyerereite starting from the room temperature structure (α-121 

nyerereite) towards (i) β-nyerereite (Cmcm space group; Gavryushkin et al., 2016) in the T 122 

range 292°C (natural sample) - 400°C (synthetic sample) and (ii) γ-nyerereite (P63/mmc 123 

symmetry; Gavryushkin et al., 2016) in the T range 340°C (natural sample) - 445°C (synthetic 124 

sample) (Johnson and Robb, 1973; Evans and Milton, 1973; McKie and Frankis, 1977). 125 
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Analogously to fairchildite [high T form of K2Ca(CO3)2], oxygens in γ-nyerereite are expected 126 

to be disordered (Gavryushkin et al., 2016; Pertlik, 1981). 127 

Besides the hydrothermal synthesis, other techniques have been adopted to synthesize 128 

Na2Ca(CO3)2 crystals, namely, thermally induced solid-state reaction of Na2CO3 + CaCO3 129 

(Smith et al., 1971) and dehydration of mineral gaylussite [Na2Ca(CO3)2•5(H2O)] (Evans and 130 

Milton, 1973; Johnson and Robb, 1973). 131 

In the present work we consider different synthesis conditions, namely hydrothermal synthesis 132 

and synthesis from the melt, the latter one employed to obtain a new type of nyerereite samples 133 

that resembles the natural samples observed in melt inclusions of kimberlites. The synthetic 134 

alkali-carbonates mixtures are studied by a multimethodological approach, namely, scanning 135 

electron microscopy (SEM) and energy dispersive spectroscopy (EDS), Raman spectroscopy 136 

and single crystal X-ray diffraction (SC-XRD) with a particular focus on the structure solution 137 

of nyerereite, showing that it can be centrosymmetric or not, depending on conditions of 138 

crystallization 139 

Despite the well-known high-pressure behavior of Ca-Mg-Fe carbonates(e.g., Zucchini et al., 140 

2014, 2017; Merlini et al., 2012, 2016; Cerantola et al., 2017), the Na-Ca phase stability at 141 

mantle/deep crust conditions is poorly known and experimental and theoretical studies have 142 

been limited to minerals other than nyerereite (Borodina et al., 2018; Vennari et al., 2018; 143 

Rashchenko et al., 2020). The only exception is the high-pressure (HP) Raman study of 144 

nyerereite made by Rashchenko et al. (2017) where, however, the analyzed P range (up to 6.4 145 

GPa) and the lack of crystal structure data did not allow the characterization of the minor 146 

structural observed deformations that occurred at 0.5 and 3.0 GPa, that were speculatively 147 

ascribed to rearrangement of the CO32- groups in the nyerereite crystal structure. 148 

The proposed analysis of nyerereite crystal structure, that have limited stability at low pressures 149 

and temperatures, and the study of its similarities with already known carbonates, stable at HP 150 
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conditions, allowed to propose that nyerereite likely undergoes phase transition at both HP and 151 

high-temperature (HT) conditions that could stabilize them down to the mantle transition zone, 152 

supporting the hypothesis that these minerals take part in the carbon transportation from the 153 

mantle/deep crust towards the surface with important implication for the deep carbon cycle 154 

associated with carbonatites. 155 

 156 

Materials and methods 157 

 158 

Synthesis 159 

Hydrothermal synthesis. Hydrothermal synthesis of nyerereite was performed, following the 160 

procedure described in Frankis and McKie (1973), in water-pressurized cold seal pressure 161 

vessels (Nimonic 105) at the Department of Geology at University of Camerino (Italy). The 162 

starting material was prepared from a mixture of dried carbonates, Na2CO3 (60mole%) and 163 

CaCO3 (40mole%). The mixture was first homogenized and mixed in an agate ball mill for 30 164 

min before the capsule preparation. The powder material (~15 mg per experiment) along with 165 

ca. 10ml of distilled water was then loaded into Au capsules (with dimensions of 25mm length, 166 

3mm inner diameter, 3.4mm outer diameter). The capsules were weighed after each addition 167 

of material and then sealed by welding. Weight after welding was checked to verify that water 168 

was not lost during welding. The intrinsic redox condition of the CSPV apparatus is close to 169 

