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ABSTRACT 17 

Epidote spherulites are identified in a greenschist facies metavolcanic breccia enclosing a 18 

body of coesite-bearing eclogite at Ganghe in the Dabie ultrahigh-pressure metamorphic belt, 19 

east-central China. The epidote spherulites are formed by fibrous, radially arranged, and rare 20 

earth element (REE)-rich epidote crystals (REE = 0.13–0.36 (or slightly higher) cations per 21 

formula unit, cpfu) and interfibrillar REE-poor epidote (REE ≤0.10 cpfu). Some of the 22 

epidote spherulites are overgrown by radially arranged euhedral epidote crystals, which also 23 

form aggregates around preexisting quartz, plagioclase, and/or epidote. The epidote grains in 24 

such aggregates display oscillatory zoning, with REE content varying from a negligible 25 

amount to about 0.44 cpfu. Epidote also occurs as REE-poor individual euhedral crystals 26 

about the radial epidote aggregates or form loose clusters of randomly oriented crystals. 27 

Thermodynamic modeling of the mineral assemblages in the plagioclase pseudomorphs and 28 

in the matrix shows that they formed at greenschist facies metamorphic conditions (435–29 

515 °C and 5–7 kbar). The spherulites and radial euhedral crystal aggregates, however, do not 30 

belong to these assemblages and are non-equilibrium textures. They imply crystal growth 31 

under large degrees of supersaturation, with relatively low ratios of the diffusion rate (D) to 32 

the crystal growth rate (G). At low D/G ratios, spiky interfaces are favourable for 33 

diffusion-controlled growth and the resultant texture is a collection of spikes around a growth 34 

center, forming a spherulite. The change of epidote texture from spherulite to radial euhedral 35 

crystal aggregates implies a decrease of supersaturation and an increase of D/G, such that the 36 

crystal morphology was controlled by its crystallographic structure. The crystallization of the 37 

individual epidote grains corresponds to a further drop of supersaturation and a further 38 
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increase of the D/G ratio, approaching to the equilibrium conditions. Transiently higher P-T 39 

conditions are inferred from the spherulite-forming reactions, relative to the P-T estimates for 40 

the equilibrium assemblages. The fibrous crystals in the spherulites having relatively large 41 

interfacial energies would inevitably adjust their shapes to equilibrium ones with low 42 

interfacial energies if the P-T-H2O conditions were maintained for a sufficiently long period 43 

of time. The non-equilibrium epidote aggregates likely formed in response to P-T and fluid 44 

pulses, possibly related to seismicity. 45 

Key words: Dabieshan, epidote, non-equilibrium, radial euhedral crystal aggregates, 46 

spherulite, supersaturation 47 

48 
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INTRODUCTION 49 

Spherulite is a radial aggregate of fibrous crystals (Vernon 2004). It can be formed by 50 

silicates, metal alloys, elements, organic molecules and synthetic polymers, crystallized from 51 

melts, solids, solutions or gels (Shtukenberg et al. 2011). The driving force of crystallization, 52 

which measures the distance from equilibrium, is an important factor in controlling the crystal 53 

morphology. It is well known that crystal shape changes from polyhedral, skeletal, dendritic 54 

to spherulitic with an increasing driving force (e.g., Lofgren 1974; Oaki and Imai 2003; Jones 55 

2017). Such a relationship is also supported by theoretical modeling (Saito and Ueta 1989; 56 

Sunagawa 1999; Wilbur and Ague 2006; Gránásy et al. 2014). It is therefore established that 57 

no matter what materials and physical states are involved, the conditions required by the 58 

crystallization of spherulites are highly non-equilibrium. 59 

In crystalline rocks, spherulites can be formed by the same or different minerals and are 60 

known to crystallize from supercooled volcanic or frictional melts, devitrifying glasses, or 61 

supercooled fluids (e.g., Lofgren 1971a, 1971b; Vernon 2004; Xu and Scott 2005; Lin 2008; 62 

Watkins et al. 2009; Gardner et al. 2012; Melinger-Cohen et al. 2015; Jones 2017). Spherulitic 63 

epidote aggregates have been described in pseudomorphs after plagioclase in altered rhyolites 64 

(Hudson 1937), quartz-feldspar porphyry clasts in conglomerates (McCann and Kennedy 65 

1974), high-pressure pseudotachylytes (Austrheim and Andersen 2004; Petley-Ragan et al. 66 

2018), and in schists (Misch, 1965). Van Staal et al. (1990) mentioned epidote spherulites in 67 

pseudomorphs after pumpellyite in a blueschist.  68 

Radial epidote aggregates other than spherulitic forms are described in hydrothermally 69 

altered rocks (Blattner 1976; Carpenter and Walker 1992; Harper 1995; Torres-Alvarado 2002; 70 

Minakawa et al. 2008; Melinger-Cohen et al. 2015; Owens and Dymek 2016), pegmatites or 71 
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veins (Ross 1941; Halcrow 1956; Nehlig and Juteau 1988), teschenites (Kitchen 1985) and 72 

various types of metamorphic rock (Heinrich 1964; Stout 1964; Misch 1965; Stuart-Smith 73 

1990; Barriga and Fyfe 1997; Brunsmann et al. 2000; Rebay and Messiga 2007; Pascual et al. 74 

2013). The morphology of individual epidote crystals constituting these aggregates is diverse, 75 

including acicular, skeletal and prismatic. Misch (1965) described epidote aggregates with 76 

crystal shapes varying from radial fibrous through radial tapering to non-radial lumpy in a suit 77 

of crossite schists and actinolitic greenschists. Melinger-Cohen et al. (2015) reported both 78 

epidote spherulites and radial euhedral epidote aggregates growing in two adjacent zones of 79 

amygdules in an epidotized basalt.  80 

Although the epidote spherulites in pseudotachylytes can be readily accepted to be 81 

evidence for quenching, in the other reports of epidote spherulites in metamorphic rocks the 82 

growth mechanisms and kinetic implications of the texture have been barely discussed. The 83 

present study describes a sequence of epidote textures including spherulites, radial euhedral 84 

crystal aggregates, and individual euhedral crystals in a metavolcanic breccia enclosing a 85 

coesite-bearing eclogite body at Ganghe in Dabieshan, east-central China. The growth 86 

mechanisms of these epidote textures and their implication for a possible dynamic and 87 

non-equilibrium metamorphic process are discussed. The data presented may form part of a 88 

basis for the eventual understanding of the hosting of the Triassic coesite-bearing eclogite by 89 

the Neo-Proterozoic greenschist facies metavolcanic breccia.  90 

GEOLOGICAL SETTING AND FIELD OCCURRENCE 91 

The Ganghe locality is in central Dabieshan, known as an ultrahigh-pressure (UHP) 92 

metamorphic terrane (Zhang et al. 2009). The main rock types at Ganghe are UHP gneisses, 93 

eclogites, metagranitoid, marble, jadeite-quartzite, a suite of low-grade metamorphic rocks 94 
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(LGMRs), crosscut by late granitoid and lamprophyre dykes (Schmid et al. 2003; Guo et al. 95 

2012). The LGMRs are considered to be a part of a cover unit that was tectonically juxtaposed 96 

against the UHP gneisses of Yangtze basement (Schmid et al. 2003). Zircon dating and 97 

Sm-Nd whole-rock analysis of the LGMRs yielded an 207Pb-206Pb age of 745–802 Ma and an98 

isochron age of 790.9 ± 18.6 Ma, respectively (Dong et al. 2002). Zircon in a volcanic breccia 99 

yielded an 206Pb/238U age of 761 ± 33 Ma (Schmid et al. 2003). Both results are interpreted to100 

be the protolith age. Whole-rock oxygen isotope analysis shows that they have a low δ18O101 

range of −0.4‰ to 4.6‰, suggesting meteoric-hydrothermal alteration prior to metamorphism 102 

