1	Revision 2
2	Inclusions in calcite phantom crystals suggest role of clay minerals in dolomite formation
3	
4	Stefan Farsang ^{1*} , Péter Pekker ² , Giulio I. Lampronti ¹ , Zsombor Molnár ² , Rastislav Milovský ³ ,
5	Mihály Pósfai ² , Daniel Ozdín ⁴ , Timothy D. Raub ⁵ , and Simon A. T. Redfern ⁶
6	
7	¹ Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge, CB2
8	3EQ, UK (*sf571@cam.ac.uk)
9	² Research Institute of Biomolecular and Chemical Engineering, University of Pannonia, 8200
10	Veszprém, Egyetem u. 10., Hungary
11	³ Earth Science Institute, Slovak Academy of Sciences, Ďumbierska 1, 974 11 Banská Bystrica,
12	Slovakia
13	⁴ Department of Mineralogy, Petrology and Economic Geology, Faculty of Natural Sciences,
14	Comenius University, Ilkovičova 6, 842 15 Bratislava, Slovakia
15	⁵ School of Earth & Environmental Sciences, University of St Andrews, Irvine Building, St
16	Andrews, KY16 9AL, UK
17	⁶ Asian School of the Environment, Nanyang Technological University, 50 Nanyang Avenue,
18	639798, Singapore
19	
20	Abstract
21	
22	Micro- and nano-inclusions embedded in calcite phantom crystals from Gemerská Ves, Slovakia
23	have been characterized by a combination of Raman spectroscopy, scanning and transmission

24 electron microscopy, X-ray powder diffraction, and C and O isotope analysis. Whereas the outer, 25 colorless part of the phantom crystal is relatively homogeneous, cavity and inclusion-free, the inner, terracotta-colored part contains abundant cavities, dolomite, hematite, goethite, titanite, 26 27 phyllosilicates (mainly kaolinite and illite), and apatite inclusions and nanostructures that have 28 formed on the walls of cavities. The nanostructures comprise hematite and goethite particles 29 sandwiched between either two phyllosilicate crystals or a phyllosilicate and a carbonate (calcite 30 or dolomite) crystal. Our observations suggest that all inclusions in the terracotta calcite originate 31 from the terra rossa (a common soil type in karstic areas) and limestone outcropping adjacent to 32 the calcite crystals. While the µm-sized phyllosilicate and hematite particles were likely 33 transported from the terra rossa and attached to the surface of growing calcite, the presence of 34 phyllosilicates that are only a few atomic layers thick and of euhedral hematite, goethite and 35 dolomite crystals suggests that these particles precipitated along with the phantom calcite in situ, 36 from an aqueous solution carrying terra rossa-derived and limestone-derived solutes. The 37 compositional differences between the terra rossa (e.g., smectite as the only major Mg-rich 38 phase) and terracotta calcite inclusions (e.g., dolomite as the only major Mg-rich phase and the 39 presence of only Mg-free clays) hint that a smectite-illite conversion provides the Mg necessary 40 for the precipitation of dolomite and possibly the Fe associated with the iron oxyhydroxide 41 nanostructures. Phyllosilicate nucleation on calcite and dolomite nucleation on phyllosilicates, as inferred from nanoscale mineralogical associations, suggest that carbonates and phyllosilicates 42 43 may mutually enhance nucleation and growth. This enhancement may result in the formation of 44 large-scale clay-carbonate successions in aqueous settings, including the enigmatic, pink-colored 45 cap dolostones succeeding late Neoproterozoic "Snowball Earth" deposits. The distribution of 46 inclusions in the terracotta calcite and the preferred nucleation of hematite and goethite on

47	phyllosilicate, rather than on carbonate surfaces, indicates that phyllosilicates have a potential to
48	not only disrupt crystal growth and trigger the formation of cavities in the structure of the calcite
49	host, but also to provide surfaces for the precipitation of different phases in the cavities and to
50	uniformly distribute otherwise incompatible materials in a calcite host crystal. This calls for
51	further exploration of the potential application of phyllosilicates in composite structure
52	development.
53	
54	Keywords
55	
56	Calcite, cap carbonate, clay, dolomite, hematite, goethite, illite, kaolinite, nanoparticle,
57	nucleation, phantom crystal, phyllosilicate, Raman spectroscopy, SEM, Snowball Earth, TEM,
58	XRD
59	
60	Introduction
61	
62	A phantom crystal is a crystal embedded in another crystal of the same mineral species with
63	visible outlines. The embedded crystal is visible due to some variation in composition (e.g.,
64	substitution of atoms, presence of inclusions) or the attachment of particles to its surface.
65	Examples include quartz (SiO ₂) phantom crystals outlined by green chlorite from Comechas em
66	Cima, Serra do Cabral, Minas Gerais, Brazil, by green fuchsite from Ihovitra,
67	Ambatofinandrahna, Madagascar, by white clay minerals from Santo Antonio mine, Serra do
68	Cabral, Minas Gerais, Brazil, by black manganese minerals from Alegre mine, near Mimoso,
69	Bahia, Brazil and calcite (CaCO ₃) phantom crystals outlined by pyrite from Korsnas mine,

