1 Revision 2

2 The role of clay minerals in forming the regolith-hosted heavy rare

3 earth element deposits

- 4 Martin Yan Hei Li, Mei-Fu Zhou*
- 5 Department of Earth Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong
- 6

7

- 8
- 9
- 10
- 11
- 12
- 13
- 14 -----
- 15 *Corresponding author:
- 16 Mei-Fu Zhou
- 17 Email: mfzhou@hku.hk
- 18 Tel: (+852)28578251
- 19 Fax: (+852)25176912

20 Abstracts

21	Rare earth elements (REEs) have become increasingly important to our modern society
22	due to their strategical significance and numerous high-technological applications. Regolith-
23	hosted HREE deposits in South China are currently the main source of the heavy REEs (HREEs)
24	but the ore-forming processes are poorly understood. In these deposits, the REEs are postulated
25	to accumulate in regolith through adsorption on clay minerals. In the Zudong deposit, the
26	world's largest regolith-hosted HREE deposit, clay minerals are dominated by short, stubby,
27	nm-scale halloysite tubes (either of 10Å or 7Å) and microcrystalline kaolinite in the saprolite
28	and lower pedolith and μ m-sized vermicular kaolinite in the humic layer and upper pedolith.
29	A critical transformation of the clay minerals in the upper pedolith is coalescence and unrolling
30	of halloysite to form vermicular kaolinite. Microcrystalline kaolinite also transformed to large,
31	well-crystalline vermicular kaolinite. This transformation could result in significant changes in
32	different physicochemical properties of the clay assemblages. Halloysite-abundant clay
33	assemblages in the deep regolith have specific surface area and porosity significantly higher
34	than the kaolinite-dominant clay assemblages in the shallow soils. Crystallinity of clay minerals
35	also increased, exemplified by decrease in Fe contents of the kaolinite group minerals (from
36	\sim 1.2 wt. % in the lower saprolite to \sim 0.35 wt. % in the upper pedolith), thereby indicative of
37	less availability of various types of adsorption sites. Hence, halloysite-abundant clay minerals
38	of high adsorption capacity in deep regolith could efficiently retain the REEs released from
39	weathering of the parent granite. Reduction in adsorption capacity during the clay

40	transformation in shallow depth partially leads to REE desorption, and the released REEs
41	would be subsequently transported to and adsorbed at deeper part of the soil profile. Hence,
42	the clay-adsorbed REE concentration in the lower pedolith and saprolite (~2,500 ppm on
43	average) is much higher than the uppermost soils (~400 ppm on average). Therefore,
44	weathering environments that favor the release of the REEs in the shallow soils but
45	preservation of halloysite in the deep regolith can continuously adsorb REEs in the clay
46	minerals to form economically valuable deposits.
47	

- 48 Key words: Rare earth elements (REEs), REE adsorption, halloysite, kaolinite, regolith-hosted
- 49 REE deposits, weathering

50

68

Introduction

In facing a continuously growing demand of the rare earth elements (REEs) for various 51 52 high-technological applications in our modern society, REE resources have become a popular exploration target in the world, especially for the more scarce but important heavy REEs 53 54 (HREEs). Currently, regolith-hosted HREE deposits are the dominant source of the global 55 HREE production (Simandl, 2014). These deposits are characterized by low grades (0.05 - 0.2 wt.% rare earth oxide; REO) and individually small tonnages (<10 kt REO resources), except 56 the super-large Zudong deposit (Li et al., 2017; Xie et al., 2016). They formed through 57 58 mobilization, circulation and accumulation of the REEs in regolith, mostly developed from 59 granites and associated volcanic rocks (Li et al., 2017; Sanematsu and Watanabe, 2016). Such deposits occur mostly in South China and other sub-tropical and tropical localities, including 60 61 the Southeast Asia, Madagascar, Malawi, and Brazil (Berger et al., 2014; Li et al., 2017; 62 Sanematsu and Watanabe, 2016). Accumulation of the REEs in these deposits is postulated to 63 the REE adsorption on various clay minerals as weakly bound outer sphere complexes 64 (Yamaguchi et al., 2018). This explains the feasibility of low-cost extraction through chemical 65 leaching by dilute electrolyte solutions (Moldoveanu and Papangelakis, 2016). Albeit the importance of clay minerals in accumulating the REEs, most previous studies 66 67 dealt with bulk mineralogy and geochemistry of these deposits (e.g. Bao and Zhao, 2008;

69 et al., 1990). Some recent studies have considered and examined size fractionation of the REEs

Berger et al., 2014; Padrones et al., 2017; Sanematsu et al., 2015; Sanematsu et al., 2013; Wu

70 (Cheshire, 2011; Cheshire et al., 2018; Elliott et al., 2018), nonetheless, detailed investigations 71 on the clay-sized particles are still lacking. It has been demonstrated that the REEs concentrate 72 in the lower pedolith (B horizon) and upper saprolite (C horizon). The interface between the 73 pedolith and saprolite could be considered as a significant weathering front. Here, consumption of the saprolitic materials to form the pedolith usually leaves behind only residual phases, 74 75 including refractory REE-bearing minerals, causing an apparent REE accumulation. More 76 importantly, a large amount of the REEs accumulates very likely due to adsorption on the clay minerals. In these deposits, kaolinite and halloysite are frequently observed, whereas 77 78 occurrence of smectite and illite are usually rare and confined only to the lower part of soil profiles (Li et al., 2019; Wu et al., 1990). However, the role of clay minerals is still poorly 79 80 understood and little is known about the relationship between species, modes of occurrence, 81 and abundance of clay minerals and REE adsorption. Here, we choose the world's largest 82 Zudong regolith-hosted HREE deposit, and focus on the variation and transformation of clay 83 minerals in progressive weathering and the associated changes in various physicochemical 84 properties. Thereby, we explore the role of clay minerals in mobilizing and accumulating REEs 85 in regolith to constrain the origin of regolith-hosted HREE deposits.

- 86
- 87

Site description

88 The Zudong deposit in southern Jiangxi province (Fig. 1) is HREE-dominant with a 89 current total resource of 17,622 t (pre-mining estimate of 131,000 t at 0.048 wt. % REO) of

90	REO with an average grade of ~0.1 wt. % REO (Li et al., 2019; Xie et al., 2016). Regionally,
91	the Zudong deposit is located on a moderately undulating landform, with elevation varying
92	from ~250 to 500 m above sea level and slope gradients from 10° to 15° (Liu et al., 2016), and
93	subjected to a subtropical monsoon climate with annual rainfall of 1,200 - 1,900 mm (Huang
94	<u>et al., 2013</u>).
95	Thicknesses of soil profiles in the deposit range generally from a few meters to 30 m
96	from field observation. A clear soil zonation can be observed, and includes from top to bottom
97	a surficial humic layer (A horizon, 0 - 1 m thick), a pedolith (B horizon, 1 - 10 m thick), and a
98	saprolite zone (C horizon, 3 - 20 m thick) (Fig. 2a). The humic layer is generally dark brownish
99	in appearance with a high total organic carbon (TOC) content. Whereas the pedolith is orangish
100	brown in appearance, attributed to the accumulation of Fe oxyhydroxides (Fig. 2b - c). The soil
101	order could be classified as Ultisol. This zone also contains abundant rounded residual grains
102	of quartz but primary feldspar and muscovite are rare. In the saprolite, relict granitic texture is
103	still largely preserved and exhibits a whitish to pinkish white appearance due to the growth of
104	various clay minerals (Fig. 2d - f). The HREE orebodies, varying from a few meters to up to
105	10 m thick, exclusively occur in the lower pedolith to upper saprolite (Fig. 2a) (Li et al., 2019).
106	Previous studies have recognized the dominant clay species of kaolinite and halloysite in the
107	soil profiles, with a sub-ordinate amount of illite and smectite in the lower saprolite (Li et al.,
108	2019; Wu et al., 1990). Quantitatively, there are about 10 - 15% kaolinite group minerals in the
109	saprolite and pedolith, but their contents abruptly reach more than 25% in the humic layer (Fig.

110	3) (Li et al., 2019). Fe-Mn oxyhydroxides and gibbsite are comparatively scarce, even in the
111	uppermost part of the soil profiles (Li et al., 2019; Wu et al., 1990). Supergene REE minerals,
112	including chernovite-(Y) and cerianite-(Ce), and residual REE minerals, such as zircon,
113	xenotime-(Y), and euxenite-(Y), also commonly appear in the soils. It is estimated that these
114	supergene and residual minerals host up to 30% of the total REE contents of the ores, while the
115	remaining \sim 70% is largely adsorbed on the clay minerals (<u>Li et al., 2019</u>). This deposit formed
116	from weathering of the late Jurassic A-type Zudong granite (zircon U-Pb age of 168 Ma; Zhao
117	et al. (2014)). The major rock-forming minerals include quartz, albite, orthoclase, and
118	muscovite (Fig. 2g). REE concentrations of the parent granite vary from ~200 to 400 ppm with
119	various REE-bearing accessory phases, including synchysite-(Y), gadolinite-(Y), hingganite-
120	(Y), yttrialite-(Y), Y-rich fluorite, xenotime-(Y), euxenite-(Y), fergusonite-(Y), zircon, and
121	thorite. Preferential weathering of some of these minerals, notably synchysite-(Y), gadolinite-
122	(Y), hingganite-(Y), and yttrialite-(Y), supplies most of the REEs to be accumulated in the
123	regolith through continuous circulation. In term of geochemistry, Li et al. (2019) has
124	demonstrated that the soil pH gradually increases from 4.74 in the uppermost humic layer and
125	upper pedolith to \sim 5.5 in the lower pedolith and upper saprolite, and further to \sim 6 in the lower
126	saprolite (Table 1). Whereas the REE concentration increases from ~400 ppm in the uppermost
127	humic layer and upper pedolith to more than 1,000 ppm in the ore bodies. Similar trend could
128	be observed for the extractable REE concentrations. The extractable REE concentration
129	increases from ~ 200 ppm on average in the humic layer and upper pedolith, being $\sim 45\%$ of the

130	bulk content, to 600 - 700 ppm in the orebody at the lower pedolith and upper saprolite, sharing
131	60 - 65% of the bulk content (Table 1; Fig. 3). The proportions of the REEs sorbed to Fe-Mn
132	oxyhydroxides are minimal at the Zudong deposit, sharing only ~2% of the total REE contents
133	(Table 1; Fig. 3). The proportions bound to organic substances are negligible (Table 1; Fig. 3).
134	
135	Sampling and analytical methods
136	Sampling and sample preparation
137	Representative samples from different soil horizons of the Zudong deposit were
138	collected at a depth of at least 50 cm deep below the exposed surfaces to avoid anthropogenic
139	effects. Detailed description of the ore deposit and investigation of bulk geochemistry are
140	available in Li et al. (2019). As clay minerals in the studied site could be much larger than 2
141	μ m in size (see results below), particles with size <20 μ m were targeted and extracted and
142	further divided into <2 and 2 - 20 μ m fractions. To extract the different clay fractions, samples
143	were first suspended in DI water by vigorous shaking and ultrasonic bathed for ~15 mins. Both
144	<2 and <20 µm fraction was collected through sedimentation after required times according to
145	the Stoke's law have lapsed.

