Validation of clinopyroxene–garnet magnesium isotope geothermometer to constrain the peak metamorphic temperature in ultrahigh-temperature ultramafic-mafic granulites

Long-Long Gou¹, Ming-Guo Zhai¹,²*, Cheng-Li Zhang¹, P.M. George¹, Kang-Jun Huang¹, Xiao-Fei Xu¹, Jun-Sheng Lu¹, Yan Zhao¹, Wen-Hao Ao¹, Yu-Hua Hu¹, Feng Zhou¹

¹State Key Laboratory of Continental Dynamics, Department of Geology, Northwest University, Xi’an 710069, China
²State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China

(*corresponding author: mgzhai@mail.iggcas.ac.cn)
ABSTRACT

Conventional Fe–Mg exchange geothermometers generally are not effective means to measure the peak metamorphic temperatures of granulites, because of Fe-Mg diffusion during the re-equilibration during the exhumation and cooling. Therefore, it is essential to find alternative geothermometers. In this study, we investigated the magnitude of Mg isotope fractionation between the co-existing clinopyroxene and garnet in garnet pyroxenites and high-pressure mafic granulites from southern India. The clinopyroxene and garnet from the garnet pyroxenites have δ²⁶Mg values of −0.04‰ to −0.07‰, and −0.65‰ to −0.64 ‰, respectively, with Δ²⁶Mg_{clinopyroxene–garnet} = δ²⁶Mg_{clinopyroxene} − δ²⁶Mg_{garnet} = 0.62‰ and 0.57‰. The δ²⁶Mg values of the coexisting clinopyroxene and garnet in the high-pressure mafic granulites, are 0.03‰ to 0.07‰, and −0.54‰ to −0.55‰, respectively, with Δ²⁶Mg_{clinopyroxene–garnet} = 0.57‰ and 0.62‰. The inter-mineral Mg isotope fractionations between the clinopyroxene and garnet of the garnet pyroxenites are similar to those of the high-pressure mafic granulites, and more or less fall within the equilibrium fractionation lines at peak metamorphic temperatures. The measured peak temperatures for all four samples indicate equilibrium Mg isotope fractionations between the clinopyroxene and garnet. The clinopyroxene–garnet Mg isotope geothermometer of Li et al. (2016) yields temperatures of 994 ± 60 °C and 1048 ± 89 °C for the garnet pyroxenites, and 1048 ± 89 °C and 994 ± 65 °C for the high-pressure mafic granulites, which are slightly lower than those at both 10 kbar and 12 kbar from the clinopyroxene–
garnet Mg isotope thermometer of Huang et al. (2013). Compared with the peak
metamorphic conditions from phase equilibrium modelling, the clinopyroxene–garnet Mg
isotope thermometry yielded temperatures corresponding to the peak metamorphic
conditions of the garnet pyroxenites and the high-pressure mafic granulites, whereas the
conventional clinopyroxene–garnet Fe–Mg exchange thermometry yielded lower
temperatures corresponding to the retrograde metamorphism. These results underscore
the inter-mineral Fe–Mg exchange between clinopyroxene and garnet during the
retrograde cooling of the ultrahigh-temperature (>900 °C); but however did not disturb
their Mg isotope fractionation equilibrium attained during the ultrahigh-temperature
metamorphic condition. Therefore, we conclude that clinopyroxene–garnet Mg isotope
thermometry, together with phase equilibrium modelling, is a valid tool to constrain the
peak metamorphic temperature conditions even for ultramafic-mafic granulites that have
undergone ultrahigh-temperature metamorphism.

Keywords: Clinopyroxene–garnet Mg isotope geothermometer, Mg isotope fractionation,
Garnet pyroxenites, High-pressure mafic granulites

INTRODUCTION

It’s well known that granulites provide a window to understand the accretion and
eventual stabilization of new crust and hence continental growth (Bohlen and Mezger,
1989; Harley 1989; Sawyer et al. 2011; Cipar et al. 2020), but conventional Fe–Mg
exchange geothermometers generally underestimate the peak metamorphic temperatures
of granulites (Frost and Chacko 1989; Harley 1989, 1998; Fitzsimons and Harley 1994; Pattison et al. 2003; Usuki et al. 2017), due to the fast Fe–Mg diffusion during retrograde cooling obliterated initial mineral compositions. Therefore, it is important to look for alternative geo-thermometers to estimate the peak metamorphic temperature, unaffected by the late re-equilibrium processes. Several attempts were made in this regard in the past decade, and the Mg isotope geothermometer may be a good candidate, as mentioned below. A large inter-mineral Mg isotope fractionation of $\Delta^{26}_{\text{Mg}}\text{clinopyroxene–garnet} = 1.14 \pm 0.04\%$ was found in a set of eclogites from Bixiling in the Dabie orogen, China (Li et al. 2011). The constant inter-mineral Mg isotope fractionation, together with homogeneous mineral chemistry and equilibrium oxygen isotopic partitioning between clinopyroxene and garnet, suggests an equilibrium Mg isotope fractionation (Li et al. 2011). Later analyses of coexisting clinopyroxene and garnet in cratonic eclogites (Wang et al. 2012, 2015) and orogenic eclogites (Wang et al. 2014a, b; Li et al. 2016) also found large equilibrium inter-mineral Mg isotope fractionation. This large equilibrium Mg isotope fractionation is controlled by different coordination numbers of Mg in these two minerals, with six in clinopyroxene and eight in garnet, as minerals with lower coordination number favoring heavier isotopes when thermodynamic equilibrium is achieved (Li et al. 2011, 2016; Wang et al. 2012, 2015; Huang et al. 2013; Young et al. 2015). As a result, equilibrium fractionation of Mg isotope between clinopyroxene and garnet could be used as a geothermometer, with high-precision and wide applications in igneous and metamorphic rocks where garnet co-exists with clinopyroxene (Huang et al. 2013; Li et al. 2016).
However, experiment results demonstrated large Mg isotope fractionation associated with diffusion of Mg along chemical and temperature gradients (Richter et al. 2008; Huang et al. 2009, 2010; Chopra et al. 2012). Further studies on natural samples demonstrated that there was Mg isotope fractionation related to chemical diffusion at both mineral and outcrop scales (Teng et al. 2011; Chopra et al. 2012; Sio et al. 2013; Oeser et al. 2015; Pogge Von Strandmann et al. 2015; Teng 2017). Therefore, it’s worth to investigate whether the inter-mineral diffusion exchange of Fe–Mg during the retrograde metamorphism of granulites affect the equilibrium Mg isotope fractionation between clinopyroxene and garnet that achieved under peak metamorphic conditions. This not only can answer if the clinopyroxene–garnet Mg isotope geothermometer could be applied to constrain the peak temperature of clinopyroxene- and garnet-bearing granulites, but also help us to understand the Mg isotope fractionation during the granulite-facies metamorphism.

In this study, we carried out Mg isotopic analyses of clinopyroxenes and garnets from newly discovered garnet pyroxenites and high-pressure (HP) mafic granulites from the Namakkal Block of the Southern Granulite Terrane (SGT), India, and investigated the magnitude of Mg isotope fractionation between clinopyroxene and garnet in these ultramafic-mafic granulites. On the basis of results from phase equilibrium modelling,
mineral chemical analysis, conventional clinopyroxene–garnet Fe–Mg exchange
geothermometry, and clinopyroxene–garnet Mg isotope geothermometry, we evaluate the
feasibility of clinopyroxene–garnet Mg isotope geothermometer in these ultramafic-mafic
granulites, and the effect of the retrograde cooling on equilibrium Mg isotope
fractionation between clinopyroxene and garnet during the peak metamorphism.