NNO +0.8 (Di Matteo et al., 2004; Fabbrizio et al., 2006; Fabbrizio and Carroll, 2008; Stabile 170 

et al., 2018, 2020). Temperature was measured in the sample position with a K-type 171 

thermocouple with an accuracy of ±5°C. Pressure was monitored by a high-pressure transducer 172 

or Bourdon-tube pressure gauges, considered accurate to ±2 MPa (Arzilli et al., 2020). The 173 

samples were heated and pressurized to reach the experimental temperature of 550°C and 174 

pressure of 100 MPa. Experiments lasted 15 days (hereafter NHD15) and the samples were 175 
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quenched from experimental conditions to room conditions by removing the bomb from the 176 

furnace and immersing it in a high-pressure stream of compressed air, providing a cooling rate 177 

of ~120°C/min. For all the samples run, the quench was isobaric as pressure was maintained 178 

constant during cooling by using a large volume pressure reservoir and a hand operated 179 

pressure generator. 180 

Synthesis from the melt. Na2Ca(CO3)2 crystals (hereafter NMAG) were obtained by slow 181 

cooling of the stoichiometric melt in a vertical vitreous graphite crucible. The crucible with a 182 

mixture of CaCO3 and Na2CO3 was placed in a quartz reactor, which was continuously purged 183 

with nitrogen gas. Heating was carried out by a resistive heating furnace up to 850°C. There 184 

was a minimum temperature at the crucible's bottom, which ensured directional crystallization 185 

from bottom to top with a decrease in temperature at a rate of 1 deg/hour. 186 

 187 

SEM – EDS 188 

Analyses were obtained at the Analytical Centre for Multielemental and Isotope Research of 189 

Siberian Branch of the Russian Academy of Science (Sobolev Institute of Geology and 190 

Mineralogy, Novosibirsk, Russia). The analyses of hydrothermal and magmatic synthetic 191 

nyerereite and back-scattering electron (BSE) images were obtained by a Tescan MIRA3 LMU 192 

scanning electron microscope equipped with an Aztec Energy X-Max 50+ energy-dispersive 193 

X-ray microanalysis system. An accelerating voltage of 20 keV and a beam current of 1.44 nA 194 

were used. Spectrum acquisition live time was 35 s. Matrix correction was performed with the 195 

XPP algorithm. Pure cobalt was measured to control the probe current and the energy shift. 196 

 197 

Raman spectroscopy 198 

Raman point measurements (from 0 to 4000 cm−1) of individual grains and mixtures of 199 

compounds were performed using a LabRAM HR800 dispersive Raman spectrometer using 200 
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the excitation line of a 532‐nm Nd:YAG laser. In all measurements, a laser power of 201 

approximately 10 mW was employed. The scattered Raman light was analyzed with a CCD 202 

detector after being dispersed by a grating of 1800 grooves mm−1. A 100× lens with a 203 

numerical aperture of 0.9 was used on a BX‐51 microscope. The frequency was calibrated 204 

using the first‐order Si line at 520.6 cm−1. The wavenumbers are accurate to ±1 cm−1. 205 

In experiments on nyerereite synthesized from the melt, single crystals were cut and polished 206 

in one direction, therefore, they have the same spectra (the same ratio of the intensity of the 207 

Raman lines relative to each other) at different points of the sample. 208 

 209 

SC-XRD 210 

Optically clear single nyerereite crystals (approximately 20x20x50 μm3 in NMAG and 211 

50x50x100 μm3 in NHD15) were separated from the synthesis run products and analyzed at 212 

room temperature at the University of Perugia (Italy) by using an Oxford Diffraction Xcalibur 213 

diffractometer with CCD detector and MoKα radiation (λ = 0.7107 Å). Detector distance to the 214 

sample was ca. 66 mm with pixel size ca. 60 μm. 215 

Rotation pictures and 360° φ-scans allowed us to control the crystal quality and optimize the 216 

data collection parameters, respectively. Measurements were carried out in a ω-scan mode with 217 

