Regular article

Crystal structure and Raman spectroscopic studies of OH stretching vibrations in Zn-rich fluor-elbaite

Raman spectroscopic studies of OH stretching vibrations in Zn-rich fluor-elbaite

ADAM PIECZKA 1*, ANDREAS ERTL 2, BOŻENA GOŁĘBIOWSKA 1, PIOTR JELEŃ 3, JAKUB KOTOWSKI 4, KRZYSZTOF NEJBERT 4, MARCIN STACHOWICZ 4 AND GERALD GIESTER 2

1 Department of Mineralogy, Petrography and Geochemistry, AGH University of Science and Technology, Mickiewicza 30, 30-059 Kraków, Poland
2 Institut für Mineralogie und Kristallographie, Geozentrum, Universität Wien, Althanstrasse 14, 1090 Wien, Austria
3 Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Mickiewicza 30, 30-059 Kraków, Poland
4 University of Warsaw, Faculty of Geology, Institute of Geochemistry, Mineralogy and Petrology, 02-089 Warszawa, Żwirki and Wigury 93, Poland

*corresponding author: pieczka@agh.edu.pl

ABSTRACT
Zinc-rich fluor-elbaite from Piława Górna, Poland, was studied by electron microprobe (EPMA), single-crystal X-ray diffraction (SREF) and Raman spectroscopy (RS) to check the possibility of an application of RS, to draw crystal chemical conclusions for Al-rich and Li-bearing tourmalines on basis of the O–H stretching vibrations in the spectral range 3400–3800 cm$^{-1}$. This tourmaline, forming a thin metasomatic zone around gahnite, features varying compositions with a ZnO content reaching in the studied fragment of 5.70(12) wt%. The crystal structure of this Zn-rich fluor-elbaite [$a = 15.921(1)$, $c = 7.127(1)$ Å] was refined with a R_1 value of 1.67 %. Its formula was determined on the basis of electron-microprobe and structure refinement as

$$X(Na_{0.84}Ca_{0.14})_{\text{Σ} 1.00}^Y(Al_{1.06}Li_{0.84}Zn_{0.69}Fe^{2+}_{0.32}Mn_{0.09})_{\text{Σ} 3.00}^ZAl_6(BO_3)_3(Ti_6O_{18})V(OH)_3W(F_{0.65}OH_{0.26}O_{0.09})$$

The deconvolution of the O–H stretching vibration bands, performed by fitting of an input model of component bands with Gaussian function shapes for the empirical spectrum, indicates that each of the three maxima assigned for VOH bonded to YAl$^{3+}$, YZ$^{2+}$, and YLi$^+$ and with the total integral intensity of at least 75% of the total OH content could be resolved into 1 to 3 bands, depending on the X-site occupation (vacancies, Na$^+$ and Ca$^{2+}$). The deconvolution indicates further that several low intense bands of WO–H modes above a Raman shift of 3600 cm$^{-1}$, totally reaching ≤25 %, are dependent on the occupation of triplets of YYY cations bonded to the hydroxyl. These WO–H modes are also influenced by the X-site occupation. Due to ordering of all octahedral cations (except Al) at the Y site and a complete occupation of the Z site by Al and the V site by OH, it seems possible to evaluate the Li and OH contents in a Al-rich and Li-bearing tourmaline directly from the Raman spectrum. By using the ratio VOHYAlZAlZ/(VOHYYZ + VOHYYY) as evaluated from RS, corresponding to the ratio YAlZ/V$^+$WOH in the crystal, the formula of the Zn-bearing fluor-elbaite can be calculated as

$$X(Na_{0.85}Ca_{0.14})_{\text{Σ} 1.00}^Y(Al_{1.11}Y^{2+}_{1.11}Li_{0.78})_{\text{Σ} 3.00}^ZAl_6(BO_3)_3(Si_6O_{18})(OH)_3F_{0.65}OH_{0.13}O_{0.22}$$

where...
$Y^{2+} = Zn + Fe + Mn$. The formula, determined only on basis of EPMA and deconvolution of RS in the O–H stretching bands, corresponds very well (≤ 1 sd range of EPMA) to the formula determined on basis of EPMA and SREF. This result implicates that the O–H stretching vibrations, measured by Raman spectroscopy, can by applied for Al-rich and Li-bearing tourmalines as a useful tool for an additional information for determining the crystal chemical formula. It is also very helpful when crystal structural data are not available.

Key-words: Zn-rich fluor-elbaite, structure refinement, Raman spectroscopy, OH stretching vibrations, lithium content, hydroxyl content.

INTRODUCTION

The tourmaline supergroup comprises complex borosilicates that are found as accessory minerals in a wide variety of igneous, metamorphic and sedimentary rocks due to their stability over a wide range in pressure, temperature and composition (Van Hinsberg et al. 2011). The generalized formula of tourmaline-supergroup minerals is $XY_3Z_6(T_6O_{18})(BO_3)_3V_3W$, where X, Y, Z, T, B, V (=O3) and W (=O1) denote different structural sites (Henry et al. 2011). These sites can have different possible occupants:

$^{IX}X = Na^+, K^+, Ca^{2+}, Pb^{2+}, \Box$ (vacancy),

$^{VI}Y = Fe^{2+}, Mg^{2+}, Mn^{2+}, Al^{3+}, Li^+, Fe^{3+}, Cr^{3+}, V^{3+}, Ti^{4+}, Zn^{2+}, Cu^{2+}, Ni^{2+}, ...$

$^{VI}Z = Al^{3+}, Fe^{3+}, Cr^{3+}, V^{3+}, Mg^{2+}, Fe^{2+}, ...$

$^{IV}T = Si^{4+}, Al^{3+}, B^{3+}$

$^{III}B = B^{3+}$

$^{III}V = OH^-, O^{2-}$

$^{III}W = OH^-, F^-, O^{2-}$
Some of these constituents can be simultaneously present on two and even three structural sites, reflecting order-disorder phenomenon mainly between the octahedral Y- and Z-site occupants or oxygen and hydroxyl on the V and W sites. Substitutions among the heterovalent Y- and Z-site occupants are often coupled with ion replacements at other structural sites, mainly at the X, V and W. Four of the sites (Y, Z, V, W) form an octahedral cluster \([V_3Y_3Z_6W]\) developed in the unit cell around \((0, 0, 0), (2/3, 1/3, 1/3)\) and \((1/3, 2/3, 2/3)\), with a symmetry consistent with the \(R3m\) space group. In consequence of these substitutions, the tourmaline supergroup comprises currently 35 valid mineral species accepted by the Commission on New Minerals, Nomenclature and Classification (CNMNC) of the International Mineralogical Association (IMA). They represent hydroxyl-, fluor- and oxy-species of X-vacant-, alkali- and calcic tourmalines with typical octahedral occupants like \(\text{Fe}^{2+}, \text{Mg}^{2+}, \text{Mn}^{2+}, \text{Al}^{3+}, \text{Li}^{+}, \text{Fe}^{3+}, \text{Cr}^{3+}\) and \(\text{V}^{3+}\) (Henry et al. 2011). Much less common are crystals highly enriched in atypical components like Pb (Sokolov and Martin 2009), Ti (Lottermoser and Plimer 1987; Vezzoni et al. 2018), Cu (Vereshchagin et al. 2013), Ni (Baksheev and Kudryavtseva 2004), \(\text{Mn}^{3+}\) (Bosi et al. 2017), Zn (Sokolov et al. 1988; Henry and Dutrow 1996; Ferreira et al. 2005; Pieczka et al. 2018), or K (Žáček et al. 2000; Lussier et al. 2016). The Zn-enriched tourmalines are represented mainly by fluor-elbaite, rarer elbaite, in which \(\text{Zn}^{2+}\), beside typical \(\text{Al}^{3+}\) and \(\text{Li}^{+}\), is one of the main octahedral Y-site occupants.

Until quite lately, the most Zn-enriched tourmaline (3.83 wt% ZnO) was known from a rare-element-bearing pegmatite of Russia (Sokolov et al. 1988). However recently, Pieczka et al. (2018) described Zn-rich fluor-elbaite and elbaite containing up to 6.32 and 7.37 wt% ZnO, respectively, in a rare-element dyke of the Julianna pegmatitic system, exposed during mining works in a migmatite-amphibolite quarry at Piława Górna, Lower Silesia, Poland (Szuszkiewicz et al. 2013). In the dyke, these tourmalines, associated with Zn-enriched schorl and foitite (up to 2.45 wt% ZnO), formed a thin metasomatic zone around gahnite, changing progressively into
94 typical, only slightly Zn-enriched, fluor-elbaite and elbaite. In the original paper, the occurrence
95 and compositional relationships of the tourmalines were described in detail, as well as a Raman
96 spectrum of Zn-rich fluor-elbaite was presented. Unfortunately, in Pieczka et al. (2018) the
97 captions for Figures 9a and 9b presenting the Raman spectra of O–H stretching modes in Zn-rich
98 fluor-elbaite and associated (Zn,Li)-bearing schorl in the range of 3400–3800 cm$^{-1}$ were
99 inadvertently switched, i.e. the caption (b) should be (a) and conversely, consistent with Figure 8
100 presenting both these spectra in the range of 50–4000 cm$^{-1}$.