(Zhou et al. 2001; Zheng et al. 2003). The protolith ages and oxygen isotope characteristics of 103 

the LGMRs are generally comparable with those of UHP metamorphic rocks, with which they 104 

together form an integral part of the Dabie orogen (Zheng et al. 2005). 105 

The epidote textures described here are observed in one type of the LGMRs, a greenschist 106 

facies metavolcanic breccia. The rock is well exposed with a foliation dipping 25° to 45° 107 

toward 105° to 145° in a length of about 40 m near the Ganghe Bridge. It is separated from a 108 

nearby granitic gneiss by a shear zone and is intruded by several unmetamorphosed 109 

lamprophyre dykes. A thin wedge-shaped coesite-bearing eclogite body (7 m × 50 cm) is 110 

enclosed in the metavolcanic breccia (Fig. 1a). The eclogite body shows increasing 111 

retrogression outward from fresh eclogite in the core to biotite-epidote-amphibolite and then 112 

to a schistose layer (<5 cm) of biotite + epidote + plagioclase + quartz at the contact with the 113 

metavolcanic breccia. The foliation in the retrogressed eclogite is in accordance with that of 114 

the enclosing metavolcanic breccia.  115 

PETROGRAPHY 116 

The host rock 117 
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The metavolcanic breccia contains both crystal and lithic fragments (>60 vol%) immersed 118 

in a fine-grained matrix (Fig. 1b). The foliation of the breccia is defined by oriented phengite 119 

flakes which wraps around the slightly elongated volcanic fragments. The matrix (grain size 120 

generally <100 μm) is composed of quartz, plagioclase, phengite, K-feldspar, epidote, Fe-Ti 121 

oxide, with minor biotite, garnet, chlorite, titanite and apatite. The crystal fragments are 122 

quartz (1 mm–1 cm), plagioclase (generally >1 mm) and hematite (1–5 mm). The quartz 123 

fragments consist of fine-grained (<100–500 μm) polygonal quartz aggregates. Plagioclase 124 

fragments are pseudomorphosed by Na-Pl + Ep + Ph ± Kfs ± Qz (mineral abbreviations after 125 

Whitney and Evans, 2010). In the plagioclase pseudomorphs some grains of phengite and 126 

epidote appear acicular. Skeletal garnet is frequently observed where hematite is present 127 

nearby. Some of the plagioclase fragments are partially replaced along their grain boundaries 128 

and fractures by a more Na-rich and fine-grained plagioclase or K-feldspar. Hematite 129 

fragments are commonly altered to rutile and/or titanite and are surrounded by garnet coronas. 130 

Oriented lamellae are frequently observed in hematite fragments. 131 

The lithic fragments are angular to subround with their longest dimension in the range of 132 

<5 mm to 8 cm (Fig. 1b). They are subround, irregularly-shaped or elongated, commonly 133 

oriented to the foliation. The most common type of lithic fragments is albitophyre, whose 134 

porphyritic texture can well be recognized despite the metamorphic alteration. The 135 

phenocrysts (plagioclase, quartz and hematite) are replaced as in the case of crystal fragments. 136 

The cryptocrystalline matrix of the albitophyre fragment is composed of plagioclase, quartz 137 

and hematite, with minor amounts of phengite, K-feldspar, epidote (often with small REE-rich 138 

cores), garnet, titanite and apatite. Some lithic fragments consist entirely of fine-grained 139 

(<100 μm) minerals and are relatively rich in plagioclase, K-feldspar, Fe-Ti oxide or quartz 140 
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compared with the matrix. Some fragments (1 mm–2 cm) rich in fine-grained phengite and 

epidote are heterogeneously distributed in the matrix (Fig. 1c). Fine-grained aggregates of 

REE-rich epidote + apatite are occasionally found in the matrix. In places, epidote is observed 

in fine-grained plagioclase and/or quartz aggregates. 

The epidote textures 

The description of the epidote textures below is based on photomicrographs (Figs. 2a and 

2f) and backscattered electron images from a field emission scanning electron microscope 

(other images in Fig. 2, and Figs. 1c and 3). Epidote spherulites are observed both in the 

matrix and in the lithic fragments, which is formed by fine-grained (<100 μm) garnet, 

phengite, biotite, plagioclase, K-feldspar, epidote, quartz and Fe-Ti oxide. The spherulites are 

commonly fan-shaped (Figs. 2a, 2b, 2d and 2e), some having irregular shapes (Fig. 2c). Their 

sizes range from 20 μm × 20 μm to 200 μm × 400 μm. They consist of radiating brighter 

REE-rich epidote fibers, with the spaces in between filled by darker REE-poor epidote (Figs. 

2b–2e). The fibers in the spherulites show extinctions at slightly different angles and in places 

display sweeping extinctions (Fig. 2a). Some of the spherulites include or emanate from 

quartz and relatively coarser REE-poor epidote grains (Figs. 2b, 2d, 3b, 3d, S1a and S1b). The 

width of the epidote fibers is variable from one spherulite to another (e.g., ~5 μm in Fig. 2d 

and <2 μm in Figs. 2e and S1c) and within a single spherulite, in which they are coarser in the 

core and become increasingly finer outward (Figs. 2b, 2d and S1b). The fibers branch outward, 

with new fibers splitting from a parent fiber (Figs. 2e and S1c). In some cases, finer epidote 

fibers grew nearly perpendicular to the thicker ones, forming a feathery dendrite-like texture 

(lower part of Fig. 3d, enlarged in Fig. S1d). Relatively coarse grains of epidote, K-feldspar 

and quartz and fine rounded particles of hematite and zircon are found to be included in the 163 
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spherulites (Figs. 2d, 3b, S1b and S2c). Almost all of the radiating points of the observed 164 

spherulites are characterized by randomly oriented bits of the bright epidote (REE-richer) 165 

being separated by coarser dark (REE-poorer) epidote (Figs. 2b‒2d and S1b). In one of the 166 

several epidote aggregates at a boundary between a lithic fragment and the matrix, the epidote 167 

spherulite cores appear to have broken into small bits, which are cemented by REE-poor 168 

epidote (Fig. 3d). The REE-poor epidote are further overgrown by fan-shaped epidote 169 

spherulites and dendrites in the outer parts of the texture. 170 

In many cases, the fibers of the epidote spherulites are continued by euhedral epidote laths 171 

(2 μm × 5 μm to 20 μm × 100 μm) outwards in the same directions (Figs. 2a‒2d, 3b and S1b). 172 

Similar to the spherulites, such radial epidote laths are also variable in brightness, reflecting 173 

variable REE contents (Figs. 2b‒2d, 3b and S1b). Euhedral epidote crystals (10 μm × 40 μm 174 

to 50 μm × 120 μm) also form radial aggregates around plagioclase, quartz or epidote (Figs. 175 

1c and 2f‒2h), some having minute bright dots in their cores (Fig. 2g). These aggregates 176 

occur both in the matrix and in the lithic fragments (Figs. 1c, 2g and 2h). Many of the radial 177 

epidote aggregates on the border of the fragment are cut off and only parts of them are 178 

preserved in the fragment (Fig. 1c). The epidote grains in such a texture commonly display 179 

compositional zoning, with alternating bright and dark zones mimicking the euhedral shapes 180 

of the crystals (Figs. 2g, 2h and S1b). Fine-grained garnet, phengite and biotite are commonly 181 

included in the radial epidote crystals overgrowing the spherulites (Figs. 2c and 3b). Where 182 

foliation is conspicuous, it is at large angles to or crosscut by some fibers of the epidote 183 

spherulites or the overgrowing radial euhedral epidote laths (Figs. 3a–3d and S2a–S2d). 184 

Randomly oriented individual euhedral epidote grains (3 μm × 10 μm to 100 μm × 200 μm) 185 

are scattered around the epidote spherulites and the radial epidote aggregates (Figs. 1c, 2d, 2f 186 
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and 2h), or form loose epidote clusters in the matrix (Fig. S1e). 

MINERAL COMPOSITIONS 

Epidote compositions were analyzed by using a wavelength-dispersive electron microprobe 

analyser (JEOL JXA-8100) at the State Key Laboratory for Mineral Deposits Research, 

Nanjing University. Accelerating voltage and beam current were maintained at 15 kV and 20 

nA, respectively. The electron beam diameter was 1 μm. As the accelerated electrons were 

scattered by the sample, the interaction volume between the electron beam and the sample 

(thus the sample volume analyzed) has an overall dimension somewhat larger than the ideal 

incident beam diameter. Due to this effect, the fine epidote fibers (<1–3 um) cannot be 

analyzed precisely but for each analysis only an average of the fiber and the interfibrillar 

epidote is yielded. Therefore, the chemical formulae of the analyses (e.g., No. 5 in Fig. S1a, 

No. 6 and No. 7 in Fig. S1c) are only approximations and provide lower values for the REE 

content. All standards used in the analysis are from the American National Standards Institute 

(ANSI) except for thorianite, which is from the Université de Toulouse. Amphibole is used for 

the standards of Si, Ti, Fe, Mg, Ca, Na and K. Topaz and Fe-carpholite are used for the 

standards of Al and Mn, respectively. REE-1 is used for the standard of Eu and Gd, REE-2 for 

Sm and Nd, REE-3 for La, Ce, Pr and Y, and thorianite for Th. Detection limits (1σ level) for 

the elements are: La (0.1%), Ce (0.1%), Pr (0.07%), Nd (0.06%), Sm (0.12%), Eu (0.09%), 

Gd (0.08%), Y (0.02%) and Th (0.02%). The ZAF method was applied for the matrix 

corrections. Other minerals were analyzed by an electron microprobe analyzer (JOEL-8100) 

at the Institute of Geology and Geophysics, Chinese Academy of Sciences. Analytical 

conditions are the same, except for a larger beam diameter (1–5 μm) used in some cases. 