70	Finland and the Surneshko Kladenche copper vein deposit, Rossen Ore Field, Bulgaria and by
71	dark red hematite from Chihuahua state, Mexico (Johnston and Butler 1946; Sinkankas 1966;
72	Rehtijärvi and Kinnunen 1979; Gornitz 1981; Bonev et al. 2005; Farfan and Post 2019). In the
73	latter, the pre-existing calcite crystals are scalenohedra coated with dark red hematite (Fe ₂ O ₃),
74	which are overgrown by transparent rhombohedra (Sinkankas 1966; Gornitz 1981). Calcite
75	phantom crystals originating from Gemerská Ves, Slovakia, have a distinct terracotta color (Fig.
76	1) and display a range of crystal forms, the most abundant being scalenohedra, hexagonal prisms,
77	and rhombohedra, while these forms are usually shared by the embedded and embedding crystals
78	(Bálintová et al. 2006). Here, we characterize inclusions of these calcite phantom crystals by
79	size, distribution and mineralogy and propose a formation scenario for the phantom crystals.
80	
81	Methods
82	
83	
	Raman spectroscopy
84	Raman spectroscopy
84 85	Raman spectroscopy A confocal LabRAM 300 (Horiba Jobin Yvon) Raman spectrometer with 300 mm focal length
84 85 86	Raman spectroscopy A confocal LabRAM 300 (Horiba Jobin Yvon) Raman spectrometer with 300 mm focal length objective, at the Department of Earth Sciences, University of Cambridge, was used to collect
84 85 86 87	Raman spectroscopy A confocal LabRAM 300 (Horiba Jobin Yvon) Raman spectrometer with 300 mm focal length objective, at the Department of Earth Sciences, University of Cambridge, was used to collect Raman spectra from 100 to 1800 cm ⁻¹ . A holographic grating of 1800 gr.mm ⁻¹ coupled to a
84 85 86 87 88	Raman spectroscopy A confocal LabRAM 300 (Horiba Jobin Yvon) Raman spectrometer with 300 mm focal length objective, at the Department of Earth Sciences, University of Cambridge, was used to collect Raman spectra from 100 to 1800 cm ⁻¹ . A holographic grating of 1800 gr.mm ⁻¹ coupled to a Peltier front illuminated CCD detector (1024 × 256 pixel in size) enabled a spectral resolution of
84 85 86 87 88 89	Raman spectroscopy A confocal LabRAM 300 (Horiba Jobin Yvon) Raman spectrometer with 300 mm focal length objective, at the Department of Earth Sciences, University of Cambridge, was used to collect Raman spectra from 100 to 1800 cm ⁻¹ . A holographic grating of 1800 gr.mm ⁻¹ coupled to a Peltier front illuminated CCD detector (1024 × 256 pixel in size) enabled a spectral resolution of ~1 cm ⁻¹ . The excitation line at 532.05 nm was produced by a Ventus 532 laser source (Laser
84 85 86 87 88 89 90	Raman spectroscopy A confocal LabRAM 300 (Horiba Jobin Yvon) Raman spectrometer with 300 mm focal length objective, at the Department of Earth Sciences, University of Cambridge, was used to collect Raman spectra from 100 to 1800 cm ⁻¹ . A holographic grating of 1800 gr.mm ⁻¹ coupled to a Peltier front illuminated CCD detector (1024 × 256 pixel in size) enabled a spectral resolution of ~1 cm ⁻¹ . The excitation line at 532.05 nm was produced by a Ventus 532 laser source (Laser Quantum) focused on the sample using an Olympus LMPLFLN 50× long working distance

92	All Raman spectra were treated using PeakFit software. For each Raman spectrum, the
93	baseline was subtracted, and peak features were determined by least squares fitting to Voigt
94	profiles for each Raman band. Peak positions were calibrated against the measured excitation of
95	a Ne light emission reference spectrum (Saloman and Sansonetti 2004).
96	
97	Scanning electron microscopy (SEM)
98	
99	For SEM analysis, a phantom calcite sample mounted in epoxy was polished with colloidal
100	silica, carbon-coated and analyzed under high-vacuum conditions. A FEI Quanta 650F
101	instrument equipped with two Bruker XFlash 6 30 silicon drift EDX detectors at the Department
102	of Earth Sciences, University of Cambridge was employed for back-scattered electron (BSE)
103	imaging and for qualitative chemical analysis by energy-dispersive spectroscopy (EDS). An
104	accelerating voltage of 15 keV, beam spot size of 4.5, and working distance of 13 mm was used.
105	To investigate the mineralogical makeup of terra rossa, it was powdered and deposited on
106	amorphous carbon support film. An FEI Apreo LoVac instrument equipped with an EDAX
107	METEK Octane Elect Plus EDX detector at the Department of Material Sciences, University of
108	Pannonia was employed for back-scattered electron (BSE) imaging and for qualitative chemical
109	analysis by energy-dispersive spectroscopy (EDS). An accelerating voltage of 20 keV, beam spot
110	size of 4.5, and working distance of 10 mm was used.
111	
112	Transmission electron microscopy (TEM)

114 Two samples were prepared for TEM analysis. The first was prepared by depositing a drop of 115 aqueous suspension of the ground particles of the terracotta-colored calcite onto a 200 mesh 116 copper TEM grid covered by a lacey carbon amorphous support film. The second sample was a 117 section of terracotta colored calcite cut perpendicular to the growth lines and mounted in a 3 mm 118 Cu support ring. The sample was thinned to 50 µm and then ion milled. 119 TEM analyses were performed using a Talos F200X G2 instrument (Thermo Fisher 120 Scientific) at the Nanolab, University of Pannonia. The instrument is equipped with a field-121 emission gun, a Ceta 16M camera, and a four-detector Super-X energy-dispersive X-ray 122 spectrometer and is capable of working in both conventional TEM and scanning transmission 123 (STEM) modes. The instrument was operated at 200 kV accelerating voltage. Low-magnification 124 bright-field (BF) images, high-resolution (HRTEM) images and selected-area electron diffraction (SAED) patterns were obtained in TEM mode. STEM high-angle annular dark-field (HAADF) 125 126 images were collected both for high-resolution structure analyses and for mapping elemental compositions by coupling STEM imaging with energy-dispersive X-ray spectrometry (EDS). 127 128 X-ray powder diffraction (XRD) 129 130 131 XRD was conducted at the Department of Earth Sciences, University of Cambridge. Powder 132 diffraction data of breccia were collected from 10 to $60^{\circ}2\theta$ (0.02° step size) in Bragg-Brentano 133 geometry on a D8 Advance Bruker powder diffractometer using Mo K α X-rays and a 134 LYNXEYE XE-T position sensitive detector. Powder diffraction data of terra rossa were 135 collected from 4 to $50^{\circ}2\theta$ (0.04° step size) in Bragg-Brentano geometry on a D8 Advance Bruker 136 powder diffractometer using Cu K α radiation and a Vantec position sensitive detector.

