Cl-bearing Fluorcalciobritholite in high-Ti basalts from Apollo 11 and 17: Implications for 1 2 volatile histories of late-stage lunar magmas. 3 4 James P. Greenwood, Kenichi Abe, Benjamin McKeeby* 5 6 Department of Earth and Environmental Sciences, Wesleyan University, Middletown, CT 06459, USA 7 8 9 *Now at Department of Geology and Environmental Science, University of Pittsburgh, Pittsburgh, PA 15260 USA 10 11 12 **REVISION 1** 13 14 15 16

17 Abstract

18

19 20 We report the occurrence of a previously unidentified mineral in lunar samples: a Cl-,F-21 ,REE-rich silico-phosphate identified as Cl-bearing fluorcalciobritholite. This mineral is found 22 in late-stage crystallization assemblages of slowly cooled high-Ti basalts 10044, 10047, 75035, 23 and 75055. It occurs as rims on fluorapatite, or as a solid-solution between fluorapatite and Clfluorcalciobritholite. The Cl-fluorcalciobritholite appears to be nominally anhydrous. The Cl 24 and Fe^{2+} of the lunar Cl-fluorcalciobritholite distinguishes it from its terrestrial analogue. The 25 textures and chemistry of the Cl-fluorcalciobritholite argue for growth during the last stages of 26 27 igneous crystallization, rather than by later alteration/replacement by Cl-, REE-bearing metasomatic agents in the lunar crust. The igneous growth of this Cl-, F-bearing and OH-poor 28 mineral after apatite in the samples we have studied suggests that the Lunar Apatite Paradox 29 30 model (Boyce et al., 2014) may be inapplicable for high-Ti lunar magmas. This new volatile-31 bearing mineral has important potential as a geochemical tool for understanding Cl isotopes and 32 REE chemistry of lunar samples. 33 34

35

42 43 so 44 M 45 2 46 a)	In the past decade, the phosphate mineral fluorapatite has become the most important ource of information about the water and D/H evolution of the Moon (Boyce et al., 2010, 2014;
 43 so 44 N 45 20 46 sol 	ource of information about the water and D/H evolution of the Moon (Boyce et al., 2010, 2014;
44 N 45 2 46 al	
45 2	AcCubbin et al., 2010; Greenwood et al., 2011; Barnes et al., 2013, 2014; Tartése and Anand,
16 ol	013; Tartése et al., 2014; Robinson and Taylor, 2014; Singer et al., 2017). Lunar fluorapatite
40 a	lso has the largest range of Cl isotope ratios of natural materials in the Solar System (Sharp et
47 al	l., 2010; Boyce et al., 2015, 2018; Barnes et al., 2016) and may prove critical to understanding
48 is	sotope fractionation processes that have affected lunar reservoirs, such as degassing of lunar
49 m	nagmas, lunar magma ocean evolution and loss of volatiles during the giant impact event that
50 fo	formed the Moon.
51	In lunar samples, the phosphate mineral merrillite is the main carrier of rare earth
52 el	lements (REE); as such, determining the partitioning of REE between lunar magmas and lunar
53 p	hosphates has been the subject of extensive investigation (e.g. Joliff et al., 1993 and references
54 tł	herein). Interestingly, the high REE contents of lunar merrillite has led some investigators to
55 ai	rgue for lunar metasomatism (Neal and Taylor, 1991) rather than late-stage magmatic
56 ei	nrichment of trace elements.
57	Fluorbritholite is a member of the britholite group of apatite supergroup minerals, a
58 te	errestrial REE-bearing phosphate mineral with a similar structure to apatite and characterized by
59 a	significant proportion of SiO ₂ and REE due to the coupled substitution: $Si^{4+}+REE^{3+}=Ca^{2+}+P^{5+}$
60 [/	Apatite: Ca ₅ (PO ₄) ₃ (F,Cl,OH); Britholite: (REE, Ca) ₅ (SiO ₄ , PO ₄) ₃ (OH,F)] (Pasero et al., 2010).
61 F	Iuorcalciobritholite was approved as a mineral in 2006, and has the simplified formula
62 (0	$Ca,REE)_5[(Si,P)O_4)]_3F$ (Pekov et al., 2007). It differs from fluorbritholite, (REE,Ca)_5(SiO_4)_3F,
63 ir	n having Ca> Σ REE and differs from fluorapatite in having Si>P. Fluorcalciobritholite has the
64 co	ompositional range $Ca_{2.5}REE_{2.5}(SiO_4)_{2.5}(PO_4)_{0.5}F$ (boundary with fluorbritholite) and
65 C	$Ca_{3.5}REE_{1.5}(SiO_4)_{1.5}(PO_4)_{1.5}F$ (boundary with fluorapatite) (Pekov et al., 2007). Britholite-group
66 m	ninerals are commonly found in alkaline rocks, and in metasomatites and pegmatites related to
67 sy	yenite and nepheline-syenite complexes (Pekov et al., 2007). They typically contain high
68 al	bundances of U and Th, and can be metamict. They are also found in solid-solution with apatite

