An evolutionary system of mineralogy, Part IV: Planetesimal differentiation and impact mineralization (4566 to 4560 Ma)

SHAUNNA M. MORRISON¹ AND ROBERT M. HAZEN¹,*

¹Earth and Planets Laboratory, Carnegie Institution for Science, 5251 Broad Branch Road NW, Washington D.C. 20015, U. S. A.

ABSTRACT

The fourth installment of the evolutionary system of mineralogy considers two stages of planetesimal mineralogy that occurred early in the history of the solar nebula, commencing by 4.566 Ga and lasting for at least 5 million years: (1) primary igneous minerals derived from planetesimal melting and differentiation into core, mantle, and basaltic components; and (2) impact mineralization resulting in shock-induced deformation, brecciation, melting, and high-pressure phase transformations.

We tabulate 90 igneous differentiated asteroidal minerals, including the earliest known occurrences of minerals with Ba, Cl, Cu, F, and V as essential elements, as well as the first appearances of numerous phosphates, quartz, zircon, and amphibole group minerals. We also record 40 minerals formed through high-pressure impact alteration, commencing with the period of asteroid accretion and differentiation. These stages of mineral evolution thus mark the first time that high pressures, both static and dynamic, played a significant role in mineral paragenesis.

Keywords: classification; mineral evolution; planetesimals; non-chondrite meteorites; iron meteorites; stony-iron meteorites; achondrites; differentiation; shock minerals
INTRODUCTION

The evolutionary system of mineralogy amplifies the well-established International Mineralogical Association (IMA) classification system, which is based on mineral species that display unique combinations of idealized chemical composition and crystal structure (e.g., Burke 2006; Mills et al. 2009; Schertl et al. 2018). We expand on IMA protocols by incorporating time and parageneses as central aspects of mineral classification. The emphasis is thus on the historical sequence of physical, chemical, and ultimately biological processes that led to the observed diversity and distribution of minerals on Earth, as well as on other planets and moons (Hazen et al. 2008; Hazen 2019). Previous contributions in this series considered stellar minerals that predate our solar nebula, prior to 4.567 Ga (Part I; Hazen and Morrison 2020); primary interstellar and nebular condensates commencing ~4.567 Ga (Part II; Morrison and Hazen 2020); and the primary mineralogy of chondrules from ~4.567 to ~4.563 Ga (Part III; Hazen et al. 2021).

In this contribution we consider the primary mineralogy of planetesimals and their shattered asteroidal remnants, as preserved in diverse suites of non-chondritic meteorites (Mittlefehldt et al. 1998; Krot et al. 2014; Mittlefehldt 2014). All of these meteorites reflect large-scale igneous processing within more than 100 presumed parental asteroidal objects (Keil et al. 1994; Grady and Wright 2006), which ranged in sizes from tens to hundreds of kilometers in diameter, coupled in many cases with evidence for transformative impact events. Each non-chondritic meteorite thus tells a story of the time when gravity and high pressures first began to play central roles in mineral evolution.

Asteroids are thought to have formed within the first few million years of the solar nebula and thus experienced thermal processing, and in larger bodies melting and differentiation, associated
with heating by short-lived radionuclides, as well as melting and other forms of alteration by high-energy impact processes. Accordingly, this contribution features minerals formed in two broad paragenetic categories. First, in Part IVA we examine the primary igneous mineralogy of differentiated asteroids, encompassing a diversity of iron, stony-iron, and achondrite meteorites. In Part IVB we consider meteoritic shock minerals that formed through various impact processes at a range of scales and intensities.

PART IVA: PRIMARY MINERALOGY OF NON-CHONDritic METEORITES

The first rocks of the solar system were components of chondrite meteorites, whose minerals formed at high temperatures (> 600°C) and low pressures (< 10^{-2} atm) prior to 4.56 Ga. Chondrites are sedimentary accumulations of four principal components (Kerridge and Matthews 1988; Hewins et al. 1996; Brearley and Jones 1998; Scott and Krot 2014; Rubin and Ma 2017, 2020; Russell et al. 2018; Morrison and Hazen 2020; Hazen et al. 2021): (1) inclusions, including refractory calcium-aluminum inclusions and amoeboid olivine aggregates, that formed primarily through condensation from an incandescent vapor phase near the protosun; (2) chondrules, which are igneous droplets ranging from tens of micrometers to several centimeters in diameter that formed in rapid heating and cooling environments; (3) assemblages of Fe-Ni metal alloys and other opaque phases; and (4) a fine-grained matrix (to be considered in Part V of this series). In addition, chondrite meteorites often incorporate a small fraction of presolar stardust grains with a suite of refractory minerals that formed in the expanding, cooling atmospheres of earlier generations of stars (Clayton and Nittler 2004; Lodders and Amari 2005; Lugaro 2005; Davis 2011, 2014; Zinner 2014; Nittler and Ciesla 2016; Hazen and Morrison 2020).
The earliest stages of clumping in the solar nebula have been ascribed primarily to electrostatic forces, by which presolar dust grains and refractory inclusions coalesced into fluffy accumulations, not unlike nebular “dust bunnies.” Subsequent flash heating events generated droplet-like chondrules, some of which stuck together and formed objects referred to as “pebbles,” with diameters from a few millimeters to a few centimeters. Current models suggest that vast numbers of pebbles collected in small volumes through interactions with nebular gas – a mechanism that leads to a collective gravitational instability and coalescence into a single body (e.g., Youdin and Goodman 2005), perhaps enhanced by contributions from the magnetic coattraction of ferromagnetic minerals (Hubbard 2016). Self-gravity becomes dominant in such incipient planetesimals at sizes between about 100 meters and 1 kilometer in diameter (Benz and Asphaug 1999). Numerical simulations (Johansen et al. 2007) and experimentally determined cooling rates from iron meteorite textures (Randich and Goldstein 1978; Yang and Goldstein 2005, 2006; Yang et al. 2008; Goldstein et al. 2009) suggest that the resulting solid bodies grew to sizes from tens to many hundreds of kilometers in diameter, i.e., large enough for internal heating by short-lived radioisotopes to melt Fe-Ni metal components and initiate core formation, while beginning evolution of a silicate mantle (Woolum and Cassen 1999).

Thousands of such objects must have formed in the early solar system, each competing for gravitational dominance over a volume of nebular real estate. Superimposed on these melting events were large impacts, which are likely to have caused significant shock melting episodes during the first few million years of the solar nebula, as well as throughout the subsequent history of the solar system (Tonks and Melosh 1992).

The formation of myriad asteroidal bodies had profound mineralogical consequences. At the coarsest scale, melting and differentiation led to separation of metal and silicate fractions –
endmembers preserved as the least altered iron versus achondrite meteorites. However, incomplete core/mantle separation within smaller bodies, mixed core-mantle boundary regions, and especially massive disruptions and jumblings of mineralogies through large impacts, led to the complex diversity of non-chondritic meteorites, which reflect a continuum of formative processes on asteroidal bodies large and small.

Non-chondritic meteorites and their mineralogies have been reviewed by a number of authors (Mittlefehldt et al. 1998; Benedix et al. 2014; Krot et al. 2014; Mittlefehldt 2014; Rubin and Ma 2017, 2020). These objects represent fragments of diverse pre-planetary objects, ranging in size from less than 10 to greater than 400 kilometers in diameter (Rasmussen 1989; Yang et al. 1997a; Mittlefehldt et al. 1998). Non-chondritic meteorites are thought to have derived from chondritic precursors by melting and differentiation, as well as by impact processing. However, they differ from chondrites to varying degrees in texture, composition, and mineralogy. In contrast to chondrite meteorites, which are initially sedimentary rocks that often were modified by varying degrees of aqueous, hydrothermal, and thermal metamorphic processes (Brearley and Jones 1998; Krot et al. 2014; Russell et al. 2018), the non-chondritic meteorites initially derive from partially to completely molten material and are thus igneous rocks (Mittlefehldt et al. 1998; Benedix et al. 2014; Mittlefehldt 2014). Note, however, that continuous gradations exist in aqueous alteration, thermal metamorphism, partial melting, and shock effects, so that classifications of intermediate mineralogical states are somewhat subjective.

Three broad (and overlapping) groups of non-chondritic meteorites, based on their dominant mineralogies and textures, are summarized below.

Iron Meteorites
Many meteorites dominated by metallic Fe-Ni-alloys, collectively referred to as iron meteorites, represent the cores of differentiated planetesimals that have subsequently experienced catastrophic fragmentation through one or more large impacts (Benedix et al. 2014; Krot et al. 2014). Therefore, these objects display features associated with orderly fractional crystallization and cooling from a melt, as well as the subsequent disruptive effects of impact phenomena. Iron meteorites account for fewer than 100 documented falls – only about 1 in 20 occurrences (Krot et al. 2014). Nevertheless, the more than 1000 iron meteorite falls and finds represent most of the mass of meteorite collections owing to their durability, large average size, and distinctive appearance.

Iron meteorites typically incorporate 5 to 20 weight percent nickel, in addition to usually minor amounts of other siderophile transition elements (notably Co, Cr, Cu, Mn, and Zn) and alkali and alkaline earth elements (Na, K, Mg, and Ca), as well as C, N, O, P, S, and Si. More than 40 mineral species containing these essential elements have been reported from iron meteorites (Mittlefehldt et al. 1998, Table 2; Rubin and Ma 2020; see Table 1).

Fe-Ni alloys constitute greater than 99 weight percent of some iron meteorites, which prior to the 1970s were primarily divided into three types – hexahedrites, octahedrites, and ataxites (e.g., Buchwald 1975). Examples with less than ~6 weight percent nickel consist almost entirely of a single alloy phase – body-centered cubic ($Im3m$) α-iron, universally referred to as “kamacite” in the meteoritics literature, though officially termed “iron” by the IMA. These meteorites, which may be nearly mono-mineralic, have been called “hexahedrites” in the literature owing to the cubic (i.e., hexahedral) cleavage of α-iron crystals.

More commonly, iron alloys incorporate greater than ~6 weight percent Ni. These compositions initially crystallize from the melt in a single-phase region with the face-centered...
cubic γ-iron structure of taenite. However, below ~800°C a miscibility gap results in the exsolution of the more Ni-rich taenite phase from kamacite, which incorporates only about 6 weight percent Ni. This distinctive exsolution behavior, which is vividly revealed in the so-called Widmanstätten patterns of polished and etched meteoritic metal (Figure 1A), follows octahedral planes of the dominant cubic α-iron phase (e.g., McSween 1999; Yang and Goldstein 2005). Consequently, these iron meteorites have traditionally been called “octahedrites.” Their Ni-enriched exsolution lamellae contain several alloy phases, including taenite, tetrataenite, “martensite”, and awaruite (Reuter et al. 1988; Yang et al. 1996, 1997b; Mittlefehldt et al. 1998; Benedix et al. 2014; see below). In the less common circumstances of meteorites with greater than 15 weight percent Ni, exsolution may occur at lower temperature and at a much finer scale in a group of meteorites called “ataxites.”

Several schemes beyond the hexahedrite/octahedrite/ataxite division have been used to classify iron meteorites. For example, octahedrites have been subdivided into seven textural groups on the basis of the average width of exsolution features, which depend primarily on the Ni content and cooling history of the alloy (Buchwald 1975; Hutchison 2004; McCoy et al. 2006; Goldstein et al. 2009; Rubin and Ma 2020). A complementary approach focuses on the development of subsequent alteration textures in hexahedrites and octahedrites, for example mechanical twinning, fracturing, and/or phase transitions in the metal alloys by impacts (Buchwald 1975).

The modern classification of iron meteorites is based on pioneering research by John T. Wasson and colleagues at UCLA (e.g., Wasson 1967, 1970, 1971, 1974; Scott and Wasson 1975; Wasson et al. 1989, 1998), who discovered striking systematic variations in the distribution of Ni and several trace elements, notably Ga, Ge, and Ir (Wasson 1974, 1990; Willis 1980; Mittlefehldt
et al. 1998), but also P, Co, Cu, As, Sb, Au, and W (e.g., Moore et al. 1969; Wasson and Choe 2009). This compositional scheme is widely employed to recognize more than a dozen different major groups of iron meteorites, each with at least five representative examples and each given a designation with a Roman numeral followed by one or more letters (e.g., IIAB or IIICD), as well as several “grouplets” with 2 to 4 members and additional unique iron meteorites (Benedix et al. 2014; Krot et al. 2014; Rubin and Ma 2020). In this scheme, the Roman numerals from I to IV are assigned based on decreasing Ge and Ga contents, while letter designations (A to G) refer to systematic differences in Ir and other trace elements that point to different parent bodies. As a consequence, iron meteorite classification schemes have led to the recognition of many discrete types of iron meteorites, each of which may represent a sample of the core from a different differentiated asteroid source (e.g., Scott 1979; Wasson 1990; Benedix et al. 2014).

Iron meteorite classification systems are not based on mineral species, per se; therefore, details of the current chemical classification system are beyond the scope of this mineralogical treatment. For additional information on iron meteorite classification see Mittlefehldt et al. (1998), Benedix et al. (2014), Rubin and Ma (2020), and references therein.

Several compositionally distinct groups of iron meteorites – the so-called “magmatic groups” – are primarily products of planetesimal differentiation and core separation and thus are essentially silicate free with a minor suite of associated phases, including graphite, carbides, schreibersite, carlsbergite, and sulfides (Benedix et al. 2014; Krot et al. 2014). These meteorites display trace element distributions that are unambiguously the consequence of fractional crystallization. Additional evidence for an origin in asteroidal cores comes from the relatively large sizes (perhaps to >10 meters maximum dimension) of some iron meteorites, a feature not consistent with dispersed masses of Fe-Ni alloy, as well as the occurrence of individual kamacite
crystals several meters in length – a sign of slow cooling (i.e., on the order of ~1 to 10 degrees per million years) in the differentiated interior of an asteroid at least tens of kilometers in diameter (Haack et al. 1990; McSween 1999; Goldstein et al. 2009).

Formation of a metal core and silicate mantle requires significant internal heating by sources other than long-lived radionuclides or accretional heating (Benedix et al. 2014). Hypervelocity impacts could have caused local heating to melting temperatures in some instances (Davison et al. 2010). However, the most probable heat sources for melting of asteroids >20 kilometers in diameter were short-lived radionuclides, notably 26Al (Srinivasan et al. 1999; Keil 2000) and 60Fe (Shukolyukov and Lugmair 1992; Mostefaoui et al. 2005). However, given the 0.717 and 2.6 million year half-lives of 26Al and 60Fe (Wallner et al. 2015), respectively, such heating must have been restricted to the first few million years of the solar nebula. Indeed, age determinations of iron meteorites suggest core formation within a few million years of CAI condensation, i.e., older than 4.56 Ga (Blichert-Toft et al. 2010).

By contrast, the “nonmagmatic” iron meteorite groups often have significant silicate components, as well as minor and trace element distributions that are not consistent with extensive fractional crystallization (Scott and Wasson 1975; Benedix et al. 2014). These groups are thus thought to represent metal melt pooling, shock melting, brecciation, and mixing of lithologies. They commonly incorporate inclusions of other minerals, such as silicates, sulfides, graphite, carbides, and phosphates (Wasson and Kalle Meyn 2002). Silicate inclusions of essentially chondritic composition are common in these nonmagmatic iron meteorites; they often feature a reduced (i.e., low FeO content) assemblage with orthoenstatite, diopside, forsterite, albite (An$_{-10-20}$), troilite, graphite, phosphates, and minor minerals (Bunch et al. 1970;
Mittlefehldt et al. 1998), with varied inclusion morphologies (Bunch et al. 1970; Olsen and Jarosewich 1971; Bild and Wasson 1977; Wlotzka and Jarosewich 1977; Wasson et al. 1980; Takeda et al. 1994, 1997a; Choi et al. 1995; McCoy et al. 1996; Yugami et al. 1997; Benedix et al. 2000). Sulfide inclusions in iron meteorites are typically troilite-rich, with associated graphite and schreibersite (Buchwald 1975, 1977). Inclusions with up to 70 volume percent phosphates (McCoy et al. 1993), as well as silicate inclusions with abundant phosphate minerals, are also common features of iron meteorites.

The origin of these varied inclusion-bearing iron meteorites has been ascribed to partial melting and melt migration (Kelly and Larimer 1977; McCoy et al. 1993; Yugami et al. 1997); to impact heating and segregation on a porous iron body (Wasson and Kallemeyn 2002); or to catastrophic disruption of a partially melted body, which mixed and reassembled asteroidal materials (Benedix et al. 2000). Models that invoke post-asteroidal formation mechanisms of silicate inclusions through shock events are supported by radiometric age determinations, most of which fall within the range 4.50 +/- 0.03 Ga, or significantly after estimated ages of asteroid formation, but mostly well within the first 100 million years of the solar system (Bogard et al. 1967; Niemeyer 1979a, 1979b; Stewart et al. 1996), though meteorite ages for some silicate-bearing irons are as young as 3.5 Ga (Bogard et al. 1969; Göpel et al. 1985; Olsen et al. 1994).

Mineral Natural Kinds in Iron Meteorites

A reccurent question in the evolutionary system of mineralogy, as in most classification systems, relates to the “lumping” versus “splitting” of objects into natural kinds (Dupré 1981; Bailey 1994; Boyd 1999; Hawley and Bird 2011; Magnus 2012; Hazen 2019). Iron meteorites present a particularly relevant example. On the one hand, all iron meteorites incorporate kamacite as a major mineral – an Fe-Ni alloy with ~6 weight percent Ni and a suite of dozens of...
minor and trace elements. All examples formed in asteroidal parent bodies in the early solar system. Furthermore, all parent bodies of iron meteorites experienced subsequent fragmentation through large impacts that produced the objects we study today. In this overview, we have chosen to lump all of these occurrences into a single natural kind: differentiated asteroidal iron, or “DA iron.”

However, one might justifiably ask if further subdivision is warranted? For example, meteoritic iron could be split into two groups. On the one hand, “magmatic DA iron” derives from the initial melting and differentiation of an asteroidal body and is characterized by relatively unshocked kamacite with trace element distributions consistent with fractional crystallization (e.g., Benedix et al. 2014). These samples contrast with “nonmagmatic DA iron,” which often display compelling textural and trace element evidence for formation via rapid impact melting (Scott 1972; Scott and Wasson 1975; Wasson et al. 1980; Wasson and Wang 1986). However, a number of iron meteorites display intermediate characteristics that possibly point to a combination of magmatic- and impact-related melting (Takeda et al. 1994; Benedix et al. 2000).

Evidence from Ni-, Mo-, and W-isotopic compositions suggests an additional division for iron meteorites between those that formed in planetesimals from isotope reservoirs that sample non-carbonaceous chondrite regions within Jupiter’s orbit, versus planetesimals derived from carbonaceous chondrite precursors that formed beyond Jupiter’s orbit (Trinquier et al. 2007, 2009; Burkhardt et al. 2011; Warren 2011; Kruijer et al. 2017). Carried to an extreme, each of the more than two dozen iron meteorite groups, grouplets, and unique examples holds a distinctive suite of compositional and textural attributes, which could be used to catalog a similar number of different natural kinds of meteoritic iron.
A recurring feature of the effort to identify natural kinds through cluster analysis is a degree of subjectivity in how coarsely to lump, or finely to split, the objects of interest. In the evolutionary system of mineralogy in general, and in this study of non-chondritic meteorites in particular, we adopt a more conservative approach. We tend to lump minerals with similar paragenetic modes, such as meteoritic kamacite, whenever possible. However, in the future, experts in meteorite mineralogy may elect to apply the ideas of multi-dimensional cluster analysis to further subdivide meteoritic iron and other meteoritic phases into a number of additional categories.
Non-chondritic meteorites. (A) A polished and etched slab (1151 gm; 10 cm maximum diameter) from the Staunton iron meteorite with taenite exsolved from kamacite in a Widmanstätten pattern; (B) A polished slab of the Esquel pallasite (1091 gm; 8 cm maximum diameter), a stony-iron meteorite, with kamacite (silver in reflected light) and forsteritic olivine (yellow in transmitted light); (C) The Cumberland Falls aubrite (1227 gm; 11 cm maximum dimension), an achondrite meteorite observed to fall in Kentucky in 1919. This polymict breccia contains a rich variety of silicate-rich clasts of different lithologies derived primarily from ordinary chondrites. [Photos courtesy of the National Museum of Natural History, Smithsonian Institution]

Stony-Iron Meteorites

A few percent of meteorite falls, including the mesosiderite and pallasite groups, consist of subequal mixtures of Fe-Ni alloys and silicates (Figure 1B). These diverse “stony-iron meteorites,” of which a few hundred are known, represent both transitional regions from the core-mantle boundaries of differentiated asteroids and violently shattered and mixed lithologies as a consequence of impacts.

Mesosiderites are impact breccias with 20 to 80 weight percent Fe-Ni alloys and troilite, typically in millimeter-scale grains. The balance comprises igneous lithic fragments, including predominantly basalt, gabbro, and pyroxenite, with minor dunite (Mittlefehldt et al. 1998; Krot et al. 2014; Mittlefehldt 2014). Mesosiderites have experienced varying degrees of metamorphism and remelting, which leads to corresponding variations in texture. However, the origin of these complex meteorites remains enigmatic (Hewins 1983; Wasson and Rubin 1985; Scott et al. 2001; Benedix et al. 2014).

Pallasites are a suite of ~100 distinctive stony-iron meteorites, perhaps derived from as many as 10 different parent bodies, with prominent silicate crystals (most typically olivine, Fo$_{88}$) in a metal matrix (Mittlefehldt et al. 1998; Benedix et al. 2014; Figure 1B). The mineralogy and textures of pallasites appear to be consistent with a deep mantle origin, from a cumulate zone.
near the core-mantle boundary (however, for alternative origin hypotheses see Scott 1977a, 1977b; Ulff-Møller et al. 1997; Mittlefehldt et al. 1998; Boesenberg et al. 2012; Wasson 2016).