GEOLOGICAL SETTING AND SAMPLE DESCRIPTION

The SGT, located at the southern margin of the Dharwar Craton, is composed of the
Coorg, Nilgiri, Billigiri Rangan, Shevaroy, Madras, and Namakkal granulite Blocks
(Figure 1). The Namakkal Block or the Kolli-massif (George and Sajeev, 2015) is
composed of charnockite, HP mafic granulite, garnet pyroxenite, ultramafic rocks,
anorthosite, gneiss, granite, migmatite, and minor layers of banded magnetite quartzite
(Figure 2) (Anderson et al. 2012; Mohan et al. 2013; Glorie et al. 2014; George et al.
2019; Peng et al. 2019; He et al. 2020, 2021). Zircon and monazite U–Pb analyses on
various metamorphic rocks have yielded metamorphic ages ranging from 2526 to 2442
Ma (Saitoh et al. 2011; Sato et al. 2011; Anderson et al. 2012; Mohan et al. 2013; Glorie
modelling yielded a $P\text{-}T$ condition of 22 kbar at 980 °C for the garnet pyroxenite from
the Jambumalai Hills in the Kolli-massif (Figure 2), and an isothermal decompression $P\text{-}T$
path was obtained based on the presence of plagioclase corona around the garnet
(George et al. 2019). The HP mafic granulites from the Mahadevi Layered complex
(MLC), record a simultaneous cooling and decompression P–T path, with peak metamorphism that occurred under HP granulite-facies condition of ~ 800 °C at $12–14$ kbar, and retrograde metamorphism under P–T conditions of $\sim 10–11$ kbar, ~ 710 °C and $\sim 6–8$ kbar, $>580–620$ °C (Chowdhury and Chakraborty 2019).

Four representative ultramafic-mafic granulite samples were selected for this study on the basis of detailed petrology, which are garnet pyroxenite samples 18ID-39 and 18ID-41 (Figure 3a, b), and HP mafic granulite samples 18ID-46 and 18ID-50 (Figure 3c–f). The garnet pyroxenite samples 18ID-39 and 18ID-41 are mainly composed of garnet and clinopyroxene, plagioclase, ilmenite and hematite (Figures 3a, b and S1a, b), and accessory apatite (Figure S1a). Minor hornblende and quartz occur as tiny interstitial grains (Figure S1a, b), and are considered to have formed during the retrograde cooling. These garnet pyroxenite samples display granoblastic texture (Figure 3a, b), indicating high equilibrium temperature. Clinopyroxene develops extremely narrow orthopyroxene exsolution lamellae (Figure 4a, b), which is considered as a result of the retrograde cooling. Ilmenite and hematite are relatively abundant in the garnet pyroxenite and are present as interstitial grains (Figures 3a, b and S1a, b). Ilmenite commonly contains hematite exsolution lamellae (Figure S1a, b). As a result, the peak metamorphic phase assemblage of the garnet pyroxenites, is inferred to have been garnet–clinopyroxene–plagioclase–ilmenite–melt, and the final subsolidus mineral assemblage preserved in these samples comprises garnet–clinopyroxene–hornblende–plagioclase–ilmenite–
The HP mafic granulite samples 18ID-46 and 18ID-50 mainly consist of garnet, clinopyroxene, orthopyroxene, hornblende and plagioclase (Figure 3c–f), with minor quartz, and accessory ilmenite, hematite and zircon (Figure S1c, d). They also display granoblastic texture (Figure 3c–f). Plagioclase is more abundant than that in the garnet pyroxenites (Figure 3a–f). Only minor quartz was observed, which occurs as narrow films or tiny grains along the boundary between other minerals (Figure S1c, d).

Hornblende occurs as corona around clinopyroxene and orthopyroxene, or as interstitial grains between garnet, clinopyroxene and orthopyroxene (Figure 3d, f). Thus, the quartz and hornblende in the HP mafic granulites are inferred to have formed during the retrograde metamorphism. It can be noted that sample 18ID-46 contains abundant hornblende, whereas sample 18ID-50 contains only minor hornblende, which are due to different degrees of retrograde metamorphism. Extremely narrow orthopyroxene exsolution lamellae has also been observed in the clinopyroxene in the two HP mafic granulate samples (Figure 4c, d), which might have formed as a result of retrograde cooling. Hematite exsolution lamellae can be also observed in ilmenite (Figure S1d).

Hence, the peak metamorphic phase assemblage of the HP mafic granulites, is inferred to have been garnet–clinopyroxene–orthopyroxene–plagioclase–ilmenite–melt, and the subsolidus mineral assemblage preserved in these sample comprises garnet–clinopyroxene–orthopyroxene–hornblende–plagioclase–ilmenite–hematite–quartz.
ANALYTICAL METHODS

Mineral compositional analysis

Mineral compositions were analyzed using the JEOL JXA-8230 electron microprobe (EMP) at the State Key Laboratory of Continental Dynamics (SKLCD), Northwest University, Xi’an. The operating conditions are 2 μm beam size, 15 kV acceleration voltage, and 10 nA beam current. Mineral formula was calculated from the EMP data, based on the stoichiometric charge balance, using the program AX (https://filedn.com/lU1GlyFhv3UuXg5E9dbnWFF/TJBHpages/ax.html), except for Fe$^{3+}$ content in clinopyroxene (calculated by end-member method). Mineral compositions and the mole fractions of end-members for the garnet pyroxenite samples 18ID-39 and 18ID-41, and the HP mafic granulite samples 18ID-46 and 18ID-50 are given in Tables S1, S2, S3 and S4, respectively. As the clinopyroxene in both the garnet pyroxenites and HP mafic granulites displays exsolution lamellar of orthopyroxene, re-integrated pre-exsolution original compositions of clinopyroxene were calculated from the compositions of host and lamellar domains, and the mass proportions. The mass proportions were calculated using areal proportions (assumed to be equal to volume propositions) of host-lamellae estimated from back-scattered images (Figure 4), and densities of clinopyroxene (3.27 g/cm3) and orthopyroxene (3.61 g/cm3). The re-integrated compositions are listed in Table S5.
Tescan Integrated Mineral Analyzer (TIMA) at the SKLCD, Northwest University, Xi’an, was used to determine hornblende and quartz in the ultramafic-mafic granulites, with a beam current of 8.66 nA, beam energy of 25 kV, and working distance of 15 mm.

Pseudosection modelling

Phase equilibrium modelling was carried out on the garnet pyroxenite sample 18ID-39 and HP mafic granulite sample 18ID-50, to constrain the peak metamorphic P-T condition. The bulk chemical compositions (Table 1) were determined by wavelength-dispersive X-ray fluorescence (XRF) spectrometry at the SKLCD (Rigaku RIX 2100) on a fused bead, except for FeO versus Fe$_2$O$_3$ (total iron was determined as Fe$_2$O$_3$ by the XRF) and the H$_2$O content. The amount of FeO was determined by titration and then Fe$_2$O$_3$ was calculated by difference. The loss on ignition is negative as the Fe$^{2+}$ was oxidized to Fe$^{3+}$ during the heating. The modelled bulk-rock H$_2$O content in P-T pseudosection modelling was adjusted using T-X_{H2O} pseudosection, so that the final phase assemblage is stable just above the solidus, which is assumed to reflect the conditions where this assemblage would have been in equilibrium with the last remaining melt (Korhonen et al., 2013). Phase equilibrium calculation was performed using THERMOCALC version tc345 (Powell et al. 1998) with the internally consistent thermodynamic dataset ds62 (Holland and Powell 1998, 2011) and the activity–composition (a–x) models for the Na$_2$O–CaO–K$_2$O–FeO–MgO–Al$_2$O$_3$–SiO$_2$–H$_2$O–TiO$_2$–O$_2$ (NCKFMASHTO) system (White et al. 2014; Green et al. 2016).
Garnet–clinopyroxene Fe–Mg thermometry

The garnet–clinopyroxene Fe–Mg thermometer of Ravna (2000) was adopted to calculate the metamorphic temperatures for the garnet pyroxenites and HP mafic granulites. The compositions of garnet and clinopyroxene cores were used, as they record higher metamorphic temperatures than those of rims. The re-integrated pre-exsolution original compositions of clinopyroxene were also used to calculate metamorphic temperature, in order to determine whether the exsolution lamellar of orthopyroxene significantly affect the calculated temperature results. The calculated temperature results are presented in Table 2.