69	in a peralkaline volcanic suite of the Kenya Rift Valley (Macdonald et al., 2008) and as
70	inclusions in magmatic zircon of the Bandelier Tuff (Wolff and Ramos, 2014).
71	Here we describe a previously unidentified silico-phosphate mineral in several slowly-
72	cooled high-Ti Apollo 11 and Apollo 17 basalts, and identify it as Cl-bearing
73	fluorcalciobritholite. The mineral contains abundant volatiles (F, Cl) and REEs, and could be an
74	important mineral for future studies of lunar volatile evolution, petrogenesis, and metasomatism.
75	
76	
77	SAMPLES
78	
79	Thin-sections of Apollo rock samples were requested from the Lunar Sample Curator and
80	were prepared at Johnson Space Center. We studied Apollo 11 thin-sections 10044,12,
81	10044,633, and 10047,70 and Apollo 17 thin-sections 75055,50, 75055,51, 75055,55 and
82	75035,79. A sample chip of 75055 was requested from NASA and mounted with low-
83	temperature melting point eutectic metals in the Lunar Laboratory at Wesleyan University, and
84	then polished without the use of water or oil (75055,123b).
85	The four Apollo basalts that we study here are very similar to each other in petrology and
86	mineralogy. They are all high-Ti Apollo 11 and 17 basalts, all of the low-K variety. Dymek et
87	al. (1975) found that 10044 and 75055 are nearly identical. 75035 is from the same boulder as
88	75055 and is similar in both texture and chemistry (Longhi et al., 1974), except that it has the
89	highest sulfur content of any Apollo sample (Meyer, 2010). Beatty and Albee (1978) suggested
90	that 10044 and 10047 were so similar as to be fragments of a single larger block. Basalt 75055 is
91	a medium- to fine-grained intergranular to subophitic ilmenite basalt (Dymek et al., 1975). It
92	contains 33% plagioclase, 50% clinopyroxene, 12% ilmenite, 3% SiO ₂ , and small proportions of
93	troilite, Fe metal, ulvöspinel, apatite, tranquilityite, and mesostasis (Dymek et al., 1975).
94	Plagioclase forms a discontinuous, interlocking network of stubby to elongate lath-shaped
95	crystals (~100 μ m to 3500 μ m in length), enclosing pyroxene and ilmenite (Dymek et al., 1975).
96	The crystallization sequence is believed to be plagioclase slightly before ilmenite, and then
97	coprecipitation with pyroxene (Dymek et al., 1975). The co-crystallization of these three
98	minerals were joined by tridymite, and then mesostasis mineral crystallization, and finally
99	solidification of K-, Si-rich glass (Dymek et al., 1975).

100	
101	METHODS
102	
103	
104	Scanning Electron Microscope (SEM)
105	
106	Backscatter electron (BSE) and secondary electron (SE) images of phosphate grains in
107	Apollo thin-sections were taken, on sections with 30 nm thick carbon coat, with the Hitachi
108	SU5000 Field Emission Scanning Electron Microscope (FE-SEM) at Wesleyan University. It is
109	equipped with an Apollo Octane Silicon-drift detector and EDAX Team software.
110	
111	Electron microprobe microanalysis (EPMA)
112	
113	Electron microprobe analyses of phosphate minerals were obtained with the Yale JEOL
114	JXA-8530F Field Emission "Hyperprobe" which has five wavelength-dispersive spectrometers
115	(WDS). Appropriate mineral and glass standards were used for calibration of 24 elements (F,
116	Na, Mg, Al, Si, Sr, Fe, Mn, Y, P, S, Cl, K, Ca, Cs, La, Ce, Nd, Sm, Gd, Dy, Er, Yb, and Pr).
117	After testing the unknown silico-phosphate for appropriate beam conditions to minimize
118	mobility of elements during analysis of apatite (e.g. Stormer et al., 1991), an accelerating voltage
119	of 15 KeV with a 8 nA beam current and a 1 micron spot size was used for the unknown silico-
120	phosphate. F and Cl were analyzed first on separate spectrometers to monitor for any change in
121	element abundances with time, but none were seen, suggesting the lunar silico-phosphate is
122	relatively stable under the electron beam. Standards used for the analysis of F and Cl were
123	RbNiF ₃ and sodalite, respectively. No change in count rates were found for F and Cl during
124	calibration acquisition for the $RbNiF_3$ and sodalite standards. We also undertook WDS mapping
125	of fluorapatite and silico-phosphate. The WDS mapping used similar accelerating voltage and
126	beam current, with 100 ms dwell time, and a 0.1 μ m step size in a 35 μ m x 65 μ m area.
127	
128	Micro-Raman spectroscopy
129	