Note that meteorites with both metal and silicate components span the range from silicate-bearing iron meteorites with just a few silicate inclusions, to rocks that are near equal mixtures of metal and silicates, to silicate-dominant examples. Consequently, there are no sharp, unambiguous dividing criteria among iron, stony-iron, and achondrite meteorites. Nevertheless, many types of stony-iron meteorites have distinctive compositional and textural features that warrant their inclusion in a separate category.

Differentiated Achondrite Meteorites

Achondrite meteorites encompass a range of meteorites that lack chondrules or solar-like average compositions of chondrite meteorites. As such, they represent a range of igneous types, including melt-depleted ultramafic lithologies, mafic partial melts, and varied cumulates from felsic to ultramafic compositions that arose from crystal settling or flotation. Differentiated achondrites include the related HED meteorites (howardites, eucrites, and diogenites), the most abundant examples, as well as less common angrites, aubrites, and ureilites (Mittlefehldt 2014).

The HED meteorites, which are thought to derive from a single asteroidal parent body, probably 4 Vesta (McCord et al. 1970; Drake 2001; McSween et al. 2011), epitomize differentiated achondrites. Eucrites are by far the most abundant of the achondrites, with more than 600 finds and falls. When unaltered, eucrites represent either basalt or cumulate gabbro, with approximately equal amounts of calcic plagioclase and pigeonite (Takeda et al. 1997b; McSween et al. 2011; Krot et al. 2014). However, most eucrites have been altered by metamorphism and/or impacts.
The more than 200 known diogenites are igneous cumulate rocks, typically brecciated and composed of igneous rock fragments. The majority of diogenites are 85 to 100 volume percent (vol %) orthopyroxene, with minor olivine and chromite (McSween et al. 2011), though a few examples are olivine-dominant, ranging to dunite cumulates with up to 95 vol % forsteritic olivine (Beck et al. 2011).

Howardites are regolith breccias with mixtures of eucrites and diogenites, the consequence of impact fracturing, jumbling, and welding (McSween et al. 2011). Relative proportions of the brecciated components range continuously between the eucrite and diogenite endmembers; consequently, the HED meteorites, in spite of significant differences among individual examples, represent a unified collection of differentiated igneous rocks.

Other achondrites are presumed to have originated from varied differentiated asteroidal parent bodies. Angrite meteorites are extremely alkali-depleted, silica-undersaturated (olivine-nepheline normative) basalts, dominated by fassaite, olivine, and anorthite, which occur as both extrusive volcanic and near-surface intrusive igneous rocks (Mittlefehldt and Lindstrom 1990; Clayton and Mayeda 1996; Mikouchi et al. 1996; Mittlefehldt et al. 2002; Jambon et al. 2005; Mittlefehldt 2014). The accessory mineralogy of angrites includes Fe-Ni metal, troilite, kirschsteinite (the Ca-Fe olivine), Ti-rich magnetite, hercynite, ulvöspinel, ilmenite, with rare celsian, rhönite, and baddelyite (Keil 2012; Krot et al. 2014). Angrites are thus thought to represent partial melting of primitive source material under relatively oxidizing conditions (Longhi 1999; Mittlefehldt et al. 2002).

Aubrites, also known as enstatite achondrites, are intriguing, highly-reduced, orthoenstatite-dominant achondrites, with 75 to 95 vol % near endmember orthorhombic MgSiO₃, plus minor albite, forsterite, and diopside (Watters and Prinz 1979; Keil 2010; Mittlefehldt 2014; Figure...
Aubrites also incorporate some of the same rare sulfide minerals with Ca, Cr, Mn, Na, and Ti that are found in enstatite chondrites, including alabandite (MnS), daubréelite (FeCr$_2$S$_4$), heidite (FeTi$_2$S$_4$), and oldhamite (CaS). Many aubrites are brecciated.

Ureilites, once thought to represent ultramafic cumulates, are now recognized as mantle restites formed by partial removal of basalt and metal components (Singletary and Grove 2006; Weisberg et al. 2006; Goodrich et al. 2007, 2013; Warren 2012). They are predominantly olivine with low-Ca pyroxene, though strongly depleted in a feldspathic component; ureilite mineralogy is thus consistent with greater than 15 percent partial melting and melt segregation (Goodrich 1992; Goodrich et al. 2004, 2010; Mittlefehldt et al. 2014). Evidence from short-lived radioisotopes suggest parent body formation within 1 million years of CAIs (van Kooten et al. 2017). A subset of ureilites are polymict breccias that incorporate ureilitic minerals and lithic clasts – evidence for a major disruptive event early in the parent body’s history (Cohen et al. 2004; Downes et al. 2008; Herrin et al. 2010).

A number of ungrouped achondrite meteorites are known in addition to the well-characterized types reviewed above. For instance, the unique felsic achondrite GRA 06128/06129 is mineralogically distinctive, with 70 to 90 vol % albitic plagioclase, with up to 25 vol % other silicates (Fe-bearing olivine, orthopyroxene, and augite), and minor chlorapatite, merrillite, troilite, pentlandite, chromite, and ilmenite (Day et al. 2009, 2012; Shearer et al. 2010). This assemblage appears to be a flotation cumulate. Also of special note is the unique achondrite NWA 11119 (Srinivasan et al. 2018), which is a silica-rich (i.e., andesitic) extrusive rock dated by 26Al-26Mg methods to 4564.8 +/- 0.3 Ma (i.e., within ~ 3 Ma of CAIs), making this the oldest known silica-rich basalt. Important features include numerous millimeter-diameter vesicles.
representing > 1 vol %, phenocrysts surrounded by quenched melt, and 30 vol % tridymite
associated with an unusual mineralogical suite, including tranquillityite, zircon, fayalite, and
tsangpoite.

An additional suite of “primitive achondrites,” including winonaites, acapulcopites,
lodranites, and perhaps brachinites, represent chondrites that have been subjected to high degrees
of aqueous and thermal alteration – processes sometimes collectively referred to as
“ultrametamorphism” (e.g., Krot et al. 2014; Mittlefehldt 2014). These meteorites lack
chondrules, though they have not been extensively melted and thus retain some of the
idiosyncratic compositional features of chondrites. The metamorphic mineralogy of primitive
achondrites will be considered in Part V, along with secondary alteration mineralogy of
chondrite meteorites. Note that, as with many stages of mineral evolution, there are no sharp
dividing criteria between partially melted primitive achondrites and incompletely differentiated
achondrites.

SYSTEMATIC PRIMARY MINERALOGY OF NON-CHONDRITIC METEORITES

The mineralogy of non-chondritic meteorites has been reviewed by Mittlefehldt et al. (1998)
and Rubin and Ma (2017, 2020), as well as by Buchwald (1975, 1977) for iron meteorites and
Ruzicka (2014) for silicate inclusions. Here we summarize the primary igneous mineralogy of
differentiated asteroidal bodies, including 90 phases formed through melt crystallization, as well
as by inversion, exsolution, and other solid-state reactions on cooling, as preserved in the
relatively unaltered portions of iron, stony-iron, and achondrite meteorites (Table 1). Minerals
formed through impact processes are summarized in Part IVB below, whereas minerals formed
by secondary aqueous alteration and thermal metamorphism will appear in Part V of this series.
Distinguishing between primary and secondary minerals, especially in the many cases of rare, sub-millimeter-scale phases, is often problematic. Here we cite phases for which petrologic and mineralogic contexts strongly suggest a primary origin, defined for differentiated meteorites as the result of igneous processes or through solid-state reactions upon initial cooling. Secondary phases, by contrast, arise through subsequent aqueous, thermal, or shock processes. A significant number of other phases of less than certain origins have been deferred to Part V, for example, the enigmatic Al-bearing metal alloys from the unusual Khاتyrka carbonaceous chondrite, including hollisterite (Al$_3$Fe), kryachkoite (Al$_6$(Fe,Cu)$_6$(Fe,Cu)), stolperite (AlCu), decagonite (Al$_{71}$Ni$_{24}$Fe$_5$), and icosahedrite (Al$_{63}$Cu$_{24}$Fe$_{13}$) (Bindi et al. 2011, 2012, 2016; Ma et al. 2017a; Rubin and Ma 2020). We also exclude the unusual carbides, andreyivanovite (FeCrP; Zolensky et al. 2008) and florenskyite (FeTiP); Ivanov et al. 2000) from the complex brecciated Kaidun meteorite; these minute grains may be primary but they occur embedded in secondary serpentine and their origins are uncertain. Similarly, unique minor phases from acapulcoites, including melliniite [(Ni,Fe)$_4$P; Pratesi et al. (2006)] and chopinite [(Mg,Fe)$_3$□(PO$_4$)$_2$; Grew et al. 2010] appear in Part V.

In the following section we list 90 primary minerals formed by igneous processes in differentiated asteroidal bodies, which incorporate 24 different essential elements, 17 of which occur in multiple phases (Figure 2). These elements include the first appearances of Ba (celsian), Cl (chlorapatite), Cu (copper), F (fluoro-richterite), and V (uakitite) as essential mineral-forming elements.
We employ a binomial nomenclature: in most cases the official IMA-approved species name is preceded by “DA,” for “differentiated asteroidal.” Thus we list “DA iron,” “DA forsterite,” and so on. However, in a few instances we deviate from IMA nomenclature, as follows.

- The Fe-Ni phosphides schreibersite [(Fe,Ni)\(_3\)P] and nickelphosphate [(Ni,Fe)\(_3\)P] appear to form a continuous solid solution by identical paragenetic processes, with iron compositions predominant; therefore, we lump them together as DA schreibersite.

- Similarly, we lump barringerite [(Fe,Ni)\(_2\)P] and transjordanite [(Ni,Fe)\(_2\)P] as DA barringerite.

- We lump the NaCl-structured monosulfides, niningerite (MgS) and keilite (FeS), as DA niningerite, based on their continuous solid solution and similar mode of origin.

- Marrillite [Ca\(_9\)NaMg(PO\(_4\))\(_7\)] and whitlockite [Ca\(_9\)Mg(PO\(_3\)OH)(PO\(_4\))\(_6\)] form a continuous solid solution that we designate DA marrillite.
Analyses of meteoritic graftonite \([\text{Fe}^{2+}_3\text{(PO}_4)_3]\) and beusite \([\text{Mn}^{2+}_3\text{(PO}_4)_2]\) by Steele et al. (1991) revealed a continuous range of compositions, the majority of which fall within the \(\text{Fe}^{2+}\)-rich graftonite field. Therefore, we designate all occurrences as \textit{DA graftonite}.

- We lump all Ca-poor clinopyroxenes into \textit{DA pigeonite}.

Native Elements and Alloys

Several alloys of iron and nickel, as well as minor native copper and the carbon allotrope graphite, occur as primary igneous minerals in non-chondritic meteorites. Iron-nickel alloys are the commonest of these phases, representing more than 99 vol % of some examples. These alloys occur as the IMA-approved minerals iron (also commonly known as “kamacite”), taenite, tetrataenite, and awaruite, as well as the distinctive fine-grained exsolved mixture of kamacite and taenite known as “plessite” (Goldstein and Michael 2006). Fe-Ni alloys usually hold significant amounts of other elements; high C, P, or Si contents, for example, may lead to exsolution of new minerals, such as graphite, carbides, schreibersite, perryite, and/or silica glass (see below).

Iron \([\alpha-(\text{Fe,Ni})]\): The most abundant, defining phase in iron meteorites is body-centered cubic (III\(3m\)) \textit{DA iron}, commonly referred to as “kamacite” in the meteoritics literature (a name employed here when the term “iron” may be ambiguous) and as “ferrite” in metallurgy. Kamacite, the stable low-Ni iron alloy, typically contains up to \(~6\) weight percent (wt %) Ni, as well as minor Co (Buchwald 1977; Mittlefehldt et al. 1998; Rubin and Ma 2020). In meteorites with more than 6 wt % Ni, kamacite features exsolution of one or more Ni-enriched alloys, including taenite, tetrataenite, and awaruite. In hexahedrites with \(<6\) total wt % Ni, kamacite may compose \(>99\) wt % of the total meteorite mass (Henderson 1941).
Kamacite is an important phase in stony-iron meteorites, both mesosiderites and pallasites (Powell 1969; Buseck 1977; Ulff-Møller et al. 1997). It is also a minor phase in achondrites, including aubrites (Watters and Prinz 1979) and HED group meteorites (Delany et al. 1984).

Taenite \([\gamma-(\text{Fe, Ni})]\): The primitive cubic \((Pm3m)\) alloy of iron and nickel, *DA taenite* (referred to as “austenite” in the metallurgical literature), typically has \(\sim 25\) to 35 wt % Ni. Taenite is the solidus phase in the Fe-Ni phase diagram; however, at \(\sim 800^\circ\text{C}\) taenite transforms to a kamacite + taenite mixture. Taenite is thus typically the more Ni-rich major phase in iron and stony-iron meteorites with Widmanstätten patterns (Powell 1969; Buseck 1977; Buchwald 1977; Mittlefehldt et al. 1998). Note, however, Yang et al. (1997a, 1997b) suggest that at temperatures below \(\sim 400^\circ\text{C}\) “taenite” undergoes a solid-state reaction to a submicroscopic mixture of body-centered cubic \((\alpha_2-\text{Fe,Ni})\), known as “martensite” in metallurgy, and the orthorhombic ordered phase tetrataenite. Taenite is also present in the minor metal phase of many achondrites, including aubrites, HED group meteorites, and the brachinite LEW 88763 (Delany et al. 1984; Okada et al. 1988; Swindle et al. 1998).

Tetrataenite (FeNi): *DA tetrataenite*, a low-temperature ordered Fe-Ni alloy (tetragonal, space group \(P4/mmm\); Clarke and Scott 1980), typically forms a layer a few micrometers thick at the kamacite-taenite boundary in iron and stony-iron meteorites with Widmanstätten patterns. As such, it is a common, if volumetrically minor, phase in many iron and stony-iron meteorites. In addition, Okada et al. (1988) described minor tetrataenite in association with kamacite and taenite from the Norton County aubrite.

Awaruite \((\text{Ni}_2\text{Fe} \text{ to } \text{Ni}_3\text{Fe})\): The Ni-dominant alloy *DA awaruite*, with face-centered cubic structure (space group \(Fm3m\)), was reported by Yang et al. (1997a, 1997b) as forming a thin
layer that separates tetrataenite from kamacite in the Widmanstätten patterns of some iron meteorites.

Copper (Cu): *DA copper* is a rare accessory phase in enstatite achondrites (aubrites), where it occurs in association with a suite of highly-reduced sulfides and other phases (Keil and Fredricksson 1963; Ramdohr 1973; Watters and Prinz 1979). Native Cu is a common accessory phase in troilite nodules from the Cape York (IIIAB) iron meteorite (Kracher et al. 1977). Near endmember (~98 mol % Cu) copper occurs in the Bilanga diogenite (Domanik et al. 2004).

Graphite (C): *DA graphite* is a common accessory phase in iron meteorites, likely formed both by decomposition of cohenite and by exsolution from C-bearing metal (Mittlefehldt et al. 1998, and references therein). In some cases, graphite adopts a cube-shaped morphology (known as “cliftonite”) – a form imposed by the isometric symmetry of its metallic host. Other occurrences of less well-ordered graphite in meteorites, as well as diamond and “lonsdaleite,” have been ascribed to impact processes and are considered in the next section (Rubin 1997a; Rubin and Scott 1997).

Graphite is an important component of carbon-rich ureilites, which are mantle restites dominated by olivine and pigeonite. Graphite, at times in association with impact-generated chaoite and organic molecules (kerogen), is most commonly fine-grained, but also occurs as millimeter-diameter euhedral crystals and as intergrowths with metal and/or sulfide (Vdovykin 1970; Berkley and Jones 1982; Treiman and Berkley 1994).

CARBIDES

Cohenite (Fe₃C): *DA cohenite* is a common accessory mineral in iron meteorites (e.g., Buchwald 1975). In ureilites, cohenite occurs in association with graphite, troilite, and Fe-Ni alloy (Goodrich and Berkley 1986).
Haxonite [(Fe,Ni)$_{23}$C$_6$]: *DA haxonite* occurs in a variety of iron meteorites (e.g., Taylor et al. 1981), though it is significantly less common than cohenite in non-chondritic meteorites (Mittlefehldt et al. 1998).

Edscottite (Fe$_5$C$_2$): *DA edscottite* was formally described by Ma and Rubin (2019), following its reported occurrence decades earlier based on composition measurements by Scott and Agrell (1971). It occurs in slender crystal laths up to 40 micrometers in maximum dimension as inclusions in kamacite and in association with taenite, plessite, nickelphosphide, and cohenite in the Ni-rich Wedderburn (IAB) iron meteorite. The empirical formula found by Ma and Rubin (2019) is [(Fe$_{4.73}$Ni$_{0.23}$Co$_{0.04}$)C$_{2.00}$].

Silicides

Perryite [(Ni,Fe)$_8$(Si,P)$_3$]: *DA perryite* occurs as a minor accessory phase in the Norton County and Mt. Egerton enstatite achondrites (aubrites), in association with a suite of unusual highly reduced sulfides and other phases (Wasson and Wei 1970; Watters and Prinz 1979).

Carletonmooreite (Ni$_3$Si): *DA carletonmooreite* from the Norton County aubrite was approved as a new mineral based on characterization by Garvie et al. (2020). The mineral is cubic (space group *Pm$ar{3}$m*) and appears to be related to suessite (Fe$_3$Si), an impact-generated silicide that has a different cubic space group.

Phosphides

The phosphate schreibersite (and its Ni isomorph nickelphosphide) is an important primary phase in many iron-bearing meteorites. A number of other phosphides, including the barringerite-transjordanite solid solution included below, are rare in non-chondritic meteorites.
However, the origins of andreyivanovite (FeCrP; Zolensky et al. 2008), florenskyite (FeTiP; Ivanov et al. 2000), and melliniite [(Ni,Fe)₄P; Pratesi et al. (2006)] are uncertain and will be included in Part V.

Schreibersite [(Fe,Ni)₃P] and Nickelphosphide [(Ni,Fe)₃P]: *DA schreibersite* is the most important P-bearing phase in iron meteorites (Mittlefehldt et al. 1998). It occurs in most iron meteorites in several morphotypes (Buchwald 1977; Benedix et al. 2000) – as coarse masses, as skeletal inclusions, and as small euhedral crystals (the latter sometimes called “rhabdites”). Schreibersite also occurs in the reduced suite of phases in enstatite achondrites (aubrites; Watters and Prinz 1979), rarely in ureilites (Mittlefehldt et al. 1998), and as a minor phase in pallasites (Buseck 1977).

Schreibersite usually contains significant Ni, in rare instances in amounts slightly exceeding Fe in mol percent (mol %), which corresponds to the IMA-approved species nickelphosphide. For example, Ma and Rubin (2019) report a composition of [(Ni₁.₆₃Fe₁.₃₇Co₀.₀₁)P₀.₉₉] for a sample in association with edscottite in the Wedderburn (IAB) iron meteorite. Here we lump nickelphosphide with schreibersite, with which it forms a continuous solid solution.

Barringerite [(Fe,Ni)₂P] and Transjordanite [(Ni,Fe)₂P]: *DA barringerite* from the Ollague pallasite was characterized by Buseck (1969) for a sample with composition [(Fe₁₁Ni₀₈₁)P]. Britvin et al. (2020a) recently discovered Ni-dominant isomorphs with maximum Ni content [(Fe₀₄₈Ni₁₅₂)P] in the ungrouped Cambria iron meteorite, which they called transjordanite. Britvin and colleagues also described a range of intermediate compositions,
some with Fe–Ni, such as [(Fe_{1.18}Ni_{0.81})P]. Given the continuous solid solution and similar paragenetic modes, we lump both species into DA barringerite.

NITRIDES

Osbornite, carlsbergite, and uakitite [(Ti,Cr,V)N] are cubic nitrides with the NaCl structure. Solid solutions among these and other compositions may occur, but known meteoritic examples lie close to their respective endmembers. Therefore, we recognize the following three natural kinds, as well as the rare iron nitride roaldite and the silicon oxy-nitride sinoite.

Osbornite (TiN): Osbornite is best known as a common accessory phase in enstatite chondrites (e.g., Hazen et al. 2020). However, DA osbornite also occurs in the Bishopville and Bustee enstatite achondrites (aubrites) as a rare accessory phase in association with a suite of unusual sulfides and other highly-reduced phases (Bannister 1941; Watters and Prinz 1979).

Carlsbergite (CrN): DA carlsbergite is a common minor constituent of iron meteorites (Buchwald 1975). Published analyses of carlsbergite from the Cape York (IIIAB; Buchwald and Scott 1971) and Sikhote-Alin (IIAB; Axon et al. 1981) iron meteorites are close to the endmember composition.

Uakitite (VN): Sharygin et al. (2020) discovered the new vanadium nitride, DA uakitite, as euhedral (cube-shaped) to rounded crystals less than 5-micrometers maximum dimension in the Uakit (IIAB) iron meteorite. Uakitite occurs in troilite-daubréelite small inclusions (to 100-micrometers diameter) and large nodules (to 1-centimeter diameter). Uakitite has an observed composition of [(V_{0.91}Cr_{0.07}Fe_{0.02})N] and is the earliest known vanadium mineral.

Roaldite [(Fe,Ni)₄N]: DA roaldite occurs sparsely in the Jerslev and Youndegin (IAB) iron meteorites as exsolved platelets 1- to 2-micrometers thick and many millimeters in lateral extent.
in kamacite, as described by (Nielsen and Buchwald 1981). It contains ~6 mol % Ni substituted for Fe.

Sinoite (Si$_2$N$_2$O): The silicon oxy-nitride *DA sinoite* occurs as a rare minor phase in the Zakłodzie ungrouped enstatite achondrite, where it is associated with major enstatite, anorthite, and troilite, and accessory silica polymorphs, schreibersite, keilite, buseckite, and other phases (Ma et al. 2012a).

Sulfides

The iron sulfide troilite is a common, and at times major, phase in non-chondritic meteorites (Mittlefehldt et al. 1998: Tables 2 and 29). An additional suite of rare, highly-reduced sulfides and associated phases occurs in enstatite achondrites (aubrites).