Mg isotopic analysis

Solution preparation was performed in an ultra-clean room at the SKLCD. The garnet and clinopyroxene separated from the crushed samples of the garnet pyroxenites and HP mafic granulites were ground to powder using agate mortar, and then an appropriate amount of powder was weighted to obtain ~25 μg Mg for chemical purification based on the MgO content. Weighted powders were placed in 15 mL Savillex Teflon beakers with a mixture of concentrated HF–HNO₃ (3 : 1). The beakers were heated overnight at a temperature of 120 °C on a hot plate, and then the solutions were evaporated to dryness. The dried samples were refluxed with concentrated HNO₃ to remove residual fluorides, and then were made to evaporate again. After the precipitation and centrifugation, the
dissolved rock solutions containing 25 μg Mg were passed through two columns containing AG50W-X12 cation exchange resins to eliminate matrix elements. The collected solutions were then evaporated at 80 °C, and the residues were dissolved in 2% HNO₃ for measurement.

Analysis of Mg isotope ratios was carried out on a Nu Plasma II MC-ICPMS (Nu Instruments, Wrexham, UK) at the SKLCD. The standard-sample-standard bracketing method was used to correct the instrumental mass bias during the analyses, and the standard solution was GSB-Mg (Bao et al. 2020). The Mg isotopic ratios were first normalized to the GSB-Mg standard by $\delta^{x}Mg_{\text{Sample-Standard}} = 10^3 \times \{2 \times \frac{(^{x}Mg/^{24}Mg)_{\text{Sample(i)}}}{(^{x}Mg/^{24}Mg)_{\text{Standard(i)}} + (^{x}Mg/^{24}Mg)_{\text{Standard(i+1)}}} - 1\}$ (Teng 2017), where x refers to mass 25 or 26. Then, the $\delta^{x}Mg_{\text{Sample-Standard}}$ was converted to $\delta^{x}Mg_{\text{Sample-DSM3}}$ using the following formula: $\delta^{x}Mg_{\text{Sample-DSM3}} = \delta^{x}Mg_{\text{Sample-Standard}} + \delta^{x}Mg_{\text{Standard-DSM3}} + 10^{-3} \times \delta^{x}Mg_{\text{Sample-Standard}} \times \delta^{x}Mg_{\text{Standard-DSM3}}$ (Galy et al. 2003). The $\delta^{26}Mg$ and $\delta^{25}Mg$ values of the GSB-Mg standard solution relative to DSM3 are −2.049‰ and −1.056‰, with uncertainty of 0.049‰ and 0.028‰, respectively (Bao et al. 2020). The USGS basalt standards BCR-2 and BHVO-2, and procedural blank were processed through column chemistry with samples to check the accuracy. The measured Mg isotopic compositions agree well with previously reported values (Table 3; Bizzarro et al. 2011; An et al. 2014; Teng et al. 2015; Bao et al. 2019). The detailed description of the methodology used in SKLCD can be found in Bao et al. (2019).
Clinopyroxene–garnet Mg isotope thermometry

The calibrations of clinopyroxene–garnet Mg isotope thermometers from both Li et al. (2016) and Huang et al. (2013) were applied to the garnet pyroxenites and the HP mafic granulites. The clinopyroxene–garnet Mg isotope thermometer of Li et al. (2016) was calibrated by natural samples, whereas that of Huang et al. (2013) was on the basis of first-principles calculation of equilibrium Mg isotope fractionations between garnet and clinopyroxene. The pressure effect was not considered in the clinopyroxene–garnet Mg isotope thermometer of Li et al. (2016), whereas the pressures of 10 and 12 kbar based on phase equilibrium modellings of the garnet pyroxenites and the HP mafic granulites were adopted, when the clinopyroxene–garnet Mg isotope thermometer of Huang et al. (2013) was applied, as Huang et al. (2013) has revealed substantial pressure effect on Mg isotope fractionation between garnet and clinopyroxene.

RESULTS

Mineral chemistry

Compositions of garnet, clinopyroxene and orthopyroxene exsolution lamellae were analyzed for both the garnet pyroxenites and HP mafic granulites. Garnet in the garnet-pyroxenite sample 18ID-39 is rich in almandine ($X_{\text{Alm}} = 0.51–0.54$), pyrope ($X_{\text{Prp}} = 0.27–0.30$) and grossular ($X_{\text{Grs}} = 0.17–0.18$), with low abundances of spessartine ($X_{\text{Sps}} = \sim0.01$) (Table S1). Clinopyroxene in the sample 18ID-39 is diopside in composition,
with low Na of 0.04–0.05 cations per formula unit (cpfu) (Table S1), and their Mg# and Al are 0.68–0.73 and 0.18–0.25 cpfu, respectively (Table S1). Compositional profile displays that both garnet and clinopyroxene have no significant variation in Mg# from core to rim (Table S1; Figure 5a). Orthopyroxene exsolution lamellae has Mg# value of 0.54–0.55 (Table S1).

The compositions of garnet, clinopyroxene and orthopyroxene exsolution lamellae in the garnet pyroxenite sample 18ID-41 are similar to those of the sample 18ID-39 (Tables S1 and S2; Figure 5a, b). However, the garnet in the sample 18ID-41 has feeble compositional variation from core to rim, with increasing pyrope and Mg# but decreasing almandine close to the rim (Table S2; Figure 5b), due to subsolidus retrograde Fe–Mg exchange. In addition, clinopyroxene exhibits a weak increase in Mg# close to the rim (Table S2; Figure 5b). Orthopyroxene exsolution lamellae has Mg# ranging from 0.53 to 0.56 (Table S2).

Garnet in the HP mafic granulite sample 18ID-46 is almandine-, pyrope- and grossular-rich ($X_{\text{Alm}} = 0.58–0.60; X_{\text{Prp}} = 0.20–0.22; X_{\text{Grs}} = 0.18–0.19$), with low concentration of spessartine ($X_{\text{Sps}} = \sim 0.01$) (Table S3); and it displays a weak variation in composition from core to rim, with increasing almandine but decreasing pyrope and Mg# close to the rim (Table S3; Figure 5c), due to subsolidus retrograde Fe–Mg exchange.

Clinopyroxene is diopside in composition, with Mg# value of 0.64–0.75, and exhibits
only weak compositional variation from core to rim, with increasing Mg# close to the rim (Tables S3; Figure 5c). Orthopyroxene exsolution lamellae has uniform Mg# of 0.51–0.52 (Table S3).

The compositions of garnet, clinopyroxene and orthopyroxene exsolution lamellae in the HP mafic granulite sample 18ID-50 are similar to those of the sample 18ID-46 (Tables S3 and S4; Figure 5c, d). Garnet exhibits weak compositional zoning from core to rim, with increasing almandine but decreasing pyrope and Mg# close to the rim (Table S4; Figure 5d). The zoning profile of clinopyroxene also shows only weak compositional variation from core to rim, with increasing Mg# close to the rim (Tables S4; Figure 5d).