146

147 **Particle size distribution**

148	Particle size distribution was analyzed with a LS I3 320 Laser Diffraction Particle Size
149	Analyzer (PSA) at the Department of Earth Sciences, the University of Hong Kong (HKU).
150	The detection range is 0.2 - 2,000 μ m and the error for repeated measurement is <1%.
151	
152	Scanning electron microscopy (SEM)
153	Micro- to nano-scale observations were carried out with a Hitachi S-4800 FEG
154	scanning electron microscope (SEM) at the Electron Microscope Unit (EMU), HKU. Operating
155	voltage is 15 kV and samples were coated with carbon before observation. The SEM used is
156	equipped with an Oxford energy-dispersive spectrometer (EDS) for quick semi-quantitative
157	elemental analysis of the clay minerals.
158	
159	High-resolution transmission electron microscopy (HRTEM)
160	High-resolution transmission electron microscopic (HRTEM) images were obtained
161	with the Tecnai G2 20 S-TWIN scanning transmission electron microscope at the EMU, HKU
162	operating at an accelerating voltage of 200 kV. Specimens were first dispersed in ethanol and
163	a drop of the suspension was transferred onto a porous carbon film supported by a copper grid.
164	Observations were undertaken after the ethanol had evaporated. Fast Fourier Transform (FFT)
165	processing is applied to obtain the d-spacings of lattice.
166	

167 X-ray diffraction (XRD)

168	XRD patterns were collected from 3° to 30° (2 θ) for oriented and ethylene glycol-
169	solvated samples, and 3° to 15° (2 θ) for 550°C heated, and K-acetate-and ethylene glycol-
170	solvated samples at a scanning rate of 1° (2 θ) min ⁻¹ on a Rigaku D/max diffractometer with
171	Ni-filtered CuK α radiation ($\lambda = 0.154$ nm, 40 kV and 100 mA). Oriented samples were prepared
172	by carefully pipetting the clay suspension onto a glass slide and allowing it to dry at ambient
173	temperature. Ethylene glycol-solvated samples were then prepared by treating the oriented
174	samples in a glass desiccator and solvated with ethylene glycol vapor at 30°C for 24 h, and
175	subsequently heated at 550°C for more than 2.5 h to prepare the heated samples. To further
176	decipher kaolinite and halloysite, K-acetate treatment (Wada, 1961) with additional solvation
177	of ethylene glycol (Miller and Keller, 1963) was adopted. Samples were first soaked in K-
178	acetate and then washed with ethylene glycol. Halloysite has basal spacing in the range of 10 -
179	11Å, whereas kaolinite retains its original basal spacing of ~7Å after the treatment. The
180	corresponding relative proportions could be determined by computing the $I_{10}/(I_7 + I_{10})$ ratio
181	from the XRD spectra, in which I_7 and I_{10} denote the intensity peaks near 7 and 10Å,
182	respectively. The crystallinity of the kaolinite group minerals is evaluated by the Hinckley
183	Index after <u>Hinckley (1962)</u> . The indices are calculated by dividing the sum of the heights of
184	the $1\overline{10}$ and the $11\overline{11}$ peaks above a line drawn from the trough between the 020-1 $\overline{10}$ peaks to
185	the background immediately beyond the $11\overline{1}$ peak, by the height of $1\overline{10}$ peak from the general
186	background. XRD patterns were analyzed using the JADE 6.5 software.

187

188	Fourier transform infrared spectroscopy (FT-IR)
189	The FT-IR spectra were obtained on a Nicolet iS10 FT-IR spectrometer by using the
190	KBr pressed disk technique. The pressed disks were prepared by mixing samples and KBr at a
191	ratio of approximate 1:100, and ground in an agate mortar for homogenization. The mixture
192	was then heated under a lamp for 3 min to minimize water adsorption. The spectra were
193	collected over the range of 4000 - 400 cm ^{-1} with 64 scans and a resolution of 4 cm ^{-1} .
194	
195	Specific surface area (SSA), porosity and pore size distribution analysis
196	Specific surface area (SSA) of representative samples were obtained via the nitrogen
197	adsorption (the BET method) using a Beckman Coulter SA3100 analyzer. All samples were
198	outgassed for 6 - 12 h and heated to a maximum temperature of 50°C to remove surface
199	moisture before the analysis. Porosity and pore size distribution of these samples was further
200	evaluated through the Barrett-Joyner-Halenda (BJH) method (Barrett et al., 1951).
201	
202	Cation Exchange Capability (CEC) characterization
203	Cation Exchange Capability (CEC) characterization for the ${<}2~\mu m$ and 2 - 20 fractions
204	was carried out following <u>Deng et al. (2014)</u> . Samples were first treated with dilute acetic acid
205	to remove any possible carbonates and then washed by 0.5 M and 0.005 M CaCl ₂ for 3 times
206	each to completely saturate the cation exchangeable sites and determine the volume of
207	interstitial solution. Ca-saturated samples were then washed with 0.5 M MgCl ₂ for 4 times.

- Supernatant solutions were collected after centrifugation and the Ca contents were analyzed
 with a PE Optima 8300 inductively coupled plasma-optical emission spectrometer (ICP-OES)
 at HKU.
- . . .

212

Electron-probe micro-analysis (EPMA)

The major element contents of the kaolinite group minerals in soils and primary muscovite and feldspars were analyzed using a JEOL JXA-8230 electron microprobe at the Department of Earth Sciences, HKU. The analyses were performed using a 15 kV accelerating voltage and a 20 nA beam current. The beam spot diameter was varied from 1 to 5 μ m to eliminate sample damage. The K α line was chosen for all analyzed elements. Analytical conditions and applied standards are listed in Supplementary Table 1. All data were corrected using the standard ZAF correction procedures.

220

221 Clay-adsorbed REE concentration

Extraction experiment was conducted to quantify for the variations in adsorbed REE concentrations of the clay fractions from different soil horizons. The adsorbed REE portion here is operationally defined as easily extractable fraction by dilute electrolyte solutions. All centrifuge tubes and containers used were soaked in 1 M HNO₃ for over 24 h and rinsed repeatedly with Milli-Q double de-ionized water ($\Omega = 18.2M$) before use. Ten ml of 0.5 M ammonium sulfate was added to 50 mg of clay separates and mechanically shaken for 16 hours

228	at room temperature to extract the REEs. The extracted solutions were collected by centrifuging
229	at 10,000 rpm for 30 min and filtration using a cellulose acetate-type membrane filter (ϕ =
230	0.22µm). Residues after extraction were dried overnight at 40°C and completely digested in a
231	concentrated mixture of HF-HCl-HNO3 at a temperature of ~180°C. Acidified and diluted
232	solutions were analyzed with an Agilent 7900 inductively coupled plasma-mass spectrometer
233	(ICP-MS) at HKU. Both the accuracy and precision are at <10% for all analyzed elements.
234	
235	Results
236	Particle size distribution
237	Results of particle size distribution for 26 samples are divided into ranges of <2 , 2 - 20,
238	20 - 50, and >50 μ m fractions. Average results of each range are summarized in Table 1 and
239	Figure 3. Generally, proportion of fine particles becomes progressively more abundant from
240	the lower part to upper part of the soil profile. In the lower saprolite, about half of the soil
241	particles (~40%) are larger than 50 $\mu m.$ Whereas there are about 8 and 30% for the <2 and 2 -
242	20 μm fractions respectively, slightly lower than those in the upper saprolite (9 and 38%
243	respectively). These two fractions comprise 12 and 48%, respectively, of the lower pedolith
244	and the highest as 23 and 58%, respectively, of the humic layer and upper pedolith. In contrast,
245	the proportion of particles with sizes of >50 μ m dramatically drops to 28% in the upper
246	saprolite, then further to 15 and 5% in the lower and upper pedolith, respectively.
247	

248 SEM and HRTEM observation

249 From SEM and HRTEM observation, morphology and association of clay minerals are 250 directly observed. Halloysite is the major clay species in the saprolite, and is grouped into two 251 types on the basis of appearance. The first type is very short, stubby, narrow, and tubular 252 halloysite. The length varies from <100 to 500 nm. The short halloysite tubes occur as 253 aggregates on surface and in etch pits of weathered feldspar grains (Fig. 4a). These halloysite tubes are also commonly found along edges and cleavages of muscovite flakes (Fig. 4b & c), 254 255 either as aggregates or as individual tubes. The second type of halloysite is long tubular. These 256 halloysite tubes range from 1 to 5 µm in length and occur as aggregates on the surface of 257 weathered feldspar grains (Fig. 4d) through coalescence of short halloysite tubes (Fig. 4e). 258 Occasionally, the long halloysite tubes occur on the surface of weathered muscovite grains (Fig. 259 4f). Under HRTEM, d spacing of both 10Å (Fig. 4g) and 7Å (Fig. 4h) could be observed for the halloysite tubes with open-ended cylindrical lumen pores of 10 - 20 nm across (Fig. 5). 260 261 However, the possibility of rapid dehydration of halloysite-10Å to the 7Å-species during 262 analysis cannot be ruled out. It is notable that the short halloysite tubes are closely associated 263 with muscovite (Fig. 5). Both close tubes with clear lumen pores (Fig. 5a, b & e) and semiopen tubes (Fig. 5c - e) are abundant on the edges of the muscovite sheets. The semi-open tubes 264 265 may represent an interim stage of formation through rolling-up of the muscovite sheet. In 266 addition, the edges of the muscovite sheets are apparently thicker than the interior under TEM 267 imaging (Fig.5f), probably indicating thickening of sheets at margins due to rolling-up along

268	edges. Apart from halloysite, sub-ordinate amounts of kaolinite and illite also occur in the
269	saprolite. Kaolinite appears as irregular microcrystalline flakes, a few μ m across, growing
270	topotaxially on the surface, and occasionally along the edges of weathered muscovite grains
271	(Fig. 6a & b). Illite grains are mostly of 1 - 5 µm across with irregular shapes and undulating
272	surfaces. Illite mainly occurs as aggregates on the surface of the weathered feldspar grains (Fig.
273	6c). Residual muscovite grains are common and occur as stacks with sheets of different sizes
274	and shapes (Fig. 6d).