Some models of asteroidal differentiation suggest that predicted sulfide-rich meteorites may be missing from collections, based on the assumption that asteroid core formation should also result in late-stage sulfur-rich immiscible melts (Chabot and Drake 1999, 2000). However, the corresponding S-rich meteorites have not yet been found. One possibility is that sulfide-dominant meteors are selectively lost, as they will more easily decompose in space and fragment upon atmospheric entry than iron- or silicate-rich meteors (Kracher and Wasson 1982).

Troilite (FeS): *DA troilite*, the hexagonal (space group $P6_3/mmc$) polymorph of FeS, is by far the commonest sulfide mineral in non-chondritic meteorites, at times exceeding Fe-Ni metal in volume (Mittlefehldt et al. 1998). In iron meteorites, troilite occurs in several forms, most dramatically in nodules or veins in Fe-Ni alloys up to several centimeters in maximum dimension, in which it may occur in association with graphite, cohenite, and schreibersite. Other morphotypes in iron meteorites include oriented platelets up to a centimeter in maximum
dimension but only a few millimeters thick, suggesting exsolution from the host Fe-Ni alloy
(Buchwald 1975; Scott 1982; Casanova et al. 1995; Benedix et al. 2000).

Troilite is the dominant S-bearing phase in association with Fe-Ni alloys in stony-iron
meteorites, including both pallasites (Buseck 1977) and mesosiderites, in which it can account
for up to 14 vol % (Powell 1969; Floran 1978; Scott et al. 1996). Troilite occurs commonly as an
accessory phase in achondrites, for example, in brachinites (Nehru et al. 1992), in HED group
meteorites (Delany et al. 1984; Takeda and Mori 1985; Bowman et al. 1997), and in angrites
(with 17 to 25 wt % Ti, equivalent to 29 to 39 mol % TiS) occurs commonly in aubrites in
association with a suite of highly reduced phases (Watters and Prinz 1979; McCoy 1998).

NaCl-type Monosulfide Group [(Mg,Fe,Ca,Mn)S]: Niningerite, keilite, oldhamite, and
alabandite are monosulfides with the cubic (space group $Fd\bar{3}m$) NaCl structure. All are rare,
occurring with suites of unusual phases in enstatite chondrites and enstatite achondrites (also
known as aubrites). These phases may represent a continuous solid solution among the Mg-Fe-
Ca-Mn endmembers, as all analyzed examples incorporate these four elements. However, until
further data are available, we lump only niningerite-keilite (Fe-Mg-dominant) members.

Niningerite (MgS) and Keilite (FeS): DA niningerite was originally described from
enstatite chondrites by Keil and Snetsinger (1967) as a cubic monosulfide of Mg, with significant
Fe substitution, in some instances with Fe > Mg. McCoy (1998) subsequently described
niningerite with significant Mn and Fe (15 and 7 mol %, respectively) from the Bustee enstatite
achondrite in association with a suite of highly-reduced sulfides and other phases, while Shimizu
et al. (2002) reported Fe-dominant analogs of niningerite from five different enstatite chondrites
– a mineral species approved by the IMA as keilite. Ma et al. (2012a) then identified minor
keilite in the Zakłodzie ungrouped enstatite achondrite, where it is associated with major
enstatite, anorthite, and troilite, and accessory silica polymorphs, schreibersite, buseckite, and
other phases. Because these occurrences suggest a continuous solid solution between the Mg and
Fe endmembers, and they always occur in association with troilite in enstatite achondrites, we
lump these two species into DA niningerite with the general formula [(Mg,Fe,Mn)S].

Oldhamite (CaS): DA oldhamite occurs as a minor phase in enstatite achondrites (aubrites)
as grains ~100 micrometers in diameter, typically in association with a suite of highly-reduced
phases (Graham et al. 1977; Watters and Prinz 1979). In aubrites, which lack phosphates,
oldhamite is often the principal repository of rare-earth elements (Floss and Crozaz 1993;
Wheelock et al. 1994). Note that in some models of aubrite formation, which invoke partial
melting of an enstatite chondrite precursor, oldhamite is thought to be a relict phase of nebular
condensation processes rather than a product of asteroidal differentiation (Floss and Crozaz
1993; Lodders 1996). However, based on the very different trace element fractionation patterns
in different samples, a combination of both nebular and igneous origins seems likely for different
oldhamite occurrences (Wheelock et al. 1994; McCoy 1998).

Alabandite (MnS): DA alabandite with significant Fe\(^{2+}\) and Mg occurs as a minor phase in
enstatite achondrites (aubrites), in association with a suite of highly reduced phases (Keil and
Fredriksson 1963; Watters and Prinz 1979). For example, a specimen from the Mayo Belwa
aubrite has composition [(Mn\(_{0.52}\)Fe\(_{0.35}\)Mg\(_{0.02}\)Ca\(_{0.02}\)Cr\(_{0.03}\))S\(_{0.99}\)] (Watters and Prinz 1979).

Sphalerite Monosulfide Group [(Zn,Fe,Mn)S]: The sphalerite group of cubic (space group
\(F\overline{4}3m\)) monosulfides is represented in non-chondritic meteorites by two rare occurrences,
including sphalerite and browneite. Solid solution occurs among the Zn-Fe-Mn endmembers, but
the two reported examples are close to Zn and Mn endmembers. Therefore, we list them as discrete natural kinds.

Sphalerite (ZnS): *DA sphalerite* has been recorded by Kracher et al. (1977) as rare grains within troilite nodules, often in close association with Fe\(^{2+}\)-rich alabandite in the Cape York (IIIAB) iron meteorite. The average composition is \([Zn_{0.82}Fe_{0.14}Mn_{0.04}]S\). Kracher et al. (1977) suggest that sphalerite may have exsolved from alabandite.

Browneite (MnS): *DA browneite* of approximate composition \([Mn_{0.99}Fe_{0.01}]S\) was reported by Ma et al. (2012b) from the Zakłodzie ungrouped enstatite achondrite, where it was found as a single 16-micrometer-diameter crystal encased by plagioclase and in close association with troilite and enstatite. Browneite is metastable with respect to alabandite at all temperatures and pressures relevant to meteorite paragenesis; therefore, Ma et al. (2012b) speculated that browneite formed metastably at \(T < 200^\circ\text{C}\), though the mechanism of formation is uncertain. Therefore, the possibility of a secondary origin through aqueous or weathering processes cannot be ruled out.

Buseckite [(Fe,Zn,Mn)S]: *DA buseckite* is the Fe\(^{2+}\)-dominant, hexagonal wurtzite-structure (space group *P*\(6_3\)mc) monosulfide. It was discovered by Ma et al. (2012a) in the Zakłodzie ungrouped enstatite achondrite, where it occurs as subhedral grains to 20-micrometers diameter in association with troilite, orthoenstatite, anorthite, and numerous other phases.

Thiospinel Group [(Fe,Mn)Cr\(_2\)S\(_4\)]: Daubréelite, joegoldsteinite, and kalinite, the Fe, Mn, and Zn chromite members of the cubic (space group *Fd3m*) thiospinel group, are known exclusively from meteorites. Extensive solid solution may occur among these and other endmembers;
however, reported compositions are sufficiently close to endmember compositions to warrant three distinct natural kinds.

Daubréelite (FeCr$_2$S$_4$): *DA daubréelite* is found in numerous iron and achondrite meteorites as a minor accessory phase. It was reported as an exsolved phase in troilite from the Bishop Canyon (IVA) silicate-bearing iron meteorite (Scott et al. 1996) and as a minor component of silicate inclusions in a variety of iron meteorites (Buchwald 1975). It also occurs as a minor phase in aubrites with average composition [(Fe$_{0.89}$Mg$_{0.09}$Mn$_{0.07}$Cr$_{1.82}$)S$_4$], in association with a suite of highly-reduced phases (Graham et al. 1977; Watters and Prinz 1979).

Joegoldsteinite (MnCr$_2$S$_4$): *DA joegoldsteinite*, the Mn analog of daubréelite, was discovered by Isa et al. (2016) in the Social Circle (IVA) magmatic iron meteorite. The specimen, which occurs as two 13- to 15-micrometer maximum dimension inclusions in kamacite, has an empirical formula of [(Mn$_{0.82}$Fe$_{0.23}$)Cr$_{1.99}$S$_{3.95}$].

Kalininite (ZnCr$_2$S$_4$): Sharygin (2020) lists *DA kalinite* as a trace phase in the Uakit (IIAB) iron meteorite in a preliminary report of its unusual accessory mineralogy, which also contains uakitite and an as yet unapproved Cu-Cr sulfide associated with troilite-rich inclusions.

Wilkmanite Group [(Fe,Cr)(Fe,Cr,Ti)$_2$S$_4$]: Two new monoclinic (space group $I\overline{2}/m$) sulfides discovered in meteorites, brezinaite and heidite, are isomorphous with wilkmanite (Ni$_3$Se$_4$).

Brezinaite (Cr$_3$S$_4$): The presence of the rare mineral *DA brezinaite* in the ungrouped Tucson iron meteorite is an indicator of its extremely reduced state, as revealed by coexisting Cr$^{2+}$ and Cr$^{3+}$ in this thiospinel (Bunch and Fuchs 1969a; Nehru et al. 1982). Brezinaite has also been...
reported from the anomalous Cr-rich ureilite LEW 88774 in association with chromite, eskolaite, a Cr-Fe carbide [\((\text{Fe,Cr})_2\text{C}\)], and graphite (Prinz et al. 1994), as well as the Mt. Egerton aubrite (Casanova et al. 1993).

Heideite \([(\text{Fe,Cr})_{1.15}(\text{Ti,Fe})_2\text{S}_4]\): DA heideite was reported by Keil and Brett (1974) from the Bustee aubrite, in which it is associated with a suite of highly-reduced sulfides and other phases (Watters and Prinz 1979).

Other Sulfides

Pentlandite \([(\text{Ni,Fe})_9\text{S}_8]\): DA pentlandite has been reported in brachinites, coexisting with Ni-rich troilite and taenite (Nehru et al. 1983, 1992).

Caswellsilverite (NaCrS\(_2\)): DA caswellsilverite occurs as inclusions in oldhamite in the Norton County enstatite achondrite in association with a suite of unusual highly-reduced sulfides and other phases (Watters and Prinz 1979). Okada and Keil (1982) measured a composition of \([(\text{Na}_{0.95}\text{Cr}_{1.00}\text{Ti}_{0.05})\text{S}_{1.95}]\).

Unnamed (CuCrS\(_2\)): Sharygin (2020) described an as yet unnamed sulfide, which we designate DA CuCrS\(_2\), from the Uakit (IIAB) iron meteorite. Preliminary data, obtained on 10-micrometer maximum dimension crystals in phosphide-sulfide inclusions in kamacite and schreibersite, suggest that this phase may be a Cu\(^{1+}\) analog of caswellsilverite. The observed composition is \([(\text{Cu}_{0.94}\text{Fe}_{0.09}\text{Cr}_{0.97})\text{S}_2]\).

Djerfisherite \([\text{K}_6(\text{Fe,Cu,Ni})_{25}\text{S}_{26}\text{Cl}]\): DA djerfisherite, originally described by Fuchs (1966) from enstatite chondrites, also occurs in the Pena Blanca Springs enstatite achondrite as a minor
mineral associated with a suite of highly-reduced sulfides and other phases (Ramdohr 1963; Watters and Prinz 1979).

PHOSPHATES

A diversity of phosphate minerals, both in P-rich nodules and in more widely dispersed grains, occur widely in non-chondritic meteorites (Fuchs 1969a; Mittlefehldt et al. 1998: Tables 2 and 16). Phosphate minerals, which may comprise as much as 70 vol % of some inclusions in iron meteorites (McCoy et al. 1993), only occur in relatively oxidized iron meteorites (Olsen and Fredriksson 1966; Olsen et al. 1999); otherwise schreibersite is the dominant P-bearing phase. Note that phosphates are particularly important components of pallasite stony-iron meteorites (Buseck 1977; Buseck and Holdsworth 1977).

Chlorapatite [Ca$_5$(PO$_4$)$_3$Cl]: DA chlorapatite is a significant phosphate mineral in several types of non-chondritic meteorites, including in phosphate-rich inclusions in the Carlton (IIICD) iron meteorite (McCoy et al. 1993); in brachinites (Nehru et al. 1992; Swindle et al. 1998); in polymict ureilites (Mittlefehldt et al. 1998); and in HED group meteorites (Mittlefehldt et al. 1998). Chlorapatite constitutes ~8 vol % of silicate inclusions in the ungrouped Sombrerete (IAB) iron meteorite (Prinz et al. 1982).

Merrillite [Ca$_9$NaMg(PO$_4$)$_7$] and **Whitlockite** [Ca$_9$Mg(PO$_3$OH)(PO$_4$)$_6$]: DA merrillite, including continuous solid solution with whitlockite, is a common phase in non-chondritic meteorites. It is an abundant phosphate mineral with brianite and panethite in the Dayton (IAB) iron meteorite (McCoy et al. 1993, 1994). Merrillite has been reported from pallasites (Buseck 1977; Buseck and Holdsworth 1977; Davis and Olsen 1991; Boesenberg et al. 1995), as a minor accessory mineral in mesosiderites (Floran et al. 1978; Rubin and Mittlefehldt 1992), and from
the unique Enon stony-iron (Bunch et al. 1970). In achondrites, merrillite occurs in brachinites in association with chlorapatite (Nehru et al. 1996; Swindle et al. 1998), in basaltic eucrites (Ikeda and Takeda 1985), and as a minor phase in angrites (McKay et al. 1990).

Matyhite \([\text{Ca}_9(\text{Ca}_{0.5}\square_{0.5})\text{Fe(PO}_4\text{)}_7]\): Hwang et al. (2019) characterized the new Ca-Fe phosphate mineral (presumed DA) matyhite from the D’Orbigny angrite, which is an analog of merrillite but with high Fe and low Na and Mg. Matyhite occurs as elongated crystallites up to ~10 micrometers maximum dimension in association with fayalite, kirchsteinite, and hedenbergite. It was previously reported from other angrites, including Angra do Reis (Prinz et al. 1977), LEW 86010 (McKay et al. 1988), Asuka 881371 (Prinz and Weisberg 1995), and NWA 1296 (Jambon et al. 2005). Hwang et al. (2019) suggest that matyhite formed as part of a residual melt assemblage that includes tsangpoite and kuratite. However, they could not rule out the possibility of formation by metasomatism.

Graftonite \([\text{Fe}^{2+}_3(\text{PO}_4)_3]\) and **Beusite** \([\text{Mn}^{2+}_3(\text{PO}_4)_2]\): DA graftonite was reported by Olsen and Steele (1993, 1997) from troilite nodules in iron meteorites in association with sarcopside, galileiite, and chromite. Steele et al. (1991) reported an intermediate composition ~\([(\text{Fe}_{1.5}\text{Mn}_{1.5})(\text{PO}_4)_3]\), which they designated beusite. Their survey of more than a dozen graftonite-beusite analyses from the El Sampal (IIIA), Grant (IIIB), and other iron meteorites, revealed a range of Ca-free compositions from near endmember graftonite to samples with 33 to 58 mol % beusite. Because these compositions represent a continuous solid solution and the majority of specimens lie well within the \(\text{Fe}^{2+}\)-rich graftonite field, we designate all of these occurrences as **DA graftonite**.
Farringtonite \([(\text{Mg,Fe})_3(\text{PO}_4)_3]\): *DA farringtonite* is found in pallasites, occurring with fairfieldite and whitlockite (Buseck 1977; Buseck and Holdsworth 1977).

Sarcopside \([(\text{Fe,Mn})_3(\text{PO}_4)_2]\): *DA sarcopside* was reported by Olsen and Steele (1997) from troilite nodules in iron meteorites in association with graftonite, galileiite, and chromite.

Stanfieldite \([\text{Ca}_4\text{Mg}_5(\text{PO}_4)_6]\): *DA stanfieldite* was described by Fuchs (1967) and has been reported from several pallasites (Buseck 1977; Buseck and Holdsworth 1977; Davis and Olsen 1991).

Buchwaldite \((\text{NaCaPO}_4)\): *DA buchwaldite* is a rare Na-Ca-phosphate described from a 40-micrometer-diameter crystal by Olsen et al. (1977a). It occurs within troilite nodules associated with chromite and other phosphate minerals in the Cape York (IIIAB) iron meteorite (Kracher et al. 1977).
Marićite (NaFePO₄): DA marićite was reported by Kracher et al. (1977) from the Cape York (IIIAB) iron meteorite. This rare occurrence is in association with buchwaldite and two other unidentified alkali phosphates.

Moraskoite [Na₂Mg(PO₄)F]: DA moraskoite was described by Karwowski et al. (2015) in the Morasko (IAB) iron meteorite, in which it is associated with other primary phosphate minerals.

Xenophyllite [Na₄Fe₇(PO₄)₆]: Britvin et al. (2020b) reported the new phosphate DA xenophyllite from the Augustinovka (IIIAB) iron meteorite, associated with sarcopside, schreibersite, chromite, and pentlandite.

Brianite [Na₂CaMg(PO₄)₂]: DA brianite was discovered by Fuchs et al. (1967) as a minor phase in pockets up to 1.5-centimeters maximum dimensions with individual crystals up to 200-micrometers across from the Dayton (IAB) hexahedrite, where it occurs in association with whitlockite and panethite (McCoy et al. 1993, 1994). Scott and Bild (1974) reported brianite as scattered veins throughout silicate inclusions, but also commonly in contact with metal, in the San Cristobal (unique IAB) iron meteorite. Brianite has also been found in the Youndegin (IAB) low-Ni iron meteorite (Fuchs 1969a).

Panethite [Na₂(Fe,Mn)₂(PO₄)₂]: DA panethite occurs with whitlockite and brianite in the Dayton (IAB) iron meteorite in pockets up to 1.5-centimeters maximum dimensions, with individual crystals up to 200-micrometers diameter (Fuchs et al. 1967; McCoy et al. 1993, 1994).

Fillowite Group [Na₂(Ca,Fe,Mg,Mn)₈(PO₄)₆]: Three closely-related members of the hexagonal (space group R̅[bar3]) fillowite group – johnsomervilleite, chladniite, and galileiite –
have been reported from troilite nodules in iron meteorites. We suspect that these three species may represent a single natural kind with a continuous solid solution and similar paragenetic mode. However, until more compositional data are available we list these species as distinct natural kinds.

Johnsomervilleite \([\text{Na}_2\text{Ca}(\text{Fe,Mg,Mn})_7(\text{PO}_4)_6]\): *DA johnsomervilleite* was reported by Olsen and Steele (1993, 1997) as rare accessory phases from troilite nodules in the Carlton (IIICD), Chupaderos (IIIB), Grant (IIIB), El Sampal (IIIA), and Sandtown (IIIA) iron meteorites in association with chromite plus graftonite and/or sarcopside.

Chladniite \([\text{Na}_2\text{CaMg}_7(\text{PO}_4)_6]\): *DA Chladniite* was identified and named by McCoy et al. (1994) based on a single crystal ~1-millimeter in maximum dimension, which was found in a silicate-bearing inclusion in the Carlton (IIICD) iron meteorite in association with dominant chlorapatite (70 vol%), forsterite, orthoenstatite, and albite. McCoy et al. (1994) measured the chemical formula as \([\text{Na}_{1.77}\text{Ca}_{0.98}(\text{Mg}_{6.96}\text{Fe}_{0.26}\text{Mn}_{0.04})(\text{PO}_4)_6]\).

Galileiite \([\text{Na}_2(\text{Fe,Mn})_8(\text{PO}_4)_6]\): The Na-Fe-phosphate *DA galileiite* was described by Olsen and Steele (1997) from five different group III iron meteorites. It occurs as rare grains up to 30-micrometers in diameter in troilite nodules in association with graftonite, sarcopside, and chromite.

Tsangpoite \([\text{Ca}_5(\text{PO}_4)_2(\text{SiO}_4)]\): *DA tsangpoite* was characterized by Hwang et al. (2019) from the D’Orbigny angrite, where it occurs as numerous elongated hexagonal prismatic crystals to tens of micrometers maximum dimension in association with hedenbergite, iron sulfide, and magnetite. Earlier reports of this rare Ca-silico-phosphate in angrites include occurrences in
Asuka 881371 (Prinz and Weisberg 1995), NWA 1296 and 1670 (Jambon et al. 2005, 2008), NWA 4590 (Mikouchi et al. 2011), and NWA 11119 (Srinivasan et al. 2018).

Oxides

Oxides minerals are common, if usually minor, phases in non-chondritic meteorites (Mittlefehldt et al. 1998: Tables 17, 32, and 38). The oxide spinels and ilmenite account for most reported occurrences, while instances of perovskite group oxides, corundum, eskolaite, rutile, and baddeleyite are rare.

Oxide Spinel Group \([(\text{Mg,Fe}^{2+})(\text{Al,Fe}^{3+},\text{Cr}^{3+},\text{Ti})_2\text{O}_4]\): The oxide spinel group, the most ubiquitous oxide phases in non-chondritic meteorites, encompass a complex range of solid solutions, representing at least eight major idealized endmembers: spinel (\text{MgAl}_2\text{O}_4), hercynite (\text{Fe}^{2+}\text{Al}_2\text{O}_4), magnesioferrite (\text{MgFe}^{3+}_2\text{O}_4), magnetite (\text{Fe}^{2+}\text{Fe}^{3+}_2\text{O}_4), magnesiochromite (\text{MgAl}_2\text{O}_4), chromite (\text{Fe}^{2+}\text{Cr}^{3+}_2\text{O}_4), qandilite (\text{Mg}_2\text{Ti}^{4+}\text{O}_4), and ulvöspinel (\text{Fe}^{2+}_2\text{Ti}^{4+}\text{O}_4). In addition, some spinels incorporate significant amounts of Ca, Mn\text{^{2+}}, Zn, V^{3+}, Ti^{3+}, and/or Si. Given the compositional diversity and extensive solid solution among natural meteoritic samples of oxide spinels, it is challenging to determine how many distinct natural kinds are represented. In some instances, as with the angrites (Mittlefehldt et al. 1998, Table 38), two distinct oxide spinel compositions – one hercynitic and the other Al-poor, either magnetite or ulvöspinel – commonly coexist. We therefore recognize \textit{DA hercynite}, \textit{DA magnetite}, and \textit{DA ulvöspinel} as distinct natural kinds. In other meteorite groups, including pallasites, brachinites, ureilites, diogeneites, and eucrites, a range of Cr-rich spinel compositions usually closest to the chromite endmember is observed; we lump all such examples into \textit{DA chromite}.