137	Rietveld refinements were performed using TOPAS-Academic V6 (Coelho 2018).
138	Starting crystal structures of all mineral phases were retrieved from the Inorganic Crystal
139	Structure Database (Allmann and Hinek 2007). Instrumental parameters were modelled by
140	refining data collected from a LaB ₆ 660b NIST standard. A shifted Chebyshev function with
141	eight parameters was used to fit the background. The peak shape was modelled using a Pseudo-
142	Voigt function. The March-Dollase model was used to correct for preferred orientation on the
143	following crystallographic planes: (1 0 4) for calcite; (0 0 1) for kaolinite, illite, and
144	montmorillonite; and (1 0 0) for goethite. The refinement converged to a final χ^2 and R_{wp} of 6.73
145	and 16.04%, respectively for the breccia, and 2.04 and 2.49%, respectively for the terra rossa.
146	

147 C and O isotopes

148

149 C and O stable isotope ratios were measured using a Gasbench III preparation device coupled to 150 isotope-ratio mass-spectrometer MAT 253 (both ThermoFisher Scientific). Microdrilled samples 151 of calcite (60-80 micrograms) were loaded into 5mL borosilicate glass vials (Labco), sealed by 152 caps with rubber septa and flushed with helium to remove atmosphere. Subsequent phosphoric 153 acid digestion (McCrea 1950) took place at 40 °C overnight. The evolved CO₂ gas was analyzed 154 in continuous-flow mode in helium as carrier gas. In each run, three reference gas peaks were 155 followed by four pulses of sample CO₂. Raw isotope ratios were calibrated using an international 156 reference material NBS-18 with $\delta^{13}C = +5.014\%$, $\delta^{18}O = -23.2\%$ and two working standards with $\delta^{13}C = +2.48\%$, $\delta^{18}O = -2.40\%$ and $\delta^{13}C = -9.30\%$, $\delta^{18}O = -15.30\%$, respectively. Typical 157 precision of measurements is 0.1 % for C and 0.2 % for O (1 σ). Isotope values are reported as 158 159 permil with reference to the international standard Vienna Pee Dee Belemnite (VPDB).

160 **Results and discussion** 161 162 163 Mineralogy 164 165 The phantom calcite was sampled at N 48° 29.147' E 20° 15.112' in a quarry west of Gemerská 166 Ves village, Revúca county, Banská Bystrica region, Slovakia. The quarry is an outcrop of 167 Middle Triassic Wetterstein limestone (Elečko et al. 1985) with colorless and whitish calcite 168 crystals commonly occurring in its vugs. The massive limestone body is cut by an elongated 169 body of red breccia, up to 5 m wide running NE-SW, that contains cm-sized limestone clasts in a 170 fine-grained, layered matrix composed of terra rossa (a common soil type in karstic areas) and 171 calcium carbonate (Fig. 2). Such rocks are abundant in the region (Slovak karst) and may form 172 by the collapse of cave walls and ceilings (e.g., karst collapse breccia), or can be related to faults in karstic areas (e.g., footwall breccia) (Gaál 2008). Near the limestone-breccia contact, the 173 174 breccia is consolidated and does not contain euhedral calcite crystals (Fig. 2a,b). In contrast, the central part of the breccia body is rich in vugs that contain calcite crystals up to 10 cm in size 175 176 (Fig. 2c,d). Calcite crystals growing close (few millimeters) to the terra rossa typically contain a terracotta-colored inner part, while those sitting further away are colorless or whitish without an 177 178 embedded terracotta crystal (Fig. 2d). 179 The Raman spectrum of calcite has six peaks corresponding to five Raman-active 180 vibrational modes (translational external E_g , librational external E_g , internal $v_4 E_g$, internal $v_1 A_{1g}$,

- and internal $v_3 E_g$) and an overtone mode, which represents the $2v_2$ overtone mode of the IR-
- active v₂ A_{2u} mode (Krishnan 1945; Couture 1947; Krishnamurti 1957; De La Pierre et al. 2014).

The spectrum of our reference material, a natural calcite crystal from Miskolctapolca, Hungary shows features corresponding to these vibrational modes at 158, 284, 713, 1088, 1438, and 1751 cm⁻¹, respectively (Farsang et al. 2018). These six peaks are detected in both the colorless and terracotta-colored part of calcite (Fig. 3a-d). The satellite peaks detected at 1067 and 1066 cm⁻¹ in the colorless and terracotta-colored part, respectively, are assigned to isotopic substitutions of ¹³C and ¹⁸O (Cloots 1991).

189 Hematite possesses seven Raman-active vibrational modes $(A_{1g}, E_g, E_g, E_g, E_g, A_{1g}, and$

190 E_g) and its Raman spectrum also exhibits the highest-frequency $2E_u$ overtone mode (Beattie and

191 Gilson 1970; Massey et al. 1990; Shim and Duffy 2001). The spectrum of our reference material,

192 a natural hematite crystal from Elba, Tuscany, Italy (Sedgwick Museum of Earth Sciences,

193 University of Cambridge specimen number 822) shows frequency features corresponding to the

194 aforementioned vibrational modes at 224, 243, 290, 294, 404, 497, 604, and 1305 cm⁻¹ (Fig. 3e).

195 In the spectrum of terracotta-colored calcite there are clearly visible bands at 225, 408, 503, 608,

and 1313 cm⁻¹, while those expected around 243, 290, and 294 cm⁻¹ are hidden by the strong

197 signal produced by calcite (Fig. 3d). In the same spectrum there is an additional prominent peak

198 at 659 cm⁻¹. This has only been observed in studies in which the complete symmetry of the

199 hematite structure is lowered either due to partial substitution of Fe atoms, as demonstrated in the

200 case of Fe_xCr_{2-x}O₃ ($0 \le x \le 2$) solid solution, or by defects induced by stress (McCarty and

Boehme 1989; Shim and Duffy 2001). In our case, the very small size of hematite particles (see

below) with a significant proportion of atoms located at or near their surface may lead to the

lowering of symmetry, giving rise to the peak at 659 cm^{-1} .