In the humic layer and upper pedolith, platy kaolinite crystals become progressively 275 276 more abundant and larger in size, of up to 10 µm across. Apparently, these kaolinite "booklets" were formed through the coalescence of halloysite, either on the basal surfaces of the kaolinite 277 booklet (Fig. 7a - e) or along the edge (Fig. 7f). Continuous growth of kaolinite ultimately 278 forms large, euhedral, vermicular kaolinite booklets (Fig. 7g) with a d spacing of ~7.2Å and 279 280 unit cells of ~ 5.0 Å along the *a* axis (Fig. 8a). These kaolinite booklets are commonly observed 281 in the shallow soils, whereas euhedral long halloysite tubes of $>1 \mu m$ long are occasionally 282 associated with kaolinite (Fig. 7h, 8b - d). In addition, halloysite, with a d-spacing of ~8.0Å, has been observed under HR-TEM (Fig. 8c), suggesting a progressive dehydration of 283 halloysite-10Å to the 7Å type (Fig. 8d). 284

285

286 Modal proportion of clay minerals from XRD spectra

287	From the XRD spectra, different clay minerals have been identified and their relative
288	proportions were calculated based on the corresponding peak intensities and heights (Table 2).
289	The entire results are provided in Supplementary Table 2.
290	In the saprolite and lower pedolith, the $<2 \ \mu m$ clay fraction has a higher abundance of
291	kaolinite of 55 - 70% and of \sim 25 - 35% halloysite. Muscovite/illite contents are comparatively
292	low, ranging from 2 to 9% in the lower pedolith and upper saprolite (Table 2; Fig. 3 & 9). There
293	are trace amounts of other clay minerals, including smectite, interstratified muscovite-
294	illite/smectite, vermiculite, and interstratified muscovite-illite/vermiculite. The 2 - 20 μm
295	fraction generally has higher abundance in muscovite/illite (up to 19%), but similar abundances
296	in kaolinite (47 - 73%) and halloysite (21 - 44%) to the <2 μm fraction. In the uppermost humic
297	layer and upper pedolith, the proportion of kaolinite further increases to 60 - 70% but that of
298	halloysite significantly drops to <10% (Table 2; Fig. 3 & 9). Interstratified muscovite-
299	illite/vermiculite becomes much more abundant, sharing ~15 - 20% (Table 2). Contents of
300	muscovite/illite and vermiculite are also slightly higher and range from ~6 to 10% (Table 2).
301	It is noticed that the 2 - 20 μ m fraction has a slightly higher abundance in muscovite/illite and
302	interstratified muscovite-illite/vermiculite, but slightly lower abundance in vermiculite than the
303	$<2 \ \mu m$ fraction. To summarize, contents of halloysite gradually decrease with progressive
304	weathering with a dramatic drop from the lower to upper pedolith, whereas contents of kaolinite
305	increase significantly from the lower to upper saprolite and remain consistent in the pedolith
306	(Fig. 3). Crystallinity of kaolinite in the <2 μ m fraction gradually rises with progressive

307	weathering, as indicated by increases in the Hinckley Index from 0.14 in the lower saprolite to
308	0.50 in the upper saprolite and further to 0.76 and 0.98 in the lower and upper pedolith
309	respectively (Table 2). Generally, kaolinite from the 2 - 20 μ m fraction has a higher crystallinity
310	than the $<2 \mu m$ fraction from the same soil horizon with a maximum of 1.83 in the shallowest
311	humic layer and upper pedolith (Table 2).
312	
313	FT-IR spectra
314	Twelve samples were analyzed by FT-IR and representative spectra are shown in Figure
315	10. Generally, spectra obtained from the <2 and 2 - 20 μ m fractions are extraordinarily similar
316	suggesting similar clay assemblages in both fractions. Halloysite could be differentiated from
317	kaolinite in FT-IR spectra by exhibiting only two Al2OH-stretching bands at approximately
318	3695 and 3620 cm ⁻¹ and a sharp single Al ₂ OH-bending band at ~920 cm ⁻¹ without shoulders.
319	Whereas well-developed Al ₂ OH-stretching bands at ~3695, 3670, 3650, and 3620 cm ⁻¹ and a
320	broad shoulder at ~940 cm ⁻¹ associated with the Al ₂ OH-bending band could be observed for
321	well-crystallized kaolinite. Hence, clay minerals are dominated by halloysite in the lower
322	saprolite. A broad stretching band for the Si-O bond developed at ~1040 cm ⁻¹ with a poorly
323	developed shoulder at ~ 1100 cm ⁻¹ further implies low crystallinity. The proportion of kaolinite
324	progressively increases in the upper saprolite and lower pedolith, as evident by the appearance
325	of weak Al ₂ OH-stretching bands at ~3670 and 3650 cm ⁻¹ and a narrow shoulder at ~940 cm ⁻¹ .
326	Moreover, the kaolinite-group minerals become more crystalline as indicated by sharper SiO-

327	stretching bands at ~1010 and 1035 cm ⁻¹ and more developed SiO-stretching band at 1100 cm ⁻¹
328	¹ . In the humic layer and upper pedolith, appearance of four sharp Al ₂ OH-stretching bands and
329	a broad shoulder of the Al ₂ OH-bending band shows the dominance of crystalline kaolinite.
330	High crystallinity of the clay minerals can also be interpreted by the well-developed SiO-
331	stretching bands at ~1010 and 1035 cm ⁻¹ in the spectra.
332	
333	Specific surface area, pore volume and pore size distribution
334	The specific surface area of 11 samples from different soil horizons were measured
335	using the BET method (S _{BET}), and the BJH method for their pore volume and pore size
336	distribution. The averaged results for each fraction are listed in Table 3. The entire results could
337	be obtained in Supplementary Table 3. In the saprolite and lower pedolith, S_{BET} of the <2 and
338	2- 20 μm fractions vary from ~15 to 20 m^2/g and ~12 to 17 $m^2/g,$ respectively. In the humic
339	layer to upper pedolith, S_{BET} of both the ${<}2$ and 2 -20 μm fractions are comparatively much
340	lower at ~8 and ~10 m ² /g, respectively (Fig. 3). From the adsorption and desorption isotherms
341	shown in Figure 11a, only very little hysteresis is shown for all samples, and moreover,
342	generally low values for the differences between the cumulative SSA from either the adsorption
343	(S_{ads}) or desorption (S_{des}) isotherms and the S_{BET} (Table 3). This suggests that the dominant
344	pore shape in all samples is cylindrical (Churchman et al., 1995; Pasbakhsh et al., 2013).
345	For the pore size, both the average BJH adsorption and desorption cumulative pore
346	volumes of the <2 and 2 -20 μ m fractions are consistently of 0.10 - 0.12 and 0.06 - 0.07 cm ³ /g,

347	respectively, in the saprolite and lower pedolith, but decrease by half to 0.06 cm $^3/g$ for the <2
348	μ m fraction in the humic layer and upper pedolith (Table 3; Fig. 3). A bimodal distribution of
349	the pore size is observed for the clay minerals in all soil horizons (Fig. 11b). The clay minerals
350	from the saprolite and lower pedolith are dominated by fine micropores with a narrow
351	distribution of sizes of \sim 2 - 3 nm, which may be attributed to the internal and/ or surface pores
352	(Pasbakhsh et al., 2013). Mesopores with sizes of ~10 nm are sub-ordinately abundant (Fig.
353	10b) and contributed primarily from the central lumen pores of the halloysite tubes (Pasbakhsh
354	et al., 2013). In the humic layer and upper pedolith, the abundance of the micropore
355	dramatically decreases, whereas the ~ 10 nm mesopores rarely exist (Fig. 11b). Alternatively,
356	mesopores with a broad distribution of around 12 nm occur likely due to the abundance of
357	kaolinite (<u>Pasbakhsh et al., 2013</u>).
358	
359	Cation exchange capacity

Eleven samples from different soil horizons have been measured for the CEC and the averaged results are tabulated in Table 3. In general, CEC in different soil horizons vary slightly (Fig. 3). The CEC from both the <2 and 2 - 20 μ m clay fractions increases slightly from the lower saprolite to the upper saprolite and lower pedolith, from 13 to ~15 and from 11 to ~14 c mol/kg⁻¹ on average, respectively. The CEC of the <2 μ m fraction at the humic layer and upper pedolith fundamentally remains the same, yet, that of the 2 - 20 μ m fraction decreases to ~11 c mol/kg⁻¹ on average (Fig. 3). 367

368 Chemical composition of minerals

369	Unweathered grains of muscovite and feldspars from the parent rock and the kaolinite
370	group minerals from different soil horizons have been analyzed. Results are summarized in
371	Tables 4 and 5 and the full dataset is available in Supplementary Table 4 - 6. Fresh muscovite
372	has SiO ₂ , Al ₂ O ₃ , and K ₂ O contents of 45.3, 32.3, and 10.7 wt. % on average, respectively.
373	Notably, muscovite is Fe-rich and contains up to ~8.5 wt. % of FeO. Feldspar of the primary
374	granite is mainly of orthoclase and albite. Orthoclase has 63.1 wt. % SiO ₂ , 17.5 wt. % Al ₂ O ₃ ,
375	and 16.7 wt. % K ₂ O on average, whereas albite has 67.0 wt. % SiO ₂ , 18.9 wt. % Al ₂ O ₃ , and
376	11.7 wt. % Na ₂ O on average.
377	In the lower saprolite, the kaolinite group minerals have 44.9 wt. % SiO ₂ , 37.5 wt. %
378	Al_2O_3 , and 2.12 wt. % FeO on average, respectively. With progressive weathering, the SiO_2
379	and Al_2O_3 contents of the kaolinite group minerals subsequently increase to ~45 and 38 wt. %
380	respectively in the upper saprolite and pedolith. Average FeO contents gradually decrease to
381	0.55 - 1.57 wt. % in the lower pedolith and upper saprolite, and to 0.46 wt. % in the humic
382	layer and upper pedolith (Table 5). EPMA showed that Fe + Si is inversely proportional to Al
383	in the kaolinite group minerals (Fig. 12a). Further supported by the scarce observation of Fe-
384	rich particles associated with the kaolinite group minerals, coupled substitution between Fe +
385	Si and Al should have accounted for the Fe content (Jige et al., 2018). Moreover, Fe in the
386	kaolinite group minerals mainly occurs as the Fe ³⁺ for Al ³⁺ substitution, although minor Fe ²⁺

- 387 for Al³⁺ substitution takes place in some samples from the lower pedolith and saprolite (Fig.
- 388 12b).
- 389
- 390 Clay-adsorbed REE concentration

391	As the separation of the clay fractions were performed mechanically, it is inevitable
392	that sub-µm sized supergene REE minerals, such as chernovite-(Y) (Li et al., 2019), and
393	residual REE minerals were also extracted as well. In this regard, the extracted clay fractions
394	were treated with ammonium sulfate extraction instead of bulk analysis to estimate the REE
395	concentrations that are weakly bound to the clay minerals, likely through adsorption.
396	Nonetheless, the residues after extraction were analyzed for comparison. The results are
397	summarized in Table 6 and fully tabulated in Supplementary Table 7. The variation of clay-
398	adsorbed REE concentrations generally follows that of the bulk soils (Fig. 13). Clay fractions
399	from the lower pedolith and upper saprolite have the highest adsorbed REE concentrations, of
400	\sim 3,500 and 2,500 ppm respectively (Table 6). The concentrations are comparatively lower in
401	the lower saprolite (~1,000 ppm in average for both fractions). Notably, the clay-adsorbed
402	concentrations of the <2 and 2 - 20 μm fractions are largely comparable in the lower pedolith
403	and saprolite (Fig. 3). Whereas, the adsorbed REE concentrations of the 2 - 20 μ m fractions
404	are significantly lower than the corresponding $<2 \ \mu m$ fractions in the humic layer and upper
405	pedolith and only of ~70 ppm, comparing to >200 to ~1,200 ppm in the <2 μ m fractions (Table
406	6; Fig. 3). In general, the $(La/Yb)_N$ values of the clay fractions from all soil horizons are similar