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld

DOI: https://doi.org/10.2138/am-2021-7632.
Chromite ($\text{Fe}^{2+}\text{Cr}_2\text{O}_4$): **DA chromite** is often the most abundant oxide mineral in non-chondritic meteorites. It is an important Cr-bearing phase in many iron meteorites (Buchwald 1975; Ulff-Møller et al. 1995; Scott et al. 1996), at times occurring as oriented thin “Reichenbach lamellae” encased by kamacite. Chromite is found in most pallasites (Buseck 1977), with modest substitution of Al for Cr^{3+} in some samples (Bunch and Keil 1971); as a minor phase in brachinites (up to ~3 vol. %; Nehru et al. 1983); in ureilites (up to ~6 vol. %; Mittlefehldt et al. 1998; Goodrich et al. 2014); as a common minor mineral up to 5 vol % in diogenites (Mittlefehldt 1994; Bowman et al. 1997); and in eucrites (Lovering 1975).

Magnetite (Fe_3O_4): The Angra dos Reis angrite holds accessory Ti-rich **DA magnetite** of average composition ($\text{Fe}^{2+}_{1.50}\text{Mg}_{0.06}\text{Al}_{0.15}\text{Fe}^{3+}_{0.51}\text{Ti}_{0.61}\text{O}_4$), which occurs in association with fassaite, forsterite, hercynite, and troilite, as well as an unusual suite of accessory phases including kirschsteinite, celsian, and baddeleyite (Prinz et al. 1977). A similar association was observed by McKay et al. (1988) in the LEW 86010 angrite, in which Ti-rich magnetite of average composition ($\text{Fe}^{2+}_{0.72}\text{Mg}_{0.06}\text{Al}_{0.19}\text{Fe}^{3+}_{1.01}\text{Ti}_{0.68}\text{O}_4$) occurs with hercynite.

Hercynite ($\text{Fe}^{2+}\text{Al}_2\text{O}_4$): **DA hercynite** is a minor phase in several angrite meteorites. Hercynite of average composition [($\text{Fe}^{2+}_{0.75}\text{Mg}_{0.25})(\text{Al}_{1.80}\text{Fe}^{3+}_{0.07}\text{Cr}^{3+}_{0.07})\text{O}_4$] occurs in the Angra dos Reis angrite with fassaite, olivine, and troilite, as well as an unusual suite of accessory phases including kirschsteinite, celsian, Ti-rich magnetite, and baddeleyite (McKay et al. 1988; Prinz et al. 1977). In the Asuka 881371 angrite, hercynite of composition [($\text{Fe}^{2+}_{0.80}\text{Mg}_{0.32})(\text{Al}_{1.35}\text{Cr}^{3+}_{0.50}\text{Ti}_{0.03})\text{O}_4$] coexists with ulvöspinel (Mikouchi et al. 1996), whereas in the LEW 86010 angrite hercynite of average composition
[(Fe$^{2+}_{0.76}$Mg$_{0.25}$)(Al$_{1.90}$Fe$^{3+}_{0.04}$Cr$^{3+}_{0.03}$Ti$_{0.02}$)O$_4$] occurs with Ti-rich magnetite (McKay et al. 1988). Thus, meteoritic hercynite is commonly found in association with a second, Al-poor oxide spinel.

Ulvöspinel (Fe$^{2+}_{2}$Ti$^{4+}_{4}$O$_4$): Mikouchi et al. (1996) described *DA ulvöspinel* from the Asuka 881371 angrite, with reported average composition close to (Fe$^{2+}_{2}$Al$_{0.1}$Ti$_{0.8}$O$_4$). It co-occurs with Cr-rich hercynite [(Fe$^{2+}_{0.80}$Mg$_{0.32}$)(Al$_{1.35}$Cr$_{0.50}$Ti$_{0.03}$)O$_4$]

Other Oxides

Ilmenite (FeTiO$_3$): *DA ilmenite* was reported by Mittlefehldt and Lindstrom (1993) from a lithic clast in a diogenite. Ilmenite is a common accessory mineral in eucrites, where it occurs as individual grains, as composite grains with chromite, and as an exsolved phase in chromite grains (Bunch and Keil 1971; Delaney et al. 1984), as well as in a variety of iron meteorites (Prinz et al. 1982; Ruzicka 2014).

Corundum (Al$_2$O$_3$): *DA corundum* was reported by Prinz et al. (1994) from the ureilite LEW 88774 as micrometer-scale grains with chromite and Cr-rich pyroxene.

Eskolaite (Cr$_2$O$_3$): *DA eskolaite* occurs in the LEW 88774 Cr-rich, anomalous ureilite in association with a reduced assemblage with carbides, chromite, brezinaite, and graphite (Prinz et al. 1994; Warren and Kallemeyn 1994).

Rutile (TiO$_2$): *DA rutile* is a minor phase in silicate inclusions in the Sombrerete (IAB) iron meteorite, in which it is associated with albitic glass (the dominant phase), orthoenstatite,
anorthite, chlorapatitie, and minor kaersutite, tridymite, and oxides (Prinz et al. 1982). Rutile was also reported in some mesosiderites (El Goresy 1971).

Baddeleyite (ZrO$_2$): *DA* baddeleyite occurs in the Angra dos Reis angrite as a minor mineral in association with major fassaite, forsterite, hercynite, and troilite, as well as an unusual suite of accessory phases including kirschsteinite, Ti-rich magnetite, and celsian (Prinz et al. 1977). It is also found in eucrites (Haba et al. 2014).

Perovskite (CaTiO$_3$): Rosenshein et al. (2006) reported a single occurrence of *DA* perovskite of composition $[(\mathrm{Ca}_{0.94}\mathrm{Mg}_{0.05}\mathrm{Fe}_{0.02})\mathrm{Ti}_{0.99}\mathrm{O}_3]$ in an unusual oxide clast in the Allan Hills 84008 aubrite. Perovskite occurs in association with geikeilite as inclusions in troilite.

Geikeilite (MgTiO$_3$): One occurrence of *DA* geikeilite close to endmember composition was described by Rosenshein et al. (2006) from an unusual oxide clast in the Allan Hills 84008 aubrite.

Armalcolite $[(\mathrm{Mg,Fe}^{2+})\mathrm{Ti}_2\mathrm{O}_5]$: *DA* armalcolite is a rare phase in the silicate inclusions of iron meteorites (Ruzicka 2014). It has been reported from several IIE iron meteorites, including Elga, Colomera, and Miles (Prinz et al. 1983a; Ebihara et al. 1997; Rubin and Ma 2020).

Silicates

Forsteritic olivine, low- and high-Ca pyroxenes, and calcic plagioclase are major minerals in a wide range of achondrite, stony-iron, and silicate-bearing iron meteorites (Bunch et al. 1970; McCoy et al. 1993; Benedix et al. 1998, 2000; Mittlefehldt et al. 1998; Rubin and Ma 2020). These and other silicates in supposedly non-chondritic meteorites underscore the difficulty of distinguishing minerals formed through asteroidal differentiation, as opposed to earlier and later
events. For example, silicate inclusions in the Netschaëvo (IIE) iron meteorite appear to be relatively unaltered chondritic clasts, while those in Techado (IIE) are partially melted but undifferentiated. On the other hand, many non-chondritic meteorites display evidence for extensive impact alteration through brecciation and shock melting – processes that postdate asteroidal differentiation. In some instances, meteorites may represent a mixture of impact-induced metal melts surrounding fragmented and only partially melted silicates. Here we include all known phases from non-chondritic meteorites that appear to have formed by crystallization from a melt or vapor, or by subsequent solid-state reactions during cooling/annealing – i.e., minerals that were not formed directly by shock processes, aqueous alteration, or thermal metamorphism.

Silica Group (SiO$_2$): Silica group minerals, including tridymite and less frequently cristobalite, quartz, and silica glass, are minor/trace phases in mafic lithologies.

Tridymite (SiO$_2$): *DA tridymite* is the most common silica polymorph in meteorites. It has been reported from a variety of iron meteorites (Buchwald 1975; Prinz et al. 1982; Scott et al. 1996), notably from the Gibeon and Steinbach (IVA) irons (Reid et al. 1974). The former contains a tridymite grain exceeding 2 centimeters maximum dimension (Marvin et al. 1997). Tridymite is also a common phase in mafic meteorite lithologies: it accounts for 5 to 14 vol % in mesosiderite basaltic clasts (Nehru et al. 1980) and up to 8 vol % in basaltic eucrites (Delany et al. 1984; Ikeda and Takeda 1985; Mittlefehldt et al. 1998).

Cristobalite (SiO$_2$): *DA cristobalite* is a minor phase in several eucrites, where it occurs in association with other silica polymorphs (Aoudjehane and Jambon 2007), and as an accessory mineral in the troilite nodules of the Carbo (IID) iron meteorite (Marvin 1962). Ma et al. (2012a)
record cristobalite as a rare accessory phase in the Zakłodzie ungrouped enstatite achondrite, where it co-occurs with more abundant tridymite and quartz.

Quartz (SiO$_2$): DA quartz has been reported as a minor phase in basaltic eucrites (Mittlefehldt et al. 1998). Marvin et al. (1997) described quartz-rich regions 3 to 4 millimeters in diameter occurring in the cracked core of a large (> 2 centimeters maximum dimension) tridymite grain from the Gibeon (IVA) iron meteorite. Quartz also occurs with tridymite, rare cristobalite, and sinoite in the Zakłodzie ungrouped enstatite achondrite (Ma et al. 2012a).

Silica glass (SiO$_2$): Ruzicka (2014) summarizes silica-rich glass compositions, which are common in some silicate inclusions of iron meteorites. Of note are occurrences of DA silica glass with compositions exceeding 80 wt % SiO$_2$ in inclusions from Weekeroo Station and Miles (IIE) irons, in contrast to many glasses of more feldspathic compositions (see below).

Olivine Group [(Mg,Fe,Ca)$_2$SiO$_4$]: Olivine is a major mineral in many types of non-chondritic meteorites (Mittlefehldt et al. 1998: Tables 7, 11, 13, 20, 24, 28, 31, 36, 43, and Figures 17 and 58). Note that while forsterite and fayalite form a continuous solid solution, the great majority of non-chondritic olivine occurrences fall in the range Fo$_{55-99}$. An exception is the occurrence of more fayalitic olivine in some angrites (Fo$_{32-86}$; Mittlefehldt et al. 1998, Table 36); however, Prinz et al. (1990) and Mikouchi et al. (1996) reported that larger olivine grains are strongly zoned with magnesian cores (Fo$_{73-90}$) compared to more ferroan rims. Otherwise, the few outlier occurrences of fayalite are near endmember Fe$_2$SiO$_4$. For example, Yanai (1994, Figure 8) summarized a bimodal distribution of olivine compositions in angrites, with most analyses in the range Fo$_{45-90}$, but a few analyses clustered at Fo$_{1-9}$. Therefore, we recognize DA forsterite and DA fayalite as distinct natural kinds.
Forsterite \((\text{Mg}_2\text{SiO}_4)\): \textit{DA forsterite} is a major silicate phase in many non-chondritic meteorites. The most olivine-rich meteorites are brachinites with as much as 98 vol % olivine with average 30 to 35 mol % fayalitic component (Kring et al. 1991; Nehru et al. 1992). Ureilites are ultramafic cumulates with up to \(>90\) vol. % olivine, typically with \(~5\) to \(25\) mol % \(\text{Fe}_2\text{SiO}_4\) (Mittlefehldt et al. 1998, and references therein). Up to \(~10\) vol % of nearly pure endmember forsterite (typically \(\text{Fo}_{0.99,99}\)) is a common phase in highly reduced enstatite achondrites (aubrites), in which orthoenstatite is the dominant silicate phase (Watters and Prinz 1979).

Forsterite also occurs in pallasites with crystals of forsteritic olivine to \(>1\)-centimeter diameter that are typically close to \(\text{Fo}_{0.90}\) associated with Fe-Ni alloys (Buseck and Goldstein 1969; Buseck 1977; Ulff-Møller et al. 1998; Figure 1B). In some instances, pallasite olivine incorporates P-rich zones, locally with up to \(~5\) wt. % \(\text{P}_2\text{O}_5\) (Buseck 1977).

Fayalite \((\text{Fe}_2\text{SiO}_4)\): Olivine close to fayalite in composition occurs rarely in non-chondritic meteorites. Ikeda and Takeda (1985) describe \textit{DA fayalite} \((\text{Fo}_{10-14})\) associated with augite \(\sim\text{Wo}_{40}\text{Fs}_{40}\), tridymite, and plagioclase \((\text{An}_{80})\) in unusual ferroan igneous clasts in howardites. Yanai (1994, Figure 8) reported olivine compositions in angrites, with most analyses in the range \(\text{Fo}_{45-90}\), but a few analyses clustered at \(\text{Fo}_{1-9}\). Olivine in angrites are often Ca-rich, with up to \(~20\) mol % of the Ca end member in the most Fe-rich examples (Mittlefehldt et al. 2002). Fayalite was also reported by Srinivasan et al. (2018) as a minor phase in the unique silica-rich achondrite NWA 11119, which features millimeter-diameter vesicles comprising \(~1\) vol % and \(~30\) vol %
tridymite associated with an unusual mineralogical suite, including tranquillityite, zircon, and tsangpoite.

Kirschsteinite (CaFe\(^{2+}\)SiO\(_4\)): The calcic olivine *DA kirschsteinite* with average composition [(Ca\(_{0.94}\)Fe\(^{2+}\)\(_{0.06}\))(Fe\(^{2+}\)\(_{0.60}\)Mg\(_{0.40}\))SiO\(_4\)] is an accessory phase in the Angra dos Reis and other angrite achondrites, where it occurs as inclusions in low-Ca olivine in association with fassaite, hercynite, Ti-rich magnetite, and troilite (Prinz et al. 1977; McKay et al. 1988, 1990). In LEW 86010, kirschsteinite occurs as exsolution lamellae in Mg-Fe olivine (Mikouchi et al., 1995), while in D’Orbigny, it is observed as overgrowths on Mg-Fe olivine (Mittlefehldt et al., 2002).

Pyroxene Group [(Ca,Mg,Fe,Ti,Al)\(_2\)(Al,Si)\(_2\)O\(_6\)]: Pyroxene group minerals are principal constituents of most types of achondrite and stony-iron meteorites (Mittlefehldt et al. 1998: Tables 7, 11, 15, 20, 25, 28, 30, 37, 42, and Figure 42). The nomenclature of meteoritic pyroxene group minerals is potentially confusing and replete with archaic and discredited terminology, owing to both chemical and structural complexities (Morimoto et al. 1988; Deer et al. 1997; Wenk and Bulakh 2003). Most meteoritic examples fall close to the familiar Mg-Fe-Ca pyroxene quadrilateral, bounded by endmembers enstatite (En; Mg\(_2\)Si\(_2\)O\(_6\)), ferrosilite (Fs: Fe\(_2\)Si\(_2\)O\(_6\)), diopside (Di: CaMgSi\(_2\)O\(_6\)), and hedenbergite (Hd: CaFeSi\(_2\)O\(_6\)). Pyroxene compositions are also commonly reported in terms of the mol % of their pure calcium component, wollastonite (Wo: Ca\(_2\)Si\(_2\)O\(_6\)). Four different pyroxene phase regions occur for Mg-Fe-Ca compositions near liquidus temperatures (e.g., Deer et al. 1997). Above ~1200 °C, a miscibility gap separates (1) Ca-rich augites (all compositions with >Wo\(_{30}\)) and (2) Ca-poorer pigeonites (<Wo\(_{15}\)), both of which are monoclinic (space group *C2/c*). A second gap occurs between pigeonites (Wo>10) and
compositions close to the MgSiO$_3$-FeSiO$_3$ join (Wo$_{<0.5}$), for which the high-temperature pyroxene phases are (3) protoenstatite (orthorhombic space group $Pbca$) near the Mg-rich endmember; and (4) orthopyroxene (orthorhombic space group $Pbca$) for more ferroan compositions.

Upon cooling, these four high-temperature pyroxene phases may undergo several types of solid-state transformations of significance to meteorite mineralogy – inversions that depend strongly on the thermal history of individual crystals. Some transitions are isochemical. For example, protoenstatite transforms to orthoenstatite below ~1000 °C and, given sufficient annealing time, may further transform to clinoenstatite (monoclinic $P2_1/c$) below ~600 °C. High-temperature $C2/c$ pigeonite similarly transforms to the low-temperature $P2_1/c$ form on cooling. Evidence for these isochemical transformations may be preserved in distinctive twinning (e.g., Takeda et al. 1989).

More commonly, shifting boundaries of miscibility gaps on cooling lead to exsolution of one pyroxene composition from another. Most significantly, the augite-pigeonite miscibility gap becomes wider with cooling below ~1200 °C, with coexisting equilibrium compositions approaching Wo$_{0.5}$ and Wo$_{4.5}$ below 1000 °C for some Mg-Fe compositions. Consequently, depending on cooling rates and annealing times, pigeonite with Wo$_{>0.5}$ may exsolve one or more generations of augite, while augite with Wo$_{<4.5}$ may exsolve pigeonite (Harlow et al. 1979; Mori and Takeda 1981a). Indeed, owing to multiple stages of exsolution, it is not uncommon for four different compositions of pyroxene to coexist in a single igneous rock (Deer et al. 1997).
This profligacy of potential compositional and morphological natural kinds of pyroxene creates challenges. We choose to simplify pyroxene nomenclature, lumping as much as possible pyroxenes that share their structure types within a continuous compositional field. Consequently, three natural kinds encompass the vast majority of pyroxenes in non-chondritic meteorites.

1. *DA orthoenstatite*: Orthopyroxenes occur close to the En-Fs join with < 5 mol % Wo. The official endmember names for this series are enstatite and orthoferrosilite. Almost all meteoritic examples, with the exception of orthopyroxenes with augite exsolution in some eucrites (En$_{35-75}$), are Mg-dominant. Therefore, we designate these occurrences as *DA orthoenstatite*; we employ “orthoenstatite” instead of the IMA-approved name “enstatite” (Morimoto et al. 1988) to reduce ambiguity.

2. *DA pigeonite*: Low-calcium clinopyroxenes (monoclinic space group $P2_1/c$) encompass a range of Mg-Fe-Ca compositions, almost always with Mg > Fe in non-chondritic meteorites. The clinoenstatite-clinoferrosilite series is defined as having less than 5 mol % of the Wo component. However, these pyroxenes form a continuous solid solution with the somewhat more calcic pyroxenes (Wo$_{5-15}$) designated “pigeonite” by IMA conventions. Here we lump all low-Ca clinopyroxenes into *DA pigeonite*.

3. *DA augite*: A similar somewhat arbitrary division is applied by IMA to Ca-rich pyroxenes, all of which are $C2/c$ monoclinic phases within a single-phase region. Therefore, we lump examples with Wo$_{45-50}$ close to the diopside-hedenbergite join together with somewhat less calcic clinopyroxenes (Wo$_{30-45}$), defined by IMA conventions as augite, into *DA augite*.
In addition to these common phases, we recognize three additional natural kinds of non-chondritic meteoritic pyroxene.

4. Near endmember hedenbergite from the Asuka 881371 angrite represents a clear outlier (Yanai 1994, Figure 8), which we name DA hedenbergite.

5. The Na-Cr clinopyroxene DA kosmochlor (NaCr^{3+}Si_{2}O_{6}; formerly ureyite) occurs in some iron meteorites.

6. Finally, calcic clinopyroxene nomenclature is further complicated by the occurrence of “fassaite,” a Ca-Mg-dominant, Fe-poor clinopyroxene with Al and Ti, which result in compositions that lie significantly outside the pyroxene quadrilateral. Fassaite is closest compositionally to the IMA-approved species diopside (CaMgSi_{2}O_{6}), but it always incorporates significant fractions of other components, including kushiroite (CaAl_{2}SiO_{6}; also known as calcium-Tschermak’s pyroxene), grossmanite (CaTi^{3+}AlSiO_{6}), and/or a hypothetical Ti^{4+} endmember (CaMg_{0.5}Ti_{0.5}^{4+}AlSiO_{6}). Sack and Ghiorso (2017) demonstrate that these compositions are separated by as many as three miscibility gaps from diopside; therefore, DA fassaite, though not officially recognized by the IMA, represents at least one additional pyroxene natural kind.

Orthoenstatite (MgSiO_{3}): DA orthoenstatite is a major primary igneous phase in several types of achondrites, with crystals sometimes exceeding 5 centimeters in maximum dimension (Mittlefehldt et al. 1998, and references therein). Orthoenstatite also forms through the inversion of pigeonite, which commonly leads to exsolution of augite lamellae (Deer et al. 1997). Diogenites incorporate from ~85 to 100 vol % orthoenstatite, typically with compositions close
to En$_{75}$. (Mittlefehldt et al. 1998, Figure 42 and Table 30). Near endmember orthoenstatite (En$_{>98}$) is the dominant mineral in the unusual unbrecciated Shallowater enstatite achondrite, which has \sim80 vol % orthoenstatite in crystals to 4.5-centimeters maximum dimension (Reid and Cohen 1967). This example contrasts with most aubrites, which have disordered enstatite, largely the result of impact alteration (Watters and Prinz 1979). Orthoenstatite also occurs in pallasites (Hiroi et al. 1993), in ureilites (Takeda 1987; Takeda et al. 1989), and in HED meteorites (Delany et al. 1984; Mittlefehldt 1994; Bowman et al. 1997).