204 Scanning electron microscopy shows that while the colorless part of the crystal is a 205 relatively homogeneous, cavity and inclusion-free calcite, the terracotta-colored part contains

206	abundant cavities and inclusions of different types, concentrated along growth lines, possibly
207	resulting from episodic calcite growth (Fig. 4a-b). The cavities have irregular shape and range
208	from submicron to several tens of micrometers in size. The largest inclusions are dolomite (Fig.
209	4c-d), phyllosilicate (Fig. 4e), and apatite (Fig. 4e-f) particles with sizes ranging up to \sim 50 μ m.
210	Smaller inclusions include abundant hematite and rare rutile particles with sizes up to $\sim 5 \ \mu m$.
211	The dolomite is richer in inclusions than its calcite host and can show an intimate relationship
212	with calcite (Fig. 4c) or occur as euhedral crystals (Fig. 4d). EDS reveals the presence of two
213	types of phyllosilicate: an Al and Si-rich phase (likely kaolinite) and one with additional K
214	(probably illite). The SEM observations are consistent with electron probe microanalysis data of
215	Bálintová et al. (2006) that show slightly elevated levels of MgO, FeO, and MnO in the
216	terracotta-colored part (0.26, 0.04, and 0.02 wt%, respectively, compared to 0.22, 0.01, and 0.01
217	wt%, in the colorless part).
218	Sub-micron textural analysis by transmission electron microscopy reveals high
219	abundance and fine-scale distribution of cavities in the terracotta calcite. The walls of these
220	cavities are covered by phyllosilicates, often only a few atomic layers thick, to which submicron
221	and nanosized tabular hematite particles are generally attached (Fig. 5a-c, 6a-b). This explains
222	the presence of bands corresponding to hematite in the Raman spectra from the terracotta part,
223	even when no particles are visible by optical microscopy. Apart from the phyllosilicate-hematite-
224	carbonate sandwich structures, phyllosilicate-hematite-phyllosilicate structures also commonly
225	occur. TEM also reveals the presence of tabular goethite that, just like hematite, is either
226	sandwiched between two phyllosilicate crystals or between a phyllosilicate and a carbonate
227	crystal (Fig. 6c-d). The clearly visible T-O-T sequence of layers, the ~ 10 Å spacing of these
228	layers (Fig. 5c and 6c), and the high K concentration detected by EDS suggest that at least some

229	of the phyllosilicate is illite. A very similar association, with nanosized hematite particles
230	sandwiched between illite, has been found in a claystone from Mecsek Mountains, Hungary and
231	seems to be a common nanostructure in Fe and clay-rich environments (Németh et al. 2016). In
232	calcite cavities containing dolomite, the walls of cavities (i.e., the space in between the host
233	calcite and dolomite inclusion) are also covered by phyllosilicate crystals (Fig. 4c-d), suggesting
234	dolomite nucleation and growth may take place on phyllosilicate surfaces. The distinct color of
235	terracotta calcite is likely the result of light scattering produced by the three main mineral
236	phases/groups of inclusions: dark red hematite and whitish dolomite and phyllosilicates.
237	In order to identify the potential source of particles in the terracotta calcite, the
238	mineralogy of the breccia and terra rossa surrounding the calcite crystals was also analyzed. X-
239	ray powder diffraction (XRD) of the breccia reveals the presence of calcite and hematite (Fig.
240	7a). In the adjacent terra rossa, XRD data indicate the presence of phases consistent with
241	kaolinite, illite, montmorillonite, and goethite (Fig. 7b). In addition to clay minerals, SEM EDS
242	analyses detects hematite, apatite, and titanite in the terra rossa. The two major differences
243	between the composition of the terra rossa and the inclusions of terracotta calcite are 1) the
244	presence of Mg-rich phyllosilicates in the terra rossa and their absence in the terracotta calcite
245	and 2) the lack of dolomite in the terra rossa and its presence in the terracotta calcite. An
246	explanation for these differences is provided in the Paragenesis section text. Nevertheless, the
247	terra rossa containing breccia is the likely source of inclusions in the phantom calcite.
248	
249	C and O isotopes

250

251	A single sample containing a limestone clast, terracotta calcite, and colorless calcite adjacent to
252	one another was chosen for C and O isotope analysis (Fig. S1). All three parts show distinct C
253	and O isotope compositions (Fig. 8 and Table S1). The limestone has $\delta^{13}C$ values of ~0 ‰ and
254	δ^{18} O values of ~-6 ‰, similar to other Triassic limestones found in the Carpathian region (Haas
255	et al. 2006). The terracotta calcite has $\delta^{13}C$ ranging from -1 to -2 ‰, and $\delta^{18}O$ ranging from -12
256	to -15 ‰, whereas the colorless calcite has δ^{13} C of ~-3.5 ‰ and δ^{18} O of ~-8 ‰, indicating
257	significant differences in the composition and/or temperature of fluid from which the terracotta
258	calcite and colorless calcite precipitated.
259	
260	Paragenesis
261	
262	Based on the distinct mineralogy and isotope composition of the terracotta-colored and colorless

263 parts of calcite we propose that these two parts precipitated from two distinct fluids. First, the

terracotta-colored crystals formed from a fluid that likely carried 1) limestone-derived solutes, 2)

terra rossa-derived minerals, i.e. micrometer-sized refractory particles of the terra rossa

outcropping in the breccia body adjacent to the limestone (e.g., phyllosilicates, hematite) and 3)

267 terra rossa-derived solutes.