407	(Table 6), with those from the humic layer and pedolith are slightly higher, indicating a slight
408	enrichment of the LREEs. In contrast, Ce anomaly varies significantly. Clay fractions from the
409	lower pedolith and saprolite exhibit significantly negative Ce anomalies of 0.02 to 0.08, yet,
410	Ce anomalies in the humic layer and upper pedolith have become less negative of 0.8 on
411	average for the <2 μm fractions, and even become positive of 1.7 on average for the 2 - 20 μm
412	fractions (Table 6; Fig. 13). In the lower pedolith and saprolite, REE concentrations of the
413	residues (including Fe-Mn oxyhydroxide-sorbed, organic substance-bound, and crystalline
414	phase-hosted REEs) after extraction are generally of one-third of the clay-adsorbed
415	concentrations (Table 6; Fig. 3). This proves that most of the REEs in the clay fractions occur
416	in weakly adsorbed state. However, in humic layer and upper pedolith, the REE concentrations
417	in the clay fractions could be of higher for the residual portion than the clay-adsorbed portion,
418	especially in the 2 – 20 μ m fraction (Table 6; Fig. 3). This illustrates a less important role in
419	adsorption on clay minerals in the shallow soils. The comparatively high As concentrations in
420	the residues of the clay fractions from the lower pedolith and saprolite implies that significant
421	amount of the residual REEs are likely hosted in supergene chernovite-(Y), in consistent with
422	previous observation (<u>Li et al., 2019</u>).
423	

424

Discussions

425 Transformation of clay minerals in progressive weathering

426	From the previous results, the following major mineralogical transformation pathways are
427	proposed to have occurred at the Zudong deposit with progressive weathering, causing the
428	variations in their abundance (Fig. 1a):
429	1. Muscovite \rightarrow Short, tubular halloysite-10Å \rightarrow Halloysite-7Å (either short or long and
430	tubular) \rightarrow Vermicular kaolinite
431	2. Muscovite \rightarrow Microcrystalline kaolinite \rightarrow Vermicular kaolinite
432	3. Muscovite \rightarrow Illite, Illite/Smectite & Illite/Vermiculite \rightarrow Vermiculite
433	(Subordinate importance and more restricted to the shallow soils)
434	4. Feldspar \rightarrow Halloysite (either short or long and tubular) \rightarrow Vermicular kaolinite
435	5. Feldspar \rightarrow Illite \rightarrow Kaolinite
436	In the lower saprolite, representing an incipient stage of weathering, weathering of
437	muscovite formed short halloysite tubes and subordinately, microcrystalline kaolinite in the
438	saprolite. From SEM and HRTEM observation, it is evident that muscovite gradually
439	transformed to halloysite through rolling-up of the edges (Fig. 5). As primary muscovite was
440	formed through metasomatism of biotite (Huang et al., 1989), the comparatively high
441	concentration of Fe inherited in the muscovite (Table 5) would probably induce higher lattice
442	strain and motivate the decomposition of muscovite. During weathering, it is postulated that
443	the interlayer K cation and a tetrahedral sheet of muscovite would be preferentially removed
444	while a T-O sheet remained. Under a water saturated environment, misfit between the
445	octahedral and tetrahedral sheets were compensated for by rolling and incorporation of

446	interlayer water molecules to form halloysite-10Å (Bailey, 1990; Singh, 1996). On the other
447	hand, aggregates of short halloysite tubes along edges of muscovite sheets (Fig. 4b) suggest an
448	alternative dissolution-precipitation mechanism for the growth of halloysite, during which
449	dissolution of muscovite led to local supersaturation of Si and Al in the soil solutions that
450	motivated the rapid precipitation of halloysite nano-tubes (Lu et al., 2016). Whereas
451	microcrystalline kaolinite mostly appears to form topotaxially on muscovite, especially along
452	cleavages (Aoudjit et al., 1996; Robertson and Eggleton, 1991; Singh and Gilkes, 1991).
453	Feldspar can be decomposed to form halloysite and illite during the incipient
454	weathering (Eswaran and Bin, 1978; Inoue et al., 2012; Jeong, 1998a; Papoulis et al., 2004).
455	Albite can decompose more rapidly than orthoclase during weathering (Banfield and Eggleton,
456	1990; Blum and Stillings, 1995; White et al., 2001). During dissolution of albite, Na and Ca
457	were lost to the soil solutions, whereas local oversaturation of Si and Al provoked the
458	simultaneous crystallization of halloysite-10Å under a water saturated condition (Banfield and
459	Eggleton, 1990; Velde, 1985). Such a rapid precipitation is demonstrated by meshes of short
460	halloysite tubes and in etch pits on the surface of the albite grains (Fig. 4a). Subsequently, these
461	halloysite nanotubes would coalescence and transform into more stable long halloysite tubes
462	(Fig. 4e). Weathering of orthoclase formed illite during incipient weathering (Fig. 6c) due to
463	local equilibria at grain contacts between orthoclase and muscovite, providing sufficient K
464	during mineral decomposition to precipitate illite (Meunier and Velde, 1976). Rapid formation
465	of halloysite and microcrystalline kaolinite of low crystallinity prevailed during incipient

466	weathering. With progressive weathering, the short, stubby halloysite coalesced to form long,
467	tubular halloysite and kaolinite in the lower pedolith and upper saprolite.
468	In the upper pedolith, which represents a more advanced stage of weathering, soils
469	would be subjected to repeated wetting and drying episodes, causing irreversible dehydration
470	of metastable halloysite-10Å to halloysite-7Å and further transformation to kaolinite
471	(Churchman and Carr, 1975; Inoue et al., 2012; Jeong, 1998a; Jeong, 1998b; Papoulis et al.,
472	2004; Singer et al., 2004; Wouatong et al., 1996). The dehydration process is exemplified by
473	the occurrence of halloysite with a d spacing of ~8.0Å (Fig. 8c), which indicates dehydration
474	and shrinking of halloysite-10Å (Churchman et al., 1972; Giese, 1988). Also, crystalline,
475	vermicular kaolinite became progressively dominant towards shallow soils (Table 3; Fig. 7).
476	Evidently, these kaolinite "booklets" have grown through continuous coalescence of halloysite
477	along edges (Fig. 7a - e) and at basal sites (Fig. 7f) of kaolinite grains. During this
478	transformation, kaolinite grains of sizes up to 10 μ m could have high crystallinity, as shown in
479	the FT-IR spectra (Fig. 10), and comparatively low Fe contents (<0.5 wt. % in average) (Table
480	5). Here, we postulate the halloysite-kaolinite transformation can be achieved through a solid-
481	state alteration after prolonged dehydration (Churchman and Gilkes, 1989). Unrolling of the
482	halloysite tubes can be possible after prolonged dehydration (Wouatong et al., 1996), as
483	removal of the interlayer water molecules could make tetrahedral rotation feasible to
484	accommodate the misfit between the octahedral and tetrahedral sheets in platy kaolinite (Bailey,
485	1990; Radoslovich, 1963; Singh, 1996). Alternatively, long-tubed halloysite (Fig. 7h & 8b) and

486	crystalline kaolinite could have also grown epitaxially to form aggregates, precipitated from
487	the soil solutions (Banfield and Eggleton, 1990; Singh and Gilkes, 1991). Restricted occurrence
488	of interstratified muscovite-illite/vermiculite and vermiculite in this part (Table 2; Fig. 9)
489	suggests an alternative transformation pathway in more oxidizing shallow soils.
490	
491	Physicochemical variation of clay minerals in progressive weathering
492	Transformation of clay minerals in progressive weathering could cause significant
493	changes in physicochemical properties of the clay assemblages, such as the SSA and the CEC
494	(e.g. <u>Bobos et al., 2001; Papoulis et al., 2004</u>). In the saprolite and lower pedolith, the kaolinite
495	group minerals have comparatively high CEC and SSA (Table 3; Fig. 3). High abundance of
496	short, stubby halloysite and microcrystalline kaolinite with high CEC could have strong edge
497	and surface effects for adsorption (Hart et al., 2002; Ma and Eggleton, 1999; Singh and Gilkes,
498	<u>1992</u>). Likewise, low crystallinity, as indicated by the Hinckley Index (Table 2) and high Fe
499	contents (Table 5), also contributes to the high CEC (Hart et al., 2003; Wilson et al., 2013).
500	Substitution of Fe for Al in clay minerals can cause permanent negative charge either through
501	substitution of Fe ²⁺ for Al ³⁺ in the octahedral sheet (Singh and Gilkes, 1992; Tazaki, 1981) or
502	non-stoichiometric Fe^{3+} for Al^{3+} substitution (<u>Soma et al., 1992</u>). In the soil profile, Fe^{3+} for
503	Al ³⁺ substitution dominates, yet Fe ²⁺ for Al ³⁺ substitution also occurs especially in the lower
504	saprolite (Fig. 12). Moreover, a large contribution to the CEC also comes from pH-dependent
505	defect sites, such as broken bonds at edge and on basal surfaces, due to lattice deformation and

506 dislocation, mainly attributed to the Fe for Al substitution and the poor crystalline nature. Clay 507 minerals in these layers are also of high SSA and large pore volume compared to the shallow 508 soils (Table 3; Fig. 11). Specifically, the high SSA could be due to the abundant nano-sized 509 tubular halloysite and fine-grained poorly crystallized kaolinite (Wilson et al., 2013). Both the central lumen and the fine internal and/ or surface pores of the tubular halloysite contribute to 510 511 the large pore volumes, especially the fine pores as revealed by the non-hysteretic feature in 512 the nitrogen adsorption and desorption isotherms (Fig. 11a) (Churchman et al., 1995). Small aggregates of kaolinite, which frequently occur in these soil layers (Fig. 6a and b), also have 513 514 significantly higher porosity than large aggregates (Jozefaciuk, 2009). 515 In the shallow upper pedolith, transformation of tubular halloysite and microcrystalline 516 kaolinite to large, euhedral, vermicular kaolinite is associated with dramatic drops in the SSA 517 and porosity of the clay minerals (Table 3; Fig. 3). During the transformation, the growth in 518 crystalline kaolinite, as indicated by the increase of the Hinckley Index (Table 2) and associated 519 with a decrease in the Fe content (Table 5), significantly eliminated the amount of both permanently and variably charged sites. Moreover, growth in size also causes a drop in the 520 CEC (Joussein et al., 2005). Although the CEC of the clay assemblages only varies slightly 521 522 from the lower to the upper pedolith (Table 3), this is attributed to the abundance of 523 interstratified muscovite-illite/vermiculite and vermiculite in the humic layer and upper 524 pedolith (Table 2). 2:1 layer clay minerals, such as illite and vermiculite, would generally have a large CEC due to the permanent negative charge in their structures (Joussein et al., 2005; 525