130	Raman spectra of fluorapatite and silico-phosphate in lunar basalt 75055 were acquired at
131	the Stony Brook University Vibrational Spectroscopy Laboratory, using their Wi-TEC
132	alpha300R confocal Raman microscope system. Raman excitation was with a 50 mW
133	frequency-doubled 532 nm Nd:YAG excitation laser for collection of unpolarized Raman
134	spectra. Point spectra were collected using a 100x objective between 0-3700 cm ⁻¹ , an 1800
135	lines/mm grating, and a 0.76 μ m spot size. Initial spectral collection consisted of 180
136	accumulations with a 1 s acquisition time each.
137	
138	RESULTS
139	
140	75055,50
141	
142	In a large phosphate grain in 75055,50 a region of solid-solution with silico-phosphate
143	and fluorapatite can be seen in the BSE image in Fig. 1. This phosphate is situated at the grain
144	boundary between two late-stage hedenbergite grains. Two of the silico-phosphate regions can
145	be seen: 1) a bright, sharp epitaxial rim on the NW edge of the grain, and 2) a more gradational
146	contact of apatite-fluorcalciobritholite on the S portion of the grain that appears to be part of a
147	late-stage mineral assemblage between two grains of hedenbergite. The silico-phosphate is F-
148	rich and contains significant Cl, as apparent in the Cl K α WDS map in Fig. 2. The Nd K α WDS
149	map in Fig. 2 shows that Nd is enriched along with Cl in the britholite region of the grain.
150	The Cl-bearing silico-phosphate grain is in solid solution with fluorapatite in 75055,50
151	(Fig. 1 and 2). Electron microprobe analyses of a traverse from apatite to silico-phosphate are
152	shown in Fig. 3, Table 1 and Table S1, and locations of EPMA analyses are shown in Fig. 1.
153	The brightness of this phase in BSE images arises from its enrichment in the REE.
154	The major element zoning for CaO, P ₂ O ₅ , SiO ₂ , and Ce ₂ O ₃ are shown in Fig. 3a, and are
155	consistent with a solid-solution between fluorapatite and Cl-bearing fluorcalciobritholite. The
156	silico-phosphate is best described as Cl-bearing fluorcalciobritholite with a composition, based
157	on 13 anions of:
158	$[Ca_{2.84}(Ce_{0.81}La_{0.36}Nd_{0.19}Pr_{0.08}Y_{0.25}Sm_{0.03}Gd_{0.10}Dy_{0.03})_{\Sigma=1.86}Sr_{0.02}Fe_{0.34})]_{\Sigma=5.05}$
159	$[(Si_{1.77}P_{1.21})_{\Sigma=2.98}O_{12}] [F_{0.62}Cl_{0.27}]_{\Sigma=0.89}$. (n=3). This is the average of three analyses of the
160	mineral (Table 1). The fluorcalciobritholite has significant Cl, almost 1/3 of the halogen site

occupancy. The zoning between the two minerals for F and Cl is shown in Fig. 3b. The missing 161 162 halogen component could be OH, as this low level of hydroxyl probably would not have been detectable with Raman. The zoning of cations per formula unit for Ca+Fe+Sr+P and Si+REE is 163 shown in Fig. 3c. This lunar mineral also appears to have significant Fe^{2+} substituting into the 164 Ca-REE site in this mineral, between 3-4 weight percent FeO (Table 1). Zoning of FeO and 165 Pr₂O₃ is shown in Fig. 3d. The sharp mineral boundary between the Cl-bearing 166 167 fluorcalciobritholite and the zoned region between the two minerals is at \sim 43 µm from the SIMS 168 spot, and this can be seen as a break in the element zonation trends shown in Fig. 3. 169 Micro-Raman analysis indicate the presence of REE's in the broad luminescent peak from 1600-2400 cm⁻¹ (Fig. 4). Locations of Micro-Raman analyses are shown in Fig. 1. Two 170 distinct peaks are observed above background radiation with similar locations to those seen in 171 172 the fluorbritholite data in the RRUFF database (LaFuente et al., 2015). Figure 4 shows three of 173 these spectra obtained from the REE-rich grain. Spectral peak fitting indicates a fluorapatite spectral match to the 950 cm⁻¹ peak, but the smaller but still distinct 840 cm⁻¹ peak is missing 174 (Fig. 4). Fluorbritholite from the RRUFF database matches both peaks, but the relative 175 intensities of the lunar sample peaks are nearly equal, in contrast to the disparity between the 840 176 cm⁻¹ and 950 cm⁻¹ britholite peaks (Fig. 4). Location 75 g represents a more apatite-rich area of 177 the grain while 75 m and 75 n are located in the REE-enriched section. We find no detectable 178

OH/H₂O with Raman in fluorcalciobritholite, as spectral peaks at approximately 3400cm⁻¹ indicative of OH and H₂O were not observed (Fig. 4). This lack of significant OH also 180

181 distinguishes this lunar fluorcalciobritholite from terrestrial fluorbritholite and britholite, which

182 are generally OH-rich.

183 In 75055,50, we found three other apatite-fluorcalciobritholite grains in late-stage mineral assemblages. In grain 50-2 shown in Figure 5, the apatite-fluorcalciobritholite solid-solution 184 185 appears to match crystallographic planes and appears akin to sector zoning. This grain is in a 186 late-stage mineral assemblage of hedenbergite, apatite, and K-,Si-rich mesostasis glass. This 187 assemblage is associated with one of the other fluorcalciobritholite grains, K-Ba feldspar, FeS, 188 all included within a large ilmenite grain.