Raman spectroscopy is a method commonly used in mineralogy for a quick identification of
102 minerals because an extensive sample preparation is not necessary and, similarly as infra-red
103 spectroscopy, it is known as a non-destructive method giving fingerprint of a specific species.
104 The great advantage of Raman spectroscopy is its capability to analyze areas as small as ~1 μm2,
105 which makes it useful in studies of highly heterogeneous materials, which require micrometer-
106 scale spatial resolution. The acquisition area of the method is only somewhat smaller, but may be
107 comparable with the acquisition area of the wave-length-dispersive electron probe microanalysis
108 (EPMA-WDS), at least an order of magnitude smaller than the crystal dimensions required by
109 single-crystal X-ray diffraction as the basic method of structure recognition. This capability can
110 make Raman spectroscopy a very useful and complementary tool in crystal chemical and
111 structural studies. Moreover, because V^OH and W^OH anions are bonded to different Y-site
112 occupants as well as to Al at the Z site, O–H stretching modes in Raman spectra of Li-bearing
113 tourmalines contain critical crystal-chemical and structural information of the structural part with
114 the greatest compositional variation. Therefore, in this paper we analyze the possibility of a
115 Raman spectroscopy application for a fast evaluation of crystal chemical relationships in Li-
116 bearing tourmalines, especially the quantitative estimation of the Y-site population and of the
117 W^OH amount. To present the possibilities of Raman spectroscopy, we discuss the crystal structure
and explain in detail the Raman spectrum of this Zn-rich fluor-elbaite, especially focusing on O–H stretching vibrations in which our interpretation is in agreement with the structural and compositional results.

MATERIALS AND METHODS

Electron probe microanalysis (EPMA)

Electron probe microanalysis of Zn-rich fluor-elbaite in a zone around gahnite was performed at the Inter-Institute Analytical Complex for Minerals and Synthetic Substances at the University of Warsaw, Poland, using a Cameca SX 100 electron microprobe (CAMECA, Cedex, France). The analyses were made on a ground, polished and coated with carbon small fragment of the pegmatite with the gahnite crystals overgrown by Zn-rich fluor-elbaite mounted in 1-inch epoxy disc. The microprobe operated in WDS mode under the following conditions: accelerating voltage of 15 kV, beam current of 10 nA, beam diameter of 2 μm, peak count-time of 20 s, background time of 10 s. Standards (analytical lines, diffracting crystals and mean detection limits in wt % element) were as follows: fluorophlogopite (F Kα, PC0, 0.12), albite (Na Kα, TAP, 0.03), diopside (Mg Kα, TAP, 0.02), (Si Kα, TAP, 0.03) and (Ca Kα, PET, 0.02), orthoclase (Al Kα, TAP, 0.03) and (K Kα, PET, 0.02), rutile (Ti Kα, LPET, 0.02), rhodonite (Mn Kα, LIF, 0.09), hematite (Fe Kα, LIF, 0.08), V₂O₅ (V Kα, LIF, 0.06), Cr₂O₃ (Cr Kα, LPET, 0.02), and sphalerite (Zn Kα, LIF, 0.09). The raw data were reduced with the PAP routine of Pouchou and Pichoir (1991). The estimation of the Li₂O amounts from EPMA results on the basis of a multiple-regression equation of Pesquera et al. (2016) did not give positive result because the calculated Li₂O amount (in wt%) is distinctly ZnO dependent for higher ZnO contents (Pieczka et al. 2018). Therefore, we estimated the Li₂O and H₂O contents on the basis of the refined Y- and W-site scattering values. The atomic contents and chemical formula of the Zn-rich fluor-elbaite were
normalized in relation to 14.5 (O,OH,F) anions pfu, i.e. 31 (O,OH,F) – 12 O – 4.5 O after
assumption the presence of 6 Si atoms per formula unit (apfu), 3 B apfu, total Fe as FeO, and
Li₂O and H₂O amounts matching the calculated Li and OH contents during the formula
calculation to the refined Y-site electron density, and the sum of Y-site occupants equal to 3 apfu.
A small excess of Si above 6 apfu for the measured SiO₂ amount indicated at the applied
normalization was considered as a small inaccuracy in the SiO₂ analysis [below 1.5 standard
deviation (sd) of a single EPMA Si determination] or as an external admixture, e.g. of quartz
micro-inclusions occurring in the Zn-rich fluor-elbaite zone. The EPMA results recalculated in
such way presented in Table 1 correspond to spot analyses of Zn-rich fluor-elbaite, observed in
one area of a zone around gahnite (Fig. 1). From this area, in which also micro-Raman spectra
were collected (discussed in Pieczka et al. 2018), we extracted a small fragment of this
tourmaline for the single-crystal X-ray diffraction investigation.

Crystal structure refinement (SREF)

The crystal structure of Zn-rich fluor-elbaite was refined at the Institut für Mineralogie und
Kristallographie, Geozentrum, Universität Wien, Austria. As a first step, the quality of different
tourmaline crystals was checked with a Bruker APEXII diffractometer equipped with a CCD area
detector and an Incoatec Microfocus Source IµS (30 W, multilayer mirror, MoKα). The crystal
with the best quality, 170 × 150 × 120 μm in size, was subsequently measured on this
diffractometer. Single-crystal X-ray diffraction data, up to 80.52° 2θ, were collected at room
temperature, integrated and corrected for Lorentz and polarization factors with an absorption
correction by evaluation of partial multiscans. The structure was refined with SHELXL97
(Sheldrick 1998) using scattering factors for neutral atoms and a tourmaline starting model from
Ertl et al. (2010) (sample R6b). Refinement was performed with anisotropic displacement
parameters for all non-hydrogen atoms. Supplemental Material (CIF file) provides crystal data.
and details of the structure refinement. The various site occupancies were refined according to
well-known characteristics of the tourmaline structure, and considering the electron-probe
analysis; this strategy appears sound with the resulting empirical formula being compatible with
that determined from the EPMA results. Hence, the X site occupancy was refined by using a Na
scattering factor, the Y site with Zn and Li scattering factors, and the W site with F and O
scattering factors, whereas the Si occupancy at the T site and the Al occupancy at the Z site were
fixed at 1.00, typical for (Al,Li)-bearing tourmalines. A preliminary refinement, with O1 and O2
sites constrained to their positions of maximum site-symmetry, has shown relatively high U_{eq}
values for these both oxygen sites. Following the findings of Burns et al. (1994), who reported
high U_{eq} values for the O1 and O2 sites that indicate position disorder, the crystal structure was
finally refined with both oxygen sites allowed to disorder with coordinates $(x, x/2, z)$ and (x, y, z). The refinement converged at a $R1(F)$ value of 1.67%.

Raman spectroscopy (RS)

Raman spectra of Zn-rich fluor-elbaite were collected in back-scattered geometry at the Faculty
of Materials Science and Ceramics, AGH UST, Cracow, Poland, with a Horiba Labram HR
spectrometer integrated with an Olympus BX 41 confocal microscope. The system was calibrated
using the 520.7 cm$^{-1}$ Raman band of Si. The spectra were recorded in the range of 50–4000 cm$^{-1}$
using the 532 nm line of a solid-state Nd-YAG laser (10 mW) and 1800 grating, on randomly
oriented surfaces of Zn-rich tourmaline in a fragment of the pegmatite mounted in epoxy resin
that was used previously for EPMA and partly extracted for SREF studies. Prior to the Raman
measurements the carbon coating of the disc was removed. The Raman measurements were
carried out by accumulation of two scans with precision ± 0.39 cm$^{-1}$, each with an acquisition
time of 600 s at the microscope magnification 100\times; the minimum lateral and depth resolution ~ 1
μm, and an estimated analytical spot size of ~ 1 μm. Because all the spectra recorded on a small
fragment of the tourmaline were very similar one to the other in the range of OH stretching vibrations (3400–3800 cm\(^{-1}\)), only one representative spectrum was resolved, the same that was presented and initially interpreted by Pieczka et al. (2018).