526	Wilson et al., 2013). Compared to the CEC, the SSA and porosity of the clay minerals
527	dramatically drops (Table 3; Fig. 3 & 11). This is mainly because of the conversion of halloysite
528	to kaolinite. During this transformation, it is postulated that tubular halloysite unrolled to form
529	platy kaolinite (Wouatong et al., 1996), resulting in a significant reduction in surface area and
530	subsequent reduction in the amount of lumen pores. Coalescence of microcrystalline kaolinite
531	to form large aggregates of vermicular kaolinite have also caused a decrease in the SSA and in
532	the porosity (Jozefaciuk, 2009).
533	
534	Relation between clay minerals and HREE accumulation
535	The physicochemical variations of the clay minerals, due to progressive weathering,
536	highlight the contrasting adsorption capacities of the clay minerals from different soil horizons
537	and explain the trends in mineralogy and geochemistry of the deposit. In a previous study (Li
538	et al., 2019), bulk REE contents in the soils are documented to increase with depth from the
539	humic layer and upper pedolith and to reach their maximum in the lower pedolith and upper
540	saprolite (Table 1; Fig. 13b). The proportion of extractable REEs also follows a similar trend,
541	increasing from ~45% in the shallow soils to 60 - 65% in the ore-bearing lower pedolith and
542	upper saprolite (Table 1; Fig. 13b) (Li et al., 2019). The same trend has been observed for the
543	clay fractions (Fig. 3 & 13a). The extraction experiment of the clay fractions performed in this
544	study have further proved that the fine-grained portions control the REE enrichment in these

545 deposits (<u>Wu et al., 1990</u>). Variations for both bulk and clay-adsorbed REE concentrations are

27

546	due to the much higher adsorption capacity of the clay minerals in the lower part than the upper
547	part of the soil profile. High CEC, large SSA, and high porosity of the small, poorly crystalline
548	halloysite and kaolinite in the lower part of soil profile are critical to facilitate REE adsorption.
549	In addition, it is likely that halloysite contributes more greatly to the REE adsorption and
550	enrichment (Fig. 14). The proportion of halloysite in the clay fractions are positively correlated
551	with both the adsorbed HREEs (Fig. 14a) and LREEs (Fig. 14b) concentrations, especially for
552	the saprolite, although it is probable that kaolinite also plays an important role in adsorbing the
553	REEs in the lower pedolith. Whereas, no obvious correlation between the proportion of
554	kaolinite and either HREEs (Fig. 14c) or LREEs (Fig. 14d) is exhibited. Although the mode of
555	REE adsorption is still not well understood, it is possible that the HREEs could be adsorbed in
556	the interlayer position of halloysite. Abundant halloysite in the lower part of the soil profile
557	would greatly facilitate adsorption under this mechanism. Another recent study proposed that
558	the REEs are adsorbed as 9 - 10 coordinated hydrated outer sphere complexes on the basal sites
559	of kaolinite (Borst et al., 2018). Therefore, it is likely that the REEs, especially the LREEs,
560	could be partially adsorbed as hydrated complexes in the central lumen pores of the tubular
561	halloysite and basal surfaces of the microcrystalline kaolinite in this scenario.
562	In the upper part of the soil profile, the adsorption capacity of the clay minerals
563	dramatically decreases along with drops in the CEC, SSA, and porosity during the
564	transformation of halloysite and microcrystalline kaolinite to crystalline kaolinite. This induces
565	REE desorption, which results in a lower proportion of adsorbed REEs (Table 6; Fig. 13a),

566	although the contents of fine particles and the kaolinite group minerals (Table 1) are higher in
567	the shallow soils (Li et al., 2019). In addition to the decreases in the SSA and porosity (Table
568	3; Fig. 11), unrolling of the tubular halloysite would expose the adsorbed REEs located in the
569	internal and lumen pores directly to the soil solutions, making desorption much more feasible.
570	Consequently, the clay-adsorbed and bulk REE concentrations dramatically decrease in the
571	humic layer and upper pedolith (Table 1 & 6; Fig. 13 & 15). Considering that the potential of
572	zero charge of kaolinite is generally below the pH of 4.5 (Kosmulski, 2018), kaolinite in the
573	shallow soils remain negatively charged (averaged soil pH of the humic layer and upper
574	pedolith = 4.74; Table 1). This suggests that part of the desorbed REEs would be re-adsorbed,
575	particularly for the <2 μ m fraction (Table 6; Fig. 15). Alternatively, the relatively high clay-
576	adsorbed REE concentrations for the <2 μ m fraction from the upper pedolith (Fig. 3 & 15a)
577	may suggest preferential REE desorption first on the larger-sized fractions, in consistent with
578	the sub-µm sized halloysite and kaolinite to larger-sized kaolinite transformation. This also
579	explains the much lower clay-adsorbed REE concentrations in the $2-20\mu m$ fraction from the
580	humic layer and upper pedolith, compared to the residual REE concentrations (Table 6). The
581	desorbed REEs would be released into the soil solutions and transported downwards to deeper
582	parts of the soil profile, at where the clay minerals, comprising tubular halloysite and
583	microcrystalline kaolinite, have higher CEC, larger SSA, and higher porosity favoring the REE
584	adsorption. With time, continuous input of the REEs from shallow soils, and efficient

adsorption in the lower part of the soil profiles, would result in REE enrichment and ore
formation (Li et al., 2019).

587

588

Implications

Here, we present a comprehensive study on the variation and transformation of clay 589 590 minerals during progressive weathering of granite and the corresponding changes in different 591 physicochemical properties that could significantly affect the REE adsorption and accumulation necessary to form world class regolith-hosted HREE deposits. Clay mineralogy 592 593 is demonstrated to be a key factor in REE accumulation during weathering. Transformation of metastable halloysite and microcrystalline kaolinite to euhedral, crystalline kaolinite in the 594 shallow soils, during which the CEC, SSA and porosity could dramatically decrease, is critical 595 596 for REE desorption in the shallow soils. Whereas preservation of poorly crystallized halloysite 597 and kaolinite in the deep regolith significantly facilitated the REE adsorption there. Through 598 time, continuous operation of such an eluviation - illuviation process could result in sufficient 599 REE accumulation to form economically valuable deposits.

Hence, several implications could be drawn for resources exploration and metallurgical
practice. Contrasting variations in physicochemical properties of kaolinite group minerals
along soil profiles could be a promising exploration tool for regolith-hosted HREE resources.
Preservation of halloysite in the lower part of the soil profile, coupled with its destruction in
the upper part of the same soil profile could be a good indicator for REE enrichment in the

605	lower soil horizons. As the REEs are largely adsorbed on halloysite, most likely preferentially
606	in the internal and lumen pores, the properties of halloysite should be taken into consideration
607	for exploration and metallurgical processing. Halloysite could form intercalated complexes
608	with certain salts, such as K-acetate, KCl, NH ₄ Cl, (NH ₄) ₂ SO ₄ , RbCl, and CsCl (Carr et al.,
609	<u>1978; Wada, 1959a; Wada, 1959b</u>). This is partially why ammonium sulfate is a very efficient
610	leaching agent for industrial extraction of the REEs from these deposits. Compounds that could
611	form stable intercalated complexes with halloysite would be of interest in the future design of
612	more environmental friendly metallurgical processes.
613	
614	Acknowledgements
615	We would like to thank the kind assistance of Xiao Fu for EPMA, Lily Chiu for PSA, Maria
615	We would like to thank the kind assistance of Xiao Fu for EPMA, Lily Chiu for PSA, Maria
615 616	We would like to thank the kind assistance of Xiao Fu for EPMA, Lily Chiu for PSA, Maria Lo for ICP-OES analysis, and Frankie Chan from the EMU for TEM analysis. Youjun Deng
615 616 617	We would like to thank the kind assistance of Xiao Fu for EPMA, Lily Chiu for PSA, Maria Lo for ICP-OES analysis, and Frankie Chan from the EMU for TEM analysis. Youjun Deng from the Texas A&M University is acknowledged for the kind provision of his soil mineralogy
615616617618	We would like to thank the kind assistance of Xiao Fu for EPMA, Lily Chiu for PSA, Maria Lo for ICP-OES analysis, and Frankie Chan from the EMU for TEM analysis. Youjun Deng from the Texas A&M University is acknowledged for the kind provision of his soil mineralogy laboratory manual. Daniel E. Harlov is thanked for his constructive comments and language
 615 616 617 618 619 	We would like to thank the kind assistance of Xiao Fu for EPMA, Lily Chiu for PSA, Maria Lo for ICP-OES analysis, and Frankie Chan from the EMU for TEM analysis. Youjun Deng from the Texas A&M University is acknowledged for the kind provision of his soil mineralogy laboratory manual. Daniel E. Harlov is thanked for his constructive comments and language polishing on the manuscript. Editorial handling by Editor Hongwu Xu, Associate Editor Andy
 615 616 617 618 619 620 	We would like to thank the kind assistance of Xiao Fu for EPMA, Lily Chiu for PSA, Maria Lo for ICP-OES analysis, and Frankie Chan from the EMU for TEM analysis. Youjun Deng from the Texas A&M University is acknowledged for the kind provision of his soil mineralogy laboratory manual. Daniel E. Harlov is thanked for his constructive comments and language polishing on the manuscript. Editorial handling by Editor Hongwu Xu, Associate Editor Andy Madden, and constructive comments by Kenzo Sanematsu and an anonymous reviewer are

624 **References**

- Aoudjit, H., Elsass, F., Robert, M., and Righi, D. (1996) Mica weathering in acidic soils by analytical
- 626 electron microscopy. Clay Minerals, 31(3), 319-332.
- Bailey, S.W. (1990) Halloysite-A critical assessment. Sciences Géologiques, bulletins et mémoires,
 86(1), 89-98.
- Banfield, J.F., and Eggleton, R.A. (1990) Analytical transmission electron microscope studies of

630 plagioclase, muscovite, and K-feldspar weathering. Clays and Clay Minerals, 38(1), 77-89.

- Bao, Z., and Zhao, Z. (2008) Geochemistry of mineralization with exchangeable REY in the weathering
- 632 crusts of granitic rocks in South China. Ore Geology Reviews, 33(3), 519-535.
- 633 Barrett, E.P., Joyner, L.G., and Halenda, P.P. (1951) The determination of pore volume and area
- distributions in porous substances. I. Computations from nitrogen isotherms. Journal of the
 American Chemical society, 73(1), 373-380.
- 636 Berger, A., Janots, E., Gnos, E., Frei, R., and Bernier, F. (2014) Rare earth element mineralogy and
- 637 geochemistry in a laterite profile from Madagascar. Applied geochemistry, 41, 218-228.
- Blum, A.E., and Stillings, L.L. (1995) Feldspar dissolution kinetics. Reviews in Mineralogy and
 Geochemistry, 31(1), 291-351.
- Bobos, I., Duplay, J., Rocha, J., and Gomes, C. (2001) Kaolinite to halloysite-7 Å transformation in the
- 641 kaolin deposit of São Vicente de Pereira, Portugal. Clays and Clay Minerals, 49(6), 596-607.
- 642 Borst, A.M., Smith, M.P., Finch, A., Marquis, E., Estrade, G., Kynicky, J., Xu, C., and Geraki, K. (2018)
- 643 Structural state of REE in ion adsorption deposits: A XANES/EXAFS study of laterites from
- 644 Madagascar and China. Proceedings of the Resources for Future Generations Conference,
- 645 Vancouver.

