New insights into the nature of glauconite

ADRIÁN LÓPEZ-QUIRÓS1* ANTONIO SÁNCHEZ-NAVAS1,2, FERNANDO NIETO1,2, CARLOTA ESCUTIA1

1Instituto Andaluz de Ciencias de la Tierra, CSIC-University of Granada, 18100 Armilla, Granada, Spain. 2Department of Mineralogy and Petrology, University of Granada, 18071 Granada, Spain. *E-mail: alquiros@iact.ugr-csic.es

ABSTRACT

Glauconite must be assessed as mica-rich mica-smectite R3 interstratified mineral, with the pure end-member mica having also intrinsic K-deficient chemical characteristic (K+ ~ 0.8 a.p.f.u.). This assertion is in accordance with our XRD and HRTEM studies and chemical analyses (EPMA) of mature glauconites in Cenozoic Antarctic sediments which indicate that: (1) It consists of a glauconite-smectite (R3 ordered) mixed-layer silicate, composed mainly of mica-type layers (> 90%), but displaying slightly different proportions of Fe(III)-smectite layers (< 10%). (2) More mature glaucony grains are characterized by major K+ and VIFe2+ (mica layers) and minor VIFe3+ (smectite layers) content in the interstratified glauconite-smectite. (3) Potassium is stabilized at the interlayer site by the octahedrally coordinated Fe2+. (4) Microtexture of the glauconite crystals are comparable with those of other micas and illite minerals, with straight, defect-free lattice fringes of ~10Å spacings glauconite packets characteristic of mica with minor interstratified poorly crystalline smectite layers. In addition, our new findings give insights into the glauconitization process and at the same time investigate
the potassium-deficient character of the dioctahedral mica ‘glauconite’. These findings show that glauconite crystallize by a layer-growth mechanism at expense of a poorly crystalline smectite precursor, and that smectite-to-glauconite transformations are accompanied by a gradually higher octahedral charge deficiency (Fe$^{2+}$/Fe$^{3+}$) stabilized by K$^+$ uptake into the interlayer sheet.

Keywords: Glaucony, Glauconite, Interstratified Glauconite-Smectite, HRTEM, XRD.

INTRODUCTION

‘Glauconite’ sensu strictu is a dioctahedral, K- and Fe-rich 2:1 interlayer-deficient mica. According to the AIPEA (Association Internationale Pour l'Étude des Argiles; Bailey, 1980), the mineral glauconite is defined by: (1) IV Al$^{3+}$ (or IV Fe$^{3+}$) > 0.2 atoms per formula unit (a.p.f.u.) based on O$_{10}$(OH)$_2$; (2) VI R$^{3+}$ > 1.2 a.p.f.u., with VI Mg$^{2+}$ > VI Fe$^{2+}$ and VI Fe$^{3+}$ > VI Al$^{3+}$; (3) the basal reflection d001 located between 14Å and 10Å, d020 at 4.53Å, d003 at 3.33Å, and d060 at 1.51Å; and (4) potassium occupying mostly the interlayer sheet (K$^+$ > 0.6 a.p.f.u.). The IMA (International Mineralogical Association; Rieder et al., 1999) described glauconite as a Fe-rich phyllosilicate (dioctahedral interlayer-deficient mica) mineral with a green color and representative formula: K$_{0.8}$R$^{3+}_{1.33}$ R$^{2+}_{0.67}$ Al$_{0.13}$Si$_{3.87}$ O$_{10}$(OH)$_2$, in which VI R$^{2+}$/ (VI R$^{2+}$+VI R$^{3+}$) ≥ 0.15 and VI Al/(VI Al$^+$ + VI Fe$^{3+}$) ≤ 0.5. The term ‘glauconitic’ (suggested nomenclature in Odin and Fullagar, 1988) is used for the minerals of the ‘glaucony facies’ (Odin and Létolle, 1980), which cover a complete genetically related mineral series from Fe-rich smectite to Fe-rich illite, i.e. the glauconitic mica, which is the end-member type of the glaucony facies.
Although the precise process and timing of glauconite genesis is still under debate, diverse mechanisms have been involved to interpret the formation of glauconite (e.g. Galliher, 1935; Burst, 1958; Hower 1961; Ehlimann et al., 1963; Ojakangas and Keller, 1964; Harder, 1980; Odin and Matter, 1981; Odin and Fullagar, 1988). Odin and Matter (1981) and Odin and Fullagar (1988) summarized the state of knowledge on the glauconitization process, and proposed to date the widely accepted ‘precipitation-dissolution-recrystallization theory’. This theory includes a two-stage glauconitization model where mature glauconite formation involves two major phases: (1) the formation of a K-poor, Fe-rich glauconitic smectite (the Fe(III)-rich smectite precursor; Fig. 1), and (2) a gradual enrichment with K\(^+\) to form a K-rich glauconitic mica (the Fe(III)-smectite-to-glauconite reaction; Fig. 1). Therefore, the glauconitization process is a low-temperature diagenetic phenomenon that can be classified based on the K\(_2\)O wt% (Odin and Matter, 1981; Odin and Fullagar, 1988) (Fig. 1). The degree of evolution of the glauconitization process depends on the residence time of glaucony grains in confined sub-oxic, partially reduced microenvironments at or near the sediment-water interface, and hence the sedimentation rate is a key factor (e.g. Amorosi, 1995; 2012).

The differences between glauconite and other green-clay minerals, such as Fe-illite or celadonite, are very subtle and hence, the nature of glauconite is still challenging. Odin and Matter (1981) discussed a compositional gap between illitic minerals (Fe\(_2\)O\(_3\) < 10%) and glauconitic minerals (Fe\(_2\)O\(_3\) >15%). Later researchers, nevertheless, reported a compositional continuum between these two minerals (e.g. Ireland et al., 1983; Deb and Fukuoka, 1998). Celadonite has also been excluded as a feasible glauconite parent mineral material by its higher octahedral layer charge, and higher Si content (Duplay and Buatier, 1990; Huggett, 2005).
Recent studies on green-clay (glaucony) authigenic minerals (e.g. Charpentier et al., 2011; Gaudin et al., 2005; Baldermann et al., 2013) highlights the bacterially-mediated neoformation of Fe-rich smectitic clays as the most plausible precursor mineral phase of the glauconitization process, which is in agreement with the theory of Odin and Matter (1981). In this respect, Fe-rich smectite formation is reported in the literature related to glauconitization process (e.g. Harder, 1980; Amouric and Parron, 1985; Martín-Algarra and Sánchez-Navas, 1995; Jiménez-Millán et al., 1998; Kloprogge et al., 1999; Gaudin et al., 2005; Baldermann et al., 2012, 2013).

The internal fabric of glauconite has been previously studied by HRTEM in order to shed light on the mechanism involved in the glauconitization process. Amouric and Parron (1985) described the occurrence of smectite-rich zones sandwiching glauconite packets, with a sharp interface between them, but according to their HRTEM study no interlayering of glauconite and smectite was observed. Buatier et al. (1989) reported the presence of lath-shaped glauconite crystallites that appeared to be sandwiched together with Fe-smectite-like layers, forming an irregular ‘interstratified’ stacking sequence. They found that glauconite crystallites are commonly oriented parallel to the smectite layers, but also reported a structural discontinuity (i.e. absence of lattice fringes) between the glauconitic and smectitic layers. Jiménez-Millán et al. (1998) reported glauconite crystallites and also poorly crystalline areas with smectitic composition that could represent the remains of a glauconitic precursor. These authors did not observe a textural transitional relationship between smectite and glauconite. More recently, particles having variable d(001) spacing and an intermediate composition between glauconite and smectite were referred to as mixed-layered glauconite-smectite phases by Baldermann et al. (2013, 2015).
The purpose of the present research is to explore the K-deficient character of the dioctahedral mica ‘glaucocitite’, to determine its mineralogical significance and its relation to the presence of variable smectite interstratifications during glaucony maturation.