Diopside is used for the standard of Si, Mg and Ca, rutile for Ti, hematite for Fe, bustamite 

for 

209 
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216 

Mn, albite for Na, and potassium feldspar for K. Synthetic oxides Al2O3 and Cr2O3 are used 

for the standards of Al and Cr, respectively. All standards are from SPI Supplies  except for 

potassium feldspar, which is from P&H Developments Ltd. Detection limits (1σ level) for the 

elements are: Si (0.01%), Ti (0.015%), Al (0.01%), Cr (0.015%), Fe (0.015%), Mn (0.01%), 

Ni (0.02%), Mg (0.01%), Ca (0.01%), Na (0.01%) and K (0.01%). Mineral formulae were 

calculated assuming stoichiometry and charge balance and the Fe3+/Fe2+ ratios were estimated 

according to Droop (1987). 

Epidote  217 

The structural formula of the epidote-group minerals can be expressed by A2M3Si3O12(OH) 218 

(Dollase 1971), in which A = Ca, Sr, Pb2+, Mn2+, Th, REE3+ and U, and M = Al, Fe3+, Fe2+,219 

Mn3+, Mn2+, Mg, Cr3+ and V3+ (Deer et al, 1986). The main cations in the epidote analyzed 220 

here are Ca, REE, Mn2+, Al, Fe2+, Fe3+, Mg and Si, among which Ca, Mn2+ and REE are 221 

assigned to the A sites, and Al, Mg, Fe2+ and Fe3+ are assigned to the M sites. The substitution 222 

of Ca by REE on the A sites is charge balanced by equal amounts of substitution of trivalent 223 

cations (Al, Fe3+) by divalent cations (Fe2+, Mg) on the M sites, expressed as the exchange 224 

vector REE(Mg, Fe2+)Ca−1(Fe3+, Al)−1. The sums of the cations on the A sites of several225 

analyses are slightly less than 2 (Table 1), probably caused by the presence of minor amounts 226 

of other elements not analyzed (e.g., Sr, Pb and U) on the A sites. The REE-Al diagram shows 227 

that the epidote analyses are variable in allanite component (Fig. 4). The term epidote is used 228 

here in a broad sense. 229 

The epidote crystals in different textures have variable concentrations of REE, which is 230 

dominated by La, Ce, Pr, Nd, Sm, Eu and Gd, with minor amount of Y detected in some cases 231 

(Fig. 4; Table 1). The ThO2 contents in all of the analyses are below detection limit and are 232 
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omitted in Table 1. The analyses of the REE-rich fibrous epidote in the spherulites are 233 

represented by (Ca1.56–1.82Na0.00–0.01REE0.13–0.36Mn0.03–0.06)(Mg0.01–0.05Fe2+
0.14–0.36Fe3+

0.53–234 

0.71Al2.03–2.25)Si2.98–3.02Ti0.00–0.01O12(OH). The relatively wide interfibrillar epidote in the 235 

spherulites is lower in REE content ((Ca1.84–1.96REE0.02–0.10Mn0.02–0.06)(Mg0.00–0.01Fe2+
0.00–236 

0.14Fe3+
0.64–0.77Al2.13–2.23)Si2.99–3.03O12(OH)), accompanied by lower Mg and Fe2+ and higher Ca237 

and Fe3+ contents (Table 1). The round epidote inclusions in the center of the spherulites are238 

similar in REE contents with the interfibrillar epidote. 239 

The euhedral epidote overgrowing the spherulites is similar in Al content to the 240 

interfibrillar epidote but is lower in REE and Fe2+ and higher in Ca and Fe3+ contents ((Ca1.90–241 

1.99REE0.01–0.05Mn0.01–0.06)(Mg0.00–0.01Fe2+
0.00–0.05Fe3+

0.75–0.85Al2.13–2.25)Si2.97–3.02O12(OH), Fig. 4).242 

The darker euhedral epidote in the radial aggregates is poor in REE and shows slight 243 

variations in Fe3+/(Fe3+ + Al) ratio from 0.25 to 0.28 (Figs. 2h and 4; Table 1). The epidote244 

displaying oscillatory zoning in the radial euhedral crystal aggregates is variable in REE 245 

content ((Ca1.38–1.90Na0.00–0.02REE0.01–0.44Mn0.03–0.11)(Mg0.00–0.07Fe2+
0.00–0.34Fe3+

0.43–0.75Al2.06–246 

2.27)Si3.00–3.02Ti0.00–0.01O12(OH)), from negligible in the dark zones to about 0.44 cations per 247 

formula unit in some of the bright zones (Figs. 2g and 4; Table 1). The randomly oriented 248 

individual euhedral epidote grains have the similar range in Fe3+/(Fe3+ + Al) ratio with the249 

REE-poor epidote grains in the radial euhedral epidote (Table 1). 250 

Other minerals 251 

Garnet is variable but generally high in spessartine (15–50 mol%) and low in pyrope (2–8 252 

mol%), with variable proportions of grossular and almandine (Prp2–8Alm31–59Grs10–45Sps15–50, 253 

Table 2). Garnet composition is variable in the same texture and its compositional ranges for 254 

different textures are overlapped. The dark rims of the plagioclase are albite-rich (Ab = 95–98 255 
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mol%) while its interior and the plagioclase in other textures are oligoclase (Ab = 83–92 256 

mol%). K-feldspar is low in anorthite (<1 mol%) and albite (3–7 mol%) contents. The Si 257 

content in phengite ranges from 3.14 to 3.28, with a Fe2+/Mg ratio varying from 1.5 to 2.3258 

(Table 2). Biotite has a Fe2+/Mg ratio from 0.8 to 1.2 and an Al content from 1.30 to 1.42. The259 

coarse hematite fragments (Hem64–85Ilm15–31Pph0.5–3) are poorer in pyrophanite content and 260 

richer in hematite content compared with the oriented lamellae (Hem0–5Ilm43–52Pph47–53) in 261 

them. Fine-grained hematite in the matrix is close to end-member composition (Hem80–262 

100Ilm0–20Pph0–3). 263 

P-T-H2O ESTIMATES264 

The P-T-H2O estimates were carried out by thermodynamic calculations using 265 

THERMOCALC (Powell et al. 1998) and an internally consistent thermodynamic dataset 266 

(Holland and Powell 2011). The thermodynamic models of relevant minerals are as follows: 267 

garnet (White et al. 2007), clinopyroxene (Green et al. 2007), amphibole (Diener et al. 2007), 268 

epidote (Holland and Powell 1998), feldspars (Holland and Powell 2003), biotite (White et al. 269 

2007), and muscovite (Coggon and Holland 2002). Quartz, kyanite and lawsonite are taken to 270 

be pure phases. Two approaches are used to constrain the P-T-H2O conditions of the 271 

equilibrium assemblages. The first one is thermobarometry for the matrix assemblage of the 272 

metavolcanic breccia (Pl + Ph + Kfs + Ep + Bt + Grt + Hem + Sph + Qz, mineral 273 

compositions in Table 2). To avoid the problem of uncertainty in fluid composition, the 274 

equilibria used involve only the solid phases. Only a set of linearly independent equilibria is 275 

selected for the thermobarometry, according to their dependence on pressure and temperature. 276 

The intersections of the selected equilibria yield P-T estimates of 5.5–6 kbar and 475–485 °C 277 

(Fig. 5a). The oxygen fugacity for this matrix assemblage was estimated through the 278 
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intersections of the O2-bearing equilibria in a T-log10(fO2) diagram (P = 6 kbar), which yield 279 

the log10(fO2) ranging from −22.7 to −22.4 (Fig. 5b). 280 

Another approach used is phase diagram modeling of the plagioclase pseudomorphs, which 281 

appear to contain equilibrium assemblages (Pl + Ph + Ep ± Kfs ± Qz). Garnet is not 282 

considered for this assemblage because it is closely associated with hematite inclusions in the 283 

plagioclase pseudomorphs. To take into account the compositions of all the minerals 284 

constituting the plagioclase pseudomorphs, the model system was chosen to be 285 

Na2O-CaO-K2O-FeO-MgO-Al2O3-SiO2-H2O-Fe2O3 (NCKFMASHO). The bulk composition 286 

used by THERMOCALC is estimated by using the relationship for each oxide: 287 
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where M(RmOn) is the molar percentage of the oxide RmOn in the bulk composition, pi is the 289 

molar percentage of mineral i in the rock sample, xij is the mole fraction of the end-member j 290 

in the mineral i calculated using the mineral composition data (Table 3), Cj(RmOn) is the 291 

stoichiometric coefficient of the oxide RmOn in the end-member j, k is the number of minerals 292 

considered and l is the number of end-members in the mineral i. The pi is calculated by: 293 
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where vi is the volume percentage of mineral i in the rock sample, Vi is the molar volume of i 295 

and is estimated by: 296 
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where Vij is the molar volume of the end-member j in the mineral i. The standard state molar 298 

volumes of the mineral end-members from Holland and Powell (2011) are used to 299 
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approximate Vij, which are in reality not constants but are functions of P and T. For each 300 

mineral, vi is approximated by the area proportions occupied by the mineral on the 301 

backscattered electron (BSE) images of the plagioclase pseudomorphs. This method for 302 

estimating bulk composition is essentially the same as that of Lanari and Engi (2017) and 303 