P–T pseudosection

Garnet pyroxenite sample 18ID-39

A T–X$_\text{H}_2\text{O}$ pseudosection was calculated at 10 kbar (Figure 6a), which is within the pressure range for the final phase assemblage of grt–hbl–cpx–pl–ilm–qz–liq (Figure 6b). The H$_2$O contents investigated on Figure 6a range from an anhydrous composition ($X_{\text{H}_2\text{O}} = 0$) to the H$_2$O content of 5.0 mol.% ($X_{\text{H}_2\text{O}} = 1$) (Table 1). A $X_{\text{H}_2\text{O}}$ value of 0.45 (2.25 mol.% H$_2$O, Table 1; red bar on Figure 6a) was selected for subsequent $P–T$ pseudosection modelling of this bulk composition, which corresponds to the mid-point of the solidus curve for the final phase assemblage (Figure 6a).
The calculated P–T pseudosection (Figure 6b), allows the mineral assemblages to be evaluated over a range of P–T conditions. The peak phase assemblage grt–cpx–pl–ilm–liq occurs between 1080 and 1130 °C and 8.7–10.7 kbar (Figure 6b). The garnet-out line marks the upper temperature limit of this field (Figure 6b). The upper pressure and low temperature limits are the plagioclase-out and hornblende-in assemblage field boundaries, respectively (Figure 6b).

HP mafic granulate sample 18ID-50

A T–X_{H_2O} pseudosection for the HP mafic granulate sample 18ID-50 was also calculated at 10 kbar (Figure 6c), which is consistent with the pressure range for the final phase assemblage of grt–hbl–cpx–opx–pl–ilm–qz–liq (Figure 6d). A similar approach to that described above for sample 18ID-39 was used to constrain appropriate H_2O content for the P–T pseudosection (Figure 6c; Table 1). A X_{H_2O} value of 0.06 (0.30 mol.% H_2O, Table 1; red bar on Figure 6c), corresponding to the mid-point of the solidus curve for the final phase assemblage (Figure 6d), was selected for subsequent P–T pseudosection calculation.

The peak phase assemblage of the HP mafic granulate is represented by the hexa-variant field grt–cpx–opx–pl–ilm–melt in the calculated P–T pseudosection (Figure 6d), which occurs between 910 °C and 1140 °C and 9.0–12.4 kbar (Figure 6d). The hornblende-in assemblage field boundary marks the low temperature limit of this field and the
garnet-out assemblage field boundary marks the upper-temperature limit. The upper-pressure limit is the quartz-in assemblage field boundary. Calculated isopleths of X_{An} for plagioclase, and X_{Grs} for garnet, were contoured in the $P-T$ pseudosection (Figure 6d). Using the X_{An} in plagioclase (0.44–0.48) and the mole fraction of grossular in garnet (0.18–0.19) (Table S4), the peak $P-T$ condition was further constrained to be $T = 1070–1110 \, ^\circ C$ at $P = 11.5–12.2 \, \text{kbar}$ (Figure 6d).

Metamorphic temperatures from the garnet–clinopyroxene Fe–Mg thermometry

The peak $P-T$ conditions of the garnet pyroxenites and HP mafic granulites are constrained to be 1080–1130 °C at 8.7–10.7 kbar (Figure 6b) and 1070–1110 °C at 11.5–12.2 kbar (Figure 6d) from the phase-equilibrium modelling, respectively. Thus, the pressure should be set to 10 kbar, when the garnet–clinopyroxene Fe–Mg thermometry is applied to the garnet pyroxenites, and on the other hand, the pressure should be set to 12 kbar during application of the garnet–clinopyroxene Fe–Mg thermometry to the HP mafic granulites. However, in order to evaluate the effect of pressure on calculated temperature results by the garnet–clinopyroxene Fe–Mg thermometry, metamorphic temperatures for the garnet pyroxenites and the HP mafic granulites at both 10 kbar and 12 kbar have been calculated.

The temperatures measured for the garnet and clinopyroxene cores (Table S5), using the garnet–clinopyroxene Fe–Mg thermometer at 10 kbar are, 776 °C and 754 °C for the
garnet pyroxenites (Table 2; Figure 7), and 671 °C and 725 °C for the HP mafic granulites (Table 2; Figure 7), which are ~10 °C lower than those at 12 kbar (Table 2; Figure 7). However, when the compositions of garnet core and re-integrated pre-exsolution original composition of clinopyroxene were applied to Fe–Mg thermometer, there was a shift in the temperature, and the obtained temperatures are 818 °C and 800 °C at 10 kbar for the garnet pyroxenites (Table 2; Figure 7), and 698 °C and 767 °C at 10 kbar for the HP mafic granulites (Table 2; Figure 7). These results are also ~10 °C lower than those at 12 kbar (Table 2; Figure 7). It should also be noted that the temperatures using the re-integrated pre-exsolution original compositions of clinopyroxene are ~30–50 °C higher than those using clinopyroxene cores under the same pressure, with the same compositions of garnet core (Table 2; Figure 7).

Mg isotopic compositions of clinopyroxene and garnet

Mg isotopic compositions of garnet and clinopyroxene are listed in Table 3. Clinopyroxenes and garnets from both the garnet pyroxenites and the HP mafic granulites have obviously different δ²⁶Mg values (Table 3; Figure 8a), suggesting large inter-mineral Mg isotope fractionations between clinopyroxene and garnet (Table 4; Figure 8a). For the garnet pyroxenite sample 18ID-39, the δ²⁶Mg values of clinopyroxene and garnet are −0.04 ± 0.04‰ and −0.65 ± 0.07‰, respectively, which are similar to those of the garnet pyroxenite sample 18ID-41 (Table 3; Figure 8a). The δ²⁶Mg values of clinopyroxenes from the HP mafic granulites are 0.03 ± 0.05‰ and 0.07 ± 0.03‰, which
are slightly higher than those of clinopyroxenes from the garnet pyroxenites (Table 3; Figure 8a). The garnets from the HP mafic granulites have $\delta^{26}\text{Mg}$ values of $-0.54 \pm 0.11\%$ and $-0.55 \pm 0.09\%$, which are slightly higher than those of garnets from the garnet pyroxenites (Table 3; Figure 8a). However, similar $\Delta^{26}\text{Mg}_{\text{clinopyroxene–garnet}}$ values are obtained for the garnet pyroxenites (0.62% and 0.57%) and the HP mafic granulites (0.57% and 0.62%) (Table 4).

Temperature evaluation using the clinopyroxene–garnet Mg isotope thermometry

The calibration of the clinopyroxene–garnet Mg isotope thermometer of Li et al. (2016) yielded metamorphic temperatures of $994 \pm 60 \degree C$ and $1048 \pm 89 \degree C$ respectively for the two samples of garnet pyroxenites, and $1048 \pm 89 \degree C$ and $994 \pm 65 \degree C$ for the HP mafic granulites (Table 4; Figure 8b). Similar to the garnet–clinopyroxene Fe–Mg thermometry, in order to evaluate the effect of pressure on the calculated temperature using the clinopyroxene–garnet Mg isotope thermometer of Huang et al. (2013), metamorphic temperatures for the garnet pyroxenites and the HP mafic granulites at both 10 kbar and 12 kbar were determined. At 10 kbar, the clinopyroxene–garnet Mg isotope thermometer of Huang et al. (2013) yielded temperatures of $1038 \pm 42 \degree C$ and $1093 \pm 72 \degree C$ for the garnet pyroxenites, and $1094 \pm 71 \degree C$ and $1038 \pm 47 \degree C$ for the HP mafic granulites (Table 4; Figure 8b). At 12 kbar, however, the obtained temperatures are $1045 \pm 43 \degree C$ and $1100 \pm 72 \degree C$ for the garnet pyroxenites, and $1101 \pm 71 \degree C$ and $1044 \pm 48 \degree C$ for the HP mafic granulites (Table 4; Figure 8b).
DISCUSSION

Implications of metamorphic temperatures from garnet–clinopyroxene Fe–Mg thermometry

As mentioned above, the temperatures at 10 kbar from the garnet–clinopyroxene Fe–Mg thermometry are ~10 °C lower than those using the same mineral compositions at 12 kbar (Table 2). Thus, the effect of pressure on the temperature results is limited. Frost and Chacko (1989) concluded that pre-exsolution composition of clinopyroxene was required to obtain higher temperatures from the garnet–clinopyroxene Fe–Mg thermometer, and if these lamellae are lost, any evidence of high temperatures will be masked. This is consistent with that the temperatures using the re-integrated pre-exsolution compositions of clinopyroxene are ~30–50 °C higher than those using clinopyroxene cores under the same pressure, with the same compositions of garnet cores (Table 2), and should be closer to peak temperature conditions.