GEOLOGICAL SETTING AND LITHOSTRATIGRAPHY

Samples of glaucony-bearing facies were taken from the late Eocene and Oligocene-Miocene transition sediments recovered by the Ocean Drilling Program (ODP), Leg 113 at Site 696 (Cores 57-56R and 51-52R, respectively), which are located in the South Orkney Microcontinent (SOM) in the northwestern Weddell Sea (Antarctica) (Fig. 2A and B).

The SOM is the largest (~250 x 350 km) continental fragment of the South Scotia Ridge (SSR) between the Scotia and Antarctic plates (Fig. 2A), and is a remnant of the original link connecting the Antarctic Peninsula and South America. The SOM was disconnected from the Antarctic Peninsula along an E-W margin, probably during the Eocene and early Oligocene (40–30 Ma; King and Barker, 1988). The SOM then continued to drift and rotate eastward until it reached its current position with respect to the Antarctic Peninsula during the early Miocene (King and Barker, 1988; Coren et al., 1999). The southeast and southwest SOM passive margins are connected to the proto-oceanic Powell and the oceanic Jane basins respectively (Fig. 2A), formed after the rifting between the Antarctic Peninsula and the SOM.

At ODP Site 696, hemipelagic (from the seafloor to about 214 mbsf), pelagic (from about 214 to 530 mbsf), and terrigenous to authigenic (from 530 mbsf to the base of the hole) sediments deposited between the Late Eocene and the Quaternary (Barker et al.,
1988; Wei and Wise, 1990; Gersonde and Burckle, 1990; Fig. 2B). The late Eocene-
lower middle Miocene terrigenous Unit VII (530 mbsf to base of hole at 646 mbsf) is
distributed in four subunits (VIID, VIIC, VIIB and VIIA; Fig. 2B) (Barker et al., 1988).
This study focuses on sediments recovered at subunits VIIC and VIIA. Subunit VIID
(early late Eocene, 645.6 to 606.9 mbsf) is depicted by sandy mudstone and minor
clayey mudstone facies. The latest Eocene sediments of Subunit VIIC (569.7 to 606.9
mbsf) are characterized by high amounts of glaucony grains interpreted as
autochthonous (evolved; $\mathrm{K}^+ >0.66$ a.p.f.u.) smectite-poor interstratified ~10Å
glauconite-smectite (López-Quirós et al., 2019) (Fig. 2C, F, I). López-Quirós et al.
(2019) also reported the occurrence of scarcely altered to nontronite reworked glaucony
within the condensed glauconitic section deposited at the SOM shelf during the latest
Eocene. These altered glaucony grains were not taken into account for the present work.
Major lithologies within Subunit VIIB (early Oligocene, 548.9 to 579.4 mbsf) include
claystone and clayey mudstone facies, with minor silty mudstone occurrences at the
base of this subunit; both lithologies contain minor amounts of glaucony grains. The
sediments of Subunit VIIA (Oligocene-Miocene, 529.8 to 548.9 mbsf; Barker et al.,
1988) are characterized by rhythmically interbedded sandy mudstone with glauconite-
bearing sandstone beds. A significantly different picture arises from glaucony grains
deposited at Subunit VIIA. Allochthonous (detrital) glaucony grains (Fig. 2D, E, G, H)
are interpreted here to have been reworked from condensed green sections belonging to
Eocene sequences in the vicinity of the SOM shelf, deposited under abundant bottom
currents and possibly slumping action. Some of these reworked glaucony grains exhibits
altered zones, forming rims around grains and along cracks (e.g. Fig. 2E). These grains
were likewise not taken into account for this work, since the post-depositional reversal
of the glauconitization process (i.e. smectitization) partially transformed the glauconite
mineral. Therefore, this work only uses unaltered glaucony grains. The stratigraphic age control was based on calcareous nanofossils and diatoms (see Barker et al. 1988; Wei and Wise, 1990; Gersonde and Burckle, 1990), recently updated through dinocysts stratigraphy by Houben et al. (2013, 2019) (Fig. 2B).

ANALYTICAL METHODS

The distribution of glaucony-bearing facies within the transgressive condensed sequence deposited between the late Eocene-lower middle Miocene ODP Hole 696B, is related to distinct environments of mineral formation controlled by paleogeography (e.g. López-Quirós et al., 2019). Samples of these glaucony-bearing sediments for this study were obtained from sediment cores 57-56R (~588.5 to 578 mbsf) and 51-52R (~540 to 531 mbsf) (Fig. 2). Glaucony grains were extracted (disaggregated and washed) from the whole rocks on a 125 and 250µm screen. These fractions were later separated magnetically by an electromagnetic universal UMC-1 separator. Purified glaucony particles were further separated from diagenetic complex growths and aggregates along with other sediment grains under binocular microscope. Eight thin sections, about 30µm thick, were prepared by epoxy impregnation in order to fill the pores and consolidate some poorly lithified glauconitic packstone samples from cores 57-56R.

The X-ray-diffraction (XRD) data were obtained from powder glaucony grain concentrates (reduced in size with an agate mortar) and oriented aggregates of the <2µm fraction treated with ethylene glycol, with a PANalytical X'Pert Pro diffractometer (CuKα radiation, 45 kV, 40 mA) equipped with an X'Celerator solid-state linear detector (Department of Mineralogy and Petrology, University of Granada). Data were collected for 10 sec in 0.008° 20 steps. Decomposition routines included in the
HighScore software were applied in order to depict the superposition of glauconite and
smectite mixed-layers on the d-001 peaks at 10Å for glauconite. Peaks were fitted
through a Voigt function (mixed Gaussian and Lorentzian). Various combinations of
peaks were proven until we acquired the lowest residuum. Intensity, half-height width
and peak position were approximated by the least-squares method until they optimally
retraced the peak course of the original profile.

Electron probe microanalysis (EPMA) of the main glaucony-forming elements was
carried out with a CAMEBAX SX-100 automated electron microprobe (CIC, University
of Granada) in the wavelength dispersive mode under the following conditions:
acceleration voltage 15kV, probe current 15nA, electron beam diameter 5µm.
Calibration standards were mineral albite (Na), diopside (Si), sanidine (K), wollastonite
(Ca), rhodonite (Mn), TiO$_2$ (Ti), CaF$_2$ (F), and Fe$_2$O$_3$ (Fe) and synthetic periclase (Mg),
and Al$_2$O$_3$ (Al).

High-resolution transmission electron microscopy (HRTEM) photomicrographs
were conducted with a Titan instrument with XFEG emission gun, spherical aberration
corrector and HAADF detector, operated at 300kV accelerating voltage. The point-to-
point resolution of this apparatus is 0.8Å in the HRTEM mode and 2Å in the scanning
transmission electron microscopy (STEM) mode (CIC, University of Granada). Copper
rings were attached to selected glaucony zones of previously studied thin-sections from
cores 57R and 52R. These selected zones were separated later through moderate heating.
Glaucony samples were further thinned with a Fischione Model 1050 ion mill operating
with an accelerating voltage of 4 kV and ±10°, until the first hole and ±7° during 20 min
for final cleaning and finally carbon coated. The same powder used for the XRD
analyses was also used for quantitative chemical analyses in STEM mode. Powdered
glaucony concentrates were dispersed in ethanol solution, sonicated, and deposited on a
thin carbon film coated upon several Cu grids. Quantitative chemical analyses were acquired using the SuperX detector of the Titan. Mineral standards were used to obtain K-factors according to the method proposed by Cliff and Lorimer (1975). Furthermore, selected-area electron diffraction (SAED) patterns were acquired of glauconite crystals with the same instrument.