As the calcite crystals grew, micrometer-sized terra rossa-derived mineral particles likely attached to the surfaces of growing calcite crystals, creating zones in the host calcite. In addition, a range of nanoparticles likely coprecipitated in situ on the surfaces of growing calcite crystals from terra rossa-derived solutes, including phyllosilicates, often only a few atomic layers thick. This was most probably followed by the precipitation of Fe-oxyhydroxides or dolomite on phyllosilicate nanoparticles. Here we acknowledge the ambiguity associated with discerning the

274	origin (transport vs. in situ precipitation) of the phases contained within both the terra cotta
275	calcite and the parent material (e.g., hematite) based on crystal size and/or morphology alone. It
276	is possible that the larger, micrometer-sized particles also precipitated in situ from terra rossa-
277	derived solutes or that the smaller nanoparticles were also transported from the terra rossa.
278	Preferential attachment of Fe-oxyhydroxide particles to phyllosilicate nanoparticles rather
279	than to the calcite matrix is likely due to the heterogeneously charged surfaces of clays
280	(Tombácz and Szekeres 2006). Intimate association of magnetite nanoparticles with
281	phyllosilicates in physical magnetic separations of marls is commonly documented in the
282	paleomagnetic literature (e.g., Montgomery et al. 1998). A reaction mechanism by which ferric
283	iron is sourced from larger, physically deposited clays, as opposed to electrostatic attachment
284	onto the smaller, neoformed phyllosilicates, also is plausible as described below.
285	Dolomite likely grew simultaneously with the host calcite, while the fluid was still Mg-
286	rich due to the terra rossa-derived solutes. We note that dolomite inclusions are the only Mg-
287	bearing particles in the terracotta calcite, while Mg-rich phyllosilicates present in the terra rossa
288	are absent from the terracotta calcite. Instead, Mg-free phyllosilicates (kaolinite and illite) are
289	present, further supporting the idea that Mg leached from Mg-rich phyllosilicates led to the
290	formation of dolomite. Indeed, a smectite-illite conversion has been invoked previously as the
291	possible source of ions that form dolomites (McHargue and Price 1982) and we believe that here
292	the same process takes place.
293	The smectite-illite conversion has previously been associated with neoformation of iron
294	oxide nanocrystals (Katz et al. 1998, 2000; Woods 2002) as ferrous and ferric iron substitute in

the tetrahedral and octahedral phyllosilicate sites, respectively. Although magnetite is commonly

296 observed as the clay paragenetic iron oxide product, most studies of the magnetic effect of the

13

297	transition have concerned carbonaceous mudstones near reduced-fluid (volcanic) heat sources
298	(cf. also Eslinger et al. 1979), so in an oxic setting such as terra rossa limestone breccia vugs
299	hosting terracotta calcite, ferric oxyhydroxides are presumably viable phyllosilicate-conversion
300	products (Hyodo et al. 2020). It is unlikely that smectite-illite conversion is occurring in the
301	smallest, several-atomic-layers-thick phyllosilicates which are neoformed from solution as
302	described above. Larger smectites physically transported from terra rossa limestone, however,
303	plausibly liberated ferric iron to solution during conversion to illite in the hydrothermal fluid, so
304	larger hematite and goethite crystals may be neoformed by that mechanism. We note that the
305	low, negative oxygen isotope values of terracotta calcite are consistent with this elevated
306	temperature which promotes the smectite-illite conversion.
307	The formation of terracotta-colored crystals was likely followed by the precipitation of
308	colorless part of crystals from a fluid that only contained limestone-derived solutes. The lack of
309	dolomite particles in the colorless part provides further support for Mg originating from the terra
310	rossa. These lower-temperature fluids, with an intermediate oxygen isotopic composition
311	between that of marine limestone and hydrothermal terracotta calcite, were likely distributed
312	along fractures or faults associated with the formation of the breccia body. Their lower, more
313	negative carbon isotope values compared to terracotta calcite is consistent with precipitation
314	from a distilled residual fluid.
315	
316	Implications
317	

It has been suggested previously that phyllosilicates (e.g., smectites) promote the nucleation and
growth of Ca-Mg carbonate minerals (Nyirő-Kósa et al. 2018; Fodor et al. 2020). Phyllosilicate

320	nucleation on calcite and dolomite nucleation on phyllosilicates, as inferred from nanoscale
321	mineralogical associations, suggest that carbonates can also provide surfaces for the growth of
322	phyllosilicates and this mutual enhancement may result in the formation of large-scale clay-
323	carbonate successions in aqueous settings. Indeed, primary dolostones are rich in Mg-rich
324	phyllosilicates (Weber 1964; Raub et al. 2007; Bristow et al. 2011), which were proposed to play
325	a crucial role in primary dolomite formation in a diverse set of environments, including the
326	seafloor (Kahle 1965), lakes (Wanas and Sallam 2016), and soils (Díaz-Hernández et al. 2013;
327	Cuadros et al. 2016). Post-Snowball Earth cap dolostones, intriguingly, are terracotta-colored
328	and contain abundant hematite, maghemite, and oxidized magnetite carrying primary
329	magnetization and associated with ubiquitous phyllosilicates (Raub et al. 2007).
330	Our results show that dolomite precipitation is also possible in karstic environments
331	where limestone is in contact with soil (terra rossa), from fluids dissolving Ca-carbonate and
332	simultaneously leaching Mg from phyllosilicates. Recently, Mg-bearing calcium carbonate and
333	dolomite formation at ambient conditions in the presence of clays has been shown
334	experimentally (Liu et al. 2019; Molnár et al. 2021).
335	The mineralogy of inclusions in the terracotta calcite can suggest leads for the
336	development and design of composite structures, which has been long recognized as one of the
337	key approaches of making new functional materials with tailored properties (Ramamurthy and
338	Eaton 1994). Calcite, being one of the most abundant and important industrial materials and
339	biominerals, has received a great deal of attention within the materials science and engineering
340	community.
341	A wide range of organic and inorganic materials have been incorporated into the calcite

342

structure in order to control its optical, mechanical, and magnetic properties (e.g., Kim et al.,