1.0° scan width and 15 s exposure time. The resolution of data collection was set to sinθ/λ = 218 

0.72 Å-1. 219 

Data reduction was performed by means of CrysAlisPro software (Agilent Technologies UK 220 

Ltd, Yarnton, England.) and an empirical absorption correction was applied by the ABSPACK 221 

module as implemented in CrysAlisPro software (Oxford Diffraction/Agilent Technologies). 222 

Refinements were carried out by means of the SHELXLE (Hübschle et al., 2011) in both P21ca 223 

and Pbca space groups, with anisotropic displacement parameters. In Figure S3 (Supplemental 224 

materials), the collected data extraction and the unit cell used for reflection indexing are shown 225 
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together with the evidence of the three-component domains rotated of ca. 120° around the c 226 

axis. 227 

In both space groups twinning was introduced following the twinning matrix:  228 

!−
1
2 	1	0	 −

3
4	−

1
2 	0	0	0	1	)	229 

	230 

Topological analysis 231 

The topological analysis was performed by means of ToposPro (http://topospro.com), with the 232 

aim to search for the topological analogues of the nyerereite crystal structure, through the whole 233 

Inorganic Crystal Structure Database (ICSD, release 2020/2) (Blatov et al., 2014). Hereafter, 234 

we use three-letter bold symbols of the Reticular Chemistry Structure Resource nomenclature 235 

(see Reticular Chemistry Structure Resource at http://rcsr.anu.edu.au/) (O’Keeffe et al., 2008) 236 

or ToposPro NDk-n symbols (Alexandrov et al., 2011) to designate the topological types of the 237 

underlying nets. Further details on the used procedure are given in the Supplementary material 238 

section together with the obtained results. 239 

 240 

Results 241 

The synthesis experiments performed in this work were successful and we were capable of 242 

recovering several milligrams of sample from each experiment. The run products coming out 243 

from the hydrothermal samples have already been characterized by Fastelli et al. (2021). 244 

Reflected light images and backscattered electrons (BSE) images of the NHD15 and NMAG 245 

samples are shown in Figure 1 and Figure 2 where the lightest regions were attributed, by 246 

means of SEM-EDS chemical analysis, to nyerereite with averaged chemical formula 247 

Na1.996(5)Ca1.017(3)(CO3)2 and Na1.996(7)Ca1.002(4)(CO3)2 for NHD15 and NMAG, respectively. 248 

The single point chemical analyses are given in the Supplemental Material sections as Table 249 

S1. The dark portions in Figures 1 and 2 are attributed to a mixture mainly consisting of Na2CO3 250 
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(Figure 2), with minor amounts of Na-Ca carbonates, together with unreacted CaCO3 grains in 251 

NMAG. In Supplemental material section backscattered electrons (BSE) images and EDS X-252 

ray maps recorded on selected portions of NMAG and NHD15 are given (Figure S4). 253 

The synthesis run products showed the occurrence of differently shaped nyerereite crystals. On 254 

the one hand, NMAG shows acicular nyerereite crystals ranging from a few microns up to a 255 

few tens of microns (Figure 2a), strongly interconnected with the Na2CO3 matrix. On the other 256 

hand, in NHD15, nyerereite appears as globular aggregates of rounded crystals with maximum 257 

dimensions of approximately 120-150 μm (Figure 2b). 258 

 259 

Syntheses products 260 

Raman spectra for individual differently oriented nyerereite grains were collected in the range 261 

from 0 to 2000 cm-1. No differences were observed by comparing them with Golovin et al. 262 

(2017b) data (Figure 3), showing the highest peaks at 1073 and 1087 cm-1 (± 1 cm-1). 263 

Besides the occurrence of nyerereite, additional signals are present in the NHD15 and MNAG 264 

Raman spectra (Figure 4). A strong line at 1070 cm-1 is present in both NHD15 and NMAG 265 

(Figure 4c) that might be related to the presence of thermonatrite (Na2CO3·H2O) together with 266 

the peaks at 687 cm-1 + 702 cm-1 (Figure 4b) and 2972 cm-1 + 3254 cm-1 (Figure 4d) (Jentzsch 267 

et al. 2013, Frezzotti et al. 2012, Frost et al. 2009) in agreement with results from Fastelli et al. 268 