The peak temperature conditions for the garnet pyroxenites and the HP mafic granulites in this study, have been constrained from phase equilibrium modelling, which is now considered generally as the most common method to constrain the peak P–T conditions of metamorphic rocks. The peak temperature condition of the garnet pyroxenites is 1080–1130 °C at 8.7–10.7 kbar (Figure 6b), whereas that of the HP mafic granulites is 1070–1110 °C at 11.5–12.2 kbar (Figure 6d). When compared with the peak temperature...
conditions calculated using the phase equilibrium modelling, metamorphic temperatures from the garnet–clinopyroxene Fe–Mg thermometry, using the re-integrated pre-exsolution original compositions of clinopyroxene, for the garnet pyroxenites at 10 kbar, are ~260–280 °C lower (Table 2), and those for the HP mafic granulites at 12 kbar are ~290–360 °C lower (Table 2). Therefore, metamorphic temperatures by the garnet–clinopyroxene Fe–Mg thermometry in this study are clearly inconsistent with the peak temperature conditions, and only represent the retrograde metamorphic conditions. This reflects that significant inter-mineral Fe–Mg exchange has occurred between garnet and clinopyroxene during the retrograde cooling, which is usual for mafic granulites and mantle rocks (Frost and Chacko 1989; Smith and Barron 1991; Ganguly et al. 1998; Paquin and Altherr 2001; Usuki et al. 2017; Yang and Wei 2017). Also, all the garnets and clinopyroxenes from the garnet pyroxenites and HP mafic granulites in this study have relatively homogeneous Fe and Mg contents, with minor variation in the rim (Table S1–4; Figure 5). All these results suggest re-equilibration of the garnets and clinopyroxenes during the retrograde cooling, after being homogenized at granulite-facies condition.

Significance of temperatures from clinopyroxene–garnet Mg isotope thermometry

The metamorphic temperatures obtained using the clinopyroxene–garnet Mg isotope thermometry at 10 kbar and 12 kbar are slightly different (Table 4; Figure 8b). This is consistent with fact that the effect of pressure is minimal on Mg isotope fractionations between garnet and clinopyroxene at equilibrium, for those rocks formed under extremely
high metamorphic temperatures (Huang et al. 2013). In addition, metamorphic
temperatures estimated by the clinopyroxene–garnet Mg isotope thermometer of Huang
et al. (2013) are slightly higher than those from that of Li et al. (2016) (Table 4; Figure
8b).

Metamorphic temperatures of 994 ± 60 °C and 1048 ± 89 °C for the garnet pyroxenites,
and 1048 ± 89 °C and 994 ± 65 °C for the HP mafic granulites (Table 4; Figure 8b), from
the clinopyroxene–garnet Mg isotope thermometer of Li et al. (2016), are similar or close
to the peak temperature conditions for the corresponding samples from the phase
equilibrium modelling within error (Figure 9a, b). Similarly, those metamorphic
temperatures at both 10 kbar and 12 kbar (Table 4; Figure 8b), from the clinopyroxene–
garnet Mg isotope thermometer of Huang et al. (2013), consistent with the peak
temperature conditions for the corresponding samples from the P–T phase equilibrium
modelling within error (Figure 9a, b). In addition, the inter-mineral Mg isotope
fractionations between the garnet and clinopyroxene from the garnet pyroxenites and the
HP mafic granulites are similar, and more or less fall within the equilibrium fractionation
lines (Huang et al. 2013; Li et al. 2016) (Figure 9), clearly indicating equilibrium
fractionation that formed during the UHT metamorphism. Therefore, metamorphic
temperatures from the clinopyroxene–garnet Mg isotope thermometers (Huang et al.
2013; Li et al. 2016) are valid and can be successfully applied to constrain the peak
metamorphic temperature conditions that have undergone UHT metamorphism, like the
Effect of the retrograde cooling on equilibrium Mg isotope fractionation during the UHT metamorphism

Experimental studies have found large Mg isotope fractionation associated with diffusion of Mg along chemical and temperature gradients (Richter et al. 2008; Huang et al. 2009, 2010; Chopra et al. 2012). Further studies on natural samples confirmed that there were Mg isotope fractionations related to chemical diffusions at both mineral and outcrop scales (Teng et al. 2011; Chopra et al. 2012; Sio et al. 2013; Oeser et al. 2015; Pogge Von Strandmann et al. 2015; Teng 2017). At mineral scale, Teng et al. (2011) found large Mg isotopic variation (up to 0.45‰ for $\delta^{26}\text{Mg}$) in olivine fragments from Hawaiian basalts, which was caused by diffusive exchange of Mg and Fe between olivines and melts during cooling. Moreover, large disequilibrium inter-mineral Mg isotope fractionation, induced by diffusion, during mantle metasomatism or subsolidus Mg–Fe exchange between coexisting minerals, was also observed in mantle rocks (Hu et al. 2016; Xiao et al. 2016).

The clinopyroxene–garnet Mg isotope thermometer (Li et al. 2016; Huang et al. 2013), yielded the peak metamorphic conditions for the garnet pyroxenites and the HP mafic granulites in this study, suggesting equilibrium Mg isotope fractionations happened during the UHT metamorphism. However, the retrograde metamorphic conditions obtained for the garnet pyroxenites and the HP mafic granulites using the garnet–
clinopyroxene Fe–Mg thermometry, reveal significant inter-diffusion exchange of Fe and Mg occurred between garnet and clinopyroxene during the retrograde cooling. These results suggest that the inter-mineral Fe–Mg exchange occurred between garnet and clinopyroxene during the retrograde cooling of the UHT rocks didn’t change their Mg isotope equilibrium obtained during the UHT metamorphic condition. Similar large HT to UHT Mg isotope fractionations between garnet and clinopyroxene have been reported in cratonic eclogites from South Africa and the Sierra Leone, West Africa (Wang et al. 2012, 2015). In this study, the published major elemental and Mg isotopic compositions were compiled for the garnet and clinopyroxene in both cratonic eclogites (Hills and Haggerty 1989; Williams et al. 2009; Wang et al. 2012, 2015) and orogenic eclogites (Li et al. 2011, 2016) (Table S6). We have recalculated their mineral formula with the same method in this study, and corresponding metamorphic temperatures using the garnet–clinopyroxene Fe–Mg thermometry (Figure 9; Table S6). The garnet–clinopyroxene Fe–Mg thermometry yielded higher metamorphic temperatures for the cratonic eclogites than those for the orogenic eclogites (Figure 9). As shown in Figure 9, the degrees of inter-mineral Mg isotope fractionations between garnet and clinopyroxene in the cratonic eclogites, are close to those of the garnet pyroxenites and HP mafic granulites in this study, but lower than those of the orogenic eclogites. In addition, unlike the garnet pyroxenites and HP mafic granulites in this study, most samples of these cratonic and orogenic eclogites have Mg isotope fractionations between garnet and clinopyroxene, falling on or near equilibrium fractionation lines (Figure 9), if the adopted metamorphic
temperatures were estimated by using the garnet–clinopyroxene Fe–Mg thermometry. These indicate limited inter-mineral diffusion of Fe–Mg between garnet and clinopyroxene in the most cratonic and orogenic eclogite samples. For the orogenic eclogites, the limited inter-mineral diffusion of Fe–Mg between garnet and clinopyroxene is due to their low peak metamorphic temperatures (Table S6). However, the different degrees of inter-mineral diffusion of Fe–Mg between garnet and clinopyroxene in the most cratonic eclogite samples, and the garnet pyroxenites and HP mafic granulites in this study, may reflect different thermal evolutions after peak temperature metamorphism.