Centrella et al (2018), who use weight percentages instead of molar percentages. 304 

The average area proportions of the minerals in the plagioclase pseudomorphs are: Pl = 305 

75.7%, Kfs = 10.6%, Ph = 8.7%, Ep = 3.8% and Qz = 1.2%. With these data and the 306 

relationships given above the bulk composition is estimated to be (in mol%): SiO2=70.20, 307 

Al2O3=14.78, CaO=3.03, MgO=0.31, FeO=0.98, K2O=2.03, Na2O=8.40, and Fe2O3=0.22. 308 

The phase diagram calculated using this bulk composition contains biotite in addition to the 309 

observed minerals in the plagioclase pseudomorphs. Also, the calculated plagioclase 310 

composition is somewhat richer in albite component compared with the observed plagioclase 311 

composition. To reproduce the observed assemblage and plagioclase composition, the bulk 312 

composition was slightly adjusted by adding Al2O3 and CaO and subtracting SiO2, FeO and 313 

Na2O (by less than 10% for each oxide). The final bulk composition then becomes (in mol%): 314 

SiO2=69.74, Al2O3=15.77, CaO=3.27, MgO=0.33, FeO=0.91, K2O=2.17, Na2O=7.60, and 315 

Fe2O3=0.21. Such an adjustment may be warranted in view of the several factors that affect 316 

the accuracy of the estimated composition. For example, the use of area proportions to 317 

approximate volume proportions can cause up to 17% error in the estimated bulk composition, 318 

and the limited numbers of BSE images used for image processing can also be a source of 319 

significant error in the estimation (Lanari and Engi, 2017).  320 

A P-T diagram with quartz, phengite and H2O in excess shows that the observed 321 

assemblages (Pl + Ph + Ep ± Kfs ± Qz) in the plagioclase pseudomorphs are stable in a large 322 
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P-T range of 400 °C to 650 °C and 4 kbar to 14 kbar (Fig. 5c). K-feldspar has a wide stability 323 

range in the diagram due to the fact that K2O is much higher than MgO and FeO and only a 324 

small part of K2O is combined with MgO and FeO to form phengite and biotite, with the rest 325 

amount of K2O forming K-feldspar. To investigate the H2O condition required by the stability 326 

of the assemblage, a P-M(H2O) diagram (Fig. 5d) was calculated at 450 °C. The P-M(H2O) 327 

diagram shows that the observed assemblages are confined to four adjacent regions by 328 

H2O-saturation and Kfs and Omp/Jd-absent lines (Fig. 5d). The assemblage Pl + Ph + Ep + 329 

Kfs + Qz is restricted within a very narrow region at about 5 kbar above and below the 330 

H2O-saturation line. The assemblage Pl + Ph + Ep + Qz is stable in the M(H2O) range of 4.4–331 

5.0 mol% (corresponding to 1.21–1.38 wt%) H2O.  332 

To better constrain the P-T conditions for the formation of the plagioclase pseudomorphs, 333 

mineral composition isopleths are contoured in the field of the H2O-saturated assemblage (Pl 334 

+ Ph + Ep + Qz + H2O, Fig. 5c). The isopleth value of anorthite in plagioclase (XAn) increases335 

with both temperature and pressure. The isopleth value of Si in phengite changes in a similar 336 

way to anorthite, while the isopleth of paragonite in phengite (XPg) is nearly parallel to the 337 

pressure axis. The stability of the assemblage is more sensitive to pressure than temperature. 338 

Therefore, the isopleths of anorthite in plagioclase and paragonite in phengite are chosen to 339 

make the P-T estimation. The majority of the plagioclase and phengite analyses are in the XAn 340 

range of 0.08–0.10 and the XPg range of 0.034–0.040 (Table 3), corresponding to a P-T range 341 

of 5–7 kbar and 435–515 °C (shaded quadrilateral, Fig. 5c). A few plagioclase analyses have 342 

XAn above 0.12 and/or XPg below 0.03, which are plotted outside of the stability field of the 343 

assemblage. The P-T estimates by thermobarometry and phase diagram modeling are broadly 344 

consistent, both pointing to greenschist facies metamorphism. 345 
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DISCUSSION 346 

Possible origin of the radial epidote aggregates 347 

Natural spherulites are thus far mostly found in igneous and sedimentary rocks. They are 348 

considered to have crystallized from supercooling/supersaturated melts, glasses or solutions. 349 

Spherulites are also described or mentioned in some metamorphic rocks, although their origin 350 

and petrological significance has barely been addressed. For the radial epidote aggregates 351 

(spherulites and radial euhedral epidote aggregates) in the metavolcanic breccia studied here, 352 

four different origins are considered. These include: crystallization from (a) volcanic melts or 353 

glasses or post-volcanic hydrothermal fluids; (b) shock-induced amorphous materials; (c) 354 

solute-rich metamorphic fluid; (d) fluid-mediated metamorphic reactions. 355 

Crystallization from volcanic melts or glasses or post-volcanic hydrothermal fluids. 356 

Volcanic spherulites generally have compositions similar to those of their bulk rocks. For 357 

example, the spherulites crystallized from supercooling rhyolitic melts are generally 358 

composed of SiO2 polymorphs, sodic plagioclase and alkali feldspar (e.g., Castro et al. 2008; 359 

Watkins et al. 2009; Befus et al. 2015), those crystallized from supercooling basaltic melts are 360 

generally composed of olivine, pyroxene and calcic plagioclase (e.g., Lofgren 1971a; 361 

Monecke et al. 2004; Soule et al. 2006). The fact that the composition of the epidote 362 

spherulites is incompatible to the felsic bulk composition of the host volcanic breccia 363 

indicates that the epidote spherulites did not crystallize from the volcanic melt or glass. 364 

Melinger-Cohen et al. (2015) describe epidote spherulites and radial euhedral epidote 365 

aggregates forming two distinct zones in amygdules in a basalt from northern Michigan and 366 

suggest that they crystallized from a hydrothermal fluid during cooling of the rock. 367 

Spherulites crystallized from post-volcanic hydrothermal fluid forming amygdules are close 368 
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(see below for definition of close and open spherulites), round in shape, and have sharp 369 

smooth boundaries. In contrast, the spherulites reported in the present study are more open 370 

(wider interfibrillar areas), variable in shape, and have irregular boundaries. The 371 

crystallization of spherulites filling vesicles starts from the walls of the pore spaces, whereas 372 

in the present case the REE-rich epidote fibers emanate from the centers of the spherulites.  373 

Almost all the epidote spherulites reported here are fragmented and cemented by REE-poor 374 

epidote (Figs. 2b‒2d, 3b, 3d and S1b). However, the radially overgrowing epidote laths and 375 

euhedral crystals are not fragmented except for those on border of the lithic fragments (Fig. 376 

1c). In some cases, metamorphic minerals (phengite, garnet, biotite, and hematite) are 377 

included in the overgrowing zones. The inclusion minerals are all found as coarser grains in 378 

the surrounding matrix (Figs. 2b‒2d, 3b and S1b). Some epidote fibers and overgrowing 379 

radial epidote laths are oriented at large angles to or crosscut the foliation (Figs. 3a–3d and 380 

S2a–S2d). In Fig. 3b, for example, the foliation formed by oriented phengite, biotite and 381 

hematite grains does not affect the shapes of the epidote fibers and laths but instead are 382 

stopped or indented by the epidote laths. These observations indicate that brittle deformation 383 

occurred after the formation of the epidote spherulites, but before the radiating overgrowth of 384 

the epidote laths and euhedral crystals.  385 

The radial euhedral epidote aggregates occur both in the fragments and in the matrix of the 386 

breccia (Fig. 1c). Those on the border of a fragment are cut off and only parts of them are left 387 

(Fig. 1c), suggesting that they formed both before and after brecciation. Therefore, the 388 

brecciation was more likely tectonic and occurred during greenschist facies metamorphism, 389 

long after the volcanic brecciation. Some of the radial euhedral epidote aggregates contain 390 

bright bits of REE-rich epidote in their cores, suggesting growth on fragmented spherulites. 391 
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Epidote in such a texture in places includes biotite and hematite and indent phengite and 392 

biotite (Figs. 2g and 2h), indicating that they grew over the metamorphic mica. 393 