Pigeonite [(Mg,Fe,Ca)SiO$_3$]: DA pigeonite, including both pigeonite and samples close to endmember clinoenstatite with < 5 mol % Wo, are significant minerals in many achondritic meteorites (Mittlefehldt et al. 1998). DA pigeonite is the dominant, and in some instances the only, pyroxene in ureilites, which are ultramafic restite achondrites (Takeda 1989; Takeda et al. 1992). In brachinites, which are olivine cumulate rocks, pigeonite is second in abundance to forsterite, constituting up to 15 modal percent (Kring et al. 1991; Nehru et al. 1992).

Augite [(Ca,Mg,Fe)Si$_2$O$_6$]: DA augite, including samples close to endmember diopside, occur as the principal calcium-bearing phase in several types of plagioclase-free ultramafic achondrites. Augite is found with pigeonite and/or orthopyroxene in some ureilites (Takeda 1989; Takeda et al. 1992). Unusually ferroan augite (\simWo$_{40}$Fs$_{40}$) occurs in igneous clasts of howardites, associated with fayalite, tridymite, and plagioclase (Ikeda and Takeda 1985). Essentially iron-free diopсидic augite occurs in enstatite achondrites (aubrites) as a common minor phase, accounting for up to \sim8 vol % of some examples (Olsen et al. 1977b; Watters and Prinz 1979). In many meteorites, for example diogenites (Bowman et al. 1997), pigeonite has inverted to orthoenstatite that has exsolution lamellae of a range of calcic clinopyroxenes,
including diopsidic (Di>90) and augitic (Wo<45Fs<25) examples (Mori and Takeda 1981b; Takeda and Mori 1985; Mittlefehldt and Lindstrom 1993).

Hedenbergite ([CAFeSi₂O₆]: Near endmember DA hedenbergite of composition ([CA₀.₉⁹Mg₀.₀₁Fe₁.₀₀]Si₂O₆], as well as other compositions on the Di-Hd join, occur in the Asuka 881371 angrite (Yanai 1994, Table 1), and in the D’Orbigny angrite (Hwang et al. 2019).

Fassaite [Ca(Mg,Al,Ti³⁺,Ti⁴⁺)(Al,Si)SiO₆]: The Al- and/or Ti-rich calcic pyroxene, DA fassaite, is the major phase (93 vol %) in the unusual Angra dos Reis angrite (Prinz et al. 1977). With average composition [(CA₀.₉⁷Mg₀.₅₉Fe²⁺₀.₂₁Al₀.₁₆Ti₀.₀₆)(Al₀.₂₈Si₁.₇₂)O₆], this clinopyroxene incorporates ~16 mol % Ca-Tschermak’s and 21 mol % hedenbergite components, but only 6 mol % of the grossmanite component, in contrast to the more Ti-rich, Fe-poor fassaite in CAIs (Morrison and Hazen 2020). Fassaite occurs both as a groundmass of grains up to 0.5 millimeters maximum dimension and as larger grains to ~3 millimeters enclosing the groundmass. It occurs in association with olivine, hercynite, and troilite, as well as an unusual suite of accessory phases including kirschsteinite, celsian, Ti-rich magnetite, and baddeleyite. Fassaite is also present in other angrites (McKay et al. 1988, 1990; Prinz et al. 1988, 1990), as well as in angrite-like clasts in polymict ureilites (Prinz et al. 1983b, 1986).

Kosmochlor (NaCr³⁺Si₂O₆): The Na-Cr clinopyroxene DA kosmochlor (formerly named ureyite; Morimoto et al. 1988) occurs in some iron meteorites, typically in association with graphite and chromite (Frondel and Klein 1965; Olsen and Fuchs 1968).

Amphibole Group: Amphiboles, a major group of rock-forming double-chain silicates, make their earliest appearances as minor accessory phases in silicate inclusions in iron meteorites and...
in an aubrite. Two IMA-approved amphibole species, fluoro-richterite and kaersutite, have
similar compositions and may represent endmembers of a continuous solid solution. However,
they occur in different contexts and only fluoro-richterite has measurable F. Therefore, we
consider DA fluoro-richterite and DA kaersutite to be distinct natural kinds.

Fluoro-richterite \([\text{Na(NaCa)Mg}_5\text{Si}_8\text{O}_{22}\text{F}_2]\): DA fluoro-richterite was reported from the
Canyon Diablo and Wichita County (IAB) iron meteorites (Olsen 1967; Olsen et al. 1973). In
addition, Bevan et al. (1977) reported anhydrous fluoro-richterite in needle-like crystals to \(\sim\) 1-
millimeter maximum dimension from the Mayo Belwa aubrite, which contains 5 vol % crystal-
lined vugs. Rubin (2010) suggested that fluoro-richterite may be an impact-related phase, formed
when F-rich gas condensed in shock-induced vugs.

Kaersutite \([\text{NaCa}_2\text{Mg}_3\text{AlTi}^{4+}_4\text{Si}_6\text{Al}_2\text{O}_{22}\text{O}_2]\): A single occurrence of DA kaersutite has
been reported from silicate inclusions in the Sombrerete (IAB) iron meteorite (Prinz et al. 1982). DA kaersutite is associated with albitic glass (the dominant phase), orthoenstatite, anorthite, and chlorapatitie.

Feldspar Group \([\text{(Ca,Na,K)Al(Al,Si)Si}_2\text{O}_8]\): Calcic plagioclase is an abundant primary
igneous phase in many types of non-chondritic meteorites (Mittlefehldt et al. 1998: Table 7, 11,
18, 20, 28, 33, 39, and 44). Albite, sanidine, and celsian, by contrast, are extremely minor
phases, typically associated with residual silica-rich melts. In spite of the continuous solid
solution of the plagioclase series, we draw a distinction between DA anorthite, which is typically
An\(_{99-75}\) and, with the exception of brachinites, rarely displays compositions with An\(_{<60}\), and DA
albite, which is invariably close to the NaAlSi\(_3\)O\(_8\) endmember (An\(_{<10}\)).
Anorthite (CaAl\(_2\)Si\(_2\)O\(_8\)): DA anorthite is an important component of many non-chondritic meteorites (Mittlefehldt et al. 1998, and references therein). It occurs in silicate inclusions in iron meteorites (An\(_{57.93}\); Bunch and Olsen 1968; Bunch et al. 1970; Olsen et al. 1994); in aubrites (An\(_{75.95}\); Watters and Prinz 1979); in HED group achondrites (An\(_{72.95}\); Mittlefehldt et al. 1998, Table 33); in angrites (An\(_{99}\); Prinz et al. 1977; Crozaz and McKay 1990; Mikouchi et al. 1996); in basaltic (An\(_{>70}\)) and cumulate eucrites (An\(_{91-98}\); Mittlefehldt et al. 1998, Table 33), and in mesosiderites (An\(_{91-93}\); Mittlefehldt et al. 1998).

Albite (NaAl\(_3\)SiO\(_8\)): Near endmember DA albite is a common, if minor, phase in non-chondritic meteorites. Albite occurs frequently in silica-rich clasts in numerous iron meteorites (Bunch and Olsen 1968; Wasserberg et al. 1968; Prinz et al. 1983a; Ruzicka 2014). For example, McCoy et al. (1994) report albite of composition (Ab\(_{91}\)An\(_5\)Or\(_4\)) from chlorapatite-dominant silicate inclusions in the Carlton (IIICD) iron meteorite.

Brachinites, which are dunites with up to 98 vol % forsterite, are an outlier with plagioclase compositions observed between An\(_{16}\) and An\(_{37}\) (Nehru et al. 1983, 1996; Mittlefehldt et al. 1998, Table 18), whereas aubrites typically contain minor albic plagioclase (Rubin and Ma 2020).

Sanidine (KAl\(_3\)Si\(_3\)O\(_8\)): Potassic feldspars are rare phases in non-chondritic meteorites. Wasserburg et al. (1968) reported a sanidine crystal 11 centimeters in length from a silicate inclusion in the Colomera (IIE) iron meteorite, where it occurs in association with plagioclase-silica glass, clinoenstatite, and several minor phases. K feldspar is found in the Ni-rich San...
Cristobal (unique IAB) iron meteorite (Wlotzka and Jarosewich 1977), and as exsolution lamellae in “antiperthite” with an albitic host from the Watson (IIE) iron meteorite (Olsen et al. 1994). Potassic feldspar also occurs in the Bilanga diogenite (Domanik et al. 2004) and in some eucrites (Barrat et al. 2007).

Celsian (BaAl$_2$Si$_2$O$_8$): DA celsian $[(Ba_{0.90}Ca_{0.08}Na_{0.02})(Al_{1.98}Si_{2.02})O_8]$ occurs in the Angra dos Reis angrite as a minor mineral in association with dominant fassaite, plus forsterite, hercynite, and troilite, as well as an unusual suite of accessory phases including kirschsteinite, Ti-rich magnetite, and baddeleyite (Prinz et al. 1977). Prinz et al. (1977) also describe minor co-existing anorthite from Angra dos Reis. This earliest known occurrence of a barium mineral may be the result of crystallization of a late-stage residual melt enriched in alkaline earth elements.

Feldspathic glass [Na-(K-Ca)-Al-Si]: DA feldspathic glass, in contrast to shock-induced maskelynite (see Part IVB below), occurs as a significant phase in a variety of silicate-rich inclusions that represent late-stage melt fractions (Ruzicka 2014). Sodium-dominant albitic glass is the major phase in silicate inclusions in the Sombrerete (IAB) iron meteorite, in which it is associated with enstatite, anorthite, chlorapatite, and minor kaersutite, tridymite, and oxides (Prinz et al. 1982). Wasserburg et al. (1968) reported albitic glass from the Colomera (IIE) silicate-bearing iron meteorite, where it occurs in association with clinoenstatite, forsterite, and other phases. Na-K-Al-Si glass is reported from interstitial silicate assemblages in ureilites with clinoenstatite and augite (Goodrich 1986), while feldspathic glass with a significant anorthite content (An_{5-50}) occurs in lithic clasts from polymict ureilites (Prinz et al. 1986). Some brachinites contain Na-rich feldspathic glass (Nehru et al. 1983). Finally, feldspathic glass is a volumetrically minor component of some enstatite achondrites: Fuchs (1974) reported Na-K-Al-Si glass as ~5-micrometer-diameter trapped melt inclusions in orthoenstatite in the Bishopville,
Norton County, and Pena Blanca Springs aubrites, while Fogel (2005) described basaltic
vitrphyre clasts in the Khor Temiki and LEW 87007 aubrite with 51 and 13 vol % albitic glass
in the inclusions, respectively.

Other Silicates

Zircon (ZrSiO$_4$): *DA zircon* is a rare phase in non-chondritic meteorites, reported in basaltic
eucrites (Gomes and Keil 1980) and the unique andesitic (30 vol % tridymite) achondrite NWA
11119 (Srinivasan et al. 2018). Ireland and Wlotzka (1992) analyzed two zircon grains from the
Vaca Muerta mesosiderite, from which they obtained a $^{207}\text{Pb}/^{206}\text{Pb}$ age of 4.563 +/- 0.015 Ga.

Tranquillityite [Fe$^{2+}$$_8Ti_3Zr_2Si_3O_{24}$]: *DA tranquillityite* was identified by Srinivasan et al.
(2018) as a minor phase in the unique NWA 11119 silica-rich achondrite – a silica-rich extrusive
rock with numerous millimeter-diameter vesicles (comprising > 1 vol %) surrounded by
quenched melt and 30 vol % tridymite associated with an unusual mineralogical suite, including
zircon, fayalite, and tsangpoite.

Yagiite [NaMg$_2$(AlMg$_2$Si$_{12}$)O$_{30}$]: *DA yagiite* is member of the milarite group, originally
described by Bunch and Fuchs (1969b) from silicate inclusions in the Colomera (IIE) iron
meteorite. With average composition

$$[\text{Na}_{1.20}\text{K}_{0.30})(\text{Mg}_{2.60}\text{Fe}_{0.34}\text{Ti}_{0.10}\text{Al}_{1.96})(\text{Si}_{10.22}\text{Al}_{1.78})\text{O}_{30}],$$

yagiite occurs as inclusions in fassaite and in association with whitlockite, tridymite, and albite. It has subsequently been
identified in a similar inclusion in the Sombrerete (IAB) iron meteorite (Ruzicka 2014).

Kuratite [Ca$_2$(Fe$^{2+}$$_5Ti_2O_2$)[Si$_4Al_2O_{18}$]: *DA kuratite* is a rare Fe$^{2+}$ analog of rhönite that was
characterized by Hwang et al. (2016) from the D’Orbigny angrite, where it occurs as euhedral to
anahedral crystals up to ~20 micrometers maximum dimension in close association with hedenbergite, ulvöspinel, fayalite, kirschsteinite, and iron sulfide. Hwang et al. (2016) suggested that this assemblage represents rapid cooling of an interstitial melt from > 1000 °C.

Krinovite [Na$_4$(Mg$_8$Cr$^{3+}$)$_4$O$_4$(Si$_{12}$O$_{36}$)]: Olsen and Fuchs (1968) described *DA krinovite*, a Cr-Mg isomorph of aenigmatite, from mineralogically unusual graphite-silicate inclusions in the Canyon Diablo, Wichita County, and Youndegin (IAB) iron meteorites. Subhedral grains up to 200 micrometers in diameter occur in association with graphite, albite, richterite, and roedderite.

Roedderite [(Na,K)$_2$Mg$_5$Si$_{12}$O$_{30}$]: *DA roedderite* was reported by Olsen and Fuchs (1968) from the Canyon Diablo and Wichita County (IAB) iron meteorites, where it occurs in graphite-silicate inclusions. Roedderite was also found in the Bustee aubrite by Hsu (1998) as an irregular ~500- x 200-micrometer grain associated with olivine and enstatite, as well as in the Khor Temiki and Pena Blanca Springs aubrites (Fogel 2001).

ORGANIC SOLIDS

Kerogen (C-H-O-N): Condensed organic material, here termed *DA kerogen*, is an important carbon-bearing phase in many ureilites (Vdovykin 1970). It occurs along silicate grain boundaries, as well as in grain fractures and cleavage planes.
Among the earliest mineralizing processes in the solar nebula, commencing contemporaneously with asteroid formation at ~4.565 Ga and continuing throughout the history of the solar system, was shock alteration of preexisting phases (Buchwald 1975, 1977; Stöffler et al. 1988, 1991, 2018; Bischoff and Stöffler 1992; Scott et al. 1992; Rubin et al. 1997; Sharp and DeCarli 2006; Stöffler and Grieve 2007; Koeberl 2014; Rubin 2015a; Breen et al. 2016; Fritz et al. 2017; Tomioka and Miyahara 2017; Tschauner 2019). High-velocity collisions, as well as bow shocks in the early nebular environment, produced significant transient high-temperature and pressure events that transformed materials through shattering (Bunch and Rajan 1988), impact melting (Dodd and Jarosewich 1979, 1982; Rubin 1985; Fagan et al. 2000; Lunning et al. 2016), vaporization (El Goresy et al. 1997), and a range of solid-state alterations (Ashworth 1980, 1985; Madon and Poirier 1980, 1983; Price 1983; Rubin 2006). Large-scale impacts also initiated more gradual asteroidal heating and fluidization that are manifest in asteroid metamorphism (Rubin and Ma 2020) – effects revealed by a significant correlation in meteorites between the extent of thermal metamorphism (to be reviewed in Part V) and the degree of shock alteration.

Here we focus on rapid, shock-related changes that produced new kinds of minerals in meteorites. Shock events recorded in meteorites represent transient temperatures and pressures that can exceed 3,000 °C and 100 GPa (Figure 3), with peak conditions lasting perhaps a few seconds (Ohtani et al. 2004; Xie et al. 2006; Tomioka and Miyahara 2017; Stöffler et al. 2018, Tables 4 through 11). Under such extreme conditions, minerals transform in a variety of ways. Accordingly, Stöffler and colleagues have proposed a unified scale of shock metamorphism, with increasing stages of impact effects grading from S1 (for unshocked examples) to S7 (for whole-
rock melting and/or vaporization). They enumerated separate mineralogical and textural criteria to codify shock stages for each major parent lithology (which can be applied equally to meteorites and to planetary impact structures): felsic (F), mafic (M), anorthositic (A), ultramafic (U), chondritic rocks (C), sedimentary rocks (SR), unconsolidated sediments (SE), and regolith (RE). Note that shock effects in iron meteorites were not considered by Stöffler et al. (2018); however, see previous work (Buchwald 1975, 1977; Bennett and McSween 1996; Tomkins 2009; Breen et al. 2016).

Figure 3. The ranges of pressure-temperature conditions for primary asteroidal mineralization (green) and impact mineralization (red) suggest that these processes represent distinct stages of mineral evolution.

A range of effects, from undulose extinction with crossed polarizers in transmitted light and irregular fracturing at low degrees of shock, to mosaic extinction and planar fracturing at intermediate shock, to melting and/or transformation to new denser phases at the highest shock states, are observed in meteorites. Phases generated from impact melting and subsequent igneous processes are often difficult to distinguish from minerals formed in molten differentiating asteroidal bodies; minerals that are thought to have crystallized at low pressure (< 0.1 GPa) were considered in Part IVA above, for example in discussions of nonmagmatic achondrites.
Likewise, minerals formed through condensation of impact-generated vapor are often similar to nebular condensates and are reviewed in previous sections of this evolutionary system. Here we focus exclusively on new high-pressure (> 0.1 GPa) meteorite phases that arose from short-lived impact events, either through solid-state transformation or crystallization from a shock-induced melt.

SYSTEMATIC IMPACT ALTERATION MINERALOGY

Minerals formed through shock processes and preserved in meteorites have been reviewed in the context of high-pressure mineralogy and/or meteorite mineralogy by several authors (Scott et al. 1992; Rubin et al. 1997; Mittlefehldt et al. 1998; Rubin and Ma 2017, 2020; Tomioka and Miyahara 2017; Ma 2018; Stöffler et al. 2018; Tshauner 2019). Here we list 40 kinds of dense, micrometer-scale phases (Table 2) that are thought to have formed rapidly as a byproduct of high-energy collisions between objects ranging in size from meters to hundreds of kilometers in diameter.

These impact minerals incorporate 14 different essential elements (Figure 4), all of which are among the major essential elements in primary asteroidal and planetesimal minerals from which they formed (compare with Figure 2).
Figure 4. Essential mineral-forming elements in 40 shocked meteorite minerals. All of these 14 elements are major mineral-forming elements in primary asteroidal minerals (compare with Figure 2).

We focus on irreversible high-pressure shock effects that likely occurred on asteroids and their precursors in the early solar nebula – events that led to new dense phases or diagnostic altered textures in preexisting minerals. However, unlike the time-restricted processes that formed minerals in CAIs, chondrules, or differentiated planetesimals in the earliest solar nebula, impact processes have continued throughout the 4.5-billion-year history of the solar system. Accordingly, many of the phases listed in Table 2 are only known from examples that are significantly younger than 4560 Ma. Indeed, nine impact phases known thus far exclusively from martian meteorites (i.e., feiite, liebermannite, liuite, seifertite, stoeflerite, tissintite, tschaunerite, zagamiite, and an unnamed silicate) formed much more recently. Nevertheless, these shock minerals formed from precursor phases that were present on differentiated planetesimals and thus all of these impact phases were also likely to have formed during the earliest stages of the solar system.

We distinguish between shock effects preserved in chondritic, non-chondritic, and martian meteorites versus more recent influences of meteor impacts on Earth, including effects of atmospheric passage. Terrestrial impact events have transformed a variety of crustal minerals that are not significant components of asteroids. Thus, high-pressure shock phases found exclusively in terrestrial impact structures, such as reidite (ZrSiO$_4$; Glass et al. 2002), akaogiite (TiO$_2$; El Goresy et al. 2010), maohokite (MgFe$_2$O$_4$; Chen et al. 2019), and reisite (TiO$_2$; Tschauner et al. 2020), will be considered in a later contribution. Note that we also defer to Part V discussion of enigmatic Al-bearing alloys and quasicrystals, for which extreme reduction
associated with shock effects has been invoked as a possible origin (Hollister et al. 2014; Hu et al. 2019).

Several high-pressure minerals that are thus far known only as impact phases in meteorites likely occur as major phases in Earth’s mantle, as well. A few examples – ringwoodite, majorite, and amorphous CaSiO$_3$, for example – have been reported from both meteorites and as inclusions in mantle-derived diamond. However, other presumed mantle phases, including akimotoite, hemleyite, and bridgmanite (likely the most abundant mineral on Earth in terms of volume; Tschauner et al. 2014), are to date known only from meteorites.

We employ a binomial nomenclature with IMA species names preceded by “impact,” i.e., impact stishovite. We deviate from IMA conventions in a few instances. We lump members of five continuous Mg-Fe solid solutions – periclase-wüstite, wadsleyite-asimowite, ringwoodite-ahrensite, akimotoite-hemleyite, and bridgmanite-hiroseite – into impact magnesiowüstite, impact wadsleyite, impact ringwoodite, impact akimotoite, and impact bridgmanite, respectively. In each of these cases, Mg-dominant examples are much more abundant, Fe-dominant examples are typically close to intermediate compositions, and all examples formed by the same mechanism. We include four minerals that have been partially characterized but are not yet approved by the IMA: impact martensite (α_2-Fe,Ni), impact [$(Mg,Fe)SiO_3$], impact [$(Mg,Fe,Si)_2(Si,\Box)O_4$], and impact [$(Fe,Mg,Cr,Ti,Ca,\Box)_2(Si,Al)O_4$]. We also recognize three amorphous phases: impact silica glass, impact amorphous CaSiO$_3$, and impact maskelynite.

NATIVE ELEMENTS

Fe-Ni Alloys: Fe-Ni alloys commonly display significant shock effects (Buseck et al. 1966; Wood 1967; Begemann and Wlotzka 1969; Smith and Goldstein 1977; Bennett and McSween
Etched samples of the Fe-Ni alloy kamacite often have shock-induced twinning known as Neumann bands (Buchwald 1975). These twins on the \{211\} planes of \(\alpha\)-(Fe,Ni) form easily, perhaps in some cases on atmospheric entry. A range of more intense shock effects are observed in some meteoritic Fe-Ni alloys, including high-pressure transformation to the \(\varepsilon\)-iron phase, a high-density hexagonal close-packed structure requiring pressures > 13 GPa, but which is not quenchable. Fe-Ni alloys experience extensive impact melting, as well as transformation of impact Fe-Ni melt on cooling to the metastable \(\alpha_2\)-Fe-Ni alloy called martensite.