189

179

190 75055,51, 75055,55, and 75055,123b

192	In 75055,51 we found two other apatite-fluorcalciobritholite grains. These two grains are
193	associated with K-Ba feldspar, fayalite, pyroxferroite, and apatite. We did not find any apatite-
194	fluorcalciobritholite in 75055,55 or 75055,123b, though we conducted similar searches in these
195	samples as in 75055,50 and ,51. All six grains of fluorcalciobritholite in 75055 contain
196	detectable Cl.
197	
198	75035,79
199	
200	We found three apatite-fluorcalciobritholite grains in this thin-section. The
201	fluorcalciobritholite regions were not as pure as in 75055, but EDS peaks of Si and REE
202	correlated with BSE intensity in these grains. None of the three grains had enough
203	fluorcalciobritholite to assess its Cl content. The grains are in typical late-stage mesostasis areas
204	associated with apatite, silica, K-,Si-rich glass, pyroxferroite, troilite, tranquillityite, and fayalite.
205	
206	10044,12 and 10044,633
207	
208	We found thirteen apatite-fluorcalciobritholite grains in 10044,12 (n=4) and 10044,633
209	(n=9). The fluorcalciobritholite is similar in purity to that of 75055. A Cl-rich
210	fluorcalciobritholite grain from 10044,12 is shown in Fig. 6a and EDS spectra of spots in the
211	apatite-rich and fluorcalciobritholite-rich regions are shown in Fig. 6b. Cl can be seen in both
212	minerals. The high Si/P and higher REE's of spot 2 are indicative of the fluorcalciobritholite.
213	This mineral is growing in a late-stage crystallization assemblage of hedenbergite, pyroxferroite,
214	fayalite, silica, and tranquillityite. We also found a tiny (< 1 μ m) grain of a La-rich monazite in
215	10044,12. This monazite is located in the same late stage mineral assemblage as an apatite grain
216	shown in Fig. 1 of Greenwood et al. (2011).
217	
218	10047,70
219	
220	Four grains of Cl-rich apatite-fluorcalciobritholite were found in 10047,70. The
221	chemistry is similar to that of Cl-bearing fluorcalciobritholite in 75055,50. All four grains are

222	growing in typical late-stage crystallization assemblages associated with K-, Si-rich glass,
223	apatite, pyroxferroite, fayalite, troilite, silica, and tranquillityite.
224	
225	DISCUSSION
226	
227	Origin of lunar Cl-fluorcalciobritholite: Late-stage crystallization or metasomatism?
228	
229	On Earth, britholite-group minerals form through extreme igneous differentiation or
230	metasomatism and are primarily found in highly differentiated alkaline pegmatites or
231	metasomites (Pekov et al., 2007; Petrella et al., 2014), as well as in high silica rhyolites of the
232	Bandelier Tuff (Wolff and Ramos, 2014) and peralkaline rhyolites in the Kenya Rift Valley
233	(MacDonald et al., 2008). The lunar Cl-fluorcalciobritholite is found in late-stage melt pockets,
234	and is always associated with other late-stage crystallization minerals (e.g. Figs. 1, 5, 6). It is
235	also always found with apatite, appearing as bright rims on apatite in BSE images; Cl-
236	fluorcalciobritholite was not found as discrete grains. The continuous solid-solution of the
237	apatite and Cl-fluorcalciobritholite, Figs. 1-3 and Table S1, is indicative of igneous growth from
238	a late-stage melt, rather than replacement and overgrowth of apatite during a REE-metasomatic
239	event on the Moon. The apparent igneous zoning of apatite and Cl-fluorcalciobritholite shown in
240	Fig. 5 is also best interpreted as igneous crystallization rather than replacement by later
241	metasomatic fluids/melts.
242	
243	Comparison to terrestrial britholite-group minerals
244	
245	The lunar Cl-fluorcalciobritholite is distinguished from terrestrial fluorcalciobritholite in
246	two fundamental ways: it has significant Fe ²⁺ on the M site, and has significant Cl in the halogen
247	site. Terrestrial britholite-group minerals are not reported to contain more than trace abundances
248	of Cl (e.g. Pekov et al., 2007), suggesting that these late-stage lunar magmas contain proportions
249	of Cl, Fe ²⁺ and REE's unlike those found on Earth. The reducing nature of lunar magmas is
250	consistent with Fe ²⁺ rather than Fe ³⁺ for lunar Cl-fluorcalciobritholite. Stoichiometric
251	considerations argue that the Fe is in the ferrous rather than ferric state in the Cl-
252	fluorcalciobritholite (e.g. Fig. 3c). Terrestrial britholite has its halogen site dominated by OH;