To conclude, the radial euhedral epidote aggregates, in places overgrowing the epidote 394 

spherulites, are certainly of metamorphic origin. The epidote spherulites are likely also 395 

metamorphic. Similar epidote textures were described elsewhere in low grade metamorphic 396 

rocks (Misch, 1965; Van Staal et al. 1990).  397 

Crystallization from shock-induced amorphous materials. Analogous to the 398 

devitrification of supercooling volcanic glasses, it is possible to form spherulites from glasses 399 

of other origins. Non-equilibrium textures formed by metamorphic microlites (e.g., spherulitic, 400 

dendritic, skeletal, acicular and poikilitic crystals) in variably eclogitized granulites and 401 

gabbros are suggested to have formed in seismic events (Austrheim and Boundy 1994; 402 

Austrheim and Anderson 2004; John and Schenk 2006; Yang et al. 2014a, 2014b, 2017; 403 

Putnis et al. 2017). In the metavolcanic breccia studied here, the epidote spherulites, the fine 404 

grains of metamorphic minerals in the plagioclase pseudomorphs, and the skeletal garnet may 405 

be considered to be microlites. The volcaniclastic fabric is preserved although the igneous 406 

minerals are replaced by metamorphic minerals. This is in accordance with shock 407 

metamorphism, in which the original fabric of the protolith is generally preserved (Feldman 408 

1994; Yang et al. 2017). Epidote spherulites of similar size to the ones studied here are 409 

observed in eclogite facies pseudotachylytes (Austrheim & Andersen, 2004; Petley-Ragan et 410 

al., 2018). It is possible, therefore, that the epidote spherulites in the metavolcanic breccia 411 

crystallized from amorphous materials produced by a seismic event (Su et al. 2006; Nakamura 412 

et al. 2015; Yang et al. 2017). The materials needed for the crystallization of epidote may be 413 

from the igneous Ca-rich plagioclase and Fe-bearing minerals, such as biotite and hematite, in 414 
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addition to fluid. 415 

Crystallization from a solute-rich metamorphic fluid. The local presence of epidote in 416 

the anhydrous quartz and feldspar aggregates in the Ganghe metavolcanic breccia may 417 

suggest that they crystallized directly from an infiltrating metamorphic solute-rich hot fluid 418 

phase. However, the fact that no apparent fluid conduit is observed around the epidote 419 

spherulites does not imply a large scaled fluid infiltration. These epidote spherulites are also 420 

unrelated to open fluid-filled pores or cavities, suggesting that the fluid migration was rather 421 

local and at a very small scale, possibly along grain boundaries. The sporadic occurrence of 422 

the radial epidote aggregates also implies that their crystallization was unrelated to 423 

widespread fluid ingress. Based on mineral proportions and their H2O contents, the H2O 424 

content in the phengite dominated fragment containing several radial epidote aggregates (80 425 

vol% Ph + 9 vol% Ep + 10 vol% Pl + 1 vol% Grt) is estimated to be about 3.7 wt% (Fig. 1c). 426 

The H2O content in the plagioclase pseudomorphs ranges from 0.2 wt% to 1.7 wt%, with the 427 

proportions of phengite and epidote varying from about 35 vol% and 5 vol% to about 3 vol% 428 

and 2 vol%, respectively. The nearly anhydrous aggregates dominated by K-feldspar, 429 

plagioclase, and quartz contain very small proportions of hydrous minerals (epidote <5 vol% 430 

and phengite <5 vol%) and <0.4 wt% of H2O. The variable degrees of H2O-saturation in 431 

different textural domains are inconsistent with large scaled H2O saturated regional 432 

metamorphism. The sharp boundaries and the lack of prevailing reaction products between the 433 

fragments and the matrix suggest that pervasively fluid-rich conditions were not attained and 434 

the transport distances of materials were small, for otherwise the boundaries between the 435 

fragments and the matrix would have been obliterated (Etheridge et al. 1983; Walther and 436 

Wood 1984). However, if the crystallization was in a very brief metamorphic event (see 437 
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discussion below), it may be envisioned that some small domains or grain boundaries in the 438 

rock may be transiently H2O-rich, such that H2O-saturated assemblages were produced locally 439 

(Fig. 5d) (Rubie 1986).  440 

The REE-rich epidote + apatite ± thorite assemblages are interpreted to be the breakdown 441 

product of igneous monazite during metamorphism (Finger et al. 1998). The REE-rich epidote 442 

+ apatite aggregates are occasionally found in the matrix of the metavolcanic breccia at443 

Ganghe. Therefore, the REE for the formation of the epidote spherulites may have derived 444 

internally in the rock, via the breakdown of the REE-bearing igneous minerals such as 445 

monazite and plagioclase. However, the possibility that the REE were introduced by the fluids 446 

cannot be excluded. A quantitative evaluation of gains or losses of the REE during the 447 

fluid-rock interactions requires mass balance calculations by using the whole-rock REE 448 

contents of variably altered rocks (Ague, 2017; Centrella et al. 2016). This approach, however, 449 

is not attempted in the present case because the differently altered samples of the 450 

metavolcanic breccia needed for the calculations are not identified in the field. 451 

Crystallization from fluid-mediated metamorphic reactions. The highly 452 

non-equilibrium nature of spherulites may have formed through significantly overstepped 453 

metamorphic reactions. Reaction overstepping may be related to delayed nucleation due to 454 

sluggish crystallization kinetics caused by slow diffusion rate, deficiency of fluid, or absence 455 

of deformation (Ridley and Thompson 1986; Wilbur and Ague 2006; Austrheim 2013). 456 

Overstepped reactions may be triggered by infiltration of fluid that facilitates the component 457 

diffusion. In such a case, the crystallization conditions can be highly non-equilibrium and the 458 

compositional gradients around the growing crystal are large. The reaction rate can be fast due 459 

to a large free energy change (Rubie 1998). Such a mechanism was proposed to interpret the 460 
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radial texture of fibrous or dendritic garnet cores overgrown by euhedral garnet rims in some 461 

greenschist facies to amphibolite facies metamorphic rocks (Wilbur and Ague 2006). The 462 

overstepping of garnet-forming reactions was suggested to be caused by hindered garnet 463 

nucleation, related to the refractory nature of reactant spinel and product garnet. In the case of 464 

Ganghe, the growth of the radial epidote crystals around preexisting minerals indicates 465 

delayed nucleation. The overstepping of a reaction can be due to deviations of P, T or 466 

composition from the equilibrium state (Pattison et al. 2011). A P-T-fluid pulse, for example, 467 

may cause a hydration reaction to take place in a non-equilibrium manner (see below). 468 

As is discussed below, for any of the above mentioned origins for the formation of the 469 

epidote spherulites to be realistic, it is necessary to involve a transient change of P, T, and/or 470 

fluid conditions resulting in overstepping of the REE-rich epidote-forming reactions and 471 

restoring back quickly to the original conditions, such that the highly non-equilibrium epidote 472 

textures could have formed and preserved.  473 

Kinetics of epidote crystallization in the different textures 474 

The epidote spherulites. Lofgren (1974) defined spherulites with interfibrillar areas filled 475 

by visible melt and foreign material to be open spherulites and those with tightly interwoven 476 

fibers to be closed. He also distinguished coarse and fine spherulites by a fiber thickness of 3–477 

5 μm. The epidote spherulites described here consist of REE-rich epidote fibers of <3–5 μm 478 

and visible interfibrillar REE-poor epidote (Figs. 2b–2e). They are thus considered to be open 479 

and fine spherulites.  480 

Considering thermodynamics, a large driving force (Gibbs free energy change) is 481 

necessary for the crystallization of spherulites (e.g., Sunagawa 1999; Oaki and Imai 2003; 482 

Jones 2017). From kinetics point of view, the ratio of the diffusion rate (D) to the crystal 483 
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growth rate (G) is a controlling factor of the crystal shape (Lofgren 1980; Kirkpatrick 1981). 484 

The spherulitic crystal form is favourably developed at small D/G values (Keith and Padden 485 

1963; Lofgren 1974; Donaldson 1976; Corrigan 1982; Baker and Freda 2001). When the 486 

diffusion rate is much slower than the growth rate, the components rejected by the growing 487 

crystal (impurities) are concentrated around the interface while the components required by 488 

the growing crystal (nutrients) are depleted around the interface. Volumes away from the 489 

growing crystal interface featured by more nutrients and less impurities are the only possible 490 

places for further crystal growth and spiky interfaces are favourable for continuous growth 491 

(Keith and Padden 1963; Lofgren 1971a). Thus the resultant crystal shape is a collection of 492 

spikes around a growth center, forming spherulitic or dendritic shapes. 493 

The temperature dependence of REE partitioning behavior of the epidote-group minerals 494 

suggests that the REE-rich epidote crystallizes at a higher temperature than the REE-poor 495 

epidote (Frei et al. 2003). During the spherulite formation, LREE, Mg and Fe2+ were496 

preferentially incorporated into the epidote fibers leaving Al and Fe3+ for the later formation497 

of the interfibrillar epidote. This compositional variation implies that the REE-rich epidote 498 

fibers and REE-poor interfibrillar epidote crystallized successively in a cooling process.  499 