- 646 Carr, R., Chaikum, N., and Patterson, N. (1978) Intercalation of salts in halloysite. Clays and Clay
- 647 Minerals, 26(2), 144-152.
- 648 Cheshire, M.C. (2011) Isotopic and geochemical composition of the Georgia kaolins: Insights into
 649 formation and diagenetic conditions, PhD, p. 244. Indiana University.
- 650 Cheshire, M.C., Bish, D.L., Cahill, J.F., Kertesz, V., and Stack, A.G. (2018) Geochemical Evidence for
- 651 Rare-Earth Element Mobilization during Kaolin Diagenesis. ACS Earth and Space Chemistry,
- 652 2(5), 506-520.
- Churchman, G., Aldridge, L., and Carr, R. (1972) The relationship between the hydrated and dehydrated
 states of an halloysite. Clays and Clay Minerals, 20(4), 241-246.
- Churchman, G., and Carr, R. (1975) The definition and nomenclature of halloysites. Clays and Clay
 Minerals, 23(5), 382-388.
- 657 Churchman, G., Davy, T., Aylmore, L., Gilkes, R., and Self, P. (1995) Characteristics of fine pores in
 658 some halloysites. Clay Minerals, 30(2), 89-98.
- 659 Churchman, G., and Gilkes, R. (1989) Recognition of intermediates in the possible transformation of
- halloysite to kaolinite in weathering profiles. Clay Minerals, 24(4), 579-590.
- 661 Deng, Y., White, G.N., and Dixon, J.B. (2014) Soil mineralogy laboratory manual. 201 p. Department

of Soil and Crop Sciences. Texas A &M University, College Station, US.

- 663 Elliott, W.C., Gardner, D.J., Malla, P., and Riley, E. (2018) A New Look at the Occurrences of the
- Rare-Earth Elements in the Georgia Kaolins. Clays and Clay Minerals, 66(3), 245-260.
- 665 Eswaran, H., and Bin, W.C. (1978) A study of a deep weathering profile on granite in peninsular
- 666 Malaysia: II. Mineralogy of the clay, silt, and sand fractions. Soil Science Society of America
- 667 Journal, 42(1), 149-153.

- 668 Giese, R. (1988) Kaolin minerals; structures and stabilities. Reviews in Mineralogy and Geochemistry,
- 669 19(1), 29-66.
- Hart, R., Wiriyakitnateekul, W., and Gilkes, R. (2003) Properties of soil kaolins from Thailand. Clay
 Minerals, 38(1), 71-94.
- Hart, R.D., Gilkes, R.J., Siradz, S., and Singh, B. (2002) The nature of soil kaolins from Indonesia and
- 673 Western Australia. Clays and Clay Minerals, 50(2), 198-207.
- Hinckley, D.N. (1962) Variability in "crystallinity" values among the kaolin deposits of the coastal
 plain of Georgia and South Carolina. Clays and clay minerals, 11(1), 229-235.
- 676 Huang, D., Wu, C., and Han, J. (1989) REE geochemistry and mineralization characteristics of the
- 677 Zudong and Guanxi granites, Jiangxi Province. Acta Geologica Sinica (English edition), 2(2),
 678 139-157.
- Huang, J., Sun, S., and Zhang, J. (2013) Detection of trends in precipitation during 1960–2008 in Jiangxi

680 province, southeast China. Theoretical and applied climatology, 114(1-2), 237-251.

- Inoue, A., Utada, M., and Hatta, T. (2012) Halloysite-to-kaolinite transformation by dissolution and
- recrystallization during weathering of crystalline rocks. Clay Minerals, 47(3), 373-390.
- 583 Jeong, G.Y. (1998a) Formation of vermicular kaolinite from halloysite aggregates in the weathering of
- 684 plagioclase. Clays and Clay Minerals, 46(3), 270-279.
- -. (1998b) Vermicular kaolinite epitactic on primary phyllosilicates in the weathering profiles of
 anorthosite. Clays and Clay Minerals, 46(5), 509-520.
- 587 Jige, M., Takagi, T., Takahashi, Y., Kurisu, M., Tsunazawa, Y., Morimoto, K., Hoshino, M., and
- 688 Tsukimura, K. (2018) Fe-kaolinite in granite saprolite beneath sedimentary kaolin deposits: A

- mode of Fe substitution for Al in kaolinite. American Mineralogist: Journal of Earth and
 Planetary Materials, 103(7), 1126-1135.
- Joussein, E., Petit, S., Churchman, J., Theng, B., Righi, D., and Delvaux, B. (2005) Halloysite clay
 minerals–a review. Clay Minerals, 40(4), 383-426.
- 593 Jozefaciuk, G. (2009) Effect of the size of aggregates on pore characteristics of minerals measured by
- 694 mercury intrusion and water-vapor desorption techniques. Clays and Clay Minerals, 57(5), 586-
- 695
 601.
- 696 Kosmulski, M. (2018) The pH dependent surface charging and points of zero charge. VII. Update.
- 697 Advances in colloid and interface science, 251, 115-138.
- 698 Li, M.Y.H., Zhou, M.-F., and Williams-Jones, A.E. (2019) The genesis of regolith-hosted heavy rare
- 699 earth element deposits: Insights from the world-class Zudong deposit in Jiangxi Province, South
 700 China. Economic Geology, 114(3), 541-568.
- Li, Y.H.M., Zhao, W.W., and Zhou, M.-F. (2017) Nature of parent rocks, mineralization styles and ore
- genesis of regolith-hosted REE deposits in South China: An integrated genetic model. Journal
 of Asian Earth Sciences, 148, 65-95.
- Liu, X., Chen, Y., Wang, D., Huang, F., and Zhao, Z. (2016) The metallogenic geomorphic condition
- analysis of the ion-adsorbing type rare earth ore in the eastern Nanling region based on DEM
 data. Acta Geoscientica Sinica, 37(2), 174-184 (in Chinese with English abstract).
- 707 Lu, Y., Wang, R., Lu, X., Li, J., and Wang, T. (2016) Reprint of Genesis of halloysite from the
- 708 weathering of muscovite: Insights from microscopic observations of a weathered granite in the709 Gaoling Area, Jingdezhen, China. Applied Clay Science, 119, 59-66.
- Ma, C., and Eggleton, R.A. (1999) Cation exchange capacity of kaolinite. Clays and Clay minerals,
 47(2), 174-180.
- 712 Meunier, A., and Velde, B. (1976) Mineral reactions at grain contacts in early stages of granite 713 weathering. Clay Minerals, 11(3), 235-240. 714 Miller, W., and Keller, W. (1963) Differentiation between endellite-halloysite and kaolinite by 715 treatment with potassium acetate and ethylene glycol. Clays and Clay Minerals, 10, 244-253. 716 Moldoveanu, G., and Papangelakis, V. (2016) An overview of rare-earth recovery by ion-exchange 717 leaching from ion-adsorption clays of various origins. Mineralogical Magazine, 80(1), 63-76. Padrones, J.T., Imai, A., and Takahashi, R. (2017) Geochemical behavior of rare earth elements in 718 719 weathered granitic rocks in northern Palawan, Philippines. Resource Geology, 67(3), 231-253. 720 Papoulis, D., Tsolis-Katagas, P., and Katagas, C. (2004) Progressive stages in the formation of kaolin 721 minerals of different morphologies in the weathering of plagioclase. Clays and Clay Minerals, 722 52(3), 275-286. 723 Pasbakhsh, P., Churchman, G.J., and Keeling, J.L. (2013) Characterisation of properties of various 724 halloysites relevant to their use as nanotubes and microfibre fillers. Applied Clay Science, 74, 725 47-57. 726 Radoslovich, E. (1963) The cell dimensions and symmetry of layer-lattice silicates. VI. Serpentine and 727 kaolin morphology. American Mineralogist: Journal of Earth and Planetary Materials, 48(3-4), 728 368-378. 729 Robertson, I.D., and Eggleton, R.A. (1991) Weathering of granitic muscovite to kaolinite and halloysite 730 and of plagioclase-derived kaolinite to halloysite. Clays and Clay Minerals, 39(2), 113-126.

- Rudnick, R.L., and Gao, S. (2003) Composition of the continental crust. Treatise on geochemistry, 3,
- 732 659.
- 733 Sanematsu, K., Kon, Y., and Imai, A. (2015) Influence of phosphate on mobility and adsorption of
- REEs during weathering of granites in Thailand. Journal of Asian Earth Sciences, 111, 14-30.
- 735 Sanematsu, K., Kon, Y., Imai, A., Watanabe, K., and Watanabe, Y. (2013) Geochemical and
- 736 mineralogical characteristics of ion-adsorption type REE mineralization in Phuket, Thailand.
- 737 Mineralium Deposita, 48(4), 437-451.
- 738 Sanematsu, K., and Watanabe, Y. (2016) Characteristics and genesis of ion-adsorption type deposits.
- Reviews in Economic Geology, 18, 55-79.
- 740 Simandl, G. (2014) Geology and market-dependent significance of rare earth element resources.
- 741 Mineralium Deposita, 49(8), 889-904.
- 742 Singer, A., Zarei, M., Lange, F., and Stahr, K. (2004) Halloysite characteristics and formation in the

northern Golan Heights. Geoderma, 123(3-4), 279-295.

- Singh, B. (1996) Why Does Halloysite Roll? A New Model. Clays and Clay Minerals, 44(2), 191-196.
- 745 Singh, B., and Gilkes, R. (1991) Weathering of a chromian muscovite to kaolinite. Clays and Clay
- 746 Minerals, 39(6), 571-579.
- -. (1992) An electron optical investigation of the alteration of kaolinite to halloysite. Clays and Clay
- 748 Minerals, 40(2), 212-229.
- 749 Soma, M., Churchman, G., and Iheng, B. (1992) X-ray photoelectron spectroscopic analysis of
- halloysites with different composition and particle morphology. Clay Minerals, 27, 413-413.