253	the lunar Cl-fluorcalciobritholite does not appear to have significant OH, as inferred both from
254	the absence of OH vibration peaks in micro-Raman spectra (Fig. 4), and halogen site occupancy
255	dominated by F and Cl in the electron microprobe analyses (Table 1).
256	The holotype specimen of fluorcalciobritholite, found in veinlets cutting a fenitized
257	gneiss xenolith in foyaites of the Khibiny alkaline complex (Kola peninsula, Russia) has the
258	$composition: \\ [Ca_{2.80} (Ce_{0.93} La_{0.54} Nd_{0.26} Pr_{0.08} Y_{0.18} Sm_{0.03} Gd_{0.03} Dy_{0.020} Yb_{0.020} Er_{0.010})_{\Sigma=2.12} \\$
259	$Th_{0.04}Mn_{0.03}Sr_{0.02})]_{\Sigma=4.99} \left[(Si_{1.94}P_{1.06})_{\Sigma=3}O_{12} \right] [F_{0.76}Cl_{0.01}]_{\Sigma=0.77}.$ This compares favorably with the
260	$lunar \ Cl-fluor calciobritholite: \ [Ca_{2.84} (Ce_{0.81}La_{0.36}Nd_{0.19}Pr_{0.08}Y_{0.25}Sm_{0.03}Gd_{0.10}Dy_{0.03})_{\Sigma=1.86}$
261	$Sr_{0.02}Fe_{0.34})]_{\Sigma=5.05}$ [$(Si_{1.77}P_{1.21})_{\Sigma=2.98}O_{12}$] [$F_{0.62}Cl_{0.27}$] $_{\Sigma=0.89}$. The holotype fluorcalciobritholite is
262	associated with orthoclase, nepheline, sodalite, biotite, fayalite, gadolinite-(Ce), zircon,
263	monazite-(Ce), zirconolite, molybdenite, löllingite, and graphite. The lunar Cl-
264	fluorcalciobritholite is associated with very different minerals (ilmenite, hedenbergite,
265	pyroxferroite, fayalite, K-Ba feldspar, apatite, monazite, troilite, silica, and tranquillityite),
266	further emphasizing the unearthly chemistry of lunar high-Ti basalts.
267	In a peralkaline volcanic suite of the Kenya Rift Valley, apatite undergoes the coupled
268	substitution Si+REE=Ca+P, from benmoreite to trachytes to rhyolites (Macdonald et al., 2008).
269	The zonation of total REE, Ca, P and Si is similar to that seen in Fig. 3b for the lunar apatite.
270	The maximum britholite component of apatite of this Kenya Rift Valley rhyolite does not reach
271	fluorcalciobritholite, and also has lower Fe ²⁺ and Cl contents relative to the lunar Cl-bearing
272	fluorcalciobritholite.
273	
274	Comparison to other lunar phosphates
275	
276	Apatite has long been recognized as a major carrier of phosphate in lunar rocks and soils
277	(Keil et al., 1970; Fuchs, 1970), and an important carrier of lunar halogens (Reed et al., 1970).
278	The importance of apatite as a carrier of water in lunar samples and other volatiles has been
279	recognized in the past decade (Boyce et al., 2010; McCubbin et al., 2010; Greenwood et al.,
280	2011) and has been reviewed in McCubbin et al. (2015).
281	Merrillite is as an important carrier of REE's in lunar samples (e.g. Joliff et al., 1993, and

references therein). Descriptions and analysis of REE-enrichment in lunar merrillite has been

detailed in Apollo 14 granites with similar indications of Cl and REE enrichment during

extensive igneous fractionation during crystallization (Joliff et al., 1993). The Cl-

fluorcalciobritholite mineral could be an important reservoir of REEs in the Moon and needs tobe considered in future petrogenetic modeling of the Moon.

be considered in future periogenetic modering of the woon.

Monazite has been found previously only in basalt 10047 (Lovering et al., 1974). They postulated that it could be more common, but we have only found it in 10044, and are unaware of any other reports of this mineral (Fig. S1). This suggests that monazite is a very minor carrier of REE's in lunar samples relative to merrillite.

291 To our knowledge, the Cl-bearing fluorcalciobritholite has not been reported previously 292 in lunar samples. We suspect it could be present in other slowly cooled high-Ti basalts. We do 293 not expect it will be found in low-Ti basalts, as we have not noticed it in the past decade of 294 extensive electron beam work on lunar phosphates from low-Ti basalts. Apatite in low-Ti basalts does undergo Si and REE enrichment, but does not exhibit comparable replacement of Si 295 296 for P (e.g. Greenwood et al., 2011). The high-Ti mare basalts are generally higher in REEs and incompatible trace elements than low-Ti mare basalts (Papike et al., 1998), suggesting a possible 297 298 reason why this phase is present in high-Ti basalts and not in low-Ti basalts.

299

300 Implications for volatiles of late-stage high-Ti magmas

301

302 The solid-solution growth of the apatite-fluorcalciobritholite grains suggests that latestage high-Ti magmas were becoming depleted in phosphorus while becoming enriched in Si, 303 REE's, and Cl. This late-crystallizing, volatile-bearing mineral indicates that following the 304 305 formation of apatite, the lunar magmas of high Ti-basalts were not depleted in F or Cl. This F-306 and Cl-enriched mineral forming after apatite suggests that the Lunar Apatite Paradox model (Boyce et al., 2014) may break down for high-Ti basalts. Alternatively, the partition coefficients 307 308 of fluorcalciobritholite and late-stage lunar magmas are not known. The large change in mineral 309 chemistry between fluorcalciobritholite and apatite due to the coupled substitution of $Si^{4+}+REE^{3+}=Ca^{2+}+P^{5+}$ could lead to partitioning differences between the two minerals and late-310 311 stage lunar magmas. 312