XRD, HRTEM AND COMPOSITIONAL DATA

Powder XRD air-dried diagrams of the purified glaucony concentrates from both, the late Eocene autochthonous grains (Fig. 3A, B) and Oligocene-Miocene allochthonous grains (Fig. 3C, D), revealed d_{001} reflections of glauconite at ~10Å. After deconvolution of ethylene glycol treated samples, peak at ~10Å (d_{001G} in Fig. 3A, C) is formed by two peaks at 9.8 Å and ~11Å (Fig. 3B, D). The fact that intensity of the d_{001G} high-order basal peak is decreased slightly when samples are ethylene-glycol-saturated, denotes the presence of a small number of expandable layers. A weak d_{002} reflection at ~5Å, and a strong d_{003} reflection at ~3.3Å were also observed (e.g. Fig. 3A). The observed weak and broad d_{001S} peaks between 12-14Å, which shifted between 17-19Å after glycolation (see Fig. 3B, D), indicated the presence of smectite or an illite-smectite (R0 disordered) mixed-layer, constituted mainly by smectite layers. This data are in agreement with previously reported detrital glaucony replacements by nontronite (‘smectitization’ or reversal of the glauconitization process) at ODP Hole 696B (Fig. 2E and López-Quirós et al., 2019). Significant plagioclase content in the Oligocene-Miocene glaucony concentrates is also revealed by XRD (Fig. 3C). Abundant plagioclase (anorthite) crystals in the glaucony-bearing rock matrix were depicted here. Thus, plagioclase peaks identified at the glaucony concentrated XRD diagrams (e.g. Fig. 3C), are
probably due to non-complete glaucony grain purification during the Oligocene-Miocene sample preparation and/or original inclusion of plagioclase crystals into the pellets.

According to the peak spacing and its ethylene-glycol-solvated behavior, XRD diagrams may be interpreted as a glauconite-smectite (R3 ordered) mixed-layer silicate, composed mainly of mica-type layers (> 90%), but displaying slightly different proportions of interstratified smectite layers (< 10%) (see for comparison Moore and Reynolds, 1997; Fig. 4).

HRTEM images of the studied late Eocene autochthonous and Oligocene-Miocene allochthonous grains show well-defined ~10Å lattice fringes of glauconite crystals (Fig. 5) and 9.90Å \(d_{001}\)-spacing in SAED patterns (Fig. 5A, D). Lattice images display the typical lamellar arrangement of glauconite packets with a \(d = 10\text{Å}\) spacing, characteristic of both mica and contracted-smectite layers (2:1 silicate layer; e.g. Fig. 5B-F). SAED patterns likewise reflect the subparallel stacking of glauconite crystal packets (Fig. 5A, D). Representative chemical formulae obtained from complementary AEM analyses of late Eocene autochthonous grains are included in Table 1. The formula derived from AEM results of the overall interstratified glauconite/smectite phase of late Eocene crystals, revealed slightly lower K\(^+\) content (~0.6 a.p.f.u) than observed by EPMA (see below). The differences in K\(^+\) content and total interlayer occupancy could be mainly due to potassium volatilization during the AEM-EDX study (Van der Pluijm et al, 1988).

EPMA data of the studied glaucony samples are likewise in agreement with the XRD and with HRTEM results. Thus, the amounts of interlayer K\(^+\) in the normalized formula to \(O_{10}(OH)_2\) after EPMA results, is between 0.62 and 0.75 (a.p.f.u.) for late Eocene autochthonous glaucony, and between 0.61 and 0.71 (a.p.f.u.) for Oligocene-Miocene
allochtonous glaucony grains (Tables 2, 3 and Fig. 6). The compositional range of the octahedral sheet in both, the late Eocene and Oligocene-Miocene glaucony grains, is depicted by high Fe ($\text{Fe}^{2+} + \text{Fe}^{3+}$), low to moderate Mg, and low Al contents (Tables 2, 3 and Fig. 6).

DISCUSSION

The glauconitization process: smectite-to-glauconite transformations

Although many mineralogical models for the glauconitization have been presented over last decades (e.g. Galliher, 1935; Burst, 1958; Hower, 1961; Ehlmann et al., 1963; Ojakangas and Keller, 1964; Harder, 1980; Odin and Matter, 1981; Odin and Fullagar, 1988), the accurate process of glauconite genesis is still under debate.

The first stage in the glauconitization process is characterized by the formation of a glauconitic precursor, but the nature of this precursor has remained obscure. Odin and Fullagar (1988) suggested that during this early-authigenic stage, crystals growth from a smectite precursor is shaped in the substrate pores by using cations from seawaters and interstitial waters (Fig. 1). Later researchers, nevertheless, proposed other phyllosilicate minerals as a plausible precursor of the glauconitization process, such as glauconitic clay (e.g. Stille and Clauer, 1994), or a kaolinite-smectite bearing substratum (e.g. Galan et al., 1995). In the last years, however, the most widely accepted conceptual reaction model proposed for the glauconitization comprise the very early diagenetic precipitation of a Fe(III)-smectite precursor within a few thousand years, which is promoted by microbial activity working as a catalyzer along with cation supply from porewaters by aqueous ion diffusion (Wiewióra et al., 2001; Gaudin et al., 2005;
Charpentier et al., 2011; Baldermann et al., 2013) (Fig. 1). For example, Reolid and Abad (2014) pointed out the role of chemoorganotrophic microbes, as well as the passive mineralization of the extracellular polymeric substances in the origin and growth of glauconitic laminated crusts under low-temperature hydrothermal conditions. Microbial activity has also been reported in glaucony-bearing deposits formed in different geological palaeogeographic settings (Sánchez-Navas et al., 1988; Martín-Algarra and Sánchez-Navas, 2000; Zanin et al., 2004; Eder et al., 2007; Sánchez-Navas et al., 2008). In this respect, Fe(III)-smectite precipitation from a non-crystalline previous phase (i.e. an amorphous gel-like substance) was proposed by Harder (1980), Jiménez-Millán et al. (1998), Kloprogge et al. (1999), Gaudin et al. (2005), and Baldermann et al. (2012; 2013). López-Quirós et al. (2019) comparably, observed textural remains supporting a microbial origin for the precipitation of early glauconitic structures from a likely bacteria-produced gel stage during the late Eocene glauconitization event at ODP Hole 696B. Based on HRTEM and AEM analyses, other investigations also have supported the proposed early glauconitization process depicted by a precursor non-crystalline phase from which the smectite crystallizes (e.g. Amouric and Parron, 1985; Amouric, 1990; Martín-Algarra and Sánchez-Navas, 1995; Jiménez-Millán et al., 1998). Likewise, Jiménez-Millán and Castro (2008) pointed out about a Si-Al-rich poorly crystalline substance filling K-feldspar micropores of alternating packets of glauconite and berthierine layers. Amouric and Parron (1985) and Amouric (1990), likewise determined by XRD the formation of a d001 ~ 12.5Å smectite (of Fe-beidellite or Fe-montmorillonite type) phase, related to the development of a precursor gel in the earliest glauconitization stage.

Our HRTEM data revealed the occurrence of individual smectite layers between the glauconite packets (i.e. the smectite precursor from which glauconite was crystallized).
(Fig. 5). Although we have not identified the presence of a precursor gel-like phase, the occurrence of these smectite areas (Fig. 5B, E), suggests that their origin might be concomitant with the existence of a poorly crystalline precursor material. This is supported by the accepted mineralized spheroidal and tubular capsules interpreted as bacterial remains in early glauconitic structures in the late Eocene sediments from Hole 696B by López-Quirós et al. (2019). Therefore, our XRD, EPMA and HRTEM interpretations point out to the smectite-to-glauconite transformation to have been formed by a layer-growth mechanism at the expense of a previous smectite precursor. The layer-growth mechanism observed for glauconite explains the typical lamellar microstructure of the mineral as seen by HRTEM and SEM (Fig. 2F, G, I). The gel-like phase during the evolutive process of glauconitization hitherto considered by Harder (1980), Jiménez-Millán et al. (1998), Kloprogge et al. (1999), Gaudin et al. (2005), Baldermann et al. (2012, 2013), among many others, was not recorded by our HRTEM study.