The growth of the epidote spherulites in the metavolcanic breccia at Ganghe likely occurred 500 

at a low D/G value under a high degree of supersaturation, far from equilibrium. The 501 

epidote-forming reaction may be written involving the observed minerals in the textures and 502 

surrounding areas as: 503 

Pl + Kfs + Bt + Qz + Fluid → Ep + Ph + Grt  (1) 504 

From this it can be inferred that the reaction occurred via dissolution of the reactants and 505 

precipitation of the products, and that the rate-controlling step was likely the diffusion rate of 506 
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Al in the fluid. The growth rate (G) and D/G ratio are estimated by using the relationship 507 

(Walther and Wood 1984; Rubie 1986): 508 

r2 ΔVDCδτ GG
RTdx

  (2) 509 

where V is the molar volume of epidote and ∆Gr is the Gibbs free energy change for the510 

epidote-forming reaction (cf. Fig. 6a) calculated using the thermodynamic dataset of Holland 511 

and Powell (2011) and the activities of the mineral end-members and a reduced H2O activity 512 

(assumed to be 0.5), which is needed in order that the reaction is intersected by the P-T path; 513 

d is the final average grain diameter of the epidote spherulites (here taken to be 100 μm), x is 514 

the radius of the growing epidote spherulites. The crystal nucleus radius at the initial time of 515 

crystallization assumed to be 1 nm (Rubie 1986). R is the gas constant and T is the initial 516 

crystallization temperature in K. Following Walther and Wood (1984), it is assumed that the 517 

grain boundary diffusion coefficient of Al (D) under H2O-saturated conditions is 10−16 m2·s−1; 518 

the concentration of Al (C) is 3.0×104 mol·m−3, the thickness of the grain boundary (δ) is 100 519 

nm, and the constant accounting for the non-linear path of the component (τ) is 0.7. 520 

In this scenario, the estimated P-T conditions (Figs. 5a–5c) for the matrix assemblage 521 

represent the ambient P-T rather than the P-T spike for the crystallization of the epidote 522 

spherulites. Quantitative P-T estimates for the spherulites are difficult to make. In view of the 523 

presence of Na-plagioclase and absence of omphacite in the rock, a pressure increase to the 524 

average pressure between reaction (3) and the reaction Jd + Qz = Ab (about 11 kbar) and an 525 

associated slight increase in temperature to 520 ºC are assumed for this P-T evolution of the 526 

epidote spherulites (Fig. 6a). Based on the above assumptions the initial growth rate of the 527 

epidote spherulites is calculated to be about 2.7×10−9 m·s−1. The ratio D/G is then 3.8×10−8 m,528 
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a very small value as expected for the growth of spherulites. The uncertainties in these 529 

estimates mainly come from the uncertainty of diffusion rate. The G varies sympathetically 530 

with D by the same order of magnitude. Although the P-T path for the spherulites is poorly 531 

constrained (Fig. 6a), the uncertainty arisen from it is much smaller. For example, if the P-T 532 

pulse is assumed to have reached lower values of 7 kbar and 490 °C, the initial G and the D/G 533 

ratio are estimated to be 3.1×10−10 m·s−1 and 3.2×10−7 m, respectively, also very small values534 

for the preferential growth of spherulites.  535 

The epidote-forming reaction (Fig. 6a) used in the above estimation of growth rate does 536 

not involve the REE components in the epidote spherulites, which cannot be taken into 537 

account due to the lack of thermodynamic data for the REE-bearing epidote end-members and 538 

fluid. This and the assumption of H2O activity equal to 0.5 add uncertainties in the calculated 539 

∆Gr and growth rate. Given the highly non-equilibrium and diffusion-controlled nature of 540 

crystallization, it is assumed that the epidote spherulites began to crystallize when −∆Gr 541 

exceeded 0.4RT, below which the crystallization is considered to be very close to equilibrium 542 

and the crystal growth is interface-controlled (Walther and Wood 1984; Rubie, 1986). With 543 

this lowest −∆Gr, a conservative initial G and a corresponding high D/G are then estimated to 544 

be 2.5×10−10 m·s−1 and 4.2×10−7 m, respectively. These estimates are independent of the545 

positions of the reaction in Fig. 6a and the P-T path. Therefore, the conclusion that the initial 546 

growth rate was large and the growth was diffusion-controlled is unchanged despite the large 547 

uncertainties involved in the estimation. In view of the fibrous feature of the epidote crystals, 548 

the above estimation of growth rate is again conservative because the collection of radiating 549 

fibers and interfibrillar crystals is approximated by a solid sphere.  550 

The radial euhedral epidote aggregates. The radial euhedral epidote aggregates growing 551 
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on the spherulites or preexisting minerals represent a new stage of epidote crystallization 552 

(Figs. 2a–2d, 3b and S1b). A similar change of epidote growth texture was described in a 553 

basalt (Melinger-Cohen et al. 2015), in which epidote spherulites and radial euhedral crystal 554 

aggregates form two separate zones in amygdules. These two zones are interpreted to have 555 

formed during two distinct stages of hydrothermal metamorphism corresponding to changes 556 

of the degree of supersaturation or supercooling (Melinger-Cohen et al. 2015). Misch (1965) 557 

described epidote glomeroblasts in a suit of crossite and actinolitic schists and distinguished 558 

three continuous crystallization stages according to epidote texture. The texture changes from 559 

radial fibrous crystal aggregates through radially arranged tapering crystals to granoblastic 560 

mosaics of lumpy grains. Misch (1965) noted that the number of crystals in a given 561 

glomeroblast progressively decreased and the epidote grains evolved toward a single 562 

porphyroblast.  563 

Such a change of texture was also produced in experimental crystallization of aromatic 564 

hydrocarbon melt, in which spherulites formed at a supercooling of 59 °C were overgrown by 565 

radial euhedral crystals at a supercooling of 9 °C (Magill and Plazek 1967). Monte Carlo 566 

simulations suggest that the change of garnet texture in a metapelite and a metaultramafic 567 

rock from dendritic or spherulitic cores to euhedral rims corresponds to decreases in the 568 

degree of supersaturation (Wilbur and Ague 2006).  569 

The above natural and experimental observations imply that the radial euhedral crystal 570 

aggregates should grow at a degree of supersaturation/supercooling that is lower than that 571 

required by the growth of spherulites but higher than that of the single euhedral crystals. 572 

Therefore, the radial euhedral epidote aggregates is also a texture formed in a process 573 

significantly far from equilibrium. The change of crystal size and shape from fine and fibrous 574 
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to coarse and euhedral corresponds to a significant drop of the supersaturation and an 575 

increased D/G ratio. Such a texture may be explained by assuming that D is comparable to G, 576 

such that the nutrients and the impurities can be more effectively diffused to and away from 577 

the growing interface, and the component concentration is essentially homogeneous around 578 

the growing crystal. In this case, the crystal morphology is likely controlled by its 579 

crystallographic structure and the resultant crystal is euhedral (Vernon 2004). The radiation of 580 

the crystals from preexisting minerals implies a low nucleation rate.  581 

The individual euhedral epidote crystals. The individual euhedral epidote crystals 582 

clustering around the radial epidote aggregates (Figs. 1c, 2d, 2h and S1e) represent a final 583 

stage of epidote crystallization. As shown by the experimental studies, polyhedral crystals are 584 

produced with a small degree of supersaturation, slightly deviated from equilibrium state 585 

(Lofgren 1974; Donaldson 1976; Fenn 1977; Oaki and Imai 2003). A low degree of 586 

supersaturation sufficient to surmount the nucleation energy barrier for the formation of stable 587 

crystal nuclei is required for the crystallization of these euhedral epidote grains (Vernon 2004). 588 

Therefore, the individual epidote crystals around the epidote spherulites should have 589 

crystallized at near equilibrium conditions upon a further decrease in supersaturation and a 590 

further increase in the D/G ratio. 591 

IMPLICATIONS 592 

The fibrous crystals in the spherulites having relatively large interfacial energies would 593 

recrystallize to adjust their shapes to equilibrium forms with low interfacial energies in a 594 

protracted process. Such morphological adjustments of spherulites were observed in 595 

experiments in which fibrous quartz and feldspar crystals growing from devitrified rhyolitic 596 

glasses have locally recrystallized into an aggregate of fine equant grains (Lofgren 1971b). 597 
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Lofgren (1971b) envisioned that if the devitrification proceeds completely, a granophyric or 598 

granitic texture forms without preservation of glassy precursors or spherulitic textures. In the 599 

experiments of ammonium compound crystallization, dendritic ammonium thiocyanate 600 

crystals formed in the initial stage of crystallization gradually changed into coarse-grained 601 

euhedral crystals with prolonged crystallization time (1–50 h) under essentially constant 602 

conditions (Means and Park 1994; Mills et al. 2011). The morphology of zirconia crystallized 603 

from mixed solution of zirconium oxychloride and H2SO4 was primarily spherulitic in 604 

short-duration runs while it changed into isolated and coarser crystals in longer duration runs 605 