15

343	2011; Kulak et al., 2014; Cho et al., 2016; Green et al., 2016). The latter, for instance, has been
344	achieved by the occlusion of magnetite (Fe ₃ O ₄) nanoparticles into a calcite single crystal matrix
345	using a copolymer to control the homogeneous distribution of magnetite particles while limiting
346	their aggregation and migration (Kulak et al. 2014). The distribution of inclusions in the
347	terracotta calcite and the preferred nucleation of hematite and goethite on phyllosilicate rather
348	than carbonate surfaces indicates that phyllosilicates have a potential to not only disrupt crystal
349	growth and trigger the formation of cavities in the structure of the calcite host, but also to
350	provide surface for the precipitation of different phases in the cavities and to uniformly distribute
351	otherwise incompatible materials in the calcite host crystal. Indeed, the attachment of other
352	oxides, including magnetite and TiO2 nanoparticles to phyllosilicates has been observed
353	previously (Galindo-Gonzalez et al. 2009; Zhou et al. 2012; Cai et al. 2014) and the potential
354	application of phyllosilicates in composite structure development should therefore be further
355	explored.
356	
357	Acknowledgements
358	
359	The Sedgwick Museum of Earth Sciences, University of Cambridge is acknowledged for the
360	hematite sample. We thank Tamás G. Weiszburg for a constructive discussion as well as the
361	anonymous reviewers and the associate editor Adam Wallace for their helpful comments and
362	suggestions. This work was supported by the Natural Environment Research Council (grant
363	number NE/L002507/1) and the Slovak Research and Development Agency (grant number
364	APVV-19-0065). TEM studies were performed at the electron microscopy laboratory of the

365	University of Pannonia, established using grant number GINOP-2.3.3-15-2016-0009 from the
366	European Structural and Investments Funds and the Hungarian Government.
367	
368	References
369	
370	Allmann, R., and Hinek, R. (2007) The introduction of structure types into the Inorganic Crystal
371	Structure Database ICSD. Acta Crystallographica Section A: Foundations of
372	Crystallography, 63, 412–417.
373	Bálintová, T., Ozdín, D., Fejdi, P., Števko, M., Gregor, M., and Stankovič, J. (2006)
374	Mineralogické štúdium fantómových kalcitov z Gemerskej Vsi - Mineralogical study of
375	phantom calcite from village Gemerská Ves, Slovakia (in Slovak). Mineralia Slovaca, 38,
376	124–130.
377	Beattie, I.R., and Gilson, T.R. (1970) The Single-crystal Raman Spectra of Nearly Opaque
378	Materials. Iron(III) Oxide and Chromium(III) Oxide. Journal of the Chemical Society A:
379	Inorganic, Physical, Theoretical, 980–986.
380	Bonev, I.K., Garcia-Ruiz, J.M., Atanassova, R., Otalora, F., and Petrussenko, S. (2005) Genesis
381	of filamentary pyrite associated with calcite crystals. European Journal of Mineralogy, 17,
382	905–913.
383	Bristow, T.F., Bonifacie, M., Derkowski, A., Eiler, J.M., and Grotzinger, J.P. (2011) A
384	hydrothermal origin for isotopically anomalous cap dolostone cements from south China.
385	Nature, 474, 68–71.
386	Cai, L., Tong, M., Wang, X., and Kim, H. (2014) Influence of clay particles on the transport and
387	retention of titanium dioxide nanoparticles in quartz sand. Environmental Science &

388 Technology, 48, 7323–7332.

- 389 Cho, K.R., Kim, Y.Y., Yang, P., Cai, W., Pan, H., Kulak, A.N., Lau, J.L., Kulshreshtha, P.,
- 390 Armes, S.P., Meldrum, F.C., and others (2016) Direct observation of mineral-organic
- 391 composite formation reveals occlusion mechanism. Nature Communications, 7, 1–7.
- 392 Cloots, R. (1991) Raman spectrum of carbonates M^{II}CO₃ in the 1100-1000 cm⁻¹ region:
- 393 observation of the n_1 mode of the isotopic $(C^{16}O_2^{18}O)^{2-}$ ion. Spectrochimica Acta, 47A,
- 394 1745–1750.
- 395 Coelho, A.A. (2018) TOPAS and TOPAS-Academic : an optimization program integrating
- 396 computer algebra and crystallographic objects written in C++. Journal of Applied
- 397 Crystallography, 51, 210–218.
- 398 Couture, L. (1947) Étude des spectres de vibrations de monocristaux ioniques. In Annales de
- 399 physique Vol. 12, pp. 5–94. EDP Sciences.
- 400 Cuadros, J., Diaz-Hernandez, J.L., Sanchez-Navas, A., Garcia-Casco, A., and Yepes, J. (2016)
- 401 Chemical and textural controls on the formation of sepiolite, palygorskite and dolomite in
 402 volcanic soils. Geoderma, 271, 99–114.
- 403 De La Pierre, M., Carteret, C., Maschio, L., André, E., Orlando, R., and Dovesi, R. (2014) The
- 404 Raman spectrum of CaCO₃ polymorphs calcite and aragonite: A combined experimental
- 405 and computational study. The Journal of Chemical Physics, 140, 164509.
- 406 Díaz-Hernández, J.L., Sánchez-Navas, A., and Reyes, E. (2013) Isotopic evidence for dolomite
- 407 formation in soils. Chemical Geology, 347, 20–33.
- 408 Elečko, M., Gaál, Ľ., Lexa, J., Mello, J., Pristaš, J., Vass, D., and Vozárová, A. (1985)
- 409 Geologická mapa Rimavskej kotliny a priľahlej časti Slovenského rudohoria 1:50 000 -
- 410 Geological map of the Rimava Basin and the adjacent part of the Slovak Ore Mountains

- 411 1:50 000 (in Slovak). GÚDŠ, Bratislava.
- 412 Eslinger, E., Highsmith, P., Albers, D., and De Mayo, B. (1979) Role of iron reduction in the
- 413 conversion of smectite to illite in bentonites in the disturbed belt, Montana. Clays and Clay
- 414 Minerals, 27, 327–338.
- 415 Farfan, G.A., and Post, J.E. (2019) Quartz from Madagascar with fuchsite phantom inclusions.
- 416 Journal of Gemmology, 36, 698–699.
- 417 Farsang, S., Facq, S., and Redfern, S.A.T. (2018) Raman modes of carbonate minerals as
- 418 pressure and temperature gauges up to 6 GPa and 500 °C. American Mineralogist, 103,
- 419 1988–1998.
- 420 Fodor, M.A., Ható, Z., Kristóf, T., and Pósfai, M. (2020) The role of clay surfaces in the
- 421 heterogeneous nucleation of calcite: Molecular dynamics simulations of cluster formation

422 and attachment. Chemical Geology, 538, 119497.