The second stage in the glauconitization process is characterized by the Fe(III)-smectite to glauconite reaction at the very shallow, burial diagenesis (see Fig. 1). Burial to more than a few decimeters halts the glauconitization (Hugget, 2005). Gaudin et al. (2005) discussed that the neoformed Fe(III)-smectite precursor is thermodynamically unstable during early diagenesis and transforms rapidly into glauconite crystals through the formation of interstratified glauconite-smectite. In addition, Meunier and El Albani (2007) and Baldermann et al. (2015) determined that the (bio)availability of Fe$^{2+}$ and K$^+$ ions may become as the rate-limiting factor for the green-clay (glaucony) authigenesis. Throughout this maturation stage, glauconite crystal layers are well-known to grow at elevated contents of interlayer K$^+$ and structural Fe(II + III) (e.g. Baldermann et al., 2015; 2017); a characteristic corroborated in the present work (Fig. 6C). The
compositional (EPMA) and HRTEM characteristics of the studied glaucony grains are in agreement with this overall substitution of Fe^{3+} for Fe^{2+} and an increase in K^+ during this second (mature) glauconitization stage. The high K^+ contents in the interlayer sites (Tables 2 and 3; Fig. 6), and the abundance of glauconite crystal layers having \sim10Å spacings (Fig. 5) suggest a good (evolved *sensu* Odin and Fullagar, 1988) degree of maturation and equilibrium with seawaters. From a mineral-chemical point of view, the reduction of trivalent to bivalent iron (Fe^{3+} to Fe^{2+}) in the octahedral sheet of interstratified glauconite-smectite minerals result in a gradually higher octahedral charge deficiency, stabilized by increased K^+ uptake into the interlayer sheet, as our EPMA data show (Tables 2 and 3; Fig. 6). Smectite-to-glauconite transformations are therefore not only monitored by a K^+ increase at the interlayer sheet, as normally accepted, but also by the increase in $\text{Fe}^{2+}/\text{Fe}^{3+}$. Sanchez-Navas et al. (2008) also determined a light absorption produced by the enrichment in octahedrally coordinated Fe^{2+} relative to the total VI-Fe, linked to a progressive reduction in the Fe(III)-smectite content interleaved with glauconite (see also Fig. 4C in López-Quirós et al., 2019).

These assumptions lead us to suggest that glauconite could be, thus, neoformed from a Fe(III)-smectite precursor through decomposition-crystallization processes as those proposed by Amouric and Parron (1985) and Amouric (1990).

New insight into the nature of glauconite and glaucony

Glaucnite is distinguished from celadonite by its higher octahedral charge as well as higher levels of the substitution of IV-Al for silicon in the tetrahedral site of the mica-based structure (Duplay and Buatier, 1990). In other words, celadonite has higher silica content than glauconite. In addition, celadonite has a higher K^+ (a.p.f.u.) content or
interlayer charge imbalance in the 2:1 structural layer than glauconite (Rieder et al., 1999). Therefore, celadonite has a higher mica charge imbalance in the 2:1 structural layer than glauconite. Calculated octahedral (OC), tetrahedral (TC) and interlayer (IC) charges, and octahedral substitution based on structural formulae are plotted in the charge-distribution diagram given by Köster (1982) in Fig. 7A, with the end-members (1) celadonite, (2) muscovite, and (3) pyrophyllite. Fig. 7A clearly shows that glaucony EPMA results from ODP Hole 696B plot within the glauconite domain.

Glaucnite *sensu strictu* displays a mica-type structure, which is compositionally close to the celadonite end-member (Köster, 1982; Fig. 7A). The amount of interlayer K⁺ content measured by EPMA ranges between 0.61 and 0.75 a.p.f.u. Slight potassium differences in the K⁺ content between interstratified glauconite-smectite, from both stratigraphic levels, have been observed (Fig. 6C, D). Most of these results fit well with its classification as interlayer-cation-deficient mica according to the AIPEA and IMA (Bailey, 1980; Rieder et al., 1999). Moreover, Meunier and El Albani (2007) took into account the interlayer charge to distinguish compositional fields of glaucony and other Fe-bearing clay phases. According to these authors, the compositional domain composed by Fe-Al smectite, glaucony, Fe-illite, Fe-montmorillonite and nontronite, can be distinguished on the basis of $M^+\cdot(Si/4)^{−1}$ vs. $VI\gamma_{Fe}$ (II + III)/Σ $VI\gamma_{cations}$ cross-plot; where interlayer charge ($M^+ = Na+K+2Ca$. Nevertheless, the definition of ‘glaucnitic minerals’ proposed by the AIPEA (Bailey, 1980) includes a broad compositional range in glaucony compared to the definition suggested by Meunier and El Albani (2007).

Many of our glaucony data do not plot in the glaucony field of Meunier and El Albani (2007) (Fig. 7B), although they satisfy the definition of glauconitic minerals provided by the AIPEA. Furthermore, the octahedral Fe-Al-Mg contents (see Tables 2 and 3), are within the range of typical contents for these elements in glauconite (e.g. Chamley,
1989; Velde, 1992). Total iron measured by EPMA ranges between 1.35 and 1.7 a.p.f.u.,
with major content in the pristine late Eocene samples (Fig. 6C), which also have major
Fe$^{2+}$ content (Fig. 6D, E). The positive correlation between K$^+$ and ViFe$^{2+}$ indicates that
potassium is stabilized at the interlayer site by the octahedrally coordinated Fe$^{2+}$ (Fig.
6D).

The glauconitization state is given by the positive correlation between the percentage
of glauconite layers of the interstratified glauconite-smectite mixed-layer and the
interlayer K$^+$ (a.p.f.u.) content (e.g. Manghnani and Hower, 1964; McRae and Lambert,
1968; Baldermann et al., 2013; Fig. 8). Considering the average interlayer K$^+$ contents
of both, late Eocene (0.68 a.p.f.u.) and Oligocene-Miocene (0.65 a.p.f.u.) stratigraphic
sections (see Fig. 2B), EPMA results confirm a mature, glauconite-rich interstratified
glauconite-smectite. This is in agreement with powder XRD diagrams, which indicate
an interstratified R3-ordered glauconite-smectite clay with more than 90% of mica-type
layers (Figs. 4 and 8A, B). Our results also reveal that more mature glauconite are
characterized by major K$^+$ and Fe$^{2+}$ (i.e. mica layers) and minor Fe$^{3+}$ (i.e. smectite
layers) content in the interstratified glauconite-smectite.

Our HRTEM images of glauconite crystals are comparable with those of other
micas and illite minerals (e.g. Bauluz, 2013). They are widely recognized by their
straight, defect-free lattice fringes with constant ~10Å spacings (Fig. 5). The thickness
and relative orientation of the crystallite packets may fluctuate according to their
 genesis. To our knowledge, the interstratified smectite-glaucunite phase has not been
described in depth by HRTEM up to now, probably due to the challenge of
differentiating the collapsed 10Å smectite and glauconite layers. Lattice fringes of
glaucunite crystals (Fig. 5), characterized by means of their basal reflection planes
(d_{001} at 9.9Å; Fig. 5A, D) are mostly located at the central position inside the spindle-
like arrangement of layered crystallite packets. Nevertheless, our lattice images (Fig. 5B-F) also show that the glauconite packets, formed by 9-11 individual layers of mica are systematically interrupted by smectitic layers, showing lighter contrast in the images than those corresponding to mica layers. Such interpretation is supported by image simulation (Guthrie and Veblen, 1989, 1990; Veblen et al, 1990) and is coherent with XRD identification (Figs. 3 and 4). Sometimes the smectitic areas are opened by the irradiation effect of electrons (e.g. Fig. 5E), which allows the identification of the lattice fringes corresponding to opened layers as smectitic (Nieto et al, 1996).