An initial resolution of the recorded spectrum was done in the range of 3400–3800 cm\(^{-1}\) applying the FITYK program for data processing and nonlinear curve fitting (Wojdyr 2010), after subtracting a linear background. To identify hidden bands, peak positions, full-widths at half maximum (FWHM), and integrated intensities were determined by fitting with pseudo-Voigt (PV) functions PV = \(x\cdot\text{Lorentz} + (1-x)\cdot\text{Gauss}\), with \(x\) varying in the range from 0 (0 \%) to 1 (100 \%), applying the Levenberg-Marquardt algorithm (Levenberg 1944; Marquardt 1963). Although good fits with \(R^2 > 0.995\) of input models to the empirical spectrum were easily achieved, the theoretical Y- and W-site occupants in these models differ to the occupants as determined by EPMA and SREF, probably due to different fractions of the Lorentzian and Gaussian components in the fitted component bands. Additionally, initial bands with small intensities very often have been eliminated during fitting by their addition to nearby more intense bands by increasing of their Lorentzian component. Therefore, the final fitting was performed on an input model of component bands with Gaussian function shapes and application of the Levenberg-Marquardt fitting method. Spectral position, height and FWHM of each anticipated band was matched in such a way to minimize difference between the empirical spectrum and the theoretical spectrum designated as the sum of intensities of the anticipated bands, considering (1) fine structure of the spectrum and information on spectral positions and assignments of O–H stretching vibrations in Li-bearing tourmalines (Gonzalez-Carreño et al. 1988; Hoang et al. 2011; Skogby et al. 2012; Fantini et al. 2014; Watenphul et al. 2016a; Mercurio et al. 2018; Bronzova et al. 2019), and (2) crystal-chemical data of the studied tourmaline making possible explanation of the component bands by local \(^\text{V}\)OH and \(^\text{W}\)OH short-range arrangements. A weak band ~3450 cm\(^{-1}\) with a total...
intensity ~3.5–3.6 % of the total spectrum (tested with various variants of the spectrum deconvolution) was related to a fluorescence band. The spectrum was slightly smoothed prior the fitting procedure to better isolate the peak maxima, first of all for bands above 3600 cm\(^{-1}\) with very small intensities.

RESULTS AND DISCUSSION

Crystal structure

By using the refinement and the chemical data, the Zn-rich fluor-elbaite features the following average empirical formula:

\[
X(\text{Na}_{0.84}\square_{0.14}\text{Ca}_{0.01})\Sigma_{1.00}^Y(\text{Al}_{1.06}\text{Li}_{0.84}\text{Zn}_{0.69}\text{Fe}_{0.32}\text{Mn}_{0.09})\Sigma_{3.00}^Z\text{Al}_6(\text{BO}_3)_3(\text{Si}_6\text{O}_{18})^V(\text{OH})_3^W(\text{F}_{0.65}\text{OH}_{0.26}\text{O}_{0.09}).
\]

Its structure was refined with R1 value of 1.67% for 2304 reflections. The refined unit-cell parameters of the tourmaline are: \(a = 15.921(1)\) Å and \(V = 1564.5(3)\) Å\(^3\). In the refinement, the T, B, Z and V sites were fixed with complete occupancies by Si, B, Al and OH, respectively, in accordance with the average distances and with many other Al-rich and Li-bearing tourmalines (e.g. Donnay and Barton 1972; Burns et al. 1994; Shtukenberg et al. 2007; Ertl et al. 2013). Although the T site in Al-rich, Li-bearing tourmalines may sometimes exhibit a small amount of tetrahedrally coordinated boron, the refined \(<\text{T–O}>\) mean distance of 1.6197(5) Å, is within one standard deviation identical with the \(<\text{Si–O}>\) bond length for tourmaline as given by MacDonald and Hawthorne (1995) and Bosi and Lucchesi (2007), which were estimated as 1.620 Å and 1.619(1) Å, respectively. This indicates that the T site of this tourmaline is filled exclusively by Si. This is also in agreement (within 1 sd) with the SiO\(_2\) measured by EPMA [6.04(8) apfu, Table 1]. The B site is occupied only with boron, as the refined mean bond length \(<\text{B–O}> = 1.375(1)\) Å is compatible with a distance 1.374(2) Å evaluated by Bosi and Lucchesi (2007) for tourmalines with the site completely filled with B\(^{3+}\). Similarly, the Z site features a
<Z–O> distance of 1.9087(6) Å, also similar with such distances of other Li-bearing tourmalines where the Z site is completely filled by Al (e.g. Donnay and Barton 1972, Burns et al. 1994; Shtukenberg et al. 2007; Ertl et al. 2013). The refined X-site occupancy [<X–O> = 2.685(1) Å], corresponding to the presence at the site 0.821(6) Na apfu, agrees within 2 σd with the occupancy of the site by 0.85(1) Na + 0.01(0) Ca apfu [9.0(1) refined eps (electrons per a site) vs 9.6(2) eps calculated from the empirical formula]. The refined Y-site occupancy, Zn_{0.477(1)}Li_{0.523(1)}, indicating the refined site scattering of 15.87(3) eps corresponds to the estimated site population (Al_{1.06}Li_{0.84}Zn_{0.69}Fe^{2+}_{0.32}Mn_{0.09})_{3.00}, and the refined and calculated on the basis of Shannon’s (1976) ionic radii <Y–O> mean bond lengths, 2.038(1) Å and 2.040 Å, respectively, are also the same. The occupancy of the V sites was fixed to 3 OH pfu with the refined V[=O(3)]–H(3) distance of 0.819 Å, showing a weak hydrogen bond with oxygen from O(5). The refined W-site occupancy, F_{0.57(5)}O_{0.43(5)}, is in good agreement with the microprobe data of F equal to 0.65(4) apfu [8.57(5) eps vs 8.65(4) eps, respectively].

Micro-Raman spectroscopy

Although Raman and IR studies of tourmalines refer usually to the Si_6O_18 rings, BO_3 groups and OH groups, all previous researchers agree that the O–H stretching vibrations in the range 3000–4000 cm\(^{-1}\), carry the highest portion of crystal chemical and structural information (Gonzalez-Carreño et al. 1988, Hoang et al. 2011; Skogby et al. 2012; Zhao et al. 2012; Fantini et al. 2014; Bosi et al. 2015, 2016; Berryman et al. 2016; Kutzschbach et al. 2016; Watenphul et al. 2016a; Mercurio et al. 2018; Bronzova et al. 2019). This is a result of the specific location of the Y\(^{\delta}\)OH and W\(^{\delta}\)OH groups in the tourmaline structure because the ligands are bonded to the octahedrally-coordinated occupants of the Y- and Z-sites, which are the two sites with the highest diversification in cation populations. Therefore, we agree with such statements as, for example, with Watenphul et al. (2016a) that “the stretching modes of the OH groups in the V and W sites
are good candidates for establishing the functional relationship between Raman peak parameters and the crystal chemistry of tourmaline”. Furthermore, it should be possible to use this relationship for a fast evaluation of the Y- and W-site populations for other Al-rich and Li-bearing tourmalines, when we are able to decode this relationship. Hence, we must consider that the O–H stretching vibration range reflects quantitatively the chemical bonds of all OH groups from the V and W sites together with all bonded octahedral cations, and additionally, being under the influence of valence-varying X-site occupants (Ca$^{2+}$, Na$^{+}$, and K$^{+}$, and a formally zero-valence vacancy) and W-site occupants (OH$^{-}$/F$^{-}$, O$^{2-}$).

As our tourmaline is a fluor-elbaite, its crystal chemistry and structure is expected to be less complex: the Z site can be assumed to be occupied completely by Al, i.e. without a noticeable disordering of Y- and Z-site cations like Mg or Fe, and the V sites can be assumed to be completely occupied by OH, assumptions shown to be valid in many previous studies of Al-rich and Li-bearing tourmalines. The structure refinement results of the studied fluor-elbaite presented above are consistent with this structural model. This restricts our band interpretation to an analysis of local arrangements around the $^\text{V}$OH and $^\text{W}$OH sites in dependence on the Y-site occupancy. Such a model of interpretation of O–H stretching modes in Raman or IR spectra of tourmalines is applied commonly, e.g. Gonzalez-Carreño et al. (1988), Hoang et al. (2011), Skogby et al. (2012), Zhao et al. (2012), Fantini et al. (2014), Bosi et al. (2015), Berryman et al. (2016), Kutzschbach et al. (2016), Mercurio et al. (2018), Bronzova et al. (2019). Applying this model, we will show that Raman spectroscopy of a Al-rich and Li-bearing tourmaline together with a proper deconvolution of its spectrum leads to Y- and W-site occupancies comparable with those derived from single-crystal X-ray diffraction.