Martensite (\(\alpha_2\)-Fe,Ni): Impact martensite forms when shock heating of kamacite and taenite homogenizes the Fe-Ni alloy, which then cools rapidly to form the metastable (\(\alpha_2\)-Fe,Ni) cubic form. Martensite, typically with 8 to 15 wt. % Ni, is known from a range of chondritic and non-chondritic meteorites (Rubin and Keil 1983; Mittlefehldt et al. 1998; Rubin and Ma 2020). Martensite transforms to plessite, an intimate mixture of stable kamacite and taenite, upon reheating in the \(\alpha + \gamma\) iron stability field (Taylor and Heymann 1970; Scott and Rajan 1979).

Carbon Allotropes: Allotropes of carbon display a range of shock-induced effects. Rubin (1997a) and Rubin and Scott (1997) describe graphite as an exsolution phase in impact metal melt, while partially disordered graphite has also been attributed to impact alteration (Rubin 1997b; Rubin and Scott 1997). Here we list two high-pressure forms of carbon, diamond and chaoite, as impact phases.

Diamond (C): Impact diamond, as well as its disordered form “lonsdaleite,” is an important diagnostic mineralogical marker of high-pressure impacts. Diamond formed through terrestrial impacts has been recognized since detailed studies of the Meteor Crater, Arizona (Frondel and Marvin 1967). Impact diamond typically has a significant density of stacking faults. Impact
diamond was subsequently described as a meteorite phase by several authors (Russell et al. 1992; Rubin et al. 1997; Mittlefehldt et al. 1998; Garvie et al. 2011). Note that “lonsdaleite,” which was originally approved by the IMA as the hexagonal 2H variant of cubic diamond, has been shown by Németh et al. (2014) to be disordered diamond and is now discredited.

Chaoite (C): Chaoite, a high-pressure hexagonal (space group $P6/mmm$) form of carbon, was originally described by El Goresy and Donnay (1968) from the Reis Crater in Germany. *Impact* chaoite occurs in several carbon-rich ureilite achondrites (Vdovykin 1970).

Silicides

The origins of iron silicides, which are minor phases in many dimict and polymict ureilites, are enigmatic. Common occurrences of suessite (Fe_3Si; Keil et al. 1982; Ross et al. 2019) and rare xifengite (Fe_5Si_3; Ross et al. 2019), as well as unconfirmed reports of hapkeite (Fe_2Si; Smith et al. 2008) and naquite ($FeSi$; Moggi Cecchi et al. 2015), have been ascribed to reduction of Fe and Si from olivine (Keil et al. 1982) or Si-bearing metal (Ross et al. 2019), possibly in association with a reducing carbonaceous matrix, during shock-melting events and subsequent rapid quenching from high temperature.

Suessite (Fe_3Si): Keil et al. (1982) recorded *impact suessite* as a minor phase in the matrix of the North Haig polymict ureilite in association with troilite, kamacite, and a carbonaceous matrix. Ross et al. (2019) identified frequent occurrences of suessite, at times in association with rare xifengite, in several ureilites.

Xifengite (Fe_5Si_3): Ross et al. (2019) described rare grains of *impact xifengite* in association with suessite from the DaG 999 and EET 87720 ureilites.
PHOSPHIDES

Allabogdanite [(Fe,Ni)₂P]: *Impact allabogdanite* was discovered as elongated crystals in the Onello Ni-rich ataxite meteorite by Britvin et al. (2002), who originally ascribed it to primary asteroidal origins. Subsequent experimental research (Dera et al. 2008) and observations of natural material from several other occurrences (Britvin et al. 2019; Litasov et al. 2019) revealed allabogdanite to be a very-high-pressure impact phase in the Fe-Ni-P system.

SULFIDES

Meteoritic sulfides display shock effects; notably, shocked troilite may have a “bubbly” texture, twinning, shearing, and transformation to polycrystalline aggregates (Scott et al. 1992; Bennett and McSween 1996; Joreau et al. 1996). However, with the possible exception of shenzhuangite (see below), new dense forms of sulfide minerals have not been reported from shocked meteorite.

Shenzhuangite (NiFeS₂): Bindi and Xie (2018) described a shock-induced sulfide from the Suizhou (L6) chondrite, *impact shenzhuangite* with the chalcopyrite structure. They argue that Ni is incompatible in the chalcopyrite structure at low pressure; therefore, shenzhuangite is included in our list of impact-generated phases (Tschauner 2019).

PHOSPHATES

Tuite [γ-Ca₃(PO₄)₂]: Xie et al. (2002a, 2003) described *impact tuite*, a high-pressure transformation product of merrillite, which was discovered in shock veins from the Suizhou (L6) chondrite. Experiments by Murayama et al. (1986) demonstrated that pressures in excess of 10 GPa are required to stabilize tuite.
OXIDES

Magnesiowüstite [(Mg,Fe)O]: *Impact magnesiowüstite* occurs in several highly shocked meteorites in association with other high-pressure phases (Tschanuer 2019; Bindi et al. 2020). For example, magnesiowüstite of average composition [(Mg$_{0.54}$Fe$_{0.46}$)O], found in the shocked (S6) Sixiangkou chondrite as 5-micrometer-diameter blebs in association with majorite (Chen et al. 1996), points to shock conditions exceeding 2050 °C at 20 to 24 GPa.

Wangdaodeite (FeTiO$_3$): *Impact wangdaodeite*, a high-pressure polymorph of ilmenite with the LiNbO$_3$ perovskite-type structure, was discovered by Xie et al. (2016, 2020) from the Suizhou (L6) chondrite. Experimental studies point to formation at shock pressures above 20 GPa.

Liuite (FeTiO$_3$): *Impact liuite* was reported by Ma and Tschauner (2018a) from a shock-melt pocket in the Tissint martian meteorite. The rare phase was found at the rim of a transformed ilmenite-ulvospinel grain in association with other impact phases, feiite and tschaunerite. Liuite is closely related to wangdaodeite, another ilmenite polymorph. However, liuite with the GdFeO$_3$ perovskite structure has a significant bridgmanite component, with a composition close to [(Fe,Mg)(Ti$_{0.6}$Si$_{0.4}$)O$_3$].

Chenmingite (FeCr$_2$O$_4$): Two shock-induced polymorphs of chromite are known from the Shizhiu (L6) chondrite (Chen et al. 2003a). Chen et al. (2003b) and Ma et al. (2019a) characterized *impact chenmingite*, FeCr$_2$O$_4$ in the CaFe$_2$O$_4$-type structure. Experiments demonstrate that chenmingite formed at pressures above 17 GPa at temperatures exceeding 1300 °C.
Xieite (FeCr$_2$O$_4$): Chen et al. (2008) described impact xieite, a high-pressure polymorph of FeCr$_2$O$_4$ with the CaTi$_2$O$_4$ structure type found as lamellae in host chromite in the Shizhui (L6) chondrite. Experiments suggest that shock pressures must have exceeded 17 GPa while temperatures were below 1300 °C.

Tschaunerite (Fe$_2$TiO$_4$): Impact tschaunerite, a polymorph of ülvospinel with the calcium ferrite structure, occurs in association with liuite and feiite from a shock-melt pocket in the Tissint martian meteorite (Ma and Prakapenka 2018).

Dmitryivanovite (CaAl$_2$O$_4$): Mikouchi et al. (2009) described a high-pressure polymorph of krotite, impact dmitryivanovite, from the Northwest Africa 470 CH3 chondrite.

Vestaite [(Ti$^{4+}$Fe$^{2+}$)$_3$Ti$^{4+}$O$_9$]: Impact vestaite is a monoclinic high-pressure phase, identified in the eucrite NWA 8003, that crystallized from a shock melt at ≤10 GPa (Pang et al. 2018). It occurs in melt pockets and shock veins and presumably was produced after an impact on Vesta.

Feiite [(Fe,Ti,Cr)$_4$O$_5$]: Impact feiite from a shock-melt pocket in the Tissint martian meteorite was found at the rim of a transformed ilmenite-ülvospinel grain in association with other rare impact phases, liuite and tschaunerite (Ma and Tschauner 2018b).

Silicates

Virtually all silicates at room pressure have Si in tetrahedral coordination. A key to understanding many high-pressure transformations in silicates, including those caused by very high shock pressures, is the attainment of denser states through structures with Si partially or completely in octahedral coordination (i.e., Hazen and Finger 1978; Tschauner 2019). In this
regard, shock minerals provide important insights to possible major phases of Earth’s deep interior – notably dense variants of silica, olivine, pyroxene, and feldspar.

Silica Polymorphs (SiO$_2$): A number of high-pressure polymorphs of SiO$_2$ have been synthesized and observed in nature as shock phases (Swamy et al. 1994; Kuwayama 2008; Tschauner 2019). We include impact-formed coesite, stishovite, seifertite, and densified silica glass.

Coesite (SiO$_2$): Impact coesite, the natural analog of the high-pressure silica polymorph synthesized by Coes (1953), was first reported by Chao et al. (1960) from shock-altered sandstone at Meteor Crater, Arizona, where it was found in association with impact stishovite. Coesite was subsequently identified in a number of meteorites, providing early evidence that shock transformations played a significant role in the early solar system (Ohtani et al. 2011; Hollister et al. 2014; Tomioka and Miyahara 2017, Tables 2 and 3).

Stishovite (SiO$_2$): Chao et al. (1962) described impact stishovite from Meteor Crater, Arizona, with subsequent studies by Fahey (1964), following its initial synthesis by Stishov and Popova (1961). Numerous occurrences of this rutile isomorph have been reported from shocked meteorites and lunar rocks (Holtstam et al. 2003; Garvie et al. 2011; Ohtani et al. 2011; Kaneko et al. 2015; see Tomioka and Miyahara 2017, Tables 2 and 3).

Seifertite (SiO$_2$): Impact seifertite is an extremely high-pressure shock phase with the orthorhombic (space group $Pbcn$) α-PbO$_2$ structure. It was initially synthesized by German et al. (1973), recognized in nature by TEM observations (Sharp et al. 1999), and further characterized...
by Dera et al. (2002), El Goresy et al. (2008), and Miyahara et al. (2013a) from several shocked
martian and lunar samples.

Silica glass (SiO$_2$): Dense impact silica glass is commonly associated with other high-
pressure silica polymorphs (Grieve et al. 1996; Stöffler et al. 2018).

Olivine Polymorphs [(Mg,Fe)$_2$SiO$_4$]: At high shock pressures, olivine undergoes a sequence of
phase transitions, first to the modified spineloid polymorph wadsleyite, then to the silicate spinel
ringwoodite. Above ~25 GPa ringwoodite dissociates into perovskite-type [(Mg,Fe)SiO$_3$] plus
masgnesiowüstite [(Mg,Fe)O] (e.g., Presnall 1995).

Wadsleyite [β-(Mg,Fe)$_2$SiO$_4$] and Asimowite [β-(Fe,Mg)$_2$SiO$_4$]: Impact wadsleyite, the
modified β-spinel form of Mg$_2$SiO$_4$, was described by Putnis and Price (1979) and Price et al.
(1983) from the Tenham and Peace River (L6) chondrites. Impact wadsleyite has been reported
from more than a dozen varied meteorites (Tomioka and Miyahara 2017, Tables 2 and 3),
including shocked lunar and martian material (Malavergne et al. 2001). It evidently forms
through transformation from olivine along grain boundaries and fractures (Ozawa et al. 2009).

The Fe-rich analog of wadsleyite, asimowite, was characterized by Bindi et al. (2019) in
shock-melted silicate droplets of the Suizhou and Quebrada Chimborazo 001 chondrites. The
reported composition of impact asimowite,

[(Fe$_{1.10}$Mg$_{0.80}$Cr$_{0.04}$Mn$_{0.02}$Ca$_{0.02}$Al$_{0.02}$)(Si$_{0.97}$Al$_{0.03}$)O$_4$], is close to Fa$_{55}$. Given that a
continuous solid solution exists between the Mg and Fe end members (e.g., Presnall 1995), that
the only known example of asimowite is of intermediate composition and coexists with more
numerous grains of wadsleyite (Fo$_{30-45}$), and that all meteoritic wadsleyite and asimowite grains
were formed by similar shock processes, we lump asimowite with impact wadsleyite as a single
natural kind.

Ringwoodite \([\gamma-(\text{Mg,Fe})_2\text{SiO}_4]\) and **Ahrensite** \([\gamma-(\text{Fe,Mg})_2\text{SiO}_4]\): Binns et al. (1969) discovered *impact ringwoodite*, the spinel-type (\(\gamma\)) form of \(\text{Mg}_2\text{SiO}_4\) in a shock vein of the
Tenham (L6) chondrite, and was subsequently reported from shock veins in numerous meteorites (Coleman 1977; Miyahara et al. 2008; Feng et al. 2011; Pittarello et al. 2015; Tomioka and
Miyahara 2017, Tables 2 and 3). Impact ringwoodite also occurs as lamellae in meteoritic
olivine, from which it transformed either within olivine crystals or adjacent to grain boundaries
(Kerschhofer et al. 1996, 1998; Chen et al. 2004; Miyahara et al. 2010; Tomioka and Miyahara
2017). Compositions of impact ringwoodite vary from Fo\(_{82}\) to Fo\(_{46}\) (Kimura et al. 2003; Feng et
al. 2011; Ma et al. 2016; Tomioka and Miyahara 2017).

Ma et al. (2016) described an Fe-dominant analog of ringwoodite, named ahrensite, from the
Tissint martian meteorite – a mineral also previously reported from the Umbarger (L6) chondrite
by Xie et al. (2002b). Ahrensite of composition \([(\text{Fe}_{1.06}\text{Mg}_{0.91}\text{Mn}_{0.02})\text{SiO}_4]\), i.e., close to Fo\(_{45}\),
coexists with more numerous grains of ringwoodite with average compositions near Fo\(_{55}\)
\([(\text{Mg}_{1.11}\text{Fe}_{0.85}\text{Mn}_{0.02})\text{SiO}_4]\). In accordance with the conventions of our evolutionary system,
we lump all meteoritic examples of the solid solution between ahrensite and ringwoodite as a
single natural kind, *impact ringwoodite*.

Poirierite \([(\text{Mg,Fe})_2\text{SiO}_4]\): Tomioka et al. (2020) characterized *impact poirierite*, an
orthorhombic (space group \(Pmma\)) dense polymorph of forsterite from the Suizhou (L6)
chondrite. Details of composition, structure, and occurrence will be forthcoming.
Pyroxene Polymorphs $[(\text{Ca,Mg,Fe})_2\text{Si}_2\text{O}_6]$: Pyroxene group minerals experience a variety of transformations under shock conditions (e.g., Gasparik 1990). At temperatures above ~1600 °C and ~16 GPA, endmember orthoenstatite (MgSiO_3) transforms initially to the garnet polymorph majorite with mixed tetrahedral and octahedral Si. Above ~17 GPa, majorite transforms to the ilmenite structure, akimotoite, and above ~22 GPa the perovskite form, bridgmanite with all Si in octahedral coordination appears. At high pressure below ~1600 °C, enstatite dissociates to wadsleyite or ringwoodite plus the stishovite form of SiO$_2$, but bridgmanite is the stable phase above 22 GPa.

Additional complexities arise at lower pressures because orthoenstatite can partially to completely transform to clinoenstatite at pressures from 7 to 12 GPa, depending on temperature. This ortho- to clinoenstatite transformation is often blurred because lamellae of the two polymorphs can occur intimately intermixed in a disordered structure as the result of shock deformation.

Clinoenstatite (MgSiO_3): Impact clinoenstatite forms through the transformation of DA orthoenstatite to a disordered monoclinic structure (Reid and Cohen 1967; Tomioka and Fujino 1997; Rubin and Ma 2020).

Majorite (MgSiO_3): Mason et al. (1968) reported a high-pressure form of MgSiO$_3$ with the cubic (space group $Ia\overline{3}d$) garnet structure from a shock vein in the Coorara (L6) chondrite. This phase, which can be represented by the structural formula $[\text{Mg}_3(\text{MgSi})_3\text{Si}_3\text{O}_{12}]$, was subsequently named majorite by Smith and Mason (1970). Impact majorite has been identified in more than 20 meteorites (Tomioka and Miyahara 2017, Tables 2 and 3), with compositions both
close to the Mg-Fe join (Coleman 1977; Walton 2013; Kato et al. 2017) and in solid solution
with other garnet components, including pyrope (Mg$_3$Al$_2$Si$_3$O$_{12}$; Chen et al. 1996), almandine
(Fe$_3$Al$_2$Si$_3$O$_{12}$; Ma and Tschauner 2016), and calcic garnet (Xie and Sharp 2007).

The majorite story is complicated by the discovery of a few occurrences of unambiguously
tetragonal (space group $I4_1/a$) high-pressure garnets, in contrast to the familiar cubic symmetry
(Xie and Sharp 2007; Ma and Tschauner 2016; Tomioka et al. 2016) – a difference that is
difficult to document without electron diffraction of individual micrometer-scale grains. The
lower symmetry results from Mg-Si ordering in octahedral sites, which may be a pervasive
At this stage, we do not distinguish between completely disordered cubic majorite, which might
occur in some rapidly quenched examples, and the pseudo-cubic tetragonal variant, which would
obtain for samples with any degree of Mg-Si order.

Akimotoite [(Mg,Fe)SiO$_3$] and Hemleyite [(Fe,Mg)SiO$_3$]: The ilmenite structured
polymorph of enstatite was reported by Sharp et al. (1997) from the Acfer 040 (L5-6) chondrite
and by Tomioka and Fujino (1997) from the Tenham chondrite, and was subsequently named
akimotoite (Tomioka and Fujino 1999). Impact akimotoite is now known from at least 17
meteorites (Tomioka and Miyahara 2017, Tables 2 and 3), including examples with significant
Ca and minor Fe$^{3+}$ (Ohtani et al. 2004; Xie and Sharp 2004; Xie et al. 2006; Miyajima et al.
2007; Ferroir et al. 2008; Chen and Xie 2015). Tomioka (2017) revealed the transformation
mechanism from clinoenstatite to akimotoite as the result of oriented shear dislocations.

Bindi et al. (2017a, 2017b) described an Fe-dominant example of akimotoite in the shocked
Suizhou (L6) chondrite – a phase they named hemleyite. Analyses span the range from 45 to 50
mol % FeSiO$_3$, with 33 to 39 mol % MgSiO$_3$, compared to reported akimotoite compositions from 20 to 30 mol % FeSiO$_3$, with 62 to 78 mol % MgSiO$_3$ (Bindi et al. 2017a; Figure 5).

Because there appears to be a continuous akimotoite-hemleyite solid solution and all examples are formed by similar shock transformation of clinopyroxene, we lump hemleyite with *impact akimotoite*.

Bridgmanite [(Mg,Fe)SiO$_3$] and Hiroseite [(Fe,Mg)SiO$_3$]: Tschauner et al. (2014) characterized a natural occurrence of crystalline [(Mg,Fe)SiO$_3$] in the perovskite structure – a phase they named bridgmanite. The presence of this phase as a high-pressure shock mineral in meteorites was long suspected, based in part on amorphous regions of enstatite composition and the tendency of bridgmanite to invert to glass (Wang et al. 1992; Sharp et al. 1997), as well as transmission electron microscopy (TEM) evidence for the crystallinity of sub-micrometer grains of presumed MgSiO$_3$ perovskite coexisting with magnesiowüstite, which is the presumed post-ringwoodite assemblage (Tomioka and Fujino 1997).

Of note is the TEM description by Vollmer et al. (2007) of a 0.3-micrometer bridgmanite grain from the Acfer 094 carbonaceous chondrite. This grain has diagnostic isotopic anomalies, with extremely high $^{17}\text{O} / ^{16}\text{O}$ and low $^{18}\text{O} / ^{16}\text{O}$ characteristic of presolar grains from a low-mass AGB star. Consequently, Hazen and Morrison (2020) listed *AGB bridgmanite* as one of 41 stellar mineral natural kinds. However, we now consider this grain to be *impact bridgmanite* that formed from an isotopically anomalous *AGB enstatite* precursor grain.

Bindi and Xie (2019) and Bindi et al. (2020) characterized the Fe-dominant analog of bridgmanite of composition $[(\text{Fe}^{2+}_{0.44}\text{Mg}_{0.37}\text{Fe}^{3+}_{0.10}\text{Al}_{0.04}\text{Ca}_{0.03}\text{Na}_{0.02})(\text{Si}_{0.89}\text{Al}_{0.11})\text{O}_3]$, $^{17}\text{O} / ^{16}\text{O}$ and low $^{18}\text{O} / ^{16}\text{O}$ characteristic of presolar grains from a low-mass AGB star. Consequently, Hazen and Morrison (2020) listed *AGB bridgmanite* as one of 41 stellar mineral natural kinds. However, we now consider this grain to be *impact bridgmanite* that formed from an isotopically anomalous *AGB enstatite* precursor grain.
which they named hiroseite. Crystal inclusions in magnesiowüstite (~5-micrometers diameter) were found in the Suizhou (L6) chondrite in association with other high-pressure shock phases. Bindi et al. (2020) demonstrated that a significant fraction of iron in meteoritic bridgmanite undergoes charge disproportionation \((3\text{Fe}^{2+} \rightarrow \text{Fe}^{0} + 2\text{Fe}^{3+})\), consistent with earlier analyses of experimental samples (McCammon 1997; Fialin et al. 2009; Sinmyo et al. 2017). This effect should be more pronounced in Fe-rich silicate perovskite; however, unless evidence is presented for a miscibility gap in the \([(\text{Mg,Fe})\text{SiO}_3]\) solid solution, we lump all examples of meteoritic bridgmanite and hiroseite into impact bridgmanite.