(2021). Additional peaks occur at 1079 cm-1 + 1082 cm-1 (Figure 4c) as well as at 699 cm-1 269 

(Figure 4b) that can be attributed to the γ-Na2CO3 phase (Shatskiy et al., 2013, 2015), whose 270 

presence was also observed by Gavryushkin et al. (2016) and Fastelli et al. (2021) in their 271 

synthesis run products.  272 

An unassigned peak at approximately 134 cm-1 in Figure 4a belongs neither to any of the likely 273 

occurring phases (nyerereite, γ-natrite, thermonatrite), nor to plausible occurring phases in the 274 

Na2CO3 – CaCO3 series checked by a comparison with data stored in the RUFF database 275 
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(Lafuente et al. 2016) as well as with data from literature (Golovin et al. 2017b). Thus, this 276 

might be the signal that an unknown phase in the Na2CO3 – CaCO3 series is present in the 277 

synthesized sample. However, given the very fine intergrowth of the additional phases with 278 

Na2Ca(CO3)2 in the mix region (Figure 2), it is impossible to get both SC-XRD and Raman 279 

spectra from the individual grain. Further studies are needed to truly define the phase 280 

assemblage present in the mix region, but is beyond the scope of the present work. 281 

 282 

Nyerereite structure 283 

The nyerereite structure refinements in both P21ca and Pbca space groups were satisfactory in 284 

terms of the agreement parameters R1 (<0.07) and wR2 (<0.16) as well as GooF (~1). A three-285 

component twinned structure rotated of ca. 120° around the c axes was refined in both space 286 

groups. However, in P21ca too many correlations between atomic coordinates were observed, 287 

meaning that corresponding atoms are symmetry equivalent. Thus, we can definitely 288 

recommend Pbca as the space group for both hydrothermal and magmatic nyerereite, in 289 

agreement with results of Song et al. (2017). The ratio of the three twinning components is 290 

refined as 0.221(3):0.287(3):0.492(3). The details of data collection and refinement, together 291 

with the crystal structure data, can be found in the CIF file (deposited) for both HND15 and 292 

NMAG samples. Bond lengths and polyhedral volumes are given in Table S2 as Supplemental 293 

Material. 294 

In Gavryushkin et al. (2016), where a different hydrothermal synthesis was proposed (partial 295 

replacement of Na2CO3 with NaOH as starting materials), a higher number of reflections broke 296 

the reflection conditions of Pbca space group in their hydrothermal synthetic samples, with 297 

respect to the non-centrosymmetric space group P21ca. The refined ratio of the twin 298 

components showed a nearly identical amount being 0.3363(4):0.3446(4):0.3191(4). Thus, the 299 

observed difference in space groups is not an artefact of the refinement, but shows real 300 
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difference in the crystal structures, attributed to the different growth conditions, suggesting that 301 

nyerereite can have different space groups and twinning at micro- and nano- level, which can 302 

introduce some minor structural deformations that inhibit the occurrence of an inversion center. 303 

Topological analysis. Our topological analysis suggests that nyerereite is characterized by a 304 

unique topology, which does not have analogues in ICSD database except for the structure with 305 

similar composition K2Ca(CO3)2 (fairchildite), although the subnets of the separate atoms 306 

constituting the structure are relatively widespread among carbonates and carbides. 738 crystal 307 

structures of borates with stoichiometry similar to that of nyerereite were found in ICSD, 308 

however they are all quite different from nyerereite. Among four double carbonates in the 309 

system Na2CO3-CaCO3 [nyerereite, shortite, Na2Ca3(CO3)4 and Na4Ca(CO3)3], only 310 

Na2Ca3(CO3)4 (Gavryushkin et al, 2014) and Na4Ca(CO3)3 (Rashchenko et al, 2018) have 311 

analogues among borates. Detailed results of the topological analysis of nyerereite are given in 312 

the Supplemental Material sections. 313 

Polyhedra distortion and bond-valences calculation. The polyhedral distortion index (D) 314 