Watenphul et al. (2016a) presented an alternative interpretation of the $^\text{V}$OH stretching modes based on the site-symmetry analysis, which led to the assumption that H atoms of the $^\text{V}$OH

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld
groups are related by rotation around the 3-fold axis and collectively participate in a single phonon mode. In consequence, the energy of the VO–H stretching band should be affected by local cation arrangements associated with all the three VOH groups bonded to all cations of the octahedral cluster, which schematically may be presented as VO(OH)3-[YZZ–YZZ–YZZ]. This model was also used by Bosi et al. (2016) in studies of thermal stability of the octahedral clusters in dravite. In contrast, the model exploring individual local arrangements around each of the three VOH groups takes into account the influence of 1/3 portion of the octahedral cluster [(VOH–YZ)3]

developed around the 3-fold axis (the W site is omitted in the two schemes) modifying the energy of the VO–H stretching band in the single VOH group. Schematically it may be presented as VOH-[YZZ]. To explain why we finally decided to employ the short-range arrangement model for the interpretation of our tourmaline spectrum, we first will have to discuss the results of the deconvolution of the Zn-rich fluor-elbaite spectrum, consistent with the assumption of Watenphul et al. (2016a).

Figure 2a presents Raman spectrum of the Zn-rich fluor-elbaite in the range of O–H stretching modes (3400–3800 cm⁻¹). The spectrum has three intense peaks with the maxima at 3497, 3561 and 3597 cm⁻¹. Peaks with similar Raman shifts in the spectrum of elbaite (3494±8, 3562±4 and 3593±4 cm⁻¹) were assigned by Watenphul et al. (2016a) to VO–H stretching modes related to the octahedral clusters: YLi²ZAl²ZAl-(YuAl²ZAl)₂, (Yu²+ZAl²ZAl)₂-³Al²ZAl and (YLi²ZAl²ZAl)₂-

³Al²ZAl, where Y²⁺ denotes the total of all divalent Y-site occupants (Y²⁺ = YFe²⁺ + YMn²⁺ + YZn²⁺ + YMg²⁺). A visible asymmetry of the peak 3497 cm⁻¹ centered at ~3475 cm⁻¹ would be assigned to the Y²⁺ZAl²ZAl-(YLi²ZAl²ZAl)₂ cluster (Watenphul et al. 2016a; Table 3, p.977). The deconvolution of the spectrum in the range of VO–H stretching modes into four component bands, as was suggested in the paper above, was done with a high R² = 99.95 %, with pseudo-

Voigt functions and in majority free values of peak center, height and FWHM as presented in the
upper part of Table 2. The fitted component bands 3481.6(9), 3498.9(4), 3560.3(0) and 3596.8(0) cm\(^{-1}\) locate within statistical Raman shift ranges as obtained by Watenphul et al. (2016a).

However, the contents of \(Y\)Li, \(Y^2+\) and \(Y\)Al calculated on the basis of the equation given by these authors (see p. 980) for the calculation of specific \(Y\)-site occupants on the basis of the band assignments, 0.59 Li, 1.04 \(Y^2+\) and 1.37 Al apfu, differ significantly from those calculated on the basis of EPMA and SREF: 0.84, 1.10 and 1.06 apfu, respectively. The difference could be a result from the omission of two other possible \([YZZ–YZZ–YZZ]\) clusters. These clusters are connected with \(\text{V}OH\) groups that must show up in a Raman spectrum of a \(Y^2+\)-bearing Li-tourmaline: \(Y\)Li\(^{2+}\)\(Z\)Al\(^{2+}\)\(Z\)Al–\(Y^2+\)\(Z\)Al–\(Y\)Al\(^{2+}\)\(Z\)Al and \((Y^{2+}Z\)Al\(^{2+}\)\(Al\(^{2+}\)). These clusters can be explained due to bond-valence constraints around the W site in the tourmaline structure (Hawthorne 1996, 2002, 2016; Bosi 2013), which allow seven variants of the \([YYY]\) triplet, for which the W site can be occupied by \(\text{OH}^-/F^-\) or \(\text{O}^{2-}\) at the simultaneous presence of \(\text{OH}^-\) at the V site (Table 3).

The first of the two arrangements cited above is especially important, because its frequency, compared to the cluster \((Y^{2+}Z\)Al\(^{2+}\)\(Al\(^{2+}\))\(^2\)–\(Y\)Al\(^{2+}\)\(Z\)Al, is commonly higher or at least equal, when the content of \(Y^2+\) is 2-times higher than the content of Li. Therefore, we also have tested a deconvolution of the spectrum into six \(\text{V}OH\) component bands, accepting that the arrangements \((\text{V}OH–Y^{2+}Z\)Al\(^{2+}\)\(Al\(^{2+}\))\(^3\), \((\text{V}OH–Y^{2+}Z\)Al\(^{2+}\)\(Al\(^{2+}\))\(^2\) × \(\text{V}OH–Y\)Al\(^{2+}\)\(Z\)Al and \(\text{V}OH–Y\)Li\(^{2+}\)\(Z\)Al × \(\text{V}OH–Y^{2+}Z\)Al\(^{2+}\)\(Al\(^{2+}\))\(^2\) \(\times\) \(\text{V}OH–Y\)Al\(^{2+}\)\(Z\)Al could collectively correspond to the band observed at ~3561 cm\(^{-1}\).

Results of such a deconvolution that characterizes a similarly high \(R^2\) are presented in Table 2 (lower part) and in Figure 2b. In this case, the integral intensities of the component bands centered at 3477.9(2), 3497.1(1), 3545(1), 3555.7, 3564.2(1) and 3596.3(0) cm\(^{-1}\) and their assignments indicate the presence of 0.93 Li, 0.80 \(Y^2+\) and 1.27 Al apfu, although the contents also differ to the EPMA + SREF results. The discrepancy among the EPMA + SREF contents and the contents estimated on the basis of the equation (directly related to the used interpretation
model) is also visible in Figure 7 in the original paper of Watenphul et al. (2016a), where the deviations among the contents of Y-site occupants, evaluated by applying these two methods, are relatively distinct. In our opinion is this a serious problem of this model, particularly when the Y-site occupants represent a more complicated ternary system (Li$^+$, Y$^{2+}$, Al$^{3+}$).

The input model of Raman spectrum in the O–H stretching vibration range

Similarly to other researchers (Gonzalez-Carreño et al. 1988; Hoang et al. 2011; Skogby et al. 2012; Zhao et al. 2012; Fantini et al. 2014; Bosi et al. 2015; Berryman et al. 2016; Kutzschbach et al. 2016; Mercurio et al. 2018; Bronzova et al. 2019) we accept that Raman shifts of the VO–H stretching bands in tourmaline are dependent on the valence of one bonded Y-site occupant, in Al-rich and Li-bearing tourmalines varying from 3+ to 1+. Because each of the VOH groups is bonded to one Y and two Z cations and Z site is exclusively occupied by Al as is the case in Al-rich and Li-bearing tourmalines, the only possible arrangements of the [YZZ] triplet around the V site are YAlZAlZ, Y2+ZAlZAl and YLiZAlZAl. The Y cations with different valences shift the electron density away from the VO–H bond proportionally to its own charge, and as a result, the VO–H bond length increases, but its strength decreases in accord with the sequence YLi$^+$...YO–H through Y2+...YO–H to YAl$^{3+}$...YO–H. Consequently, YLi, Y2+ and YAl$^{3+}$ are assigned to bands with the observed maxima 3597, 3561 and 3497 cm$^{-1}$, respectively. Because in the tourmaline structure VOH groups occur with at least 75% abundance relative to the total content of hydroxyls [3VOH + W(OH,F,O)], the resulting Raman bands have relatively high intensities. An exact observation of the spectrum in Figure 2 allows noticing asymmetry of all the peaks toward lower Raman shifts. Kutzschbach et al. (2016) observed such an effect for the Al-peak in synthetic olenite and interpreted it as a result of the presence of vacancies at the X site. We agree with this interpretation, because an alkali-vacant-type substitution of $^X^+$ + Y2+ = X0+ + YAl$^{3+}$, with Al$^{3+}$ at the Y sites, needs a vacant X site. However, in such a case, we must accept that cations at the...
remaining two octahedral sites of the [YYY] triplet are also related to this empty X site. Therefore, we should expect for our tourmaline with occupation of the X-site ($Na_{0.84}Ca_{0.14}$) the presence of, at least, doubled bands for each absorption peaks previously assigned to the presence of Y^3Al^3, Y^2Al^2 and Y^2Li. In case of a highly diversified X-site population, each of the $VOH-Y^3Al^3$, $VOH-Y^2Li^2Al^2$ absorption peaks could be deconvoluted even into three bands, related to the presence of vacancy, Na or Ca at the X site, as can be assumed on the basis of the bond-valence constraints around the W site (Hawthorne 1996, 2002, 2016; Bosi 2013) and to the related V-site occupancies (Table 3). All the expectations we considered in an input model of component bands related to the $ZO–H$ stretching vibrations, assuming the presence of three components for the bands centered at 3497 and 3597 cm$^{-1}$ (influenced by XNa and XCa) and two components for the band centered at 3561 cm$^{-1}$ (influenced only by X and Na).