IMPLICATIONS

This study demonstrates that the clinopyroxene–garnet Mg isotope thermometry (Li et al. 2016; Huang et al. 2013), is a valid tool to constrain the peak temperature conditions for the garnet pyroxenites and HP mafic granulites that have undergone UHT metamorphism. The Mg isotope equilibrium between garnet and clinopyroxene that formed during the UHT metamorphism is not disturbed by the inter-mineral diffusion exchange of Fe–Mg during the retrograde cooling. Our results are inconsistent with the general understanding that chemical diffusion will certainly cause the Mg isotope fractionation (Richter et al. 2008; Huang et al. 2009, 2010; Teng et al. 2011; Chopra et al. 2012; Sio et al. 2013; Oeser et al. 2015; Teng 2017). However, there still remains an ambiguity that why the Mg isotope fractionation was not disturbed by the inter-mineral diffusion exchange of Fe–Mg during the retrograde cooling. Further experiments and investigations on natural samples.
are required to clarify this question.

ACKNOWLEDGMENTS

This work was jointly supported by the National Natural Science Foundation of China (Grant No. 41890831) and a research grant from the State Key Laboratory of Continental Dynamics (SKLCD-04). We thank Dr. K. Sajeev for his help during the field work, and Dr. Zhi-An Bao for his help in analysis of Mg isotopic compositions. The authors would like to thank the Govt. of India for granting the required permissions.

REFERENCES CITED

Galy, A., Yoffe, O., Janney, P. E., Williams, R. W., Cloquet, C., and Alard, O., Halicz, L.,

Li, W.Y., Teng, F.Z., Xiao, Y.L., and Huang, J. (2011) High-temperature inter-mineral magnesium isotope fractionation in eclogite from the Dabie orogen, China. Earth and

Figure captions

Figure 1. (a) The location of major Archean cratons in India. (b) Geological map of the Dharwar Craton. Abbreviations: DC, Dharwar Craton; BC, Bastar Craton; BKC, Bundhelkland Craton; AC, Aravalli Craton; SC, Singbhum Craton; WDC, the Western Dharwar Craton; CDC, the Central Dharwar Craton; EDC, the Eastern Dharwar Craton; KSZ, Kumta shear zone; ChSZ, Chitradurga Shear Zone; CoSZ, Coorg shear zone; MSZ, Moyar Shear Zone; BSZ, Bhavani Shear Zone; MKSZ: Mettur-Kolar shear zone; NSZ:
Nallamalai shear zone; PCSZ, Palghat-Cauvery Shear Zone; SASZ, Salem-Attur Shear Zone; CSZ, Cauvery Shear Zone; ASZ, Achankovil shear zone; KKPTSZ, Karur Kambam Painavu Trichur shear zone; EGMB, Eastern Ghats Mobile Belts. Figure 1b is modified after Ishwar-Kumar et al. (2013), George and Sajeev (2015), George et al. (2019), and He et al. (2020).

Figure 2. Geological map of the Namakkal Block in the southern granulite terrain, India (modified after George and Sajeev (2015) and George et al. (2019)).

Figure 3. Photomicrographs (plane-polarized light) of the garnet pyroxenites and the HP mafic granulites. (a) Garnet and clinopyroxene porphyroblasts in the garnet pyroxenite sample 18ID-39. (b) Garnet and clinopyroxene porphyroblasts in the garnet pyroxenite sample 18ID-41. (c) Garnet, clinopyroxene, orthopyroxene, plagioclase and minor hornblende in the mafic granulate sample 18ID-46. (d) Hornblende corona around orthopyroxene in the mafic granulate sample 18ID-46. (e) Garnet, clinopyroxene, and plagioclase in the mafic granulate sample 18ID-50. (f) minor hornblende around orthopyroxene in the mafic granulate sample 18ID-50. The yellow lines with arrow denote the locations of compositional profiles. In this study, all the mineral abbreviations follow Whitney and Evans (2010).

Figure 4. Back-scattered electron photomicrographs showing narrow orthopyroxene
exsolution lamellae within clinopyroxene porphyroblasts from the garnet pyroxenites and the HP mafic granulites. (a) Garnet pyroxenite sample 18ID-39. (b) Garnet pyroxenite sample 18ID-41. (c) Mafic granulate sample 18ID-46. (d) Mafic granulate sample 18ID-50.

Figure 5. Compositional profiles of garnet and clinopyroxene porphyroblasts from the garnet pyroxenite samples 18ID-39 (a) and 18ID-41 (b), and the HP mafic granulate samples 18ID-46 (c) and 18ID-50 (d).

Figure 6. T–X_{H2O} and P–T pseudosections for the garnet pyroxenite samples 18ID-39 and the HP mafic granulate sample 18ID-50. (a) T–X_{H2O} pseudosection for the garnet pyroxenite sample 18ID-39 at 10 kbar, with the final mineral assemblage marked by Liq–grt–hbl–cpx–pl–ilm–qz in red type. (b) P–T pseudosection for the garnet pyroxenite samples 18ID-39, with peak mineral assemblage marked by Liq–grt–cpx–pl–ilm in red type. (c) T–X_{H2O} pseudosection for the HP mafic granulate sample 18ID-50 at 10 kbar, with the final mineral assemblage marked by Liq–grt–hbl–cpx–opx–pl–ilm–qz in red type. (d) P–T pseudosection for the HP mafic granulate sample 18ID-50, with peak mineral assemblage marked by Liq–grt–cpx–opx–pl–ilm in red type, and isopleths of X_{grs} in garnet, and X_{an} in plagioclase. The peak metamorphic condition of the HP mafic granulate sample 18ID-50 is indicated by the field in yellow color. Red bars in (a) and (c) denote H$_2$O contents used for subsequent modelling.
Figure 7. Plot of LnK$_D$ versus X_{Mg}(Grt) with temperature isopleths at both 10 kbar and 14 kbar, where $K_D = (Fe^{2+}/Mg)^{Grt}/(Fe^{2+}/Mg)^{Cpx}$ and X_{Mg}(Grt) = Mg/(Mg + Fe$^{2+}$) in garnet. The LnK$_D$ and X_{Mg}(Grt) are calculated using compositions of garnets and clinopyroxenes as same as those for the garnet–clinopyroxene Fe–Mg thermometry.

Figure 8. (a) δ^{26}Mg values of clinopyroxenes and garnets in the garnet pyroxenites and the HP mafic granulites. (b) Metamorphic temperatures calculated by the calibration of the clinopyroxene–garnet Mg isotope thermometers of Huang et al. (2013) and Li et al. (2016). Huang2013 and Li2016 mean Huang et al. (2013) and Li et al. (2016), respectively. The error bars in (a) and (b) represent the precision (2SD) on δ^{26}Mg, and the uncertainty of the estimated temperature (ΔT), respectively.