Therefore, the representative lattice images of glauconite included in Fig. 5 can be interpreted as I > 3 mica/smectite mixed-layers in the sense of Bauluz et al. (2000), which would be the major component of a R3 mica/smectite mixed-layers, as determined by XRD (Figs. 3 and 4). The K content determined by EMPA (Tables 2, 3 and Fig. 6) or derived from complementary AEM results (Table 1) is also compatible with a glauconite/smectite mixed-layer having more than 90% of glauconitic layers. This allows us to calculate the percentage of glauconite from the interlayer K$^+$ content (Fig. 8C).

The studied glauconites of the SOM sequences may be considered representative of mature glauconites as described by the IMA and AIPEA nomenclature committees (Bailey, 1980; Rieder et al., 1999). Based on our results, they show K$^+$ (a.p.f.u.) content coherent with the maximum described in the literature (Fig. 8). However, according with their detailed XRD and HRTEM analysis they are not micas sensu strictu, but they are mica/smectite mixed-layer having more than 90% mica layers. They share with other glauconites the representative maximum K$^+$ content described up to now in the literature, but also their mixed-layer character (Fig. 8C).
In Figure 8C, the equation that relates % of glauconite layers of the interstratified glauconite-smectite mixed-layer with the interlayer K^+ (a.p.f.u.) content, build a logarithmic function model with an end-asymptotic behavior. The minimum K^+ content for a % of theoretical glauconite layers = 0, would be then 0.07 a.p.f.u., which in turn is reasonable with the common average K^+ content in smectitic layers; in other words, the K^+ content is not 0, since the smectitic layers also contain some potassium (Drief and Nieto, 2000). Furthermore, the curved trendline in Figure 8C never reaches values of K^+ content higher than 0.8 a.p.f.u., that is even for 100% of glauconite layers (the extreme term ‘glauconitic mica’) the K^+ content would be ~ 0.8 a.p.f.u. This is just the value used by the IMA in the ‘representative formula’ of glauconites and is neighboring its proposed maximum limit for interlayer-deficient micas (Rieder et al, 1998).

We conclude that the interlayer-deficient character accepted by the IMA and AIPEA nomenclature committees are due in part to the presence of interstratified smectitic layers, rather than barely an intrinsic chemical characteristic of the individual mica-packets constituents of the mixed-layer. This is also the reason why glauconites, even the more mature (evolved) ones, show a slight expansive character and basal reflection d_{001} located at some higher value than 10Å, as defined by the AIPEA. Therefore, glauconites should be broadly considered as mica-rich mica-smectite R3 interstratified minerals, having its specific well-known chemical composition. The corresponding 100%-mica extreme term should not occur in nature (at least in the usual glauconitic genetic contexts) and its K^+ content would be similar to 0.8 a.p.f.u.

IMPLICATIONS
In the present work, new insights into the nature of glauconite have been obtained by using a combined XRD, HRTEM and EPMA study. The studied mature glaucony grains consists of a glauconite-smectite (R3 ordered) mixed-layer silicate, composed mainly of mica-type layers (> 90%), but displaying slightly different proportions of interstratified Fe(III)-smectite layers (<10%). The smectite layers are responsible of the usually described change of the position of the d_{001} peak of glauconite after ethylene glycol treatment as far as, at least in part, their K-deficient character.

The smectite-to-glauconite reaction constitutes an evolutionary process monitored by K^+ increase at the interlayer sheet, as normally accepted, but also by the increase in Fe^{2+}/Fe^{3+}. More mature glaucony are characterized by major K^+ and $^{VI}Fe^{2+}$ (mica layers) and minor $^{VI}Fe^{3+}$ (smectite layers) contents in the interstratified glauconite-smectite, which indicates that K^+ is stabilized at the interlayer site by the octahedrally coordinated Fe^{2+} relative to the total ^{VI}Fe.

Glauconite is described here as mica-rich mica-smectite R3 interstratified mineral, with specific chemical composition. In addition, the theoretical end-member glauconitic mica would have an interlayer-deficient chemical characteristic with K^+ up to 0.8 a.p.f.u.

ACKNOWLEDGMENTS AND FUNDING

This research used samples from the Ocean Drilling Program (ODP). We thank the staff onboard ODP Leg 113 and at the Gulf Coast Repository (GCR) for assistance in core handling and shipping. We thank Dr. María del Mar Abad, Dr. Miguel Angel Hidalgo and Isabel Nieto of the Scientific Instrumentation Center (CIC) of the University of Granada for their help during analytical work. We would also like to thank Associate Editor Prof. Warren Huff and anonymous referees for their constructive
suggestions to improve the paper. Funding for this research was provided by the Spanish Ministry of Science and Innovation (grants CTM2014-60451-C2-1-P and CTM2017-89711-C2-1-P) co-funded by the European Union through FEDER funds. The corresponding author acknowledges a FPI fellowship of the Spanish Ministry of Science and Innovation.

REFERENCES CITED

FIGURE CAPTIONS

Figure 1. Model for glauconitization in the studied grains (modified after López-Quirós et al., 2019, following the ideas of Odin and Matter, 1981 and Baldermann et al., 2013).

(1) Microbial oxidation of organic matter (~10^-10^3 years). (2) Neoformation of Fe(III)-smectite precursor (~10^3-10^4 years). (3) Fe(III)-smectite-to-glauconite reaction (~10^4-10^6 years). Glaucony maturation involves the chemical change of Si, Al^VI, Mg, Ca and Na by Al^IV, Fe (Fe^{2+}) and K, from a smectitic glauconite (nascent) to the glauconitic mica (highly evolved). Microtextures also attest glaucony maturation from authigenic globules to flakes and rosettes.

Figure 2. A) Simplified bathymetry map of the Drake-Passage Scotia Sea area derived from GEBCO. The squared region indicates the study area. B) Lithostratigraphy of the Leg 113, ODP Site 696. The enlarger area corresponds with a detailed lithologic log of the terrigenous to authigenic Unit VII (after Barker et al., 1988 and López-Quirós et al., 2019). The studied glaucony grains come from two stratigraphic sections at cores 56-57R and 51-52R, respectively. OMT: Oligocene-Miocene Transition. C) and D) Plain-polarized light (PPL) images showing the glauconitic sandy-silty mudstone facies (Subunits VIIC and VIIA, respectively). E) Back-scattered electron (BSE) image of a
reworked glaucony grain partially replaced by nontronite from core 52R. F) and G) High-resolution transmission electron (HRTEM) images showing the characteristic evolved (lamellar) microtexture of glaucony (cores 57R and 52R, respectively). H) BSE image of a detailed evolved (cracked) glaucony grain from core 52R. I) Secondary electron (SE) image showing the evolved morphology (cracked grains) and microtexture (flaky/lamellar) of glauconitized pellets from core 57R.

Figure 3. A) Powder X-ray diagram of air-dried and ethylene-glycol-treated glaucony from core 57R. B) Deconvoluted (001) peak at ~10Å of ethylene-glycol-treated glaucony from core 57R. C) Powder X-ray diagram of air-dried and ethylene-glycol-treated glaucony from core 52R. D) Deconvoluted (001) peak at ~10Å of ethylene-glycol-treated glaucony from core 52R. Theoretical curves (bold lines in deconvoluted diagrams), resulting from the sum of the deconvoluted peaks (blue, red and orange lines), display good agreement with experimental diagrams. Red and orange peaks correspond to R3 illite(0.9)/smectite (see for more details Fig. 4A) and blue peak to smectite or smectite-rich R0 illite/smectite.