The WOH hydroxyls are bonded to three Y cations and influenced by the X-site occupant, e.g. Gonzalez-Carreño et al. (1988), Berryman et al. (2016), Bronzova et al. (2019). The presence of Al, Y^2 and Li at the Y site of the studied Zn-rich fluor-elbaite results in ten variants of the [YYY] triplet, from which only seven variants are allowed through bond-valence constraints around the W site (Hawthorne 1996, 2002, 2016; Bosi 2013) as presented in Table 3. It allows to expect that at a small proportion of WOH in the total OH content ($\leq 25 \%$), the abundances of individual [YYY] arrangements and corresponding intensities of component bands should only be subordinate. Therefore, they only have a potential to modify the basic pattern of the spectrum produced essentially by VOH bands at lower Raman shift values. Because H^+ of the WOH group receives repulsion from the charge of the X cation, the $WO–H$ length is the longest at a vacant X site, shorter when the X-site is occupied by Na, and the shortest for XCa^2, and is inversely proportional to the respective bond strengths. Therefore, in a tourmaline spectrum $WO–H...X$ bands should occur at relatively low Raman shifts $\sim 3600–3650$ cm$^{-1}$ (a weak band at ~ 3615 cm$^{-1}$).
is still assigned by us to ν_{OH} groups bonded to $\nu_{Li^+Z^2Al^2ZAl...XNa}$, $\nu_{W-OH...XNa}$ around 3700 cm$^{-1}$ (Hoang et al. 2011; Skogby et al. 2012; Fantini et al. 2014; Berryman et al. 2016; Watenphul et al. 2016a), and $\nu_{W-OH-Y^2+Z^2+Al^2...XNa}$ bands might be expected above to 3700–3750 cm$^{-1}$. Applying to the [YYY] arrangements the same reasoning as those used above for the [YZZ] triplets, it can be expected that the strongest effect of shifting the electron density away from the ν_{W-OH} bond would take place for a $\nu_{Y^2Y}Z^2Al$ arrangement, and the weakest for the $\nu_{Y^2Y^2+Z^2+Al}$ triplet. Consequently, the ν_{W-OH} bond should be the weakest in case of the first-type triplet, and the strongest for the last. Summarizing, considering bond-valence constraints around the W site (Hawthorne 1996, 2002, 2016; Bosi 2013), the combination of $\nu_{W-OH...X}$ and $\nu_{W-OH...[YYY]}$ effects should result in a spectrum as maximum nine component bands (Table 3) with low intensities, totally ≤25 % of the whole spectrum, occurring in the spectral range of ~3600 to ~3800 cm$^{-1}$. In consequence, our input model for a deconvolution of the spectrum of Zn-bearing and Ca-poor fluor-elbaite comprises eight component bands, related to ν_{V-OH} stretching modes and nine component bands related to ν_{W-OH} stretching modes, both modified by the Y-site occupants and influenced by $^X\square$, XNa or XCa.

Fitting of the input model

Figure 3 and Table 4 present fitting results of the O–H stretching vibration range in the Zn-bearing fluor-elbaite. The three asymmetrical peaks related to ν_{V-OH} modes, centered at 3497, 3561 and 3597 cm$^{-1}$, were resolved into 3 + 2 + 3 component bands, respectively. We interpret them as $\nu_{Y^2Y^2Al^2ZAl}$, $\nu_{Y^2+Z^2Al^2ZAl}$ and $\nu_{Y^2+Z^2Al^2ZAl}$ arrangements modified by the presence of $^X\square$ (the component band with the lowest Raman shift in each peak), Na^+ or Ca^{2+} at the X site (the component band with the highest Raman shift in the first and third peak). Total intensities of the component bands corresponding to the presence of Y^2Y, ν_{Y^2+} or Y^2Li at the triplets $\nu_{W-OH-[YZZ]}$, i.e.
shares of the Y constituents (Al, Y$^{2+}$, and Li) in the Y-site occupancy: ~37.4, 37.4, and 25.2%, respectively, which corresponds to the [YYY] triplet (Al$_{1.12}$Y$_{2+}$$_{1.12}Li_{0.76}$)$_3$. Furthermore, the ratio of total intensity of the V$^\circ$OH bands, V$^\circ$OH$_{YZ}$, in relation to the total intensity of the V$^\circ$OH and W$^\circ$OH bands, V$^\circ$OH$_{YZ}$ + W$^\circ$OH$_{YYY}$, allows estimating an approximate W$^\circ$OH$_{Raman}$ content from the equation: W$^\circ$OH = [3 × (V$^\circ$OH$_{YZ}$ + W$^\circ$OH$_{YYY}$)] / V$^\circ$OH$_{YZ}$ − 3] (apfu). For the studied fluor-elbaite the W$^\circ$OH content evaluated in such a way is ~0.16 apfu. The contents of 1.12 Y$^\circ$Al, 1.12 Y$^{2+}$, 0.76 Y Li apfu and 0.16 W$^\circ$OH groups pfu, estimated directly from the Raman spectrum of the fluor-elbaite after the deconvolution of the O–H stretching vibration range, correspond well to the EPMA + SREF results: 1.06 Al, 1.10 Y$^{2+}$, 0.84 Li and 0.26 OH apfu. As a result, the output model of component bands in the OH stretching vibration range of the fluor-elbaite ascribes its empirical spectrum with a R^2 value of 0.9998, better than in the case of the previously discussed model of Watenphul et al. (2016a).

A deconvolution of the spectrum gives also an opportunity to use one of a few parameters, which are possible to evaluate on basis of its quantitative results in the calculation of the crystal chemical formula, similarly as it was done e.g. for Li. Lithium can not be analyzed by conventional microprobe, but evaluated on the basis of the EPMA results and the Y-site scattering from SREF. The introduction of such a parameter into the procedure of the formula calculation gives the opportunity to evaluate Y Li and W$^\circ$OH by matching of such Li$_2$O and H$_2$O amounts (in wt %) to obtain the value of the parameter matched to the value evaluated from the spectrum deconvolution. As the most suitable parameter we determined the content of the V$^\circ$OH-Y$^\circ$Al2Al component bands in the total spectrum, i.e. the ratio V$^\circ$OH$_{YZ}$ / (V$^\circ$OH$_{YZ}$ + V$^\circ$OH$_{YZ}$ + V$^\circ$OH$_{YZ}$).
This is due to the only small superposition of the \(^{\text{V}}\text{OH} - ^{\text{Y}}\text{Al}^{\text{Z}}\text{Al}^{\text{Z}}\text{Al} \) component bands, influenced by \(^{\text{X}}(\square, \text{Na, Ca}) \) with the remaining part of the spectrum, which gives the opportunity to evaluate the parameter with a relatively high accuracy. The crystal chemical formula calculated in such a way (only on basis of the EPMA and RS results) for the studied fluor-elbaite (Table 1) is as follows:

\[
^{\text{X}}(\text{Na}_{0.85}^{\square} \text{Ca}_{0.14}^{0.01})_{\Sigma 1.00}^{\text{Y}}(\text{Al}_{1.11}^{\text{Y}^{\text{Z}}_{1.11}}\text{Li}_{0.78}^{0.0})_{\Sigma 3.00}^{\text{Z}}\text{Al}_{6}^{0}(\text{BO}_{3})_{3}(\text{Si}_{6}\text{O}_{18})^{(\text{OH})}_{3}(\text{F}_{0.65}\text{OH}_{0.13}\text{O}_{0.22}). \]

It differs from the EPMA + SREF formula by +0.05 Al, +0.01 \(^{\text{Y}^{\text{Z}}} \) and -0.06 Li apfu.