- 313 IMPLICATIONS
- 314

315	We find a silico-phosphate mineral that is in solid-solution with apatite in several Apollo
316	11 and 17 slowly-cooled basalts. Our best characterization of this mineral is that of Cl-bearing
317	fluorcalciobritholite. The textures of the mineral indicate that it formed during normal igneous
318	crystallization in high-Ti basalts, rather than as a result of secondary metasomatism or alteration
319	(e.g. Fig. 5). Interestingly, terrestrial fluorbritholite, fluorcalciobritholite, and britholite do not
320	contain significant Cl. Therefore, the Moon may represent a unique environment where REE-
321	enrichment of phosphates is accompanied by Cl halogen site occupation.
322	The Lunar Apatite Paradox (Boyce et al., 2014) postulated that high OH contents of lunar
323	apatite are due to elemental partitioning effects of very dry magmas during extreme late-stage
324	crystallization as the magmas became depleted in F due to apatite crystallization. The Cl-
325	fluorcalciobritholite shows that this magma did not become depleted in F due to apatite
326	crystallization, suggesting that the tenets of the Lunar Apatite Paradox model may be
327	inapplicable for high-Ti mare basalts. This would predict higher volatile contents for high-Ti
328	mare basalts relative to low-Ti mare basalts. Alternatively, partition coefficients of volatiles
329	between this mineral and late-stage lunar melts are not known, and could be significantly
330	different than for apatite. Future work should explore the partitioning of volatiles between
331	phosphates and late-stage lunar melts of high-Ti basalts.
332	
333	AcknowledgementsWe thank J. Eckert for assistance with EPMA, T. Glotch with assistance
334	with Micro-Raman spectroscopy, Z. Jiang and S. Karato for assistance with EBSD, Wesleyan
335	students S. Mahmood and M. Lowe, NASA Connecticut Space Grant Consortium, NASA grants
336	NNX11AB29G and NNX14AQ76G (JPG) and support of the Wesleyan Field Emission SEM by
337	NSF-MRI 1725491 (JPG).
338	
339	
340	REFERENCES
341	
342	Barnes, J.J., Tartèse, R., Anand, M., McCubbin, F.M., Neal, C.R., and Franchi, I.A. (2016) Early
343	degassing of lunar urKREEP by crust-breaching impact(s). Earth and Planetary Science Letters,
344	447, 84-94.
345	

346	Barnes, J.J., Tartèse, R., Anand, M., McCubbin, F.M., Franchi, I.A., Starkey, N.A., and Russell,
347	S.S. (2014) The origin of water in the primitive Moon as revealed by the lunar highlands
348	samples. Earth and Planetary Science Letters 390, 244-252.
349	
350	Barnes, J.J., Franchi, I.A., Anand, M., Tartèse, R., Starkey, N.A., Koike, M., Sano, Y., and
351	Russell, S.S. (2013) Accurate and precise measurements of the D/H ratio and hydroxyl content in
352	lunar apatites using NanoSIMS. Chemical Geology 337, 48-55.
353	
354	Beaty, D.W. and Albee, A.L. (1978) Comparative petrology and possible genetic relations
355	among the Apollo 11 basalts. Proceedings of the 9th Lunar Planetary Science Conference 359-
356	463.
357	
358	Boyce, J.W., Kanee, S.A., McCubbin, F.M., Barnes, J.J., Bricker, H., and Treiman, A.H. (2018)
359	Early loss, fractionation, and redistribution of chlorine in the Moon as revealed by the lunar low-
360	Ti mare basalt suite. Earth and Planetary Science Letters, 500, 205-214.
361	
362	Boyce, J.W., Treiman, A.H., Guan, Y., Ma, C., Eiler, J.M., Gross, J., Greenwood, J.P., and
363	Stolper E.M. (2015) The chlorine isotope fingerprint of the lunar magma ocean. Science
364	Advances 1, DOI:10.1126/sciadv.1500380.
365	
366	Boyce, J.W., Tomlinson, S.M., McCubbin, F.M., Greenwood, J.P., and Treiman, A.H. (2014)
367	The Lunar Apatite Paradox. Science 344, 400-402.
368	
369	Boyce, J.W., Liu, Y., Rossman, G.R., Guan, Y., Eiler, J. M., Stolper, E.M., and Taylor, L.A.
370	(2010) Lunar apatite with terrestrial volatile abundances. Nature 466, 466-470.
371	
372	Dymek, R.F., Albee, A.L., and Chodos, A.A., 1975. Comparative mineralogy and petrology of
373	Apollo 17 mare basalts: Samples 70215, 71055, 74255, and 75055. Proceedings of the 6th Lunar
374	Planetary Science Conference, 49-77.
375	

376	Fuchs, L.H. (1970) Fluorapatite and other accessory minerals in Apollo 11 rocks. Proceedings of
377	the Apollo 11 Lunar Science Conference, 475-479.
378	
379	Greenwood, J.P., Itoh, S., Sakamoto, N., Warren, P., Taylor, L., and Yurimoto, H. (2011)
380	Hydrogen isotope ratios in lunar rocks indicate delivery of cometary water to the Moon. Nature
381	Geoscience, 4, 79-82.
382	
383	Jolliff, B.L., Haskin, L.A., Colson, R.O., and Wadhwa, M. (1993) Partitioning in REE-saturating
384	minerals: Theory, experiment, and modeling of whitlockite, apatite, and evolution of lunar
385	residual magmas. Geochimica Cosmochimica Acta 57, 4069–4094.
386	
387	Keil, K., Prinz, M., and Bunch, T.E. (1970) Mineral chemistry of lunar samples. Science 167,
388	597-599.
389	
390	Lafuente, B., Downs R.T., Yang H., and Stone N. (2015) The power of databases: the RRUFF
391	project. In Highlights in Mineralogical Crystallography (Eds. T. Armbruster and R. Danisi,
392	Berlin, W. De Gruyter) pp. 1-30.
393	
394	Longhi J., Walker D., Grove T.L., Stolper E.M., and Hays J.F. (1974) The petrology of the
395	Apollo 17 mare basalts. Proceedings of the 5th Lunar Planetary Science Conference 447-469.
396	
397	Lovering, J.F., Wark, D.A., Gleadow, A.J.W., and Britten, R. (1974) Lunar monazite: A late-
398	stage (mesostasis) phase in mare basalt. Earth and Planetary Science Letters, 21, 164-168.
399	
400	Macdonald, R., Baginski, B., Belkin, H.E., Dzierzanowski, P. and Jezak, L. (2008) REE
401	partitioning between apatite and melt in a peralkaline volcanic suite, Kenya Rift Valley.
402	Mineralogical Magazine, 72, 1147-1161.
403	
404	McCubbin, F.M., Vander Kaaden, K.E., Tartése, R., Klima, R.L., Liu, Y., Mortimer, J., Barnes,
405	J.J., Shearer, C.K., Treiman, A.H., Lawrence, D.J., Elardo, S.M., Hurley, D.M., Boyce, J.W., and