Figure 9. Plots of Δ^{26}Mg$_{Cpx-Grt}$ versus $10^6/(T)^2$ with equilibrium Mg isotope fractionation lines from Huang et al. (2013) and Li et al. (2016). The equilibrium Mg isotope fractionation line from Huang et al. (2013) in (a) is at 10 kbar, and that in (b) is at 12 kbar. T denotes temperatures estimated by the garnet–clinopyroxene Fe–Mg thermometry, using the compositions of garnet and clinopyroxene cores, whereas T1 denotes those estimated by the garnet–clinopyroxene Fe–Mg thermometry, using the composition of garnet core and the re-integrated pre-exsolution original composition of clinopyroxene. T Pseud. means temperatures from P–T pseudosection modellings. The δ^{26}Mg values of
garnet and clinopyroxene in the cratonic eclogites are from Wang et al (2012, 2015), and
those in the orogenic eclogites are from Li et al (2011, 2016). Error bars represent the
standard deviation of the Δ²⁶Mg Cpx–Grt value.

Supplementary Figure

Figure S1. TIMA images of the garnet pyroxenite samples 18ID-39 (a) and 18ID-41 (b),
and the HP mafic granulite samples 18ID-46 (c) and 18ID-50 (d).

Tables

Table 1. Bulk composition of the garnet pyroxenite and HP mafic granulite used for
phase equilibrium modelling.

Table 2. Metamorphic temperatures of the garnet pyroxenites and the HP mafic
granulites estimated by the garnet–clinopyroxene Fe–Mg thermometry.

Table 3. Magnesium isotopic compositions of clinopyroxenes and garnets in the garnet
pyroxenites and the mafic granulites, and standards.

Table 4. Metamorphic temperatures of the garnet pyroxenites and the mafic granulites
calculated by using the clinopyroxene–garnet Mg isotope geothermometer.
Supplementary tables

Table S1. Major element compositions of garnet, clinopyroxene, and orthopyroxene lamellae in the garnet pyroxenite sample 18ID-39.

Table S2. Major element compositions of garnet, clinopyroxene, and orthopyroxene lamellae in the garnet pyroxenite sample 18ID-41.

Table S3. Major element compositions of garnet, clinopyroxene, and orthopyroxene lamellae in the HP mafic granulite sample 18ID-46.

Table S4. Major element compositions of garnet, clinopyroxene, orthopyroxene lamellae and plagioclase in the HP mafic granulite sample 18ID-50.

Table S5. Mineral compositions used in temperatures calculated by the garnet–clinopyroxene Fe–Mg thermometry.

Table S6. Summary of published major elemental and Mg isotopic compositions for the garnet and clinopyroxene in both the cratonic and orogenic eclogites, and metamorphic temperatures calculated by the garnet–clinopyroxene Fe–Mg thermometry.
Table 1
Bulk composition of the garnet pyroxenite and HP mafic granulite used for phase equilibrium modelling.

<table>
<thead>
<tr>
<th>Sample</th>
<th>SiO$_2$</th>
<th>TiO$_2$</th>
<th>Al$_2$O$_3$</th>
<th>TFe$_2$O$_3$</th>
<th>FeO</th>
<th>MnO</th>
<th>MgO</th>
<th>CaO</th>
<th>Na$_2$O</th>
<th>K$_2$O</th>
<th>P$_2$O$_5$</th>
<th>LOI</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>18ID-39</td>
<td>42.12</td>
<td>2.51</td>
<td>12.03</td>
<td>5.89</td>
<td>13.55</td>
<td>0.24</td>
<td>7.81</td>
<td>12.65</td>
<td>1.6</td>
<td>0.03</td>
<td>0.04</td>
<td>−0.36</td>
<td>98.11</td>
</tr>
<tr>
<td>18ID-50</td>
<td>51.21</td>
<td>0.87</td>
<td>15.38</td>
<td>2.70</td>
<td>7.66</td>
<td>0.15</td>
<td>6.20</td>
<td>11.50</td>
<td>3.22</td>
<td>0.21</td>
<td>0.10</td>
<td>−0.30</td>
<td>98.90</td>
</tr>
</tbody>
</table>

Normalized molar proportion used for phase equilibrium modelling

<table>
<thead>
<tr>
<th>Figures</th>
<th>x=0</th>
<th>x=1</th>
<th>H$_2$O</th>
<th>SiO$_2$</th>
<th>Al$_2$O$_3$</th>
<th>CaO</th>
<th>MgO</th>
<th>FeO</th>
<th>K$_2$O</th>
<th>Na$_2$O</th>
<th>TiO$_2$</th>
<th>O*</th>
</tr>
</thead>
<tbody>
<tr>
<td>18ID-39</td>
<td>6a</td>
<td>5.000</td>
<td>43.947</td>
<td>7.396</td>
<td>14.140</td>
<td>12.148</td>
<td>16.447</td>
<td>0.020</td>
<td>1.618</td>
<td>1.970</td>
<td>2.313</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6b</td>
<td>2.250</td>
<td>42.959</td>
<td>7.230</td>
<td>13.822</td>
<td>11.875</td>
<td>16.077</td>
<td>0.020</td>
<td>1.582</td>
<td>1.925</td>
<td>2.261</td>
<td></td>
</tr>
<tr>
<td>18ID-50</td>
<td>6c</td>
<td>5.000</td>
<td>53.795</td>
<td>9.520</td>
<td>12.942</td>
<td>9.710</td>
<td>8.860</td>
<td>0.141</td>
<td>3.279</td>
<td>0.687</td>
<td>1.066</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6d</td>
<td>0.300</td>
<td>53.633</td>
<td>9.492</td>
<td>12.903</td>
<td>9.681</td>
<td>8.834</td>
<td>0.140</td>
<td>3.269</td>
<td>0.685</td>
<td>1.063</td>
<td></td>
</tr>
</tbody>
</table>
Table 2
Metamorphic temperatures of the garnet pyroxenites and the HP mafic granulites estimated by the garnet–clinopyroxene Fe–Mg thermometry.

<table>
<thead>
<tr>
<th>Rock type</th>
<th>Sample number</th>
<th>Grt core and cpx core, at 10 kbar</th>
<th>Grt core and integrated cpx, at 10 kbar</th>
<th>Grt core and cpx core, at 12 kbar</th>
<th>Grt core and integrated cpx, at 12 kbar</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>T ($^\circ$C, R20)</td>
<td>T ($^\circ$C, R20)</td>
<td>T ($^\circ$C, R20)</td>
<td>T ($^\circ$C, R20)</td>
</tr>
<tr>
<td>Garnet pyroxenites</td>
<td>18ID-39</td>
<td>776</td>
<td>818</td>
<td>789</td>
<td>832</td>
</tr>
<tr>
<td></td>
<td>18ID-41</td>
<td>754</td>
<td>800</td>
<td>767</td>
<td>813</td>
</tr>
<tr>
<td>Mafic granulites</td>
<td>18ID-46</td>
<td>671</td>
<td>698</td>
<td>682</td>
<td>709</td>
</tr>
<tr>
<td></td>
<td>18ID-50</td>
<td>725</td>
<td>767</td>
<td>737</td>
<td>780</td>
</tr>
</tbody>
</table>

Notes: R20 denotes Ravna (2000).
Table 3
Magnesium isotopic compositions of clinopyroxenes and garnets in the garnet pyroxenites and the mafic granulites, and standards.