- 423 Gaál, Ľ. (2008) Geodynamika a vývoj jaskýň Slovenského krasu Geodynamics and
- 424 development of caves in the Slovak Karst (in Slovak), 168 p. State Nature Conservancy of
- 425 the Slovak Republic, Slovak Caves Administration, Žilina.
- 426 Galindo-Gonzalez, C., Feinberg, J.M., Kasama, T., Gontard, L.C., Pósfai, M., Kósa, I., Duran,
- 427 J.D.G., Gil, J.E., Harrison, R.J., and Dunin-Borkowski, R.E. (2009) Magnetic and
- 428 microscopic characterization of magnetite nanoparticles adhered to clay surfaces. American
- 429 Mineralogist, 94, 1120–1129.
- 430 Gornitz, V. (1981) Phantom crystals. In Mineralogy. Encyclopedia of Earth Science. pp. 368-
- 431 369. Springer, Boston, MA.
- 432 Green, D.C., Ihli, J., Thornton, P.D., Holden, M.A., Marzec, B., Kim, Y.Y., Kulak, A.N.,
- 433 Levenstein, M.A., Tang, C., Lynch, C., and others (2016) 3D visualization of additive

434	occlusion and tunable full-spectrum fluorescence in calcite. Nature Communications, 7, 1-

435 13.

436	Haas, J., Demény, A	Hips. K.	, and Vennemann	. T.W. (2006) Carbon isotor	e excursions and
	110005, 01, 2011011, 9, 11		,	,	/	

- 437 microfacies changes in marine Permian-Triassic boundary sections in Hungary.
- 438 Palaeogeography, Palaeoclimatology, Palaeoecology, 237, 160–181.
- 439 Hyodo, M., Sano, T., Matsumoto, M., Seto, Y., Bradák, B., Suzuki, K., Fukuda, J., Shi, M., and
- 440 Yang, T. (2020) Nanosized authigenic magnetite and hematite particles in mature-paleosol
- 441 phyllosilicates: New evidence for a magnetic enhancement mechanism in loess sequences
- 442 of China. Journal of Geophysical Research: Solid Earth, 125, e2019JB018705.
- 443 Johnston, W.D., and Butler, R.D. (1946) Quartz crystal in Brazil. Bulletin of the Geological
- 444 Society of America, 57, 601–650.
- Kahle, C.F. (1965) Possible Roles of Clay Minerals in the Formation of Dolomite. SEPM Journal
 of Sedimentary Research, Vol. 35, 448–453.
- 447 Katz, B., Elmore, R.D., and Engel, M.H. (1998) Authigenesis of magnetite in organic-rich
- sediment next to a dike: Implications for thermoviscous and chemical remagnetizations.
- Earth and Planetary Science Letters, 163, 221–234.
- 450 Katz, B., Elmore, R.D., Cogoini, M., Engel, M.H., and Ferry, S. (2000) Associations between
- burial diagenesis of smectite, chemical remagnetization, and magnetite authigenesis in the
- 452 Vocontian trough, SE France. Journal of Geophysical Research: Solid Earth, 105, 851–868.
- 453 Kim, Y.Y., Ganesan, K., Yang, P., Kulak, A.N., Borukhin, S., Pechook, S., Ribeiro, L., Kröger,
- 454 R., Eichhorn, S.J., Armes, S.P., and others (2011) An artificial biomineral formed by
- incorporation of copolymer micelles in calcite crystals. Nature Materials, 10, 890–896.
- 456 Krishnamurti, D. (1957) The Raman spectrum of calcite and its interpretation. Proceedings of the

- 457 Indian Academy of Sciences Section A, 44, 183–202.
- 458 Krishnan, R.S. (1945) Raman spectra of the second order in crystals Part I: Calcite. Proceedings
- 459 of the Indian Academy of Sciences Section A, 182–192.
- 460 Kulak, A.N., Semsarilar, M., Kim, Y.-Y., Ihli, J., Fielding, L.A., Cespedes, O., Armes, S.P., and
- 461 Meldrum, F.C. (2014) One-pot synthesis of an inorganic heterostructure: uniform occlusion
- of magnetite nanoparticles within calcite single crystals. Chem. Sci., 5, 738–743.
- Liu, D., Xu, Y., Papineau, D., Yu, N., Fan, Q., Qiu, X., and Wang, H. (2019) Experimental
- 464 evidence for abiotic formation of low-temperature proto-dolomite facilitated by clay
- 465 minerals. Geochimica et Cosmochimica Acta, 247, 83–95.
- 466 Massey, M.J., Baier, U., Merlin, R., and Weber, W.H. (1990) Effects of pressure and isotopic
- 467 substitution on the Raman spectrum of α -Fe₂O₃: Identification of two-magnon scattering.
- 468 Physical Review B, 41, 7822–7827.
- 469 McCarty, K.F., and Boehme, D.R. (1989) A Raman Study of the Systems Fe_{3-x}Cr_xO₄ and Fe₂₋
- 470 $_xCr_xO_3$. Journal of Solid State Chemistry, 79, 19–27.
- 471 McCrea, J.M. (1950) On the isotopic chemistry of carbonates and a paleotemperature scale. The
- 472 Journal of Chemical Physics, 18, 849–857.
- 473 McHargue, T.R., and Price, R.C. (1982) Dolomite from clay in argillaceous or shale-associated
- 474 marine carbonates. Journal of Sedimentary Petrology, 52, 873–886.
- 475 Molnár, Z., Pekker, P., Dódony, I., and Pósfai, M. (2021) Clay minerals affect calcium
- 476 (magnesium) carbonate precipitation and aging. Earth and Planetary Science Letters, 567,477 116971.
- 478 Montgomery, P., Hailwood, E.A., Gale, A.S., and Burnett, J.A. (1998) The magnetostratigraphy
- 479 of Coniacian-Late Campanian chalk sequences in southern England. Earth and Planetary