(Table S2, Supplemental material) and the bond valence sum (BVS) (Table S3, Supplemental 315 

material) calculated following the values given by Brese and O’Keeffe (1991) were obtained 316 

based on bond lengths as defined by Baur et al. (1974) and implemented using the open-source 317 

crystallographic software VESTA (Momma and Izumi, 2011). As regards the carbonate group, 318 

on the one hand, the pseudo-planar triangle in C1 is quite regular with the three bond-valences 319 

that almost equal each other as in aragonite. The bond-valence of the three carbonate-oxygen 320 

bonds has values in the range 1.32-1.34 both in aragonite and nyerereite with coefficient of 321 

variation (CV), i.e. ratio of the standard deviation to the mean, of approximately 1-2% and a 322 

deviation from planarity of 1.9° in NHD15 and 1.2° in NMAG (Table S2). 323 

As regards the C2 site, the bond valences of the three (C-O) bonds are in the range 1.30-1.38 324 

(CV ~ 3%) and the deviation from planarity is 3.2° in NHD15 and 2.5° in NMAG. The (C2-325 
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O4) bond-valence is the highest (1.38) with respect to the other C-O bonds likely due to the 326 

high strength of the (Na1-O4) bond (bond valence = 0.22) and the low strength of both the 327 

(Na2-O6) and (Na1-O5) bonds being the bond valence 0.16 and 0.05, respectively. Figure 6 328 

shows the atomic structure and bond length/strength. 329 

 330 

Discussion 331 

In all experiments, in addition to the “pure” Na2Ca(CO3)2 nyerereite, a mixture consisting 332 

mainly of thermonatrite and γ-Na2CO3 was observed. In the Na2CO3:CaCO3 range tested by 333 

our experiments (Na2CO3:CaCO3 = 0.6:0.4 in NHD15, Na2CO3:CaCO3 = 0.7:0.3 in NMAG), 334 

results are in agreement with Cooper et al. (1975). Given the ephemeral behavior of both natrite 335 

and nyerereite, the occurrence of anhydrous/hydrated Na2CO3 is not surprising and likely due 336 

to the interaction with atmospheric humidity and the handling during sample preparation that 337 

led to the formation of Na2CO3·H2O. However, the crystal structure of nyerereite in both 338 

NHD15 and NMAG syntheses was here well refined as a three-component twinned structure 339 

in the centrosymmetric Pbca space group. 340 

The performed topological analysis indicates that there are no strict analogies between the 341 

crystal structure of nyerereite and other carbonates except for the structure with similar 342 

composition K2Ca(CO3)2 (fairchildite). In addition, we observe that double carbonates with 343 

simple stoichiometry as nyerereite (Na2CO3*CaCO3) have no analogues among borates. 344 

However, an interesting comparison between the crystal structure of the centrosymmetric Pbca 345 

nyerereite structure and that of aragonite (CaCO3, Pmcn space group) is proposed (Figure 7). 346 

The a and c axes are doubled in nyerereite with respect to aragonite (a = 4.96 Å, b = 7.97 Å, c 347 

= 5.74 Å; Antao and Hassan 2009), due to the presence of Na in the mineral crystal structure 348 

with the consequent inclination of the C(2)O32- groups, lying in the cavities occurring between 349 

two Na-layers, of approximately 58° with respect to the (ab) plane. A second set of carbonate 350 
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groups [C(1)O32- ] lie in the (ab) plane, parallel to the Ca-layer, and is less distorted with respect 351 

to the former (DC1 = 0.002 - 0.004 and DC2 = 0.004 - 0.006, Table S2). 352 

The Ca polyhedra in nyerereite has a distortion index close to that of aragonite (DCa-nyerereite = 353 

0.03, Table S2; DCa-aragonite = 0.025; Antao and Hassan, 2009). 354 

Notwithstanding the bond-valence requirements are respected in the Pbca nyerereite (Table S3 355 

in Supplemental material) with the bond length scheme previously defined by Gavryushkin et 356 

al. (2016), the observed differences in the bong-strengths within Na1 and Na2 polyhedra give 357 

rise to their observed higher distortion with respect to the Ca polyhedron (DNa-nyerereite = 0.05- 358 