Figure 4. A) Deconvoluted (001) peak at ~10Å of ethylene-glycol-treated glaucony from core 56R with corresponding residue and peak list. Theoretical curve (bold line), resulting from the sum of the glycolated peaks at ~18Å, ~11Å, ~10Å and ~9Å, display good agreement with experimental diagram (in red). B) Theoretical simulated powder X-ray diagram of air-dried and ethylene-glycol-treated R3 illite(0.9)/smectite, with the indication of d-values (adapted from the Fig. 8.7 of Moore and Reynolds, 1997).
Figure 5. A) HRTEM image of glaucony crystals from core 57R. False color map displays the mineral nature, in order to emphasize the glauconite-smectite mixed-layer. Enlarged circle shows the selected-area electron diffraction (SAED) pattern of the corresponding area in the HRTEM image. B) Enlarged area from (A) showing well-defined ~10Å lattice fringes of glauconite crystal and two areas of interstratified smectitic material. C) Energy-dispersive X-ray (EDX) spectrum of corresponding interstratified glauconite-smectite crystal, obtained in STEM mode from a compositional map (not shown). D) HRTEM image of glaucony crystals from core 52R. False color also shows the mineral nature. Enlarged circle displays the SAED pattern of corresponding area in the HRTEM image. E) Enlarged area from (D) showing well-defined ~10Å lattice fringes of glauconite crystal and related interstratified smectitic area. F) Well-defined ~10Å lattice fringes of glauconite crystals from core 52R.

Figure 6. Bivariate plots of ODP Hole 696B glaucony grains (data from Tables 2 and 3). A) K^+ vs. $^{IV}Si^{4+}$; B) K^+ vs. $^{VI}Al^{3+}$; C) K^+ vs. $^{VI}Fe^{3+} + ^{VI}Fe^{2+}$; D) K^+ vs. $^{VI}Fe^{2+}$, E) $^{VI}Fe^{3+}$ vs. $^{VI}Fe^{2+}$; F) $^{VI}Al^{3+}$ vs. $^{VI}Fe^{3+} + ^{VI}Fe^{2+}$.

Figure 7. A) Charge-distribution diagram with end-members celadonite, muscovite, and pyrophyllite (modified from Köster, 1982; Köster et al., 1999). G: glauconite domain, M: montmorillonite domain, N: nontronite and beidellite domain, C: celadonite domain. Note that the analyzed glaucony plots in the field of glauconite domain. B) Position of ODP Hole 696B glaucony (Tables 2 and 3 for more information) in the compositional diagram of Fe-bearing clay phases in the $M^+(Si/4)^{-1}$ vs. $^{VI}Fe(II+III)/\Sigma^{VI}$ cations cross-plot (modified after Meunier and El Albani, 2007). MLM: mixed-layer minerals; M^+: interlayer charge.
Figure 8. A) and B) Relationship between %glauconite and interlayer K⁺ (a.p.f.u.) content in the interstratified glauconite-smectite (GL-Sm) mixed-layers from ODP Hole 696B cores 57R and 52R, respectively. Note that expandable layers (%glauconite ~95 ± 5) are determined by XRD, while interlayer K⁺ (a.p.f.u.) content is from results of EPMA. C) Relationship between expandable layer (%glauconite layers) and interlayer K⁺ content in the interstratified GL-Sm mixed layer (modified after Baldermann et al. 2013). Average position of ODP Hole 696B glaucony from cores 57R and 52R along with values from other glaucony-bearing sequences (including those incorporated in Fig. 11 of Baldermann et al., 2013) has been included. Calculated logarithmic trendline with end-asymptotic behavior in red color.

TABLE CAPTIONS

Table 1. Selected results of AEM calculated chemical analyses of glaucony grains in core 57R. ¹Units: atoms per formula unit (a.p.f.u.) based on O₁₀(OH)₂. *Total Fe expressed as Fe³⁺. M: octahedrally coordinated cations; A: interlayer cations.

Table 2. Results of EPMA calculated chemical analyses for glaucony samples from thin section (core 57R) (adapted from López-Quirós et al., 2019). ¹Units: atoms per formula unit (a.p.f.u.). TC = tetrahedral charge, OC = octahedral charge; IC = interlayer charge. Normalization to 2 octahedral + 4 tetrahedral cations and 22 charges (10 O+2 OH). †Fe²⁺ and Fe³⁺ in the formula calculated by stoichiometry.
Table 3. Results of EPMA calculated chemical analyses for glaucony samples from thin section (core 52R). Units: atoms per formula unit (a.p.f.u.). TC = tetrahedral charge, OC = octahedral charge; IC = interlayer charge. Normalization to 2 octahedral + 4 tetrahedral cations and 22 charges (10 O+2 OH). †Fe$^{2+}$ and Fe$^{3+}$ in the formula calculated by stoichiometry.
Table 1. Selected results of AEM calculated chemical analyses of glaucony grains in core 57R. Units: atoms per formula unit (a.p.f.u.) based on O\(_{10}(OH)_2\).

*Total Fe expressed as Fe\(^{3+}\). M: octahedrally coordinated cations; A: interlayer cations.

<table>
<thead>
<tr>
<th>Sample</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Si</td>
<td>3,64</td>
<td>3,71</td>
<td>3,82</td>
<td>3,74</td>
<td>3,81</td>
<td>3,82</td>
<td>3,79</td>
<td>3,77</td>
<td>3,69</td>
<td>3,66</td>
</tr>
<tr>
<td>IV Al</td>
<td>0,43</td>
<td>0,46</td>
<td>0,43</td>
<td>0,39</td>
<td>0,38</td>
<td>0,4</td>
<td>0,51</td>
<td>0,43</td>
<td>0,42</td>
<td>0,41</td>
</tr>
<tr>
<td>ΣIV</td>
<td>4</td>
</tr>
<tr>
<td>Ti</td>
<td>0,01</td>
</tr>
<tr>
<td>VI Al</td>
<td>0,07</td>
<td>0,17</td>
<td>0,25</td>
<td>0,13</td>
<td>0,19</td>
<td>0,22</td>
<td>0,3</td>
<td>0,2</td>
<td>0,11</td>
<td>0,07</td>
</tr>
<tr>
<td>Fe(^{3+})</td>
<td>1,57</td>
<td>1,48</td>
<td>1,31</td>
<td>1,51</td>
<td>1,4</td>
<td>1,35</td>
<td>1,32</td>
<td>1,45</td>
<td>1,55</td>
<td>1,58</td>
</tr>
<tr>
<td>Mg</td>
<td>0,34</td>
<td>0,34</td>
<td>0,43</td>
<td>0,36</td>
<td>0,38</td>
<td>0,41</td>
<td>0,35</td>
<td>0,34</td>
<td>0,32</td>
<td>0,36</td>
</tr>
<tr>
<td>ΣVI M</td>
<td>1,99</td>
<td>2</td>
<td>2</td>
<td>2,01</td>
<td>1,98</td>
<td>1,99</td>
<td>1,98</td>
<td>2</td>
<td>1,99</td>
<td>2,02</td>
</tr>
<tr>
<td>Ca</td>
<td>0,05</td>
<td>0,05</td>
<td>0,04</td>
<td>0,05</td>
<td>0,03</td>
<td>0,05</td>
<td>0,04</td>
<td>0,04</td>
<td>0,04</td>
<td>0,05</td>
</tr>
<tr>
<td>K</td>
<td>0,6</td>
<td>0,55</td>
<td>0,53</td>
<td>0,51</td>
<td>0,56</td>
<td>0,53</td>
<td>0,54</td>
<td>0,51</td>
<td>0,58</td>
<td>0,58</td>
</tr>
<tr>
<td>ΣXII A</td>
<td>0,65</td>
<td>0,6</td>
<td>0,57</td>
<td>0,56</td>
<td>0,59</td>
<td>0,58</td>
<td>0,58</td>
<td>0,55</td>
<td>0,62</td>
<td>0,63</td>
</tr>
</tbody>
</table>
Table 2. Results of EPMA calculated chemical analyses for glaucony samples from thin section (core 57R) (adapted from López-Quirós et al. 2019). Units: atoms per formula unit (a.p.f.u.). TC = tetrahedral charge, OC = octahedral charge; IC = interlayer charge. Normalization to 2 octahedral + 4 tetrahedral cations and 22 charges (10 O+2 OH). *Total Fe expressed as Fe$^{3+}$; † Fe$^{3+}$ and Fe$^{2+}$ in the formula calculated by stoichiometry.