Implications

The empirical EPMA and SREF formula of the studied Zn-rich fluor-elbaite is

\[
^{\text{X}}(\text{Na}_{0.85}^{\square} \text{Ca}_{0.14}^{0.01})_{\Sigma 1.00}^{\text{Y}}(\text{Al}_{1.06}\text{Li}_{0.84}\text{Zn}_{0.69}\text{Fe}_{2+}^{0.32}\text{Mn}_{0.09})_{\Sigma 3.00}^{\text{Z}}\text{Al}_{6}^{0}(\text{BO}_{3})_{3}(\text{Si}_{6}\text{O}_{18})^{(\text{OH})}_{3}(\text{F}_{0.65}\text{OH}_{0.26}^{0.09}). \]

Our interpretation of the RS of the tourmaline in the range of O–H stretching modes, 3400–3800 cm\(^{-1}\), indicates the presence of 1.12 Al, 1.12 \(^{\text{Y}^{\text{Z}}} \) and 0.76 Li apfu in the [YYY] triplet bonded to three \(^{\text{V}}\text{OH} \) groups, and with OH, F and O, which occupy the W site. The \(^{\text{W}}\text{OH} \) content deduced on the basis of the deconvolution of the spectrum is \(~0.16\) apfu, which leads to the W-site occupation (\(\text{F}_{0.65}\text{O}_{0.19}\text{OH}_{0.16})_{\Sigma 1}^{\text{W}} \)). An application of the ratio \(^{\text{V}}\text{OH}_{\text{Y}^{\text{Z}}\text{Al}^{\text{Z}}\text{Al}^{\text{Z}}\text{Al}}^{\text{W}} / (^{\text{V}}\text{OH}_{\text{Y}^{\text{Z}}\text{ZZ}} + ^{\text{W}}\text{OH}_{\text{YYY}}) \), which reflects the contribution of \(^{\text{V}}\text{OH} \) groups bonded to \(^{\text{Y}}\text{Al} \) in relation to the total content of \(^{\text{V}+\text{W}}\text{OH} \) groups, as an additional criterion in the formula calculation allows to re-calculate it as

\[
^{\text{X}}(\text{Na}_{0.85}^{\square} \text{Ca}_{0.14}^{0.01})_{\Sigma 1.00}^{\text{Y}}(\text{Al}_{1.11}^{\text{Y}^{\text{Z}}_{1.11}}\text{Li}_{0.78}^{0.0})_{\Sigma 3.00}^{\text{Z}}\text{Al}_{6}^{0}(\text{BO}_{3})_{3}(\text{Si}_{6}\text{O}_{18})^{(\text{OH})}_{3}(\text{F}_{0.65}\text{OH}_{0.13}\text{O}_{0.22}), \]

where \(^{\text{Y}^{\text{Z}}} = \text{Zn} + \text{Fe} + \text{Mn} \), based only on EPMA and RS results. The \(<\text{Y}–\text{O}> \) mean bond length calculated on the basis of the formula, 2.036 Å, as well as electron densities at the X, Y and W sites, 9.6, 16.1 and 8.7 eps respectively, agree well with the refined values (within \(~2\) sd SREF...
and EPMA results). Taken into account that in the applied methods (SREF, RS) the crystal
chemical and structural information was collected from volumes of the investigated crystal
having different dimensions, i.e. \(\sim 1 \mu m^3 \) in RS vs several \(\mu m^3 \) in EPMA compared to a
significantly larger volume of \(\sim 3 \times 10^6 \mu m^3 \) for the single-crystal X-ray diffraction, the accordance
of both formulae in the order of +0.05 Al, +0.01 \(Y^{2+} \) and -0.06 Li apfu, i.e. within 1 sd of the
microprobe Al and \(Y^{2+} \) determinations is an excellent agreement. Compared to the results of the
deconvolution and interpretation of the spectrum, as was suggested by Watenphul et al. (2016a),
+0.31 Al, -0.06 \(Y^{2+} \), -0.25 Li apfu (deconvolution of the spectrum into 4 \(Z^{OH} \) component bands),
or + 0.21 Al, -0.30 \(Y^{2+} \), +0.09 Li apfu, (deconvolution into 6 \(Z^{OH} \) component bands), our new
proposed method gives results in better agreement with the EPMA and SREF results. Considering
the standard deviations of the refined parameters (including site scattering) of the structure
refinement, our (EPMA + RS)-evaluated formula actually seems to be very close to the calculated
Y-site occupants (based on the EPMA + SREF results). Assuming Y-site scattering errors in the
range of +1 to +3 sd, the differences between the (EPMA + RS)-evaluated Y-site contents (Al, \(Y^{2+} \), Li) and those calculated from EPMA + SREF differ only by ±0.01 apfu per 1 sd at
maximum (Table 1).

The presented results are the first documented case with the application of RS for the
evaluation of the chemistry of a Li-bearing tourmaline. Up until now, only Watenphul et al.
(2016b) attempted to apply RS to the discrimination of tourmaline species, which they showed
was useful for discrimination of Mg- and Fe-dominant tourmaline species. Our presented method
needs subsequent investigations for Al-rich and Li-bearing tourmalines representing other
mineral species (elbaite, fluor-elbaite, fluor-liddicoatite, rossmanite, darrellhenryite), which
additionally could validate it and should allow to obtain the influence of the orientation to the
crystal faces and the precision of the Li and OH evaluation and WOH band assignments. More
researches about that are in progress. However, it seems that RS can be a very important tool in
the achievement of crystal chemical and structural information from ultra-small portions of a
crystal, even smaller than needed for a single-crystal X-ray diffraction. Generally, it should not
be surprising, because it is obvious that single-crystal X-ray diffraction and Raman spectroscopy
present two different patterns of the same crystal structure and code the same crystal chemical
and structural information, but in a different way. A crystal structure refinement uses the
intensities and positions of X-ray diffraction reflections, while Raman spectroscopy uses
intensities and positions of absorption bands.

The determination of Li (Li₂O) in Li-tourmalines is still problematic. Rinaldi and Llovet
(2015) stated that a new WDS soft X-ray emission spectrometer (SXES) introduced by one of the
two main EPMA equipment manufactures opens a whole new perspective for the analysis of light
elements (including Li) and low-energy lines of other elements in the nearest future. However,
because Li can still not be analyzed by conventional EPMA instruments, for large and
homogeneous crystals this difficulty can only be omitted by a direct analysis of Li, e.g. with AAS
or LA-ICP-MS. These methods cannot be used for very small crystals, which show a complex
zonation within a distance of a few μm. Tempesta and Agrosì (2016) studied the chemistry of red
beryls (including Li) with approximately 10 μm spot sizes by using Laser Induced Breakdown
Spectroscopy (LIBS), however, although this method is fast and only minimally destructive, it
works without standards but yields quantitative results very close to those obtained with
conventional techniques. Although the Li amount can be approximately evaluated on basis of
single-crystal X-ray diffraction, this method, currently mainly available at faculties of chemistry,
is not always accessible for mineralogists and cannot be applied routinely. To solve this problem,
Pesquera et al. (2016) derived a statistical equation allowing the calculation of Li₂O content in wt% from the amounts of main oxide components of Li-bearing tourmalines such as SiO₂, Al₂O₃, total Fe as FeO and MnO. However, as shown by Pieczka et al. (2018), this method does not work well, if a tourmaline is enriched by an atypical component, e.g. ZnO and even CaO, which are often present as important constituents in Al-rich, Li-bearing tourmalines. In this light, our presented method, providing comparable Li contents, estimated by the solution of O–H stretching vibration modes of a Raman spectrum of Li-tourmaline, can be applied relatively easily and quickly compared to single-crystal X-ray diffraction refinements. All the previous remarks refer also to the quantitative evaluation of OH\textsubscript{total} (H₂O), another important component, which is usually not analyzed and only calculated on basis of an assumed tourmaline stoichiometry. Raman spectroscopy gives an opportunity to determine the relatively exact amount of OH, although the V sites must be assumed be fully occupied by OH. Hence, the amount of W\textsubscript{OH} can be determined as an excess above 3 anions pfu. We consider that by the chemical analysis with EPMA-WDS and by using Raman spectroscopy it is possible to receive the correct crystal chemical and structural formula of a Al-rich and Li-bearing tourmaline in a relatively short time without the necessity of comprehensive structural studies by single-crystal X-ray diffraction.

ACKNOWLEDGEMENTS AND FOUNDING

We thank two anonymous reviewers and the technical reviewer for their comments that were very helpful to improve the manuscript. We are also very indebted to Edward S. Grew for the careful editorial handling. This study was supported by the National Science Centre (Poland) grant 2015/19/B/ST10/01809 and AGH UST grant 16.16.140.315, both to AP, and in part by the Austrian Science Fund (FWF) project no. P 31049-N29 (AE).
REFERENCES CITED

Lussier, A., Ball, N.A., Hawthorne, F.C., Henry, D.J., Shimizu, R., Ogasawara, Y. and Ota, T. (2016) Maruyamaite, K(MgAl\textsubscript{2})(Al\textsubscript{5}Mg)Si\textsubscript{6}O\textsubscript{18}(BO\textsubscript{3})\textsubscript{3}(OH)\textsubscript{3}O, a potassium-dominant tourmaline from the ultrahigh-pressure Kokchetav massif, northern Kazakhstan: Description and crystal structure. American Mineralogist, 101, 355–361.

University of Göttingen, Göttingen, Germany.