406	Anand, M. (2015) Magmatic volatiles (H, C, N, F, S, Cl) in the lunar mantle, crust, and regolith:
407	Abundances, distributions, processes, and reservoirs. American Mineralogist 100, 1668-1707.
408	
409	McCubbin, F.M., Steele, A., Hauri, E., Nekvasil, H., Yamahita, S., and Helmley R.J. (2010)
410	Nominally hydrous magmatism on the Moon. Proceedings of the National Academy of
411	Sciences 107, 11223-11228.
412	
413	Meyer, C. (2010) Lunar sample compendium. Proceedings of the 41st Lunar and Planetary
414	Science Conference, Woodlands, Texas, Abstract 1016.
415	
416	Neal C.R. and Taylor L.A. (1991) Evidence for metasomatism of the lunar highlands and the
417	origin of whitlockite. Geochimica Cosmochimica Acta 55, 2965-2980.
418	
419	Papike, J.J., Ryder, G., and Shearer, C.K. (1998) Lunar samples. In Planetary Materials (ed. J. J.
420	Papike), Mineralogical Society of America, Washington, D.C., pp. 234-397.
421	
422	Pasero, M. Kampf, A.R., Ferraris, C, Pekov, I.V., Rakovan, J., and White, T.J. (2010)
423	Nomenclature of the apatite supergroup minerals. European Journal of Mineralogy, 22, 163-179.
424	
425	Pekov, I.V., Pasero, M., Yaskovskaya A.N., Chukanov, N.V., Pushcharovsky, D.Y., Merlino, S.,
426	Zubkova, N.V., Kononkova, N.N., Men'shikov, Y.P., and Zadov, A.E. (2007)
427	Fluorcalciobritholite, (Ca,REE) ₅ [(Si,P)]O ₄) ₃ F, a new mineral: description and crystal chemistry.
428	European Journal of Mineralogy, 19, 95-103.
429	
430	Petrella, L., Williams-Jones, A.E., Goutier, J., and Walsh. J., 2014. The nature and origin of rare
431	earth element mineralization in the Misery syenitic intrusion, Northern Quebec, Canada.
432	Economic Geology, 109, 1643–1666.
433	
434	Reed, G.W.Jr., Jovanovic, S., and Fuchs L.H. (1970) Trace elements and accessory minerals in
435	lunar samples. Science 167, 501-503.

437	Robinson, K.L. and Taylor, G.J. (2014) Heterogeneous distribution of water in the Moon.
438	Nature Geoscience 7, 401-408.
439	
440	Sharp, Z.D., Atudorei, V., and Durakiewicz T. (2001) A rapid method for determination of
441	hydrogen and oxygen isotope ratios from water and minerals. Chemical Geology, 178, 197-210.
442	
443	Singer, J.A., Greenwood, J.P., Itoh, S., Sakamoto, N. and Yurimoto H. (2014) Evidence for the
444	solar wind in lunar magmas: A study of slowly cooled samples of the Apollo 12 olivine basalt
445	suite. Geochemical Journal, 51, 95-104.
446	
447	Stormer, J.C. Jr., Pierson M.L., and Tacker, R.C. (1993) Variation of F and Cl X-ray intensity
448	due to anisotropic diffusion in apatite during electron microprobe analysis. American
449	Mineralogist, 78, 641-648.
450	
451	Tartése R. and Anand M. (2013) Late delivery of chondritic hydrogen into the lunar mantle:
452	Insights from mare basalts. Earth and Planetary Science Letters 361, 480-486.
453	
454	Tartèse R., Anand, M., McCubbin, F.M., Elardo, S.M., Shearer, C.K., and Franchi I.A. (2014)
455	Apatite in lunar KREEP basalts: The missing link to understanding the H isotope systematics of
456	the Moon. Geology 42, 363-366.
457	
458	Wolff, J.A. and Ramos, F.C. (2014) Processes in caldera-forming high-silica rhyolite magma:
459	Rb-Sr and Pb isotope systematics of the Otowi member of the Bandelier Tuff, Valles Caldera,
460	New Mexico, USA. Journal of Petrology, 55, 345-375.
461	
462	
463	FIGURE CAPTIONS
464 465	
466	Figure 1. BSE Image of apatite and Cl-fluorcalciobritholite grain in 75055,50. Shown are
467	locations of Raman analyses (75_q, 75_m, 75_n) and microprobe analyses (112-125). A SIMS