Atoms per half-formula unit (a.p.f.u.) based on O$_{10}$(OH)$_{2}$

<table>
<thead>
<tr>
<th>Substratum</th>
<th>T.1</th>
<th>T.1</th>
<th>T.1</th>
<th>T.1</th>
<th>T.1</th>
<th>T.1</th>
<th>T.1</th>
<th>T.1</th>
<th>T.2</th>
<th>T.2</th>
<th>T.2</th>
<th>T.2</th>
<th>T.2</th>
<th>T.2</th>
<th>T.2</th>
<th>Mica</th>
<th>Mica</th>
</tr>
</thead>
<tbody>
<tr>
<td>Si</td>
<td>3.85</td>
<td>3.88</td>
<td>3.83</td>
<td>3.86</td>
<td>3.87</td>
<td>3.83</td>
<td>3.83</td>
<td>3.86</td>
<td>3.85</td>
<td>3.82</td>
<td>3.72</td>
<td>3.87</td>
<td>3.83</td>
<td>3.73</td>
<td>3.87</td>
<td>3.88</td>
<td>3.83</td>
</tr>
<tr>
<td>Mn</td>
<td>0.15</td>
<td>0.12</td>
<td>0.17</td>
<td>0.14</td>
<td>0.13</td>
<td>0.17</td>
<td>0.17</td>
<td>0.09</td>
<td>0.14</td>
<td>0.15</td>
<td>0.18</td>
<td>0.28</td>
<td>0.13</td>
<td>0.17</td>
<td>0.26</td>
<td>0.13</td>
<td>0.12</td>
</tr>
<tr>
<td>ΣTC</td>
<td>4</td>
</tr>
<tr>
<td>Ti</td>
<td>0.01</td>
</tr>
<tr>
<td>ΣVIAl</td>
<td>0.08</td>
<td>0.11</td>
<td>0.04</td>
<td>0.15</td>
<td>0.14</td>
<td>0.08</td>
<td>0.13</td>
<td>0.2</td>
<td>0.12</td>
<td>0.1</td>
<td>0.12</td>
<td>0.13</td>
<td>0.11</td>
<td>0.17</td>
<td>0.0</td>
<td>0.14</td>
<td>0.15</td>
</tr>
<tr>
<td>†Fe$^{2+}$</td>
<td>1.3</td>
<td>1.25</td>
<td>1.39</td>
<td>1.26</td>
<td>1.29</td>
<td>1.31</td>
<td>1.28</td>
<td>1.18</td>
<td>1.27</td>
<td>1.33</td>
<td>1.28</td>
<td>1.3</td>
<td>1.29</td>
<td>1.23</td>
<td>1.45</td>
<td>1.24</td>
<td>1.25</td>
</tr>
<tr>
<td>†Fe$^{3+}$</td>
<td>0.28</td>
<td>0.29</td>
<td>0.21</td>
<td>0.21</td>
<td>0.23</td>
<td>0.25</td>
<td>0.22</td>
<td>0.27</td>
<td>0.24</td>
<td>0.22</td>
<td>0.21</td>
<td>0.24</td>
<td>0.25</td>
<td>0.21</td>
<td>0.27</td>
<td>0.26</td>
<td>0.2</td>
</tr>
<tr>
<td>Mn</td>
<td>0</td>
</tr>
<tr>
<td>Mg</td>
<td>0.34</td>
<td>0.34</td>
<td>0.36</td>
<td>0.35</td>
<td>0.33</td>
<td>0.34</td>
<td>0.34</td>
<td>0.36</td>
<td>0.33</td>
<td>0.38</td>
<td>0.33</td>
<td>0.36</td>
<td>0.32</td>
<td>0.33</td>
<td>0.34</td>
<td>0.33</td>
<td>0.37</td>
</tr>
<tr>
<td>ΣVI</td>
<td>2</td>
</tr>
<tr>
<td>OC</td>
<td>-0.58</td>
<td>-0.62</td>
<td>-0.53</td>
<td>-0.61</td>
<td>-0.55</td>
<td>-0.61</td>
<td>-0.53</td>
<td>-0.6</td>
<td>-0.59</td>
<td>-0.57</td>
<td>-0.58</td>
<td>-0.51</td>
<td>-0.56</td>
<td>-0.54</td>
<td>-0.53</td>
<td>-0.6</td>
<td>-0.56</td>
</tr>
<tr>
<td>Ca</td>
<td>0.02</td>
<td>0.02</td>
<td>0.03</td>
<td>0.01</td>
<td>0.03</td>
<td>0.02</td>
<td>0.02</td>
<td>0.03</td>
<td>0.02</td>
<td>0</td>
<td>0.02</td>
<td>0.01</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>Na</td>
<td>0.01</td>
</tr>
<tr>
<td>K</td>
<td>0.7</td>
<td>0.7</td>
<td>0.66</td>
<td>0.67</td>
<td>0.62</td>
<td>0.71</td>
<td>0.67</td>
<td>0.62</td>
<td>0.67</td>
<td>0.67</td>
<td>0.71</td>
<td>0.75</td>
<td>0.67</td>
<td>0.66</td>
<td>0.75</td>
<td>0.68</td>
<td>0.66</td>
</tr>
<tr>
<td>ΣVII</td>
<td>0.72</td>
<td>0.73</td>
<td>0.7</td>
<td>0.69</td>
<td>0.66</td>
<td>0.74</td>
<td>0.71</td>
<td>0.66</td>
<td>0.7</td>
<td>0.69</td>
<td>0.74</td>
<td>0.78</td>
<td>0.7</td>
<td>0.78</td>
<td>0.72</td>
<td>0.69</td>
<td>0.67</td>
</tr>
<tr>
<td>IC</td>
<td>0.75</td>
<td>0.75</td>
<td>0.73</td>
<td>0.7</td>
<td>0.69</td>
<td>0.76</td>
<td>0.72</td>
<td>0.69</td>
<td>0.72</td>
<td>0.69</td>
<td>0.76</td>
<td>0.78</td>
<td>0.72</td>
<td>0.71</td>
<td>0.8</td>
<td>0.73</td>
<td>0.71</td>
</tr>
</tbody>
</table>

Types: T.1 (type 1) and T.2 (type 2) (EPMA results from López-Quirós et al., 2019)
TC = tetrahedral charge, OC = octahedral charge; IC = interlayer charge
Table 3. Results of EPMA \(^1\) calculated chemical analyses for glaucony samples from thin section (core 52R). \(^1\)Units: atoms per formula unit (a.p.f.u.). TC = tetrahedral charge, OC = octahedral charge; IC = interlayer charge. Normalization to 2 octahedral + 4 tetrahedral cations and 22 charges (10 O\(+2\) OH). *Total Fe expressed as Fe\(^{3+}\); †Fe\(^{2+}\) and Fe\(^{3+}\) in the formula calculated by stoichiometry.