(Mottet et al. 1992). These observations mean that the non-equilibrium textures progressively 606 

evolved towards equilibrium ones and will be eventually obliterated if the crystallization 607 

conditions were kept constant for sufficient amounts of time. Thus, the preservation of the 608 

epidote spherulites is possible only if they stay away from their crystallization conditions 609 

rapidly, such as the quench processes of melts.  610 

Quantitative modeling shows that the timescales for the growth of natural spherulites in 611 

igneous rocks are on the orders of a few days or up to a few years, depending on temperature, 612 

growth rate, and the size of the spherulites (Castro et al. 2008; Watkins et al. 2009; Von 613 

Aulock et al. 2013; Bullock et al. 2017). Holding other parameters in equation (2) constant, 614 

the −∆Gr decreases and x increases as the system evolves towards equilibrium and the growth 615 

rate decreases accordingly. A minimum growth rate (5.0×10−15 m·s−1) is calculated by using616 

the conservative −∆Gr (0.4RT) with a final average spherulite radius (x = 50 m) in equation 617 

(2). This minimum growth rate is 5×104 times lower than the conservative initial growth rate618 

(2.5×10−10 m·s−1) estimated above as the final average radius of the epidote spherulites is the619 

same times larger than the assumed initial crystal nucleus. Dividing the final radius of the 620 



29 

spherulite by this minimum growth rate, an upper limit of the timescale for the spherulite 621 

growth is about 320 years. The actual timescale was likely smaller, in view of the 622 

conservative estimate of growth rate and the approximation of the spherulite by solid sphere. 623 

Therefore, the timescale for the crystallization of the epidote spherulites at Ganghe should be 624 

short and is incompatible with that of a protracted equilibrium but records a transient or 625 

dynamic process.  626 

Short-lived metamorphism (from ~100 years up to <1 Ma) associated with pulsed fluid 627 

infiltration and/or heating was inferred from chromatographic modeling (Skelton, 2011) and 628 

diffusion modeling of oxygen and lithium isotopes and cations in metamorphic minerals 629 

(Young and Rumble III 1993; Van Haren et al. 1996; Graham et al. 1998; Camacho et al. 2005; 630 

Ague and Baxter 2007; Penniston-Dorland et al. 2010; Dragovic et al. 2015; Chu et al. 2017). 631 

Based on modeling of Sr diffusion in apatite and multicomponent diffusion in garnet, Ague 632 

and Baxter (2007) envisioned pulsed metamorphism in some of the mountain building 633 

processes. From the variations of epidote texture studied here, a similarly pulsed but much 634 

more short-lived metamorphic event may be inferred for the Ganghe metavolcanic breccia 635 

(Fig. 6b).  636 

Based on the above considerations, it is suggested that the growth of epidote spherulites 637 

was due to P-T and fluid pulses followed by rapid restoring to ambient conditions. They were 638 

subjected to brittle deformation before being overgrown by the radial euhedral epidote 639 

aggregates (Figs. 2b–2d and 3b). The growth of this latter epidote texture was also a 640 

non-equilibrium process, and implies P-T and fluid pulses but a less degree of 641 

supersaturation/supercooling (Fig. 6b). If, as discussed above, their growth rate numerically 642 

equals the assumed diffusion rate of Al in a fluid (D = 10−16 m2·s−1, D/G ≈ 1 m), the timescale643 
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for the growth of 100 m epidote crystals in these aggregate is about 3.2×104 years. The644 

crystallization of the individual euhedral epidote marks the restoring again to ambient 645 

conditions.  646 

Pulsed metamorphic events are suggested to be caused by shear heating or seismic faulting 647 

(Camacho et al. 2005; Chu et al. 2017). The dynamic crystallization process responsible for 648 

the rapid formation of the non-equilibrium epidote textures studied here may also be related to 649 

seismicity (Austrheim & Andersen 2004; Petley-Ragan et al. 2018). Pseudotachylytes are 650 

reported in the LGMRs in this area of Dabieshan, providing evidence for seismic events (Liu, 651 

2002, Liu et al., 2005). The brittle deformation of the epidote spherulites (Figs. 2b–2d and 3b) 652 

and the fragmentation of the radial euhedral epidote aggregates (Figs. 1c and 2g) imply 653 

repeated tectonic brecciation in the metavolcanic breccia. The occurrence of the radial epidote 654 

aggregates both in the fragments and in the matrix implies repeated growth of the textures. 655 

The seismicity might have induced stress and fluid pulses in the wallrock (Sibson et al. 1975), 656 

which may have caused the growth of the non-equilibrium epidote textures.  657 
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FIGURE CAPTIONS 947 

Figure 1 948 

(a) Contact relationship between the metavolcanic breccia (MB) and the enclosed949 

coesite-bearing eclogite (CE) body, which is about 8 m in length and 50 cm in width. Their 950 

boundary is outlined with a white line. The dashed lines on the upper left represent inferred 951 

boundary covered by soil. 952 

(b) A polished hand specimen of the metavolcanic breccia consisting of various types of953 

volcanic fragments with variable shapes and sizes in a fine-grained matrix. An albitophyre 954 

fragment (A) and a hematite rich fragment (F) are labelled. 955 

956 

957 

958 

959 

960 

961 

962 

963 

964 

(c) Backscattered electron image of a fragment dominated by phengite and epidote, with

less amounts of garnet and Na-plagioclase and several pseudomorphs after igneous 

plagioclase (Pl ps), is outlined by a white dashed line. Some skeletal garnet grains are 

arrowed. Radial euhedral epidote aggregates occur both in the fragment and in the matrix 

(upper right, arrowed). Many of the radial epidote aggregates on the border of the fragment 

are cut off and only parts of them are left in the fragment. 

Figure 2 Photomicrographs and backscattered electron (BSE) images of epidote textures in 

the metavolcanic breccia. Solid circles mark the spots of electron microprobe analysis and the 

numbers correspond to the data number in Table 1. 965 

(a) Photomicrograph of a fan-shaped epidote spherulite in the matrix (cross-polarized light).966 

The spherulite is overgrown by discrete epidote grains and is further surrounded by the 967 

fine-grained matrix minerals including plagioclase, K-feldspar, phengite, biotite, quartz, 968 

garnet and hematite. The epidote fibers in the spherulite display sweeping extinctions. 969 
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(b) BSE image of a spherulite consisting of bright (REE-rich) epidote fibers and dark 970 

(REE-poor) interfibrillar epidote. The fibers become finer away from the radiating point. Low 971 

angle non-crystallographic branching can be seen. REE concentration shows a general 972 

decrease away from the radiating point. The intervening lath-shaped epidote crystals 973 

(indicated by arrows) overgrowing the spherulite are similarly variable in REE contents 974 

across their boundaries. REE-poor epidote grains appear as inclusions in the spherulite. The 975 

area around the radiating point is fragmented. The whole texture may be viewed to be a 976 

portion of a fragmented original spherulite.  977 

(c) BSE image of an epidote spherulite with REE-rich epidote fibers concentrated and 978 

radiating from the center, setting in a matrix composed of plagioclase, biotite, K-feldspar, 979 

quartz, phengite, garnet and hematite. Some of these minerals are enclosed in the zone 980 

between the spherulite and the lath-shaped epidote overgrowth (middle left). In the central 981 

part of the texture, the spherulite is fragmented, with randomly oriented bits of the bright 982 

fibrous epidote cemented by dark epidote. The overgrowing radiating epidote laths are further 983 

overgrown by euhedral epidote crystals displaying faint oscillatory zoning and bright rims 984 

(lower middle). These overgrowths on the spherulite remain integrate, implying that the 985 

fragmentation of the spherulite predates the overgrowths.  986 

(d) BSE image of broken epidote spherulites overgrown by REE-poor epidote radiating in 987 

the same directions of the epidote fibers. The cores of the spherulites are more intensively 988 

fragmented and are cemented by REE-poor epidote. Fine-grained hematite (arrowed) and 989 

zircon (in black circles) are included both in the spherulitic parts and in the cementing epidote. 990 

The matrix is a fine-grained assemblage of Qz + Na-Pl + Ph + Kfs + Ep + Grt + Hem.  991 

(e) Enlarged view of a large fragment of the spherulite on the right part of Fig. 3d, the 992 
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REE-rich epidote fibers are branching and are terminated by euhedral epidote (arrowed). 993 