Figure captions:

Figure 1. Back-scattered-electron image (colors added) of zinc-rich fluor-elbaite and schorl from Piława Góra, Lower Silesia, southwestern Poland (enlargement of a part of Pieczka et al. 2018, Fig. 4d). The area analyzed with the electron microprobe, single-crystal X-ray diffraction and Raman spectroscopy is enclosed by a red ellipse.

Figure 2. Deconvolution of the O–H vibration modes in Zn-rich fluor-elbaite with the model of Watenphul et al. (2016a): (a) four \(^3\)OH component bands, (b) six \(^3\)OH component bands (explanation in the text). Colors in the spectrum: grey – the measured spectrum, black – the smoothed spectrum, red – the fitted model, orange – a fluorescence band, blue – bands of \(^3\)O–H vibrations, green – bands of \(^3\)O–H vibrations.

Figure 3. Deconvolution of the O–H vibration modes in Zn-rich fluor-elbaite with the short-range arrangement model. Colors as in Fig. 2.
Table 1. Chemical composition of Zn-rich fluor-elbaite from Piława Góra.

<table>
<thead>
<tr>
<th>Component</th>
<th>9/1</th>
<th>18/8</th>
<th>20/9</th>
<th>8/4</th>
<th>average (wt%)</th>
<th>average (apfu)</th>
<th>+1sd (apfu)</th>
<th>+2sd (apfu)</th>
<th>+3sd (apfu)</th>
<th>RS (apfu)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>36.96</td>
<td>36.10</td>
<td>36.06</td>
<td>37.08</td>
<td>36.55(47)</td>
<td>Si⁴⁺</td>
<td>6.04(8)</td>
<td>6.04(8)</td>
<td>6.05(8)</td>
<td>6.05(8)</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>36.64</td>
<td>35.70</td>
<td>35.75</td>
<td>36.98</td>
<td>36.27(56)</td>
<td>Al³⁺</td>
<td>7.06(11)</td>
<td>7.06(11)</td>
<td>7.07(11)</td>
<td>7.08(11)</td>
</tr>
<tr>
<td>FeO</td>
<td>2.45</td>
<td>2.37</td>
<td>2.42</td>
<td>1.92</td>
<td>2.29(22)</td>
<td>Fe²⁺</td>
<td>0.32(3)</td>
<td>0.32(3)</td>
<td>0.32(3)</td>
<td>0.32(3)</td>
</tr>
<tr>
<td>MnO</td>
<td>0.67</td>
<td>0.58</td>
<td>0.61</td>
<td>0.76</td>
<td>0.66(07)</td>
<td>Mn²⁺</td>
<td>0.09(1)</td>
<td>0.09(1)</td>
<td>0.09(1)</td>
<td>0.09(1)</td>
</tr>
<tr>
<td>ZnO</td>
<td>5.64</td>
<td>5.90</td>
<td>5.57</td>
<td>5.68</td>
<td>5.70(12)</td>
<td>Zn²⁺</td>
<td>0.69(1)</td>
<td>0.70(1)</td>
<td>0.70(1)</td>
<td>0.70(1)</td>
</tr>
<tr>
<td>CaO</td>
<td>0.07</td>
<td>0.09</td>
<td>0.08</td>
<td>0.10</td>
<td>0.08(01)</td>
<td>Ca²⁺</td>
<td>0.01(0)</td>
<td>0.01(0)</td>
<td>0.01(0)</td>
<td>0.01(0)</td>
</tr>
<tr>
<td>Na₂O</td>
<td>2.70</td>
<td>2.62</td>
<td>2.61</td>
<td>2.62</td>
<td>2.64(04)</td>
<td>Na⁺</td>
<td>0.84(1)</td>
<td>0.85(1)</td>
<td>0.85(1)</td>
<td>0.85(1)</td>
</tr>
<tr>
<td>F</td>
<td>1.35</td>
<td>1.18</td>
<td>1.24</td>
<td>1.19</td>
<td>1.24(07)</td>
<td>F⁻</td>
<td>0.65(4)</td>
<td>0.65(4)</td>
<td>0.65(4)</td>
<td>0.65(4)</td>
</tr>
<tr>
<td>B₂O₃(calc.)</td>
<td>10.53</td>
<td>3.00</td>
<td>3.00</td>
<td>3.00</td>
<td>3.00(00)</td>
<td>B³⁺</td>
<td>3.00</td>
<td>3.00</td>
<td>3.00</td>
<td>3.00</td>
</tr>
<tr>
<td>Li₂O(calc.)</td>
<td>1.26</td>
<td>0.84</td>
<td>0.83</td>
<td>0.82</td>
<td>0.81(00)</td>
<td>Li⁺</td>
<td>0.84</td>
<td>0.84</td>
<td>0.84</td>
<td>0.84</td>
</tr>
<tr>
<td>H₂O(calc.)</td>
<td>2.96</td>
<td>3.26</td>
<td>3.24</td>
<td>3.23</td>
<td>3.21(00)</td>
<td>OH⁻</td>
<td>3.26</td>
<td>3.24</td>
<td>3.23</td>
<td>3.21</td>
</tr>
<tr>
<td>-O=F₂</td>
<td>-0.52</td>
<td>27.09</td>
<td>27.11</td>
<td>27.12</td>
<td>27.14(00)</td>
<td>O²⁻</td>
<td>27.09</td>
<td>27.11</td>
<td>27.12</td>
<td>27.14</td>
</tr>
<tr>
<td>Total</td>
<td>99.65</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes: average analysis – EPMA analysis completed with Li₂O and H₂O amounts matched to the SREF measured Y-site scattering; +1sd, +2sd and +3sd analyses – EPMA analysis completed with Li₂O and H₂O amounts matched to the SREF measured Y-site scattering +1sd, +2sd or +3sd, respectively; RS – EPMA analysis completed with Li₂O and H₂O amounts matched to the calculated components B₂O₃, Li₂O and H₂O amounts equal to: 10.52, 10.50, 10.49 and 10.44 (B₂O₃); 1.25, 1.24, 1.22 and 1.16 (Li₂O); 2.94, 2.92, 2.90 and 2.82 (H₂O); totals 99.61, 99.56, 99.52, 99.32, respectively.
Table 2. Deconvolution of O–H stretching bands in Zn-rich fluor-elbaite consistently with the model of Watenphul et al. (2016a)