- 480 Science Letters, 156, 209–224.
- 481 Németh, T., Máthé, Z., Pekker, P., Dódony, I., Kovács-Kis, V., Sipos, P., Cora, I., and Kovács, I.
- 482 (2016) Clay mineralogy of the Boda Claystone Formation (Mecsek Mts., SW Hungary).
- 483 Open Geosciences, 8, 259–274.
- 484 Nyirő-Kósa, I., Rostási, Á., Bereczk-Tompa, É., Cora, I., Koblar, M., Kovács, A., and Pósfai, M.
- 485 (2018) Nucleation and growth of Mg-bearing calcite in a shallow, calcareous lake. Earth
- 486 and Planetary Science Letters, 496, 20–28.
- 487 Ramamurthy, V., and Eaton, D.F. (1994) Perspectives on Solid-State Host-Guest Assemblies.
- 488 Chemistry of Materials, 6, 1128–1136.
- 489 Raub, T.D., Evans, D.A.D., and Smirnov, A. V. (2007) Siliciclastic prelude to Elatina-
- 490 Nuccaleena deglaciation: Lithostratigraphy and rock magnetism of the base of the

491 Ediacaran system. Geological Society Special Publication, 286, 53–76.

- 492 Rehtijärvi, P., and Kinnunen, K.A. (1979) Fluid and mineral inclusions and inclusion zones of
- 493 cave calcite from Korsnäs mine, western Finland. Bull. Geol. Soc. Finland, 51, 75–79.
- 494 Saloman, E.B., and Sansonetti, C.J. (2004) Wavelengths, energy level classifications, and energy
- 495 levels for the spectrum of neutral neon. Journal of Physical and Chemical Reference Data,
- 496 33, 1113–1158.
- 497 Shim, S.-H., and Duffy, T.S. (2001) Raman spectroscopy of Fe₂O₃ to 62 GPa. American
- 498 Mineralogist, 87, 318–326.
- 499 Sinkankas, J. (1966) Mineralogy: a first course. D. Van Nostrand Company, Princeton, New500 Jersey.
- Tombácz, E., and Szekeres, M. (2006) Surface charge heterogeneity of kaolinite in aqueous
 suspension in comparison with montmorillonite. Applied Clay Science, 34, 105–124.

- 503 Wanas, H.A., and Sallam, E. (2016) Abiotically-formed, primary dolomite in the mid-Eocene
- 504 lacustrine succession at Gebel El-Goza El-Hamra, NE Egypt: An approach to the role of
- smectitic clays. Sedimentary Geology, 343, 132–140.
- 506 Weber, J.N. (1964) Carbon isotope ratios in dolostones: some implications concerning the
- 507 genesis of secondary and "primary" dolostones. Geochimica et Cosmochimica Acta, 28,
- 508 1257–1265.
- 509 Woods, S.D. (2002) Paleomagnetic dating of the smectite-to-illite conversion: Testing the
- 510 hypothesis in Jurassic sedimentary rocks, Skye, Scotland. Journal of Geophysical Research,
- 511 107.
- 512 Zhou, D., Abdel-fattah, A.I., and Keller, A.A. (2012) Clay Particles Destabilize Engineered
- 513 Nanoparticles in Aqueous Environments. Environmental Science & Technology, 26, 7520–
- 514 7526.

515

516	List of figures
517	
518	Figure 1. Phantom calcite from Gemerská Ves, Slovakia.
519	
520	Figure 2. Rocks of the outcrop: a) limestone – breccia contact. The breccia contains limestone
521	clasts and terra rossa rich layers, b) sample of breccia coming from the edge of the body, c) the
522	center of the body with vugs and d) sample of breccia coming from the center of the body. The
523	coin for scale has a diameter of 23.25 mm.
524	
525	Figure 3. Raman spectra of a-b) colorless part of calcite, c-d) terracotta part of calcite, and e)
526	hematite. b) and d) show the absence and presence of low-intensity features in a) and c),
527	respectively.
528	
529	Figure 4. a) cavity- and particle-rich zones in terracotta calcite, b) boundary between the
530	colorless, cavity- and particle-free calcite and the terracotta-colored, cavity- and particle-rich
531	calcite, c-f) particles in the terracotta-colored calcite: c) and d) dolomite, e) phyllosilicate, and f)
532	apatite. Ap = apatite, Cal = calcite, Dol = dolomite, Hem = hematite, Phy = phyllosilicate. BSE
533	images.
534	
535	Figure 5. a) STEM HAADF image and b) combined EDS element map of a hematite-rich region.
536	High concentrations of Mg correspond to dolomite, Si to phyllosilicate, P to apatite, and Fe to
537	hematite. c) HRTEM image showing the intimate relationship between calcite, phyllosilicates,
538	and hematite. Ap = apatite, Cal = calcite, Dol = dolomite, Hem = hematite, Phy = phyllosilicate.

539

540	Figure 6. a) STEM HAADF image and b) HR STEM HAADF image of hematite and its Fourier
541	Transform (FT) image with Miller indices indicated. The hematite grows on a phyllosilicate
542	attached to the walls of a cavity in calcite. c) HRTEM image of goethite with phyllosilicate and
543	calcite and the FT image of the goethite with Miller indices indicated. d) HR STEM HAADF
544	image of goethite with phyllosilicate and the FT image of the goethite with Miller indices
545	indicated. Cal = calcite, Gth = goethite, Hem = hematite, Phy = phyllosilicate.
546	
547	Figure 7. XRD pattern of phases in a) breccia: calcite, hematite, and quartz; and b) terra rossa:
548	kaolinite, illite, montmorillonite, goethite, and quartz. Quartz is most likely contamination.
549	
550	Figure 8. C and O isotope data. The numbers next to data points corresponding to points of

analysis in Figure S1.

20 nm

 $2\theta(^{\circ})$