Amorphous CaSiO\(_3\): Shock transformation of Ca-rich pyroxene above ~17 GPa leads to the formation of a high-pressure Mg-silicate (wadsleyite + stishovite; majorite; ringwoodite + stishovite; akimotoite; or bridgmanite, depending on the temperature and pressure), plus CaSiO\(_3\) perovskite (Akaogi et al. 2004). Therefore, perovskite-type CaSiO\(_3\) must have formed in many augite-rich meteorites. However, the crystalline phase is unstable at room conditions and inverts to amorphous CaSiO\(_3\) (Liu and Ringwood 1975) – a non-crystalline phase found in a number of meteorites (Tomioika and Kimura 2003; Xie and Sharp 2007), which we designate impact amorphous CaSiO\(_3\).

Tissintite \([(\text{Ca,Na,□})\text{AlSi}_2\text{O}_6]\): Ma et al. (2015) discovered a monoclinic (space group \(C2/c\)) defect pyroxene in the shocked Tissint martian meteorite. *Impact tissintite* has an unusual defect structure, with vacancies in the M2 site. The phase was subsequently synthesized at 6 to 8.5 GPa and 1000 to 1350 °C by Rucks et al. (2018), who suggest it forms naturally from inversion of maskelynite.
Unnamed \((\text{Mg,Fe})\text{SiO}_3\): Xie et al. (2011) presented TEM evidence for a high-pressure shock mineral with the olivine structure but with pyroxene stoichiometry from the Tenham (L6) chondrite. Further investigation of this intriguing phase, which we designate *impact unnamed* \((\text{Mg,Fe})\text{SiO}_3\), is warranted.

Feldspar Polymorphs \((\text{Ca,Na,K})\text{Al(Al,Si)Si}_2\text{O}_8\): Feldspar-group minerals undergo a variety of high-pressure phase transformations under shock conditions, including meteorite minerals with the pyroxene, hollandite, and calcium ferrite structures, as well as amorphous shock phases (Liu 1978, 2006; Yagi et al. 1994; Liu and El Goresy 2007; Ozawa et al. 2014; Zhou et al. 2017).

Jadeite \((\text{NaAlSi}_2\text{O}_6\): Albite transforms to jadeite plus a silica phase (quartz, coesite, or stishovite, depending on the maximum pressure) at pressures above ~2.5 GPa. Jadeite plus stishovite is the stable assemblage to at least 20 GPa, above which pressure jadeite transforms to the calcium ferrite structure. Consequently, *impact jadeite* is known from numerous meteorites (Kimura et al. 2000; Ohtani et al. 2004; Ozawa et al. 2009, 2014; Tomioka and Miyahara 2017, Table 2). In some instances, jadeite may represent a back reaction from crystallization of maskelynite (Miyahara et al. 2013b).

Maskelynite \((\text{Ca,Na})\text{Al(Al,Si)Si}_2\text{O}_8\): The amorphous phase of plagioclase, *impact maskelynite*, is found in numerous shocked anorthite-bearing meteorites (Ostertag 1983; Stöffler et al. 1986, 1991; Brearley and Jones 1998; Mittlefehldt et al. 1998; Rubin 2015b; Rubin and Ma 2020).

Lingunite \((\text{Na,Ca})\text{AlSi}_3\text{O}_8\): Alkali feldspars with the hollandite structure do not appear to have a high-pressure stability field; however, they can be quenched metastably from high...
pressure (Liu 2006; Zhou et al. 2017). The Na-rich endmember, first synthesized by Liu (2006),
was characterized by Gillet et al. (2000) from the Sixiangkou meteorite and subsequently named
lingunite. Natural examples of impact lingunite have been described from at least 20 shocked
meteorites (Tomioka and Miyahara 2017, Tables 2 and 3).

Liebermannite [(K,Na)AlSi$_3$O$_8$]: A high-pressure hollandite structure polymorph of
KAlSi$_3$O$_8$ was reported by Langenhorst and Poirier (2000) from the shocked Zagami meteorite –
a phase synthesized by Liu and El Goresy (2007). Ma et al. (2018) characterized the mineral and
named it liebermannite. *Impact liebermannite* with average composition
[(K$_{0.6}$Na$_{0.2}$Ca$_{0.1}$)AlSi$_3$O$_8$] is found in close association with lingunite and maskelynite, both
with compositions close to ~[Na$_{0.5}$K$_{0.02}$Ca$_{0.4}$]Al(Al$_{0.35}$Si$_{2.65}$O$_8$).

Stöfflerite (CaAl$_2$Si$_2$O$_8$): The hollandite-structured high-pressure polymorph of anorthite
was recognized by Spray and Boonsue (2016) from Raman spectra of material from a terrestrial
impact structure. *Impact stöfflerite* was subsequently characterized by Tschauner and Ma (2017)
from the NWA 856 martian meteorite.

Other Silicates

Cordierite (Mg$_2$Al$_4$Si$_5$O$_{18}$): *Impact cordierite* is a rare phase in meteorites, first reported by
Fuchs (1969b) from an unusual CAI in the Allende meteorite. It was subsequently identified in
the Chaunskij anomalous mesosiderite, which was estimated to have equilibrated at 0.6 GPa
(Petaev et al. 2000). Cordierite typically forms at pressures above 0.2 GPa (e.g., Deer et al.
1962), which is significantly greater than those of asteroid interiors; we thus assume a shock
origin.
Zagamiite (CaAl$_{2}$Si$_{3.5}$O$_{11}$): Ma and colleagues (Ma and Tschauner 2017; Ma et al. 2017b, 2019b) characterized a high-pressure calcium aluminosilicate (CaAl$_{2}$Si$_{3.5}$O$_{11}$) found in shocked martian meteorites. Impact zagamiite was originally recognized by its distinctive Raman spectrum (Beck et al. 2004). This phase was synthesized by Irifune et al. (1994), who called it “CAS.” It forms when calcic plagioclase is subjected to shock pressures greater than ~22 GPa (Akaogi et al. 2010).

Unnamed [(Fe,Mg,Cr,Ti,Ca,□)$_2$(Si,Al)O$_4$]: Ma et al. (2019c) described a new high-pressure silicate phase, impact (Fe,Mg,Cr,Ti,Ca,□)$_2$(Si,Al)O$_4$ with a tetragonal spinelloid structure, in a shock melt pocket from the Tissint Martian meteorite.

Unnamed [(Mg,Fe,Si)$_2$(Si,□)O$_4$]: Ma et al. (2019d) reported a vacancy-rich, partially inverted spinelloid silicate, impact (Mg,Fe,Si)$_2$(Si,□)O$_4$, as a major matrix phase in shock melt veins of the Tenham and Suizhou L6 chondrites.

IMPLICATIONS

Cosmic mineral evolution played out in a succession of stages, each of which explored new regimes of temperature, pressure, and composition, while adding to the diversity of condensed solid phases. The 130 meteorite minerals reviewed above (Tables 1 and 2) complement the 41 stellar natural kinds (Hazen and Morrison 2020), 67 interstellar and primary nebular condensates (Morrison and Hazen 2020), and 44 primary chondrule minerals (Hazen et al. 2021) described in earlier parts of this series.
In Part IV of the evolutionary system of mineralogy we encounter pressures significantly above 1 atmosphere for the first time, both in the contexts of asteroidal interiors (to $P < 0.5$ Gpa) and via shock events (to $P > 30$ GPa). The resulting inventory of meteorite minerals includes 90 kinds formed by primary asteroidal processes, as well as 40 high-pressure impact minerals. These 130 mineral natural kinds encompass 127 approved IMA mineral species, 10 of which are lumped with other species and thus do not appear as separate natural kinds in Tables 1 and 2. In addition, we include 7 crystalline phases, either not recognized as valid IMA species (e.g., fassaite; magnesiowüstite; martensite) or awaiting possible approval (e.g., unnamed CuCrS$_2$ and Mg-Fe silicates), as well as 6 amorphous phases.

Asteroidal processes resulted in many new mineral phases. Of the 90 primary asteroidal natural kinds (Table 1), 48 minerals appear for the first time, including the earliest known members of the apatite and amphibole groups, as well as zircon, potassic feldspar, and numerous phosphate minerals. Of the 40 impact minerals listed in Table 2, 38 occur for the first time; only diamond and clinopyroxene also formed previously at low pressure. This total of 86 new minerals in Part IV almost doubles the total of 181 phases tabulated to this stage of mineral evolution.

The observed diversity and distribution of asteroidal minerals appears to be consistent with previous studies in “mineral ecology,” by which patterns of mineral occurrences on Earth can be used to document the relative frequencies of common versus rare species, as well as to predict Earth’s “missing” minerals (Hazen et al. 2015a, 2015b, 2016; Hystad et al. 2015a, 2015b, 2017, 2019; Grew et al. 2017). Earlier studies demonstrate that the great majority of mineral occurrences (defined as a specific mineral species from one locality) represent a few abundant minerals, whereas the great majority of mineral species are rare (i.e., known from only a few
localities). Meteorite minerals are no exception to this trend. Of the 90 asteroidal primary minerals, fewer than 20 phases constitute 99.9 volume percent of almost all non-chondritic meteorites. By contrast, more than 50 of these minerals are rare and have only been reported as sub-millimeter- to sub-micrometer-scale grains, with at least two dozen of those phases only known as sub-micron crystals from a single meteorite. Accordingly, we estimate that the documented collective mass of these >50 rarest differentiated asteroidal minerals is no more than a few milligrams. We suggest that further statistical study of the diversity and distribution of meteorite minerals, employing the methods of mineral ecology, might provide estimates of the total diversity of meteorite minerals.

The characteristic “Large Numbers of Rare Events” (LNRE) distribution of minerals (Hystad et al. 2015a) observed for many mineralogical environments demonstrates that rare minerals play a disproportionate role in understanding natural processes (Hazen and Ausubel 2016), not unlike the role of trace elements and isotopes in petrology and geochemistry. In meteorites, rare minerals and their LNRE distributions document details of evolving pressure-temperature-composition niches and the important influence of transient and disequilibrium events, while revealing many remarkable new structural topologies and compositional permutations. Furthermore, in the case of shock-induced minerals, phases that are intrinsically rare at Earth’s surface provide perhaps our best natural view of mantle minerals that represent more than half of Earth’s volume (Tschauner 2019). In Part V of this series, which will focus on secondary meteorite minerals formed by a range of aqueous and thermal processes, we will find a significant pulse of new phases characterized by the same type of skewed distribution – a few common kinds accompanied by many more rare minerals.
ACKNOWLEDGMENTS

We are deeply grateful to Chi Ma, David Mittlefehldt, and Steven Simon, who provided detailed, thoughtful, and constructive reviews that significantly improved the manuscript. In addition, Timothy McCoy and Alan Rubin offered invaluable detailed reviews of an earlier version of this contribution, while McCoy contributed photographs of important meteorite specimens. Luca Bindi, Chi Ma, and Alan Rubin provided access to highly relevant work in press. We are grateful to Asmaa Boujibar, Carol Cleland, Robert T. Downs, Olivier Gagné, Peter Heaney, Sergey Krivovich, Glenn MacPherson, Anirudh Prabhu, Michael Walter, and Shuang Zhang for thoughtful discussions and comments.

This publication is a contribution to the Deep Carbon Observatory, the 4D Initiative, and the Deep-time Digital Earth (DDE) program. Studies of mineral evolution and mineral ecology have been supported by the Deep Carbon Observatory, the Alfred P. Sloan Foundation, the W. M. Keck Foundation, the John Templeton Foundation, the NASA Astrobiology Institute ENIGMA team, a private foundation, and the Carnegie Institution for Science. Any opinions, findings, or recommendations expressed herein are those of the authors and do not necessarily reflect the views of the National Aeronautics and Space Administration.
References

Bindi, L., Steinhardt, P.J., Yao, N., and Lu, P.J. (2011) Icosahedrite, Al$_{63}$Cu$_{24}$Fe$_{13}$, the first natural quasicrystal. American Mineralogist, 96, 928-931.

Bindi, L., Lin, C., Ma, C., and Steinhardt, P.J. (2016) Collisions in outer space produced an icosahedral phase in the Khatyrka meteorite never observed previously in the laboratory. Scientific Reports, 6, 38117.

silicate droplets of the Suizhou L6 and the Quebrada Chimborazo 001 CB3.0 chondrites.

American Mineralogist, 104, 775-778.

Britvin, S.N., Shilovskikh, V.V., Pagano, R., Vlasenko, N.S., Zaitsev, A.N., Krzhizhanovskaya, M.G., Lozhkin, M.S., Zolotarev, A.A., and Gurzhiy, V.V. (2019) Allabogdanite, the high-pressure polymorph of (Fe,Ni)$_2$P, a stishovite-grade indicator of impact processes in the Fe–Ni–P system. Scientific Reports, 9, 1047 (8 p.).

Britvin, S.N., Krivovichev, S.V., Obolonskaya, E.V., Vlasenko, N.S., Bocharov, V.N., and Bryukhanova, V.V. (2020b) Xenophyllite, Na$_4$Fe$_7$(PO$_4$)$_6$, an exotic meteoritic phosphate:
New mineral description, Na-ions mobility and electrochemical implications. Minerals, 10, 300 (13 pp.).

magnesiowustite assemblage: Constraints on the history of shock veins in chondrites. Science
271, 1570-1573.

Chen, M., Shu, J., Mao, H.-K., Xie, X., and Hemley, R.J. (2003a) Natural occurrence and
synthesis of two new post-spinel polymorphs of chromite. Proceedings of the National
Academy of Sciences (USA), 100, 14651–14654.

Chen, M., Shu, J., Xie, X., and Mao, H.-K. (2003b) Natural CaTi$_2$O$_4$-structured FeCr$_2$O$_4$
polymorph in the Suizhou meteorite and its significance in mantle mineralogy. Geochimica et

ringwoodite phase transition mechanisms in shocked meteorites and subducting slabs.
Proceedings of the National Academy of Sciences USA, 101, 15033–15037.

Chen, M., Shu, J., and Mao, H.K. (2008) Xieite, a new mineral of high-pressure FeCr$_2$O$_4$

in shocked gneiss from the Xiuyan crater in China. Meteoritics & Planetary Science, 54, 495-
502.

Science, 132, 220-222.

El Goresy, A., Dera, P., Sharp, T.G., Prewitt, C.T., Chen, M., Dubrovinsky, L., Wopenka, B.,
Boctor, N.Z., and Hemley, R.J. (2008) Seifertite, a dense orthorhombic polymorph of silica
from the Martian meteorites Shergotty and Zagami. European Journal of Mineralogy, 20, 523-
528.

dense polymorph of TiO$_2$ with the baddeleyite-type structure, in shocked garnet gneiss from
the Ries Crater, Germany. American Mineralogist, 95, 892-895.

feldspathic and metallic melts by shock in enstatite chondrite Reckling Peak A80259.

Fahey, J.J. (1964) Recovery of coesite and stishovite from Coconino Sandstone of Meteor
Crater, AZ. American Mineralogist, 49, 1643-1647.

ringwoodite in the heavily shocked Grove Mountains 052049 meteorite from Raman spectra.
American Mineralogist, 96, 1480–1489.

Ferroir, T., Beck, P., Van de Moortèle, B., Bohn, M., Reynard, B., Simonovici, A., El Goresy,
A., and Gillet, P. (2008) Akimotoite in the Tenham meteorite: Crystal chemistry and high-

Fialin, M., Catillon, G., and Andrault, D. (2009) Disproportionation of Fe$^{2+}$ in Al-free silicate
perovskite in the laser heated diamond anvil cell as recorded by electron probe microanalysis

Heinemann, S., Sharp, T.G., Seifert, F., and Rubie, D.C. (1997) The cubic-tetragonal phase transition in the system majorite (Mg$_4$Si$_4$O$_{12}$)–pyrope (Mg$_3$Al$_2$Si$_3$O$_{12}$), and garnet symmetry in the Earth’s transition zone. Physics and Chemistry of Minerals, 24, 206–221.

Hwang, S.L., Shen, P., Chu, H.T., Yui, T.F., Varela, M.E., and Iizuka, Y. (2016) Kuratite, Ca$_4$(Fe$_{10}^{2+}$Ti$_2$)O$_4$[Si$_8$Al$_4$O$_{36}$], the Fe$^{2+}$-analogue of rhönite, a new mineral from the D’Orbigny angrite meteorite. Mineralogical Magazine, 80, 1067-1076.

Hwang, S.L., Shen, P., Chu, H.T., Yui, T.F., Varela, M.E., and Iizuka, Y. (2019) New minerals tsangpoite Ca$_5$(PO$_4$)$_2$(SiO$_4$) and matyhite Ca$_9$(Ca$_{0.5}$Fe$_{0.5}$)Fe(PO$_4$)$_7$ from the D’Orbigny angrite. Mineralogical Magazine, 83, 293-313.

Ma, C. and Tschauner, O. (2016) Discovery of tetragonal almandine, (Fe,Mg,Ca,Na)$_3$(Al,Si,Mg)$_2$Si$_3$O$_{12}$, a new high-pressure mineral in Shergotty. Meteoritics & Planetary Science, 51, Supplement 1, #6124.

Ma, C., Lin, C., Bindi, L., and Steinhardt, P. J. (2017a) Hollisterite (Al$_3$Fe), kryachkoite (Al,Cu)$_6$(Fe,Cu), and stolperite (AlCu): Three new minerals from the Khatyrka CV3 carbonaceous chondrite. American Mineralogist, 102, 690-693.

Ma, C., Tschauner, O., and Beckett, J.R. (2019c) Discovery of a new high-pressure silicate phase, (Fe,Mg,Cr,Ti,Ca,□)\textsubscript{2}(Si,Al)O\textsubscript{4} with a tetragonal spinelloid structure, in a shock melt pocket from the Tissint Martian meteorite. Lunar and Planetary Science Conference, 50, 1460.

Niemeyer, S. (1979b) 40Ar-39Ar dating of inclusions from IAB iron meteorites. Geochimica et Cosmochimica Acta, 43, 1829-1840.

103, 1516–1519.

Protoplanetary Disk Processes. Cambridge University Press.

Ruzicka, A. (2014) Silicate-bearing iron meteorites and their implications for the evolution of
asteroidal parent bodies. Chemie der Erde, 74, 3-48.

Sack, R.O., and Ghiorso, M.S. (2017) Ti$^{3+}$- and Ti$^{4+}$-rich fassaites at the birth of the solar

et Cosmochimica Acta, 36, 1205–1236.

Scott, E.R.D. (1977a) Pallasites-metal composition, classification and relationships with iron

Cosmochimica Acta, 41, 693–710.

<table>
<thead>
<tr>
<th>Page</th>
<th>Reference</th>
</tr>
</thead>
</table>

occurrence and implications of carbide-magnetite assemblages in unequilibrated ordinary

Tomioka, N., and Fujino, K. (1997) Natural (Mg,Fe)SiO₃-ilmenite and -perovskite in the

Tomioka, N., and Fujino, K. (1999) Akimotoite, (Mg,Fe)SiO₃, a new silicate mineral of the

Tomioka, N., and Miyahara, M. (2017) High-pressure minerals in shocked meteorites:

structural phase transition in (Mg,Fe)SiO₃ majorite. European Journal of Mineralogy, 14, 7–
14.

Tomioka, N., Okuchi, T., Iitaka, T., Miyahara, M., Bindi, L., and Xie, X. (2020) Poirierite, IMA

<table>
<thead>
<tr>
<th>Group</th>
<th>Species (Formula)</th>
<th>Natural Kind</th>
<th>Characteristics</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>NATIVE ELEMENTS AND ALLOYS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iron or “kamacite” (α-Fe,Ni)</td>
<td>DA iron</td>
<td></td>
<td>The most abundant metal phase in most iron and stony-iron meteorites, typically with ~6 wt. % Ni.</td>
<td>1-6</td>
</tr>
<tr>
<td>Taenite (γ-Fe,Ni)</td>
<td>DA taenite</td>
<td></td>
<td>A common Fe-Ni alloy with 25 to 35 wt % Ni; exsolves from DA iron to form Widmanstätten patterns.</td>
<td>1,2,4,5,7</td>
</tr>
<tr>
<td>Tetrataenite (Fe,Ni)</td>
<td>DA tetrataenite</td>
<td></td>
<td>An ordered tetragonal (P4/mmm) phase of Fe-Ni</td>
<td>7,8</td>
</tr>
<tr>
<td>Awaruite (Ni$_2$Fe to Ni$_3$Fe)</td>
<td>DA awaruite</td>
<td></td>
<td>Forms thin layer that separate tetrataenite from kamacite in Widmanstätten patterns of some iron meteorites</td>
<td>7,9</td>
</tr>
<tr>
<td>Copper (Cu)</td>
<td>DA copper</td>
<td></td>
<td>A rare accessory phase in enstatite achondrites (aubrites)</td>
<td>3,10</td>
</tr>
<tr>
<td>Graphite (C)</td>
<td>DA graphite</td>
<td></td>
<td>A common accessory phase in iron meteorites</td>
<td>4,11,12</td>
</tr>
<tr>
<td>CARBIDES</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cohenite [(Fe,Ni)$_3$C]</td>
<td>DA cohenite</td>
<td></td>
<td>A common accessory phase in iron meteorites</td>
<td>1,13</td>
</tr>
<tr>
<td>Haxonite [(Fe,Ni)$_{23}$C$_6$]</td>
<td>DA haxonite</td>
<td></td>
<td>An accessory mineral in some iron meteorites</td>
<td>4,14</td>
</tr>
<tr>
<td>Edscottite (Fe$_5$C$_2$)</td>
<td>DA edscottite</td>
<td></td>
<td>A rare phase in iron meteorites</td>
<td>15,16</td>
</tr>
<tr>
<td>SILICIDES</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perryite [(Ni,Fe)$_9$(Si,P)$_3$]</td>
<td>DA perryite</td>
<td></td>
<td>A minor accessory phase in enstatite achondrites</td>
<td>3,17</td>
</tr>
<tr>
<td>Carletonmooreite (Ni$_3$Si)</td>
<td>DA carletonmooreite</td>
<td></td>
<td>A rare phase from the Norton County aubrite</td>
<td>18</td>
</tr>
<tr>
<td>PHOSPHIDES</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schreibersite [(Fe,Ni)$_3$P]</td>
<td>DA schreibersite</td>
<td></td>
<td>The most important P-bearing phase in iron meteorites</td>
<td>1,3,4,19</td>
</tr>
<tr>
<td>Barringerite [(Fe,Ni)$_2$P]</td>
<td>DA barringerite</td>
<td></td>
<td>A rare phase in pallasites and iron meteorites</td>
<td>20,21</td>
</tr>
<tr>
<td>NITRIDES</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Osbornite (TiN)</td>
<td>DA osbornite</td>
<td></td>
<td>An occasional accessory mineral in enstatite achondrites</td>
<td>3,22</td>
</tr>
<tr>
<td>Carlsbergite (CrN)</td>
<td>DA carlsbergite</td>
<td></td>
<td>A rare accessory mineral in enstatite achondrites</td>
<td>23,24</td>
</tr>
<tr>
<td>Uakitite (VN)</td>
<td>DA uakatite</td>
<td></td>
<td>A rare accessory mineral in the Uakit (IIAB) iron meteorite</td>
<td>25</td>
</tr>
<tr>
<td>Roaldite [(Fe,Ni)$_4$N]</td>
<td>DA roaldite</td>
<td></td>
<td>A scarce phase in iron meteorites</td>
<td>26</td>
</tr>
<tr>
<td>Sinoite (Si$_2$N$_2$O)</td>
<td>DA sinoite</td>
<td></td>
<td>A minor phase in the Zakłodzie enstatite achondrite</td>
<td>27</td>
</tr>
<tr>
<td>SULFIDES</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This is the peer-reviewed, final accepted version for American Mineralogist, published by the Mineralogical Society of America. The published version is subject to change. Cite as Authors (Year) Title. American Mineralogist, in press. DOI: https://doi.org/10.2138/am-2021-7632. http://www.minsocam.org/ Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld
Troilite (FeS)

DA troilite

The most common sulfide phase in iron meteorites; also in stony-iron meteorites and achondrites.