0.07, Table S2) as well as to the marked deviation from planarity of the C2 atom and tilting of 359 

the C(2)O32- groups. 360 

By the presented scenario, both Na1 and Na2 polyhedra are supposed to regularize with 361 

increasing pressure by likely including in their geometry additional oxygens and increasing 362 

their coordination number according to Prewitt and Downs (1998), as already observed in both 363 

carbonate and non-carbonate minerals, e.g., dolomite [CaMg(CO3)2] (Merlini et al., 2012; 364 

Zucchini et al., 2014) and galenobismutite (PbBi2S4) (Comodi et al. 2019). This could drive 365 

the Pbca nyerereite towards a crystal structure with 9-fold coordinated Na and Ca sites 366 

resembling that of aragonite at elevated pressure. 367 

A second scenario might be proposed, based on the polysomatic relation of Na2Ca(CO3)2 368 

structures with the structures of γ-Na2CO3 and CaCO3 calcite (Bolotina et al, 2017). We suggest 369 

that some similar polysomatic relations will be preserved in the HP from of Na2Ca(CO3)2 and 370 

it can be presented as the interlayering of HP polymorphs Na2CO3-P21/m (Gavryushkin et al. 371 

2016, 2019) and CaCO3 in the form of aragonite. It is worth noting that aragonite was found as 372 

an inclusion in mantle olivine from carbonatite tuffs in a leucitite lava flow in Calatrava (Spain) 373 

providing evidences for a likely sublithospheric mantle origin for alkaline ultramafic magmas 374 

and extrusive carbonatites (Humphreys et al., 2010). The solubility of Na in the structure of 375 
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aragonite might be drastically increased through the formation of nano lamellae of HP 376 

polymorph of Na2Ca(CO3)2 giving rise to what has been recently called “Na-aragonite” 377 

(Rashchenko et al., 2020). Our hypothesis about formation of modular structures between the 378 

HP form of Na2CO3 and aragonite at HP is supported by the amount of dissolved Ca2+ in the 379 

structure of Na2CO3 up to 15% (Podborodnikov et al., 2018), which cannot be explained with 380 

isomorphism as the authors suggested. 381 

The proposed hypotheses are consistent with recent studies on the HP behavior of Na‐Ca 382 

carbonates (Grassi and Schmidt, 2011; Kiseeva et al., 2013; Litasov et al., 2013 Borodina et 383 

al., 2018; Vennari et al., 2018; Rashchenko et al., 2020) that have already suggested an 384 

important variety of Na-Ca double carbonates in the system Na2CO3–CaCO3 at HP-HT, linked 385 

each other by a sequence of decomposition reactions (Rashchenko et al., 2020), as well as the 386 

existence of high‐pressure polymorphs of Na2Ca2(CO3)3-shortite. As a consequence, the 387 

stability/decomposition reactions occurring in the mentioned phases during decompression are 388 

a fundamental constraint for the CO2 release from mantle-derived magma, which can be 389 

expected to influence magma viscosity and eruption explosivity (Allison et al., 2021). If 390 

confirmed, the proposed scenarios might confer a role to nyerereite in the carbon transportation 391 

within the Earth’s mantle, and from mantle to shallow depths within the crust. 392 

Further studies are necessary in order to determine the structure and phase stability of 393 

nyerereite and related phases at HP/HT conditions. 394 

 395 

Implications 396 

Our investigation helps to diagnose natural and synthetic alkaline and earth-alkaline carbonates 397 

by deciphering the structural characteristics of pure synthetic nyerereite with respect to natural 398 

samples. The accurate knowledge of the crystal structure of nyerereite allows us to speculate 399 

on its behavior at non ambient conditions, thus opening the possibility of a scenario where the 400 
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mineral has a wide stability field at pressure conditions higher than those applied during the 401 

synthesis experiments (100 MPa), consistent with HP experiments in the carbonate‐silicate 402 

systems that revealed a number of Na‐Ca carbonates resembling stoichiometries of 403 