- 751 Tazaki, K. (1981) Analytical electron microscopic studies of halloysite formation processes morphology
- and composition of halloysite. In M.M. Mortlan, and V.C. Farmer, Eds. Proceedings of the 6th
- 753 International Clay Conference 1978, p. 573-584. Elsevier.
- Velde, B. (1985) Clay minerals: a physico-chemical explanation of their occurrence. Elsevier,
 Amsterdam.
- 756 Wada, K. (1959a) An interlayer complex of halloysite with ammonium chloride. American
- 757 Mineralogist: Journal of Earth and Planetary Materials, 44(11-12), 1237-1247.
- -. (1959b) Oriented penetration of ionic compounds between the silicate layers of halloysite. American
- 759 Mineralogist: Journal of Earth and Planetary Materials, 44(1-2), 153-165.
- 760 -. (1961) Lattice expansion of kaolin minerals by treatment with potassium acetate. American

761 Mineralogist: Journal of Earth and Planetary Materials, 46(1-2), 78-91.

- 762 White, A.F., Bullen, T.D., Schulz, M.S., Blum, A.E., Huntington, T.G., and Peters, N.E. (2001)
- 763 Differential rates of feldspar weathering in granitic regoliths. Geochimica et Cosmochimica
 764 Acta, 65(6), 847-869.
- Wilson, M., Deer, W., Howie, R., and Zussman, J. (2013) Rock-Forming Minerals, Volume 3C, Sheet
 Silicates: Clay Minerals. Geological Society, London, p. 724.
- 767 Wouatong, A., Kitagawa, R., Takeno, S., Felix M, T., and Daniel, N. (1996) Morphological
- transformation of kaolin minerals from granite saprolite in the western part of Cameroon. Clay
- 769 Science, 10(1), 67-81.
- 770 Wu, C., Huang, D., and Guo, Z. (1990) REE geochemistry in the weathered crust of granites, Longnan
- area, Jiangxi Province. Acta Geologica Sinica (English Edition), 3, 193-209.

- Xie, Y., Hou, Z., Goldfarb, R.J., Guo, X., and Wang, L. (2016) Rare earth element deposits in China.
- 773 Reviews in Economic Geology, 18, 115-136.
- 774 Yamaguchi, A., Honda, T., Tanaka, M., Tanaka, K., and Takahashi, Y. (2018) Discovery of ion-
- adsorption type deposits of rare earth elements (REE) in Southwest Japan with speciation of
- 776 REE by extended X-ray absorption fine structure spectroscopy. Geochemical Journal, 52(5),
- 777 415-425.
- Zhao, Z., Wang, D., Chen, Z., Chen, Z., Zhwng, G., and Liu, X. (2014) Zircon U-Pb age, endogenic
- 779 mineralization and petrogenesis of rare earth ore-bearing granite in Longnan, Jiangxi province.
- 780 Acta Geoscientica sinica, 35(6), 719-725.

781

782 Figure Captions

- **Figure 1**. Simplified geological map of the Zudong deposit (<u>after Li et al., 2019</u>).
- 784

Figure 2. (a) A schematic soil profile and profile of REE content of the Zudong deposit (after 785 Li et al., 2019). (b - g) Field photos of the Zudong deposit. (b) Pedolith of orangish brown 786 787 appearance with abundant residual grains of quartz. (c) Interface between the pedolith and saprolite at where the relict granitic texture progressively demolished. (d) Upper saprolite of 788 mottled pinkish white appearance due to the abundant kaolinized feldspar and relict granitic 789 790 texture is still preserved. (e) Lower saprolite of mottled purplish white appearance. (f) Saprock 791 in which outline of feldspar grains could still be preserved. (g) Fresh bedrock with major 792 minerals of quartz, orthoclase, and albite.

793

794 Figure 3. Variations of averaged particle size proportion, bulk mineral proportion and REE 795 distribution, and proportion of clay minerals, SSA, pore volume, CEC and clay-adsorbed REE 796 concentration of the clay fractions in different soil horizons. Abbreviations: Ab, albite; Gbs, goethite; Hal, halloysite; Ill, illite; Kfs, K-feldspar; Kln, kaolinite; Ms, muscovite; Qtz, quartz; 797 798 Sme, smectite; Vrm, vermiculite. Ms-Ill/Sme and Ms-Ill/Vrm refer to interstratified muscovite-799 illite with smectite and vermiculite respectively. Note that the proportion of kaolinite in the 800 bulk mineral proportion refers to the family of kaolinite group minerals. "1" indicates data 801 sourced from Li et al. (2019).

802

803	Figure 4. Occurrence of halloysite in the saprolite and lower pedolith. (a) - (f) are SEM images
804	while (g) and (h) are TEM images. Short, stubby halloysite tubes occur as (a) aggregates on
805	weathered albite and (b) muscovite or (c) as individual tubes on weathered muscovite. (d) Long
806	halloysite tubes occur as aggregates on weathered albite, (e) through coalescence of short
807	halloysite tubes and (f) on surface of weathered muscovite. Short, stubby halloysite tubes with
808	d spacing of (g) 10.1Å or (h) 7.5Å. Noted that the locations of d spacing measurement were
809	indicated by the red squares. Abbreviations: Ab, albite; Ms, muscovite.
810	
811	Figure 5. Association of short halloysite tubes and muscovite at the saprolite and lower
812	pedolith. (a) - (d) are SEM images while (e) and (f) are TEM images. Nano-sized halloysite
813	with well grown tubular shapes and clear lumen pores (an example indicated by the black arrow
814	in e) are observed with c axes generally parallel to the muscovite sheet (examples indicated by
815	the blue arrows) and rolled up along edges of muscovite sheets form semi-open tubes
816	(examples indicated by the red arrows). Abbreviations: Ms, muscovite.
817	
818	Figure 6. Occurrence of other clay minerals in the saprolite and lower pedolith. All images are
819	SEM images. (a) Microcrystalline kaolinite on weathered muscovite. (b) Aggregates of

820 microcrystalline kaolinite occasionally with long halloysite tubes. (c) Aggregates of illite on

821	surface of weathered orthoclase. (d) Weathered grain of muscovite occasionally with halloysite
822	tubes. Abbreviations: Hal, halloysite; Ill, illite; Kln, kaolinite; Ms, muscovite.
823	
824	Figure 7. SEM images of the occurrence of clay minerals in the upper pedolith. (a) - (f)
825	Progressive transformation of halloysite to kaolinite. (a & b) The initial stage showing
826	coalescence of halloysite tubes along the edges to form sub μ m-sized and loosely stacked
827	kaolinite. (c - f) The interim stage as vermicular kaolinite continues growing through
828	coalescence of the halloysite tubes along (d & e) edges and (f) basal surface. (g) Crystalline
829	vermicular kaolinite. (h) Aggregates of kaolinite and halloysite.
830	
831	Figure 8. TEM images of the occurrence of clay minerals in the upper pedolith. (a) Crystalline
832	kaolinite with unit cells of 5.0Å along the a axis. (b) Long, tubular halloysite associated with
833	kaolinite with d spacing of (c) 8.0Å and (d) 7.4Å.
834	
835	Figure 9. Representative XRD spectra of the clay fractions from different soil horizons.
836	Notations: N, Oriented samples; E, ethylene glycol-solvated samples; T, 550°C heated samples;
837	K, K-acetate & ethylene glycol-solvated samples. Abbreviations: Ill, illite; Ms, muscovite; Vrm:
838	vermiculite.
839	
840	Figure 10. Representative FT-IR spectra of the clay fractions from different soil horizons.
841	

842	Figure 11. (a) Adsorption (represented by the solid line) and desorption (represented by the
843	dashed line) isotherms and (b) pore size distribution of the clay fractions in different soil
844	horizons.
845	
846	Figure 12. Correlation plot between (a) $(Si - 4) + Fe$ and Al, and (b) Fe and Al (VI) in kaolinite

847 group minerals from different soil horizons.

848

Figure 13. Upper continental crust (UCC)-normalized REE patterns of (a) the clay fractions
and (b) the bulk compositions from different soil horizons. Solid and dash lines in (a) represent

851 <2 and 2 - 20 μm fractions respectively. Solid and dot lines in (b) represent bulk extractable

and whole-rock compositions respectively. Data from (b) is extracted from Li et al. (2019).

853 REE concentration of the upper continental crust is extracted from <u>Rudnick and Gao (2003)</u>.

854

Figure 14. Relations between proportion of halloysite and kaolinite and clay-adsorbed HREE
and LREE concentrations.

857

Figure 15. Variations of bulk extractable and clay-adsorbed REE concentrations for (a) $<2 \mu m$ and (b) 2 - 20 μm fractions in different soil horizons. Data for the bulk extractable REE concentrations is extracted from Li et al. (2019).

861

Table 1. Summary of bulk mineralogical and geochemical properties of the Zudong deposit

Soil horizon	Proportion of kaolinite group mineral (%) ¹	Soil pH ¹	Proportion of particle size (%)			Bulk REE		Proportion of the total REEs (%) ¹			
			<2 µm	2 - 20 µm	20 - 50 µm	>50 µm	concentrartion (ppm) ¹	Extractable adsorbed REEs	Fe-Mn oxyhdroxide- adsorbed REEs	Fe-Mn oxyhdroxide- bound REEs	Organic substance-bound REEs
Humic layer - Upper pedolith	25	4.74	22.9	57.5	14.8	4.8	394	46	2.5	1.5	0.5
Lower pedolith	12	5.55	11.6	47.6	26.3	14.6	1055	66	2.3	0.8	0.4
Upper saprolite	13	5.40	9.3	37.7	25.1	27.9	906	60	2.1	0.5	0.2
Lower saprolite	10	5.94	8.3	31.1	18.9	41.7	477	61	1.9	0.8	0.5

Remark: "¹": Data from Li et al. (2019); analytical methods provided in Appendix

Table 2. Summary of average relative proportions of clay minerals in <2 um and 2 - 20 um fractions from different soil horizons

Soil horizon	Size (µm)	Hinckley index*	Kaolinite	Halloysite	Smectite	Interstratified Ms-Ill/Smectite	Muscovite/ Illite	Vermiculite	Interstratified Ms-Ill/Vermiculite
Humic layer - Upper pedolith (n = 4)	<2	0.98	69	2	-	-	6	8	15
	2 - 20	1.83	60	7	-	-	9	6	18
Lower pedolith	<2	0.76	69	23	-	1	1	3	2
(n = 2)	2 - 20	0.33	73	21	-	2	4	-	-
Upper saprolite	<2	0.50	61	33	1	-	4	1	-
(n = 3)	2 - 20	0.89	47	44	1	-	9	-	-
Lower saprolite	<2	0.14	55	36	-	-	3	2	4
(n = 3)	2 - 20	0.29	51	24	-	3	19	1	2

Remarks: *: Hinckley indices are calculated for the kaolinite-group minerals

-: Not detected Abbreviation: III, illite; Ms, muscovite

Table 3. Summary of average mineralogical, physical and chemical properties of <2 µm and 2 - 20 µm fractions from different soil horizons