NaCl-type Monosulfide Group [(Mg,Fe,Ca,Mn)S]

<table>
<thead>
<tr>
<th>Phase</th>
<th>DA Name</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Niningerite [(Mg,Fe)S]</td>
<td>DA niningerite</td>
<td>Found in enstatite achondrites in association with other sulfides 27,33</td>
</tr>
<tr>
<td>Oldhamite (CaS)</td>
<td>DA oldhamite</td>
<td>Found in many enstatite achondrites with other sulfides 3,34</td>
</tr>
<tr>
<td>Alabandite (MnS)</td>
<td>DA alabandite</td>
<td>Found in many enstatite achondrites with other sulfides 3,35</td>
</tr>
</tbody>
</table>

Sphalerite Monosulfide Group [(Zn,Fe,Mn)S]

<table>
<thead>
<tr>
<th>Phase</th>
<th>DA Name</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sphalerite (ZnS)</td>
<td>DA sphalerite</td>
<td>A rare phase in iron meteorites, possibly exsolved from alabandite 10</td>
</tr>
<tr>
<td>Browneite (MnS)</td>
<td>DA browneite</td>
<td>A minor phase in the Zakłodzie enstatite achondrite 37</td>
</tr>
<tr>
<td>Buseckite [(Fe,Zn,Mn)S]</td>
<td>DA buseckite</td>
<td>A minor phase in the Zakłodzie enstatite achondrite 27</td>
</tr>
</tbody>
</table>

Thiospinel Group [(Fe,Mn,Cr,Zn)Cr$_2$S$_4$]

<table>
<thead>
<tr>
<th>Phase</th>
<th>DA Name</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daubréelite (FeCr$_2$S$_4$)</td>
<td>DA daubréelite</td>
<td>A common minor phase in iron and achondrite meteorites 1,3,29</td>
</tr>
<tr>
<td>Joegoldsteinite (MnCr$_2$S$_4$)</td>
<td>DA joegoldsteinite</td>
<td>Found in the Social Circle (IVA) iron meteorite 38</td>
</tr>
<tr>
<td>Kalininite (ZnCr$_2$S$_4$)</td>
<td>DA kalininite</td>
<td>Discovered as a trace phase in the Uakit (IIAB) iron meteorite 39</td>
</tr>
</tbody>
</table>

Wilkmanite Group [(Fe,Cr)(Fe,Cr,Ti)$_2$S$_4$]

<table>
<thead>
<tr>
<th>Phase</th>
<th>DA Name</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brezinaite (Cr$_3$S$_4$)</td>
<td>DA brezinaite</td>
<td>A rare phase in iron and ureilite meteorites 40,41</td>
</tr>
<tr>
<td>Heideite [(Fe,Cr)$_{1.15}$(Ti,Fe)$_2$S$_4$]</td>
<td>DA heideite</td>
<td>Found in the Bustee enstatite achondrites with other sulfides 3,42</td>
</tr>
</tbody>
</table>

Other Sulfides

<table>
<thead>
<tr>
<th>Phase</th>
<th>DA Name</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pentlandite [(Ni,Fe)$_9$S$_8$]</td>
<td>DA pentlandite</td>
<td>A rare phase in brachinites, coexisting with taenite and troilite 30,43</td>
</tr>
<tr>
<td>Caswellsilverite (NaCr$_2$S$_2$)</td>
<td>DA caswellsilverite</td>
<td>Occurs as inclusions in oldhamite in the Norton County aubrite 3,44</td>
</tr>
<tr>
<td>Unnamed (CuCr$_2$S$_2$)</td>
<td>DA CuCr$_2$S$_2$</td>
<td>A single occurrence from the Uakit (IIAB) iron meteorite 40</td>
</tr>
<tr>
<td>Djerfisherite [K6(Fe,Cu,Ni)${25}$S$_{26}$Cl]</td>
<td>DA djerfisherite</td>
<td>Found in enstatite achondrites with other sulfides 3,45</td>
</tr>
</tbody>
</table>

Phosphates

<table>
<thead>
<tr>
<th>Phase</th>
<th>DA Name</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorapatite [Ca$_5$(PO$_4$)$_3$Cl]</td>
<td>DA chlorapatite</td>
<td>A common phosphate in iron and achondrite meteorites 4,30,46, 47</td>
</tr>
<tr>
<td>Whitlockite [Ca$_9$Mg(PO$_3$OH)(PO$_4$)$_6$]</td>
<td>DA whitlockite</td>
<td>A common phosphate in non-chondritic meteorites 1,46,48-53</td>
</tr>
<tr>
<td>Matyhite [Ca9(Ca${0.5}$[$\frac{\mu_3}{2}$]${0.5}$Fe)${17}$PO$_4$]</td>
<td>DA matyhite</td>
<td>A rare phase from the D’Orbigny angrite 54</td>
</tr>
<tr>
<td>Graftonite [(Fe,Mn)$_3$(PO$_4$)$_3$]</td>
<td>DA graftonite</td>
<td>Occurs in troilite nodules in iron meteorites; often Mn-rich 55</td>
</tr>
<tr>
<td>Farringtonite [(Fe,Mn)$_3$(PO$_4$)$_3$]</td>
<td>DA farringtonite</td>
<td>Found in pallasites with fairfieldite and whitlockite 2,56</td>
</tr>
<tr>
<td>Sarcopside [(Fe,Mn)$_3$(PO$_4$)$_3$]</td>
<td>DA sarcopside</td>
<td>Occurs in troilite nodules of iron meteorites 57</td>
</tr>
</tbody>
</table>
Stanfieldite [Ca$_4$Mg$_5$(PO$_4$)$_6$] | DA stanfieldite | A minor phase in pallasites | 2,56,58
Buchwaldite (NaCaPO$_4$) | DA buchwaldite | From troilite nodules in the Cape York (IIIAB) iron meteorite | 10,59
Marićite (NaFePO$_4$) | DA maricite | From troilite nodules in the Cape York (IIIAB) iron meteorite | 10
Moraskoite [Na$_2$Mg(PO$_4$)$_6$F] | DA moraskoite | A rare phase in the Morasko (IAB) iron meteorite | 60
Xenophyllite [Na$_4$Fe$_7$(PO$_4$)$_6$] | DA xenophyllite | A rare phase in the Austinovka (IIB) iron meteorite | 61
Brianite [Na$_2$CaMg(PO$_4$)$_2$] | DA brianite | | 46,62,63
Panethite [Na$_2$(Fe,Mn)$_2$(PO$_4$)$_2$] | DA panethite | A rare phase in the Dayton (IAB) iron meteorite | 46,62,64
Johnsomervilleite [Na$_2$Ca(Fe,Mg,Mn)$_7$(PO$_4$)$_6$] | DA johnsomervilleite | | 57,65
Chladniite [Na$_2$FeMg(PO$_4$)$_6$] | DA Chladniite | | 64
Oxides

Oxides Spinel Group [(Mg,Fe$^{2+}$)$_2$(Al,$^{3+}$Cr$^{3+}$,Ti)$_2$O$_4$]

Chromite (Fe$^{3+}$Cr$_2$O$_4$) | DA chromite | Often the most abundant oxide; found in all meteorite groups | 1,2,4,31,43,66
Magnetite (Fe$_3$O$_4$) | DA magnetite | An accessory phase in angrites | 67,68
Hercynite (Fe$^{2+}$Al$_2$O$_4$) | DA hercynite | A minor phase in angrites | 67,68
Ulvöspinel (Fe$^{2+}$Ti$_2$O$_4$) | DA ulvöspinel | A minor phase in angrites | 69

Other Oxides

Ilmenite (FeTiO$_3$) | DA ilmenite | Reported from diogenites, eucrites, and iron meteorites | 48,70-72
Corundum (Al$_2$O$_3$) | DA corundum | One report from the LEW 88774 Cr-rich ureilite | 73
Eskolaite (Cr$_2$O$_3$) | DA eskolaite | One report from the LEW 88774 Cr-rich ureilite | 74
Rutile (TiO$_2$) | DA rutile | A minor phase in the Sombrerete (IAB) iron meteorite | 48
Baddeleyite (ZrO$_2$) | DA baddeleyite | Found in the Angra dos Reis angrite as a minor phase | 67
Perovskite (CaTiO$_3$) | DA perovskite | One report from an oxide inclusion in aubrite ALH 84008 | 75
Geilkeilite (MgTiO$_3$) | DA geilkeilite | One report from an oxide inclusion in aubrite ALH 84008 | 75
Armalcolite [(Mg,Fe$^{2+}$)$_5$Ti$_2$O$_5$] | DA armalcolite | A rare phase in silicate inclusions of iron meteorites | 72,76

Silicates

Silica Group (SiO$_2$)

Tridymite (SiO$_2$) | DA tridymite | Tridymite is the commonest silica polymorph; it is found in | 1,4,48,71,77
<table>
<thead>
<tr>
<th>Mineral Group</th>
<th>Mineral Formula</th>
<th>Mineral Name</th>
<th>Description</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Olivine Group</td>
<td>[(Mg,Fe,Ca){2}SiO{4}]</td>
<td>Forsterite</td>
<td>[(Mg,Fe){2}SiO{4}]</td>
<td>DA forsterite</td>
</tr>
<tr>
<td>Pyroxene Group</td>
<td>[(Ca,Mg,Fe,Ti,Al){2}(Al,Si){2}O_{6}]</td>
<td>Orthoenstatite</td>
<td>(MgSiO_{3})</td>
<td>DA orthoenstatite</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pigeonite</td>
<td>[(Mg,Fe,Ca)SiO_{3}]</td>
<td>DA pigeonite</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Augite</td>
<td>[(Ca,Mg,Fe)Si_{2}O_{6}]</td>
<td>DA augite</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hedenbergite</td>
<td>(CaFeSi_{2}O_{6})</td>
<td>DA hedenbergite</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fassaite</td>
<td>[Ca(Mg,Al,Ti^{3+},Ti^{4+})(Al,Si)SiO_{6}]</td>
<td>DA fassaite</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Kosmochlor</td>
<td>(NaCr^{3+}SiO_{6})</td>
<td>DA kosmochlor</td>
</tr>
<tr>
<td>Amphibole Group</td>
<td></td>
<td>Fluoro-richterite</td>
<td>[Na(NaCa)Mg_{8}Si_{8}O_{22}F_{2}]</td>
<td>DA fluoro-richterite</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Kaersutite</td>
<td>[NaCa_{2}(Mg_{3}Al_{4+})(Si_{6}Al_{2})O_{22}O_{2}]</td>
<td>DA kaersutite</td>
</tr>
<tr>
<td>Feldspar Group</td>
<td>[(Ca,Na,K)Al(Al,Si){2}O{8}]</td>
<td>Anorthite</td>
<td>(CaAl_{2}Si_{2}O_{8})</td>
<td>DA anorthite</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Albite</td>
<td>(NaAl_{3}SiO_{8})</td>
<td>DA albite</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sanidine</td>
<td>(KAl_{3}SiO_{8})</td>
<td>DA sanidine</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Celsian</td>
<td>(BaAl_{2}Si_{2}O_{8})</td>
<td>DA celsian</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Feldspathic glass</td>
<td>(Na,K,Ca,Al,Si)</td>
<td>DA feldspathic glass</td>
</tr>
</tbody>
</table>

Other Silicates
Zircon (ZrSiO$_4$) DA zircon A rare phase in basaltic meteorite lithologies 83,98,99

Tranquillityite [Fe$_{2+}$Ti$_3$Zr$_2$Si$_3$O$_{24}$] DA tranquillityite One occurrence from NWA 11119 Si-rich achondrite 83

Yagiite [NaMg$_7$(AlMg$_{2}$Si$_{17}$)O$_{34}$] DA yagiite A rare phase in iron meteorites 72,100

Kuratite [Ca$_2$(Fe$_{2+}$Ti$^{3+}$)Si$_4$O$_{18}$] DA kuratite Known only from the D’Orbigny angrite 101

Krinovite [Na$_4$(Mg$_8$Cr$^{3+}$$_4$)O$_4$(Si$_{12}O_{36}$)] DA krinovite A rare mineral in iron meteorites 89

Roedderite [(Na,K)$_2$Mg$_5$Si$_{12}$O$_{30}$] DA roedderite A rare mineral in iron and enstatite achondrite meteorites 89,102,103

ORGANIC SOLIDS

Kerogen (C-H-O-N) DA kerogen An important carbon-bearing phase in many ureilites 104

Table 2. Summary of 38 high-pressure impact phases in meteorites

<table>
<thead>
<tr>
<th>Group</th>
<th>Species (Formula)</th>
<th>Natural Kind</th>
<th>Characteristics</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>NATIVE ELEMENTS AND ALLOYS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Martensite (α²-Fe,Ni)</td>
<td>Impact martensite</td>
<td>Common in shocked meteorites; typically 8-15 wt. % Ni</td>
<td>1-3</td>
<td></td>
</tr>
<tr>
<td>Diamond (C)</td>
<td>Impact diamond</td>
<td>Often occurs as “lonsdaleite” with stacking faults</td>
<td>2,4-6</td>
<td></td>
</tr>
<tr>
<td>Chaoite (C)</td>
<td>Impact chaoite</td>
<td>Occurs in carbon-rich ureilite achondrites</td>
<td>7,8</td>
<td></td>
</tr>
<tr>
<td>SULFIDES</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Suessite (Fe₃Si)</td>
<td>Impact suessite</td>
<td>A frequent minor phase in ureilites</td>
<td>9,10</td>
<td></td>
</tr>
<tr>
<td>Xifengite (Fe₅Si₃)</td>
<td>Impact xifengite</td>
<td>A rare phase in ureilites, in association with suessite</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>PHOSPHIDES</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Allabogdanite [(Fe,Ni)₂P]</td>
<td>Impact allabogdanite</td>
<td>Occurs in shocked iron meteorites</td>
<td>11-13</td>
<td></td>
</tr>
<tr>
<td>SULFIDES</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shenzhuangite (NiFeS₂)</td>
<td>Impact shenzhuangite</td>
<td>One occurrence in the Suizhou (L6) chondrite</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>PHOSPHATES</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tuite [γ-Ca₃(PO₄)₂]</td>
<td>Impact tuite</td>
<td>One occurrence in the Suizhou (L6) chondrite</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>OXIDES</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magnesiowüstite [(Mg,Fe)O]</td>
<td>Impact magnesiowüstite</td>
<td>In shocked chondrites in association with Mg-Fe-silicates</td>
<td>16,17</td>
<td></td>
</tr>
<tr>
<td>Wangdaodeite (FeTiO₃)</td>
<td>Impact wangdaodeite</td>
<td>One occurrence in the Suizhou (L6) chondrite</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>Liuite (FeTiO₂)</td>
<td>Impact liuite</td>
<td>From the shocked Tissint martian meteorite</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>Chenmingite (FeCr₂O₄)</td>
<td>Impact chenmingite</td>
<td>One occurrence in the Suizhou (L6) chondrite</td>
<td>20,21</td>
<td></td>
</tr>
<tr>
<td>Xieite (FeCr₂O₄)</td>
<td>Impact xieite</td>
<td>One occurrence in the Suizhou (L6) chondrite</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>Tschaunerite (Fe₂TiO₄)</td>
<td>Impact tschaunerite</td>
<td>From the shocked Tissint martian meteorite</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>Dmitryivanovite (CaAl₂O₄)</td>
<td>Impact dmitryivanovite</td>
<td>From the Northwest Africa 470 CH3 chondrite</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>Vestait [(Ti⁴⁺Fe²⁺)Ti⁴⁺₃O₉]</td>
<td>Impact vestait</td>
<td>Found in the eucrite NWA 8003</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>Feiite [(Fe,Ti,Cr)₄O₅]</td>
<td>Impact feiite</td>
<td>From the shocked Tissint martian meteorite</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>SILICATES</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Silica Polymorphs (SiO₂)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coesite (SiO₂)</td>
<td>Impact coesite</td>
<td>Identified in many meteorites</td>
<td>27-30</td>
<td></td>
</tr>
<tr>
<td>Stishovite (SiO₂)</td>
<td>Impact stishovite</td>
<td>Identified in many meteorites</td>
<td>29-32</td>
<td></td>
</tr>
</tbody>
</table>
Seifertite (SiO$_2$)
Impact seifertite
Found in shocked martian and lunar meteorites 33-36

Silica glass (SiO$_2$)
Impact silica glass
Found with other silica polymorphs in shocked meteorites 37,38

Olivine Polymorphs [(Mg,Fe,Ca)$_2$SiO$_4$]

Wadsleyite [β-(Mg,Fe)$_2$SiO$_4$]
Impact wadsleyite
Found in varied shocked meteorites 30,39-42

& Asimowite [β-(Fe,Mg)$_2$SiO$_4$]
Impact wadsleyite
Found in varied shocked meteorites 30,39-42

Ringwoodite [γ-(Mg,Fe)$_2$SiO$_4$]
Impact ringwoodite
Found in varied shocked meteorites 30,43-47

& Ahrensite [γ-(Fe,Mg)$_2$SiO$_4$]
Impact ringwoodite
Found in varied shocked meteorites 30,43-47

Poirierite [(Mg,Fe)$_2$SiO$_4$]
Impact poirierite
One occurrence in the Suizhou (L6) chondrite 48

Pyroxene Polymorphs [(Ca,Mg,Fe)$_2$Si$_2$O$_6$]

Clinoenstatite (MgSiO$_3$)
Impact clinoenstatite
From many meteorites by shock alteration of orthoenstatite 3,49-50

Majorite (MgSiO$_3$)
Impact majorite
From many shocked meteorites 30,44,51-58

Akimotoite [(Mg,Fe)SiO$_3$]
Impact akimotoite
From many shocked meteorites 30,59-63

& Hemleyite [(Fe,Mg)SiO$_3$]
Impact akimotoite
From many shocked meteorites 30,59-63

Bridgmanite [(Mg,Fe)SiO$_3$]
Impact bridgmanite
From many shocked meteorites 17,30,64,65

& Hiroseite [(Fe,Mg)SiO$_3$]
Impact bridgmanite
From many shocked meteorites 17,30,64,65

Amorphous CaSiO$_3$
Impact amorphous CaSiO$_3$
Found as inversion of CaSiO$_3$ perovskite 57,66,67

Tissintite [(Ca,Na,□)AlSi$_2$O$_6$]
Impact tissintite
From the shocked Tissint martian meteorite 66,67

Unnamed [(Mg,Fe)SiO$_3$]
Impact unnamed [(Mg,Fe)SiO$_3$]
From the Tenham (L6) chondrite 70

Feldspar Polymorphs [(Ca,Na,K)Al(Al,Si)Si$_2$O$_8$]

Jadeite (NaAlSi$_2$O$_6$)
Impact jadeite
Formed by shock alteration of albite 30,71,72

Maskelynite [(Ca,Na)Al(Al,Si)Si$_2$O$_8$]
Impact maskelynite
Common form of impact glass 3,30,73-75

Lingunite [(Na,Ca)AlSi$_3$O$_8$]
Impact lingunite
From the shocked Sixiangkou (L6) chondrite meteorite 30,76

Liebermannite [(K,Na)AlSi$_3$O$_8$]
Impact liebermannite
From the shocked Zagami martian meteorite 77

Stöfflerite (CaAl$_2$Si$_2$O$_8$)
Impact stöfflerite
From the NWA 856 martian meteorite 78,79

Other Silicates

Cordierite (Mg$_2$Al$_4$Si$_5$O$_{18}$)
Impact cordierite
From the Allende chondrite and Chaunskij mesosiderite 80,81

Zagamiite (CaAl$_2$Si$_3$O$_{11}$)
Impact zagamiite
Found in shocked martian meteorites 82,83

Unnamed [(Fe,Mg,Cr,Ti,Ca,□)γ(Si,Al)O$_4$]
Impact (Fe,Mg,Cr,Ti,Ca,□)γ(Si,Al)O$_4$
From the Tissint martian meteorite 84

Unnamed [(Mg,Fe,Si)$_2$(Si,□)O$_4$]
Impact (Mg,Fe,Si)$_2$(Si,□)O$_4$
Shock melt veins in Tenham and Suizhou chondrites 85