Na2Ca(CO3)2-nyerereite, Na2Ca2(CO3)3-shortite and Na2Ca4(CO3)5-burbankite (e.g., Kiseeva 404 

et al., 2013; Litasov et al., 2013; Thomson et al., 2016; Vennari et al., 2018; Rashchenko, 405 

2020). Stabilization of Na-Ca carbonates at deep crust/mantle conditions, likely down to deep 406 

upper mantle and transition zone conditions, may have important implications for the solidus 407 

temperatures and formation of sodic dolomitic carbonatite melts and, in turn, the inner dynamic 408 

of the Earth. In fact, if at low pressure these melts are efficient transport agents of carbon from 409 

upper mantle to the crust due to their very low magmatic temperature and viscosity, at higher 410 

pressure we might expect changes in the carbonatitic minerals crystal structure also reflecting 411 

in changes in melt properties, e.g density and viscosity, that might influence the mobility of 412 

carbonate melts in the deep upper mantle / transition zone. Nyerereite, then, may be claimed as 413 

another carbonate mineral responsible for the storage of carbon in the deep Earth and its 414 

mobility from the mantle, or the deep crust, to the surface. This may have significant 415 

implications for the deep carbon cycle associated with carbonatites. 416 

  417 
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 783 

Figures captions 784 

FIGURE 1. Reflected light microscope images of NMAG (a, b) and NHD15 (c, d). 785 

Magnifications are 4x (a, c) and 20x (b, d). 786 

FIGURE 2. Backscattered electron images showing products of experiments NMAG (a), 787 

NHD15 (b). 788 

FIGURE 3. Comparison of the position of strong Raman lines for three separate grains of 789 

different orientations, obtained in the NHD15 experiments (top) as compared with spectra from 790 

Golovin et al. (2017) (bottom). 791 

FIGURE 4. Raman spectra of the mixed areas, divided in four regions where the most intense 792 

Raman signals due to CO3
2- vibrations are present (after Golovin et al., 2017b; Vennari et al., 793 

2018): (a) spectral region where vibrations are due to the interaction between carbonate groups 794 

and Na-Ca sublattices, (b) spectral region that shown the ν4(CO3)2- (in-plane bending) 795 

vibrations, (c) spectral region where the ν1(CO3)2- (symmetric stretching) vibrations lie, and (d) 796 

water spectral region. Colors are attributed according to the legend shown in (a). Solid line 797 

spectra are the collected Raman spectra in the present work. The dashed dark red spectra are 798 

Raman data collected in three nyerereite crystals from Golovin et al. (2017b). Vertical lines 799 

represent the position of the Raman signals in reference data as follows: dotted orange is γ-800 

Na2CO3 (Shatskiy et al., 2015) and dashed red is thermonatrite (Jentzsch et al., 2013; Frezzotti 801 

et al., 2012). The arrow in a) shows the position of the unassigned signal. 802 

FIGURE 5. CaCO3 (top left) and Na2CO3 layers (top right) constituting nyerereite crystal 803 

structure and their superimposition in nyerereite crystal structure (bottom). Ca, Na, C(1)O3 and 804 

C(2)O3 atoms are colored in blue, yellow, dark brown and light brown, respectively. 805 

FIGURE 6. Representation of a portion of the nyerereite unit cell content where selected atomic 806 

sites are shown for the Na1 and Na2 in yellow, Ca in blue, C1 in dark brown and C2 in light 807 
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brown. A schematic representation of the bond length for the O4, O5 and O6 atoms bonding 808 

C2 is illustrated being the sawtooth and the dashed lines the highest the lowest bond-valences, 809 

respectively. 810 

FIGURE 7. Crystal structure of (a) nyerereite and (b) aragonite in the (ab) plane. Aragonite is 811 

shown in the 2 × 1 × 2 supercell to highlight the similarities with nyerereite. Colors are as 812 

follows: yellow is Na; blue is Ca; red is O; dark and light brown are C1 (in nyerereite and 813 

aragonite) and C2 (in nyerereite), respectively. Figures were made by VESTA software 814 

(Momma and Izumi, 2011). 815 
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