<table>
<thead>
<tr>
<th>Samples No.</th>
<th>(\delta^{26}\text{Mg}_{\text{Cpx}}) (‰)</th>
<th>2SD</th>
<th>(\delta^{25}\text{Mg}_{\text{Cpx}}) (‰)</th>
<th>2SD</th>
<th>(\delta^{26}\text{Mg}_{\text{Grt}}) (‰)</th>
<th>2SD</th>
<th>(\delta^{25}\text{Mg}_{\text{Grt}}) (‰)</th>
<th>2SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Garnet pyroxenites</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18ID-39</td>
<td>−0.04</td>
<td>0.04</td>
<td>−0.01</td>
<td>0.04</td>
<td>−0.65</td>
<td>0.07</td>
<td>−0.36</td>
<td>0.03</td>
</tr>
<tr>
<td>18ID-41</td>
<td>−0.07</td>
<td>0.09</td>
<td>−0.05</td>
<td>0.05</td>
<td>−0.64</td>
<td>0.07</td>
<td>−0.34</td>
<td>0.05</td>
</tr>
<tr>
<td>Mafic granulites</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18ID-46</td>
<td>0.03</td>
<td>0.05</td>
<td>0.01</td>
<td>0.06</td>
<td>−0.54</td>
<td>0.11</td>
<td>−0.31</td>
<td>0.07</td>
</tr>
<tr>
<td>18ID-50</td>
<td>0.07</td>
<td>0.03</td>
<td>0.03</td>
<td>0.02</td>
<td>−0.55</td>
<td>0.09</td>
<td>−0.29</td>
<td>0.06</td>
</tr>
<tr>
<td>Standards</td>
<td>(\delta^{26}\text{Mg}) (‰)</td>
<td>2SD</td>
<td>(\delta^{25}\text{Mg}) (‰)</td>
<td>2SD</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BCR-2</td>
<td>−0.17</td>
<td>0.05</td>
<td>−0.11</td>
<td>0.03</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BHVO-2</td>
<td>−0.19</td>
<td>0.05</td>
<td>−0.10</td>
<td>0.05</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BHVO-2R</td>
<td>−0.17</td>
<td>0.04</td>
<td>−0.10</td>
<td>0.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes: (1) 2SD means two times the standard deviation of the population of n repeat measurements during an analytical session. (2) R means repeat column chemistry and measurement.
Table 4
Metamorphic temperatures of the garnet pyroxenites and the mafic granulites calculated by using the clinopyroxene–garnet Mg isotope geothermometer.

<table>
<thead>
<tr>
<th>Samples number</th>
<th>$\Delta^{26}\text{Mg}_{\text{cpx-grt}}$ (%)</th>
<th>T (°C)</th>
<th>ΔT (°C)</th>
<th>T (°C)</th>
<th>ΔT (°C)</th>
<th>T (°C)</th>
<th>ΔT (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Garnet pyroxenites</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18ID-39</td>
<td>0.62</td>
<td>994</td>
<td>60</td>
<td>1038</td>
<td>42</td>
<td>1045</td>
<td>43</td>
</tr>
<tr>
<td>18ID-41</td>
<td>0.57</td>
<td>1048</td>
<td>89</td>
<td>1093</td>
<td>72</td>
<td>1100</td>
<td>72</td>
</tr>
<tr>
<td>Mafic granulites</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18ID-46</td>
<td>0.57</td>
<td>1048</td>
<td>89</td>
<td>1094</td>
<td>71</td>
<td>1101</td>
<td>71</td>
</tr>
<tr>
<td>18ID-50</td>
<td>0.62</td>
<td>994</td>
<td>65</td>
<td>1038</td>
<td>47</td>
<td>1044</td>
<td>48</td>
</tr>
</tbody>
</table>

Notes: (1) $\Delta^{26}\text{Mg}_{\text{cpx-grt}}$ (%) = $\delta^{26}\text{Mg}_{\text{cpx}} - \delta^{26}\text{Mg}_{\text{grt}}$. (2) a denotes temperatures calculated by the Mg isotope geothermometer of Li et al. (2016), i.e., $\Delta^{26}\text{Mg}_{\text{cpx-grt}} = (0.99 \pm 0.06) \times 10^{6} / T^{2}$. b and c denote temperatures calculated by the Mg isotope geothermometer of Huang et al. (2013) at $P = 10$ kbar and 12 kbar, respectively, i.e., $\Delta^{26}\text{Mg}_{\text{cpx-grt}} = 1.06 \times 10^{6} / T^{2}$ (10 kbar) and $\Delta^{26}\text{Mg}_{\text{cpx-grt}} = 1.07 \times 10^{6} / T^{2}$ (12 kbar). T is temperature in Kelvin. (3) ΔT is uncertainty of the estimated temperature, and is calculated follow Li et al. (2016) with formula of $\Delta T = S\Delta^{26}\text{Mg}_{\text{cpx-grt}} / (2A \times 10^{6} / T^{3}) + T \times S_{A} / 2A$, where T is also temperature in Kelvin. $S\Delta^{26}\text{Mg}_{\text{cpx-grt}}$ is the standard deviation of the $\Delta^{26}\text{Mg}_{\text{cpx-grt}}$ value, which is calculated by $(S\Delta^{26}\text{Mg}_{\text{cpx-grt}})^{2} = (S\delta^{26}\text{Mg}_{\text{cpx}})^{2} + (S\delta^{26}\text{Mg}_{\text{grt}})^{2}$, where $S\delta^{26}\text{Mg}_{\text{cpx}}$ and $S\delta^{26}\text{Mg}_{\text{grt}}$ are the standard deviation on $\delta^{26}\text{Mg}$ of clinopyroxene and garnet, respectively. A and S_{A} are the slope of the calibrated line and its standard deviation, respectively.
Figure 2

This is the peer-reviewed, final accepted version for American Mineralogist, published by the Mineralogical Society of America. The published version is subject to change. Cite as Authors (Year) Title. American Mineralogist, in press. DOI: https://doi.org/10.2138/am-2022-8058. http://www.minsocam.org/
Figure 3

(a) 18ID-39
(b) 18ID-41
(c) 18ID-46
(d) 18ID-46
(e) 18ID-50
(f) 18ID-50

400 μm
Figure 4

(a) 18ID-39

(b) 18ID-41

(c) 18ID-46

(d) 18ID-50
Figure 5

(a) 18ID-39

Mg#

Grt

Cpx

(b) 18ID-41

Mg#

Grt

Cpx

(c) 18ID-46

Mg#

Cpx

Grt

(d) 18ID-50

Mg#

Cpx

Grt
Figure 7

The graph shows the relationship between $\ln K_D$ and $X_{Mg}(Grt)$ at different temperatures: 600°C, 700°C, 800°C, and 900°C. The data points represent different samples labeled 18ID-39, 18ID-41, 18ID-46, and 18ID-50, with subscripts indicating different crystal compositions (grt-cpx and grt-integrated cpx). The graph includes lines for 10 kbar and 12 kbar pressures.

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld
Figure 8

(a) Clinopyroxene
Garnet

δ^{26}Mg (%)

0
-0.2
-0.4
-0.6
-0.8
-1.0
-1.2
18ID-39 18ID-41 18ID-46 18ID-50

(b) Thermometer Li2016
Thermometer Huang2013 ($P = 10$ kbar)
Thermometer Huang2013 ($P = 12$ kbar)

T (°C)

700
800
900
1000
1100
1200
1300
1150
1200
1250
1300
18ID-39 18ID-41 18ID-46 18ID-50
Figure 9

(a) Huang2013 (10 kbar)

(b) Huang2013 (12 kbar)

$\Delta^{26} \text{Mg}_{\text{Cpx-Gr}} (\%o)$

$10^8/(T)^2 \text{ (K}^2)$