Soil horizon	Size (µm)	BET surface area, S _{BET} (m ² /g)	BJH cumulative adsorption surface area, S _{ads} (m ² /g)	BJH cumulative desorption surface area, S _{des} (m ² /g)	S _{ads} - S _{BET}	S _{des} - S _{BET}	Adsorption pore volume (cm ³ /g)	Desorption pore volume (cm ³ /g)	Cation exchange capacity (c mol/kg ⁻¹)
Humic layer - Upper pedolith	<2	8.06	8.77	9.59	0.7	1.5	0.06	0.06	15.2
(n = 4)	2 - 20	11.0	12.6	14.3	1.6	3.3	0.05	0.05	11.5
Lower pedolith	<2	15.6	19.0	21.0	3.3	5.3	0.10	0.10	16.6
(n = 3)	2 - 20	12.2	14.6	17.3	2.3	5.1	0.07	0.07	13.2
Upper saprolite	<2	16.7	19.8	23.1	3.1	6.4	0.11	0.11	15.3
(n = 2)	2 - 20	12.5	15.2	18.5	2.7	6.0	0.06	0.06	14.0
Lower saprolite	<2	18.3	20.3	22.2	2.0	3.9	0.12	0.12	13.0
(n = 2)	2 - 20	17.7	21.1	26.5	3.3	8.7	0.07	0.07	11.1

Table 4.	*	· · · · ·	of the feldspa	ars in the parent rock
		rthoclase $(n = 8)$		Albite $(n = 9)$
-		· · · ·		
	Average (wt. %)	Range (wt. %)	Average (wt. %)	Range (wt. %)
SiO ₂	63.06	62.49 - 64.56	<u>(wt. 70)</u> 66.97	66.62 - 67.50
-				
TiO ₂	b.dl.	b.dl.	b.dl.	b.dl 0.02
Al_2O_3	17.48	17.06 - 18.81	18.93	18.62 - 19.41
FeO	0.02	0.01 - 0.04	0.03	b.dl 0.05
MnO	b.dl.	b.dl.	b.dl.	b.dl.
MgO	b.dl.	b.dl.	b.dl.	b.dl 0.01
CaO	0.02	b.dl 0.03	0.40	0.02 - 0.07
Na ₂ O	0.55	0.26 - 0.83	11.65	10.79 - 12.39
K ₂ O	16.68	16.13 - 17.56	0.09	0.04 - 0.13
Total	97.81	97.10 - 99.78	98.06	97.50 - 99.21
Si	6.00	5.97 - 6.04	5.98	5.94 - 6.00
Al (IV)	0.01	b.dl 0.01	0.02	b.dl 0.06
\sum_{TET}	6.01	6.00 - 6.04	6.00	6.00
Al (VI)	1.95	1.92 - 2.02	1.97	1.95 - 2.02
Ti	0.00	0.00	0.00	0.00
Fe	0.00	0.00	0.00	0.00
Mn	0.00	0.00	0.00	0.00
Mg	0.00	0.00	0.00	0.00
Ca	0.00	0.00	0.04	0.00 0.07
Na	0.10	0.05 - 0.15	2.02	1.87 - 2.14
Κ	2.02	1.90 - 2.14	0.01	0.00 - 0.01
Σoct	4.08	3.98 - 4.18	4.04	3.93 - 4.10

Table 4. Major elemental compositions of the feldspars in the parent rock

Remark: Structural formula of feldspars is calculated on the basis of 16 positive charges

Table 5. Major elemental compositions of the kaolinite group minerals in different soil horizons and muscovite in the parent rock

	-		Ν	Iuscovite						
		Upper pedolith $(n = 31)$		ver pedolith $(n = 26)$		per saprolite $(n = 17)$		ver Saprolite (n = 18)		arent rock (n = 17)
	Average (wt. %)	Range (wt. %)	Average (wt. %)	Range (wt. %)	Average (wt. %)	Range (wt. %)	Average (wt. %)	Range (wt. %)	Average (wt. %)	Range (wt. %)
SiO_2	45.13	44.31 - 46.21	45.14	43.78 - 46.41	45.50	44.48 - 46.57	44.86	43.11 - 45.98	45.32	43.37 - 47.02
TiO ₂	0.02	b.dl 0.52	0.01	b.dl 0.11	b.dl.	b.dl 0.01	0.03	b.dl 0.13	0.05	b.dl 0.13
Al_2O_3	38.52	37.17 - 39.76	37.60	28.22 - 39.68	38.42	37.00 - 39.87	37.48	34.50 - 39.41	32.34	29.44 - 36.11
FeO	0.46	0.10 - 1.37	1.57	0.04 - 11.74	0.55	0.06 - 2.02	2.12	0.15 - 5.13	4.53	0.92 - 8.48
MnO	0.01	b.dl 0.04	0.04	b.dl 0.57	0.02	b.dl 0.07	0.02	b.dl 0.08	0.40	0.15 - 0.64
MgO	0.07	b.dl 0.54	0.17	b.dl 0.84	0.03	b.dl 0.12	0.18	b.dl 1.26	0.12	0.06 - 0.16
CaO	0.07	0.02 - 0.13	0.07	0.03 - 0.12	0.09	0.03 - 0.18	0.08	0.02 - 0.04	0.05	0.02 - 0.07
Na ₂ O	0.01	b.dl 0.04	0.02	b.dl 0.22	0.01	b.dl 0.05	0.01	b.dl 0.05	0.12	0.08 - 0.18
K_2O	0.20	b.dl 0.82	0.46	b.dl 1.83	0.34	b.dl 2.05	0.81	0.02 - 2.24	10.70	10.12 - 11.49
F	b.dl.	b.dl.	0.05	b.dl 0.85	0.01	b.dl 0.05	b.dl.	b.dl.	0.29	b.dl 0.86
Cl	0.03	b.dl 0.10	0.09	b.dl 0.55	0.01	b.dl 0.04	0.03	b.dl 0.02	0.01	b.dl 0.02
H_2O	13.62	13.40 - 13.96	13.55	12.41 - 13.89	13.68	13.34 - 14.03	13.85	13.13 - 13.85	4.20	3.98 - 4.40
O=F,Cl	0.01	0.00 - 0.02	0.04	0.01 - 0.36	0.01	b.dl 0.02	0.01	b.dl 0.05	0.12	0.00 - 0.36
Total	98.11	96.40 - 100.45	98.74	95.46 - 100.54	98.65	96.49 - 100.75	99.21	97.85 - 100.59	98.00	96.09 - 100.74
Si	3.97	3.89 - 4.02	3.98	3.91 - 4.16	3.99	3.92 - 4.03	3.96	3.86 - 4.04	6.26	6.12 - 6.36
Al (IV)	0.03	0.00 - 0.11	0.03	0.00 - 0.09	0.02	0.00 - 0.08	0.05	0.00 - 0.14	1.74	1.64 - 1.88
\sum_{TET}	4.00	4.00 - 4.02	4.01	4.00 - 4.16	4.00	4.00 - 4.02	4.00	4.00 - 4.04	8.00	8.00
Al (VI)	3.96	3.87 - 4.00	3.88	3.11 - 4.00	3.95	3.84 - 4.00	3.85	3.66 - 3.99	3.53	3.18 - 3.84
Ti	0.00	0.00 - 0.03	0.00	0.00 - 0.01	0.00	0.00	0.00	0.00 - 0.01	0.01	0.00 - 0.01
Fe	0.03	0.01 - 0.10	0.12	0.00 - 0.92	0.04	0.00 - 0.15	0.16	0.01 - 0.39	0.53	0.10 - 1.02
Mn	0.00	0.00	0.00	0.00 - 0.05	0.00	0.00 - 0.01	0.00	0.00 - 0.01	0.05	0.02 - 0.08
Mg	0.01	0.00 - 0.07	0.02	0.00 - 0.11	0.00	0.00 - 0.02	0.02	0.00 - 0.16	0.02	0.01 - 0.03
∑ост	4.01	3.97 - 4.05	4.02	3.96 - 4.10	4.00	3.97 - 4.01	4.04	4.00 - 4.13	4.13	3.96 - 4.33
Ca	0.01	0.00 - 0.01	0.01	0.00 - 0.01	0.01	0.00 - 0.02	0.01	0.00 - 0.02	0.01	0.00 - 0.01
Na	0.00	0.00 - 0.01	0.00	0.00 - 0.04	0.00	0.00 - 0.01	0.00	0.00 - 0.01	0.03	0.02 - 0.05
K	0.02	0.00 - 0.09	0.05	0.00 - 0.21	0.04	0.00 - 0.23	0.09	0.00 - 0.26	1.89	1.79 - 1.97
\sum_{EXT}	0.03	0.00 - 0.10	0.06	0.01 - 0.22	0.05	0.00 - 0.26	0.10	0.01 - 0.28	1.92	1.83 - 2.02

Remark: Structural formula of kaolinite group mineral is calculated on the basis of 14 positive charges and muscovite of 22 positive charges

Soil horizon	Size fraction (µm)	Extractable pool	REE	LREE	HREE	(La/Yb) _N	Ce/Ce*	Eu/Eu*
	<2	Clay-adsorbed	277	108	169	0.69	1.46	0.05
House large	<2	Residual	200	76	123	0.61	2.02	0.05
Humic layer -	2 20	Clay-adsorbed	73	26	47	0.58	1.44	0.06
	2 - 20	Residual	255	53	202	0.30	1.57	0.04
Upper pedolith	<2	Clay-adsorbed	1229	239	990	0.63	0.18	0.04
	~2	Residual	363	127	237	0.64	1.84	0.04
	2 - 20	Clay-adsorbed	65	22	43	0.58	1.96	0.05
	2 - 20	Residual	539	97	442	0.36	1.57	0.07
Lower pedolith	<2	Clay-adsorbed	3698	649	3049	0.71	0.03	0.04
		Residual	579	150	429	0.41	2.07	0.04
	2 - 20	Clay-adsorbed	3272	616	2656	0.85	0.02	0.03
		Residual	588	63	525	0.13	2.12	0.02
	-0	Clay-adsorbed	2613	326	2287	0.46	0.05	0.02
	<2	Residual	634	131	503	0.12	11.8	0.01
Upper saprolite	2 20	Clay-adsorbed	2355	315	2040	0.50	0.03	0.02
	2 - 20	Residual	601	64	537	0.04	9.07	0.01
	~7	Clay-adsorbed	1045	177	868	0.66	0.05	0.03
	<2	Residual	350	94	256	0.30	4.12	0.02
Lower saprolite	2 20	Clay-adsorbed	1062	182	880	0.70	0.04	0.04
	2 - 20	Residual	451	54	397	0.09	3.34	0.01

Table 6. Extraction results of the clay fractions from different soil horizons

Remark: all elemental compositions in ppm

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. DOI: https://doi.org/10.2138/am-2020-7061

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. DOI: https://doi.org/10.2138/am-2020-7061

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. DOI: https://doi.org/10.2138/am-2020-7061

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. DOI: https://doi.org/10.2138/am-2020-7061

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. DOI: https://doi.org/10.2138/am-2020-7061

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. DOI: https://doi.org/10.2138/am-2020-7061

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. DOI: https://doi.org/10.2138/am-2020-7061

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. DOI: https://doi.org/10.2138/am-2020-7061

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. DOI: https://doi.org/10.2138/am-2020-7061

Al (VI) (apfu)

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. DOI: https://doi.org/10.2138/am-2020-7061

Figure 13

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. DOI: https://doi.org/10.2138/am-2020-7061