<table>
<thead>
<tr>
<th>Raman shift (cm⁻¹)</th>
<th>FWHM (cm⁻¹)</th>
<th>Integral intensity (%)</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>3481.6(9)</td>
<td>30.0(6)</td>
<td>15.66</td>
<td>(^\text{v} \text{OH} - \text{Y}^2\text{ZAl}^2\text{Al} \times \text{vOH} - (\text{v} \text{Al}^2\text{ZAl})_2)</td>
</tr>
<tr>
<td>3498.9(4)</td>
<td>25.7(3)</td>
<td>20.17</td>
<td>(^\text{v} \text{OH} - \text{Li}^2\text{ZAl}^2\text{Al} \times \text{vOH} - (\text{v} \text{Al}^2\text{ZAl})_2)</td>
</tr>
<tr>
<td>3560.3(0)</td>
<td>28.4(1)</td>
<td>43.11</td>
<td>(^\text{v} \text{OH} - \text{Y}^2\text{ZAl}^2\text{Al} \times \text{vOH} - \text{v} \text{Al}^2\text{ZAl})</td>
</tr>
<tr>
<td>3596.8(0)</td>
<td>21.0(1)</td>
<td>18.65</td>
<td>(^\text{v} \text{OH} - \text{Li}^2\text{ZAl}^2\text{Al} \times \text{vOH} - \text{v} \text{Al}^2\text{ZAl})</td>
</tr>
<tr>
<td>3629.3(3)</td>
<td>8</td>
<td>0.28</td>
<td>(^\text{v} \text{OH} - \text{Y}^2\text{Y}^2\text{Al} \text{...})</td>
</tr>
<tr>
<td>3642.0(8)</td>
<td>8</td>
<td>0.07</td>
<td>(^\text{v} \text{OH} - \text{Li}^2\text{ZAl}^2\text{Al} \times \text{vOH} - \text{Y}^2\text{Y}^2\text{Al} \text{...})</td>
</tr>
<tr>
<td>3672.0(3)</td>
<td>10.0(8)</td>
<td>0.40</td>
<td>(^\text{v} \text{OH} - \text{YYY} \text{...} (\text{□} \text{Na}))</td>
</tr>
<tr>
<td>3682.2(4)</td>
<td>10(1)</td>
<td>0.54</td>
<td>(^\text{v} \text{OH} - \text{YYY} \text{...} \text{Na})</td>
</tr>
<tr>
<td>3713(1)</td>
<td>39(4)</td>
<td>1.12</td>
<td>(^\text{v} \text{OH} - \text{YYY} \text{...} \text{(Na, Ca)})</td>
</tr>
<tr>
<td>3477.9(2)</td>
<td>26</td>
<td>11.65</td>
<td>(^\text{v} \text{OH} - \text{Y}^2\text{ZAl}^2\text{Al} \times \text{vOH} - \text{v} \text{Al}^2\text{ZAl})_2)</td>
</tr>
<tr>
<td>3497.1(1)</td>
<td>28.0(2)</td>
<td>26.94</td>
<td>(^\text{v} \text{OH} - \text{Li}^2\text{ZAl}^2\text{Al} \times \text{vOH} - \text{v} \text{Al}^2\text{ZAl})_2)</td>
</tr>
<tr>
<td>3545(1)</td>
<td>24(2)</td>
<td>3.46</td>
<td>(^\text{v} \text{OH} - \text{Y}^2\text{ZAl}^2\text{Al})_3)</td>
</tr>
<tr>
<td>3555.7</td>
<td>22</td>
<td>12.55</td>
<td>(^\text{v} \text{OH} - \text{Y}^2\text{ZAl}^2\text{Al})_2 \times \text{vOH} - \text{Y} \text{Al}^2\text{ZAl})</td>
</tr>
<tr>
<td>3564.2(1)</td>
<td>22</td>
<td>21.65</td>
<td>(^\text{v} \text{OH} - \text{Li}^2\text{ZAl}^2\text{Al} \times \text{vOH} - \text{Y}^2\text{ZAl}^2\text{Al} \times \text{vOH} - \text{Y} \text{Al}^2\text{ZAl})</td>
</tr>
<tr>
<td>3596.3(0)</td>
<td>22.2(1)</td>
<td>21.05</td>
<td>(^\text{v} \text{OH} - \text{Li}^2\text{ZAl}^2\text{Al})_2 \times \text{vOH} - \text{Y}^2\text{ZAl}^2\text{Al})</td>
</tr>
<tr>
<td>3629.4(5)</td>
<td>8</td>
<td>0.27</td>
<td>(^\text{v} \text{OH} - \text{Y}^2\text{Y}^2\text{Al} \text{...})</td>
</tr>
<tr>
<td>3641.8(4)</td>
<td>8</td>
<td>0.16</td>
<td>(^\text{v} \text{OH} - \text{Y}^2\text{Y}^2\text{Al} \text{...})</td>
</tr>
<tr>
<td>3670.8(4)</td>
<td>9(1)</td>
<td>0.33</td>
<td>(^\text{v} \text{OH} - \text{YYY} \text{...} (\text{□} \text{Na}))</td>
</tr>
<tr>
<td>3680(1)</td>
<td>16(2)</td>
<td>0.75</td>
<td>(^\text{v} \text{OH} - \text{YYY} \text{...} \text{Na})</td>
</tr>
<tr>
<td>3713.1(7)</td>
<td>37</td>
<td>1.18</td>
<td>(^\text{v} \text{OH} - \text{YYY} \text{...} \text{(Na, Ca)})</td>
</tr>
</tbody>
</table>

\(^1\) – upper part presents the deconvolution into four component bands for \(^\text{v} \text{OH}\), lower part presents the deconvolution of the spectrum with two additional components (see explanation in the text); FWHM - full widths at half maximum. Data in parentheses are standard deviations. The lack of such data at peak positions or FWHMs denotes that the parameters were fixed.
Table 3. Possible W-[YYY] short-range arrangements in tourmaline with ZAl and VOH.

<table>
<thead>
<tr>
<th>[YYY] arrangement</th>
<th>W X</th>
<th>X = Na</th>
<th>X = Ca</th>
</tr>
</thead>
<tbody>
<tr>
<td>[AlAlY$^{2+}$]</td>
<td>O</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[AlAlLi]</td>
<td>OH/F</td>
<td>OH/F*</td>
<td>O</td>
</tr>
<tr>
<td>[AlY$^{2+}$Y$^{2+}$]</td>
<td>OH/F</td>
<td>OH/F</td>
<td></td>
</tr>
<tr>
<td>[AlY$^{2+}$Li]</td>
<td>OH/F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[Y$^{2+}$Y$^{2+}$Y$^{2+}$]</td>
<td>OH/F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[AlLiLi]</td>
<td>OH/F*</td>
<td>OH/F</td>
<td></td>
</tr>
<tr>
<td>[Y$^{2+}$Y$^{2+}$Li]</td>
<td></td>
<td>OH/F**</td>
<td></td>
</tr>
</tbody>
</table>

* in elbaite and fluor-elbaite, ** in $^Y^{2+}$-bearing fluor-liddicoatite.
Table 4. Deconvolution of O–H stretching vibration bands in Zn-rich fluor-elbaite according to the short-range arrangement model.

<table>
<thead>
<tr>
<th>Raman shift (cm⁻¹)</th>
<th>FWHM (cm⁻¹)</th>
<th>Integral intensity (%)</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>3450</td>
<td>54</td>
<td>10.14</td>
<td>fluorescence</td>
</tr>
<tr>
<td>3478.1(3)</td>
<td>28.5</td>
<td>10.14</td>
<td>V\text{OH}^{2+}Al\text{Al}^{2+}Al...X\text{Na}</td>
</tr>
<tr>
<td>3498.1(1)</td>
<td>28.8(2)</td>
<td>24.96</td>
<td>V\text{OH}^{2+}Al\text{Al}^{2+}Al...X\text{Na}</td>
</tr>
<tr>
<td>3523(3)</td>
<td>10.8(8)</td>
<td>0.48</td>
<td>V\text{OH}^{2+}Al\text{Al}^{2+}Al...X\text{Ca}</td>
</tr>
<tr>
<td>3538.1(3)</td>
<td>26</td>
<td>5.55</td>
<td>V\text{OH}^{2+}Al\text{Al}^{2+}Al...X\text{Na}</td>
</tr>
<tr>
<td>3561.2(1)</td>
<td>26.2</td>
<td>29.96</td>
<td>V\text{OH}^{2+}Al\text{Al}^{2+}Al...X\text{Na}</td>
</tr>
<tr>
<td>3584.7(2)</td>
<td>11.7(5)</td>
<td>2.51</td>
<td>V\text{OH}^{2+}Al\text{Al}^{2+}Al...X\text{Na}</td>
</tr>
<tr>
<td>3597.5(1)</td>
<td>20.1(3)</td>
<td>21.17</td>
<td>V\text{OH}^{2+}Al\text{Al}^{2+}Al...X\text{Na}</td>
</tr>
<tr>
<td>3615.4(7)</td>
<td>10</td>
<td>0.29</td>
<td>V\text{OH}^{2+}Al\text{Al}^{2+}Al...X\text{Na}</td>
</tr>
<tr>
<td>3625(1)</td>
<td>18</td>
<td>0.98</td>
<td>W\text{OH}^{2+}Al\text{Al}^{2+}Al...X\text{Na}</td>
</tr>
<tr>
<td>3643(2)</td>
<td>25(3)</td>
<td>0.88</td>
<td>W\text{OH}^{2+}Al\text{Al}^{2+}Al...X\text{Na}</td>
</tr>
<tr>
<td>3671.9(4)</td>
<td>16</td>
<td>0.95</td>
<td>W\text{OH}^{2+}Al\text{Al}^{2+}Al...X\text{Na}</td>
</tr>
<tr>
<td>3683.5(6)</td>
<td>14</td>
<td>0.52</td>
<td>W\text{OH}^{2+}Al\text{Al}^{2+}Al...X\text{Na}</td>
</tr>
<tr>
<td>3697.8(8)</td>
<td>16</td>
<td>0.39</td>
<td>W\text{OH}^{2+}Al\text{Al}^{2+}Al...X\text{Na}</td>
</tr>
<tr>
<td>3715.5(6)</td>
<td>20</td>
<td>0.62</td>
<td>W\text{OH}^{2+}Al\text{Al}^{2+}Al...X\text{Na}</td>
</tr>
<tr>
<td>3737.6(8)</td>
<td>44.1</td>
<td>0.30</td>
<td>W\text{OH}^{2+}Al\text{Al}^{2+}Al...X\text{Na}</td>
</tr>
<tr>
<td>3764.5(8)</td>
<td>45.1</td>
<td>0.30</td>
<td>W\text{OH}^{2+}Al\text{Al}^{2+}Al...X\text{Na}</td>
</tr>
</tbody>
</table>

FWHM - full width at half maximum. Data in parentheses are standard deviations. The lack of such data at peak position or FWHM denotes that the parameters were fixed.
Fig. 3.

$R^2 = 0.9998$

Intensity (arbitrary units)

Raman shift (cm$^{-1}$)

Residuals

3400 3500 3600 3700 3800