468	spot can be seen in the center of the apatite grain (Ap). Two areas of Cl-fluorcalciobritholite on				
469	the NW side of the grain and in the S of the grain are labeled (Br). Hedenbergite (Hd).				
470	Microprobe traverses from the SIMS spot to the Cl-fluorcalciobritholite (analyses 125-112) are				
471	shown in Fig. 3 and Tables 1 and S1. The region of this apatite-Cl-fluorcalciobritholite grain				
472	complex below the SIMS spot is shown in Fig. 2.				
473					
474	Figure 2. Wavelength Dispersive Spectrometer (WDS) maps of P K α , Ca K α , Cl K α , and Nd				
475	$K\alpha$ abundances in the apatite-Cl-fluorcalciobritholite of Fig. 1. Chlorine abundance is correlated				
476	with that of Nd (and other REE, not shown), suggesting a greater affinity of Cl for				
477	fluorcalciobritholite vs. apatite in this example.				
478					
479	Figure 3. (a) Weight % oxide vs. distance (μm) from the SIMS spot shown in Fig. 1 for SiO ₂ (red				
480	triangle), Ce ₂ O ₃ (blue circle), P ₂ O ₅ (purple triangle), and CaO (green square). Also labeled are				
481	the endmember apatite (Ap), fluorcalciobritholite (Br) and the region of solid solution. (b)				
482	Weight % halogen vs. distance (μm) for Cl and F. Cl is seen to strongly increase in the Cl-				
483	fluorcalciobritholite. (c) Cations per formula unit (assuming 8) vs. distance (μ m) for				
484	Ca+Fe+Sr+P (red triangles) and Si+ Σ REE (blue circle). (d) Weight % oxide vs. distance (μ m)				
485	for FeO and Pr ₂ O ₃ . FeO can be seen to be enriched in the Cl-fluorcalciobritholite.				
486					
487	Figure 4. Raman spectra from sample 75055,50. (A) compared to RRUFF spectra of				
488	fluorbritholite (B) and fluorapatite (C). Note the broad peak from $1600-2400$ cm ⁻¹ – a result of				
489	REE luminescence. Additionally, the two peaks occur at 950 cm ⁻¹ and 840 cm ⁻¹ similar to that of				
490	fluorbritholite but with differing intensities. The sample is clearly distinct from fluorapatite. No				
491	OH or H_2O vibration peaks were seen in the 3500 cm ⁻¹ range.				
492					
493	Figure 5. BSE image of Cl-fluorcalciobritholite and apatite in 75055,50 in a late-stage				
494	crystallization assemblage of hedenbergite (Hd), apatite (Ap), Cl-fluorcalciobritholite (Br),				
495	ilmenite (Ilm) and mesostasis (Ms). Scale bar is 30 μ m; each tick is 3 μ m.				
496					
497	Figure 6. (a) BSE image of Cl-fluorcalciobritholite and apatite in 10044,12 in a late-stage				

- 499 (Tr). Locations of analyses 1 and 2 are shown for (b). Scale bar is $10 \mu m$; each tick is $1 \mu m$. (b)
- 500 EDS spectra of spot 1 (top) and 2 (bottom) locations shown in (a). The Si/P ratio changes from
- 501 the more apatite-rich portion (1) and Cl-fluorcalciobritholite region (2).
- 502
- 503
- 504
- 505
- 506
- 507
- 508 509

Revision 1

Weight % oxide

Distance (µm)

521522523 Fig. 3a.

524 525 526 **Fig. 3b.**

Distance (µm)

528529 Fig. 3c.

Revision 1

533

Revision 1

552

551

- 553 Figure 6a.
- 554

556 **Figure 6b.**

Table 1: Table of elemental weight percent of elements in the Cl-fluorcalciobritholite of
75055,50 shown in Fig.1, as measured with the Yale FEG-electron microprobe. These three
analyses are near 80 μm in Fig. 3. Several elements that were analyzed, but below detection

- 561 limit, for these measurements were: K, Mn, Er, Yb, Al, Na and Mg.
- 562

Point#	112	113	114	Avg.
SiO ₂	15	14.7	16.2	15.3
Y_2O_3	4.2	4.1	4.1	4.13
La_2O_3	9	8.3	8.3	8.53
Ce_2O_3	19	19	19	19
Pr ₂ O ₃	2.1	2	1.8	1.97
Nd_2O_3	4.3	4.7	4.5	4.5
Sm_2O_3	0.9	0.9	0.8	0.87
Gd_2O_3	2.7	2.6	2.6	2.63
Dy_2O_3	0.7	0.8	0.7	0.73
CaO	22.4	23.8	22.5	22.9
FeO	3.6	3.1	3.7	3.47
SrO	0.3	0.3	0.3	0.3
P_2O_5	11	13	13	12.33
SO_3	1.3	0.07	0.48	0.62
Cl	1.4	1.4	1.4	1.4
F	1.67	1.73	1.68	1.69
- O = F, Cl	1.02	1.04	1.02	1.03
Total	98.55	99.46	100.04	99.35