Atoms per half-formula unit (a.p.f.u.) based on O\(_{10}(\text{OH})_2\)

<table>
<thead>
<tr>
<th>Substratum</th>
<th>Pellet</th>
<th>Pellet</th>
<th>Pellet</th>
<th>Pellet</th>
<th>Pellet</th>
<th>Pellet</th>
<th>Pellet</th>
<th>Pellet</th>
<th>Diatom</th>
<th>Diatom</th>
<th>Diatom</th>
<th>Diatom</th>
<th>Mica</th>
<th>Mica</th>
</tr>
</thead>
<tbody>
<tr>
<td>Si</td>
<td>3.84</td>
<td>3.84</td>
<td>3.86</td>
<td>3.85</td>
<td>3.86</td>
<td>3.86</td>
<td>3.83</td>
<td>3.81</td>
<td>3.84</td>
<td>3.85</td>
<td>3.86</td>
<td>3.86</td>
<td>3.86</td>
<td>3.89</td>
</tr>
<tr>
<td>(^{1+})Al</td>
<td>0.16</td>
<td>0.16</td>
<td>0.14</td>
<td>0.15</td>
<td>0.14</td>
<td>0.14</td>
<td>0.17</td>
<td>0.19</td>
<td>0.16</td>
<td>0.15</td>
<td>0.14</td>
<td>0.14</td>
<td>0.14</td>
<td>0.11</td>
</tr>
<tr>
<td>(\Sigma^{1+})</td>
<td>4</td>
</tr>
<tr>
<td>TC</td>
<td>-0.16</td>
<td>-0.16</td>
<td>-0.14</td>
<td>-0.15</td>
<td>-0.14</td>
<td>-0.14</td>
<td>-0.17</td>
<td>-0.19</td>
<td>-0.16</td>
<td>-0.15</td>
<td>-0.14</td>
<td>-0.14</td>
<td>-0.14</td>
<td>-0.11</td>
</tr>
<tr>
<td>Ti</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.01</td>
<td>0.03</td>
<td>0.01</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.01</td>
<td>0.01</td>
<td>0.02</td>
<td>0.03</td>
</tr>
<tr>
<td>(^{6+})Al</td>
<td>0.12</td>
<td>0.09</td>
<td>0.08</td>
<td>0.04</td>
<td>0.06</td>
<td>0.11</td>
<td>0</td>
<td>0.02</td>
<td>0.01</td>
<td>0.08</td>
<td>0.06</td>
<td>0.01</td>
<td>0.08</td>
<td>0.08</td>
</tr>
<tr>
<td>†Fe(^{3+})</td>
<td>1.29</td>
<td>1.32</td>
<td>1.29</td>
<td>1.36</td>
<td>1.34</td>
<td>1.28</td>
<td>1.39</td>
<td>1.36</td>
<td>1.35</td>
<td>1.34</td>
<td>1.29</td>
<td>1.29</td>
<td>1.29</td>
<td>1.31</td>
</tr>
<tr>
<td>†Fe(^{2+})</td>
<td>0.14</td>
<td>0.12</td>
<td>0.15</td>
<td>0.11</td>
<td>0.13</td>
<td>0.12</td>
<td>0.16</td>
<td>0.13</td>
<td>0.17</td>
<td>0.12</td>
<td>0.12</td>
<td>0.12</td>
<td>0.15</td>
<td>0.12</td>
</tr>
<tr>
<td>Mn</td>
<td>0</td>
</tr>
<tr>
<td>Mg</td>
<td>0.44</td>
<td>0.46</td>
<td>0.46</td>
<td>0.47</td>
<td>0.46</td>
<td>0.46</td>
<td>0.43</td>
<td>0.46</td>
<td>0.45</td>
<td>0.45</td>
<td>0.44</td>
<td>0.46</td>
<td>0.45</td>
<td>0.44</td>
</tr>
<tr>
<td>(\Sigma^{3+})</td>
<td>2</td>
</tr>
<tr>
<td>OC</td>
<td>-0.53</td>
<td>-0.53</td>
<td>-0.59</td>
<td>-0.56</td>
<td>-0.58</td>
<td>-0.55</td>
<td>-0.61</td>
<td>-0.6</td>
<td>-0.56</td>
<td>-0.59</td>
<td>-0.55</td>
<td>-0.61</td>
<td>-0.57</td>
<td>-0.61</td>
</tr>
<tr>
<td>Ca</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td>Na</td>
<td>0.01</td>
</tr>
<tr>
<td>K</td>
<td>0.66</td>
<td>0.66</td>
<td>0.67</td>
<td>0.65</td>
<td>0.66</td>
<td>0.62</td>
<td>0.68</td>
<td>0.69</td>
<td>0.71</td>
<td>0.65</td>
<td>0.67</td>
<td>0.62</td>
<td>0.66</td>
<td>0.63</td>
</tr>
<tr>
<td>(\Sigma^{3+})</td>
<td>0.7</td>
<td>0.7</td>
<td>0.71</td>
<td>0.69</td>
<td>0.69</td>
<td>0.66</td>
<td>0.72</td>
<td>0.73</td>
<td>0.74</td>
<td>0.68</td>
<td>0.71</td>
<td>0.66</td>
<td>0.69</td>
<td>0.67</td>
</tr>
<tr>
<td>IC</td>
<td>0.73</td>
<td>0.73</td>
<td>0.74</td>
<td>0.72</td>
<td>0.73</td>
<td>0.69</td>
<td>0.75</td>
<td>0.74</td>
<td>0.76</td>
<td>0.7</td>
<td>0.74</td>
<td>0.69</td>
<td>0.73</td>
<td>0.7</td>
</tr>
</tbody>
</table>

\(\text{TC} = \text{tetrahedral charge}, \text{OC} = \text{octahedral charge}; \text{IC} = \text{interlayer charge}\)
Maturation monitored by the increase in K⁺ and Fe²⁺/Fe³⁺

Stages of evolution

Microbial oxidation of organic matter

Microtextures and estimated w% of K₂O; Fe₂O₃; Al₂O₃

Estimated time (years)

Nascent

Formation of Fe(III)smectite

Slightly evolved

Glaucite reaction

Evolved

Glaucitic mica
‘True glauconite’

Highly evolved

Authigenic globules

Authigenic flakes, rosettes

ODP 696B

Figure 1
Figure 2

A A map showing the location of ODP Site 696 in the Weddell Sea, with surrounding regions such as South America, the Pacific Ocean, and Antarctica. The site is indicated with a yellow square labeled "ODP696".

B Lithostratigraphy chart with core recovery details and age units, illustrating the stratigraphic units from Unit I to Unit VII, with specific details such as "Hemipelagic" and "Diatomaceous" layers.

C Microscopic image of pellets at 500μm scale.

D Microscopic image of diatom at 250μm scale.

E Microscopic image showing a crack and a nontronite rim at 25μm scale.

F Microscopic image of lamellar texture at 500nm scale.

G Microscopic image of lamellar texture at 500nm scale.

H Microscopic image of a glaucony grain with cracks at 100μm scale.

I Microscopic image of a greenish material labeled "Evolved glaucony" and "Flaky/lamellar nanostructure" at 200μm scale.
Figure 3
Figure 4
Figure 6

- A: Negative correlation: As $^{VI}Si^{4+}$ increases, K^+ decreases.
- B: Negative correlation: As $^{VI}Al^{3+}$ increases, K^+ decreases.
- C: Positive correlation: As $^{VI}Fe^{(total)}$ increases, K^+ increases.
- D: Positive correlation: As $^{VI}Fe^{2+}$ increases, K^+ increases.
- E: Negative correlation: As $^{VI}Fe^{2+}$ increases, $^{VI}Al^{3+}$ decreases.
- F: Negative correlation: As $^{VI}Fe^{3+}$ decreases, $^{VI}Fe^{2+}$ decreases.

Graphs A through F show the correlation between different elements and the concentration of K^+, with specific annotations for each.
Figure 7
Figure 8