(f) Photomicrograph of radial euhedral epidote aggregates in a fragment dominated by994 

fine-grained phengite and epidote (cross-polarized light). 995 

(g) BSE image of two radial aggregates of euhedral epidote around randomly oriented996 

epidote grains in the matrix of a fragment. The epidote crystals display oscillatory zoning with 997 

alternating bright and dark zones mimicking the euhedral shapes of the crystals. The epidote 998 

grains overgrew or indent the matrix minerals.  999 

(h) BSE image of a spherical aggregate of euhedral epidote crystals radiating around quartz1000 

and plagioclase in a matrix of biotite, garnet, quartz, plagioclase, phengite, hematite and 1001 

K-feldspar. Individual epidote grains in the aggregate are zoned in composition, with their1002 

brighter tips and margins higher in Fe than the darker inner parts. The biotite flake on the 1003 

upper left is indented by the epidote grain. Garnet and phengite appear as interstitial grains 1004 

between in the epidote crystals.  1005 

1006 

Figure 3 Backscattered electron images showing the relationship between the orientations of 1007 

the crystals in the spherulite texture and the foliation (indicated by double-headed arrows). 1008 

(a) An epidote spherulite growing over the foliation formed by the matrix minerals (Pl + Qz1009 

+ Kfs + Ph + Bt + Ep + Grt + Ttn + Hem) in a lithic fragment. The orientations of the epidote1010 

fibers in the spherulite are at a large angle to the foliation. An elliptical epidote aggregate 1011 

enclosing the matrix minerals occurs on the left side. 1012 

(b) An enlarged view of part of the epidote spherulite in (a) showing inclusions of quartz1013 

(arrowed) rimmed by epidote in the core (lower left) and inclusions of biotite, phengite and 1014 

quartz in the zone in the spherulite and the overgrowing epidote. The core of the spherulite is 1015 
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fragmented, with the bright bits of epidote cemented by dark epidote. The epidote crystals 1016 

extending from the epidote fibers truncate the foliation formed by oriented phengite, biotite 1017 

and hematite in the matrix. The phengite flakes appear to be overgrown by the epidote laths. 1018 

(c) An epidote aggregate between a fine-grained fragment in the lower left and the1019 

coarser-grained matrix (Pl + Qz + Kfs + Ph + Bt + Ep + Grt + Ttn + Hem). The fragment 1020 

contains more abundant hematite and plagioclase and the matrix is more abundant in phengite 1021 

and quartz. The foliation runs through both of them in the lower left to upper right direction. 1022 

The difference in mineral assemblage and the same foliation suggest that both the volcanic 1023 

lithic fragment and the matrix were subjected to greenschist facies metamorphism.  1024 

(d) An enlarged view of an epidote spherulite on the right side of the epidote aggregate in1025 

(c) showing a broken epidote spherulite (bright epidote) overgrown by dark epidote grains.1026 

The central area is a mixture of many fine-grained, randomly oriented bright bits of epidote 1027 

(one of them is arrowed) with coarser dark epidote grains. The missing parts of the spherulite 1028 

on the upper right and lower left as well as the flow pattern of the bright bit of epidote in the 1029 

central area suggests that the fragmentation was coeval with foliation. A large part of the 1030 

broken spherulite on the right and a dendritic part on the lower right are magnified in Fig. 2e 1031 

and Fig. S1c, respectively. 1032 

1033 

Figure 4  REE-Al plot showing the composition of epidote in spherulites, radial euhedral 1034 

epidote aggregates (REEA) and individual euhedral epidote grains. 1035 

1036 

Figure 5 1037 

(a) Thermobarometry for the matrix assemblage of the metavolcanic breccia (Pl + Kfs + Ph1038 
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+ Ep +Bt + Grt + Hem + Sph + Qz). Intersections of the selected equilibria yield P-T 1039 

estimates of 5.5–6 kbar and 475–485 °C.  1040 

(b) T-log10(fO2) diagram (P = 6 kbar) calculated with the same assemblage used in (a). The 1041 

intersections selected of O2-bearing equilibria yield the log10(fO2) ranging from −22.7 to 1042 

−22.4. The NNO (Ni-NiO) and MH (magnetite-hematite) buffers are calculated at the same 1043 

pressure for comparison. 1044 

(c) P-T pseudosection of plagioclase pseudomorph in the metavolcanic breccia, with H2O, 1045 

quartz and phengite in excess. The bulk composition is (in mol%): SiO2 (69.74), Al2O3 1046 

(15.77), CaO (3.27), MgO (0.33), FeO (0.91), K2O (2.17), Na2O (7.60), and Fe2O3 (0.21). The 1047 

dotted and dashed lines in the field of Pl + Ph + Ep + Qz + H2O signify isopleths of anorthite 1048 

end-member proportion in the plagioclase (XAn) and paragonite end-member proportion in the 1049 

phengite (XPg), respectively. The ranges of the XAn (0.08–0.10) and XPg (0.034–0.040) 1050 

correspond to a P-T range of 435 °C to 515 °C and 5 kbar to 7 kbar (shaded quadrilateral). 1051 

(d) P-M(H2O) pseudosection calculated at 450 °C, with the relative proportion of the 1052 

oxides other than H2O being the same with Fig. 5a. Quartz and phengite are present in all of 1053 

the assemblages unless those at low M(H2O) labelled with ‘−Ph’, which means the absence of 1054 

phengite. The thick line indicates the H2O-saturation and dotted lines signify the isopleth of 1055 

XAn. The regions of the observed assemblages (Pl + Ph + Ep ± Kfs ± Qz) are shaded. 1056 

 1057 

Figure 6 1058 

(a) Inferred pressure (P)-temperature (T) path followed by the metavolcanic breccia during 1059 

the crystallization of a radial epidote aggregate. The P-T-fluid pulse is thought to have been 1060 

induced by faulting, forming the P-T loop (dotted lines) from the ambient conditions (shaded 1061 
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quadrilateral) corresponding to greenschist facies conditions. The epidote spherulites or the 1062 

radial euhedral epidote aggregates crystallized as the P-T conditions rapidly restored from the 1063 

P-T spike to the ambient conditions. The equilibria Ab = Jd + Qz and Kfs + 4An + 2H2O =1064 

2Qz + Ms + 2Zo are plotted to constrain the possible range of the P-T spike. As quantitative 1065 

P-T estimates for the spherulites are difficult to make, P-T values of the spike are only shown1066 

for schematic illustration. See text for discussion on the uncertainty arisen from that of the 1067 

P-T spike.1068 

(b) Schematic illustration showing the P-T variations of the metavolcanic breccia with time1069 

(t). The spherulites may have crystallized in response to the first larger P-T-fluid pulse. The 1070 

radial euhedral epidote aggregates (REEA) crystallized subsequent to brecciation of the 1071 

epidote spherulite, in response to the second smaller P-T pulse. The individual euhedral 1072 

epidote crystals surrounding the epidote spherulites and the radial euhedral epidote aggregates 1073 

crystallized as the P-T restored to the ambient greenschist facies conditions. 1074 

1075 

TABLES 1076 

Table 1 Representative electron microprobe analyses of epidote in different epidote 1077 

textures. 1078 

Table 2 Representative electron microprobe analyses of minerals in the matrix. 1079 

Table 3 Representative electron microprobe analyses of minerals in the plagioclase 1080 

pseudomorphs. 1081 
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texture
number 1 2 3 4 5 6 7 8 9 10 11 13 14 15 16 17

SiO2 36.11 36.37 35.99 37.22 36.70 35.89 36.54 37.49 37.31 37.10 37.64 37.45 37.22 37.99 37.56 38.04
TiO2 0.08 0.06 0.11 0.05 0.11 0.07 0.06 0.02 0.04 0.06 0.06 0.04 0.08 0.06 0.16 0.06
Al2O3 21.59 21.81 21.26 23.76 22.54 21.63 22.81 22.49 23.06 23.08 23.15 22.73 23.27 24.34 23.67 23.30
FeO 12.30 11.94 12.34 12.05 12.13 12.62 12.24 12.58 12.24 12.09 12.10 12.81 12.17 11.35 11.78 12.24
MnO 0.75 0.74 0.59 0.61 0.49 0.60 0.60 0.95 0.48 0.51 0.54 0.83 0.60 0.12 1.00 0.74
MgO 0.28 0.25 0.27 0.12 0.18 0.21 0.17 0.11 0.11 0.08 0.10 0.03 0.08 0.05 0.05 0.06
CaO 19.28 19.39 17.87 20.40 20.09 19.62 20.20 21.48 21.31 21.74 22.19 22.87 22.31 23.62 23.06 22.89
Na2O 0.04 0.00 0.08 0.05 0.00 0.01 0.05 0.00 0.00 0.00 0.02 0.02 0.05 0.01 0.02 0.01
K2O 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.02 0.00 0.00 0.00 0.05 0.01 0.00 0.01 0.00

La2O3 3.82 3.01 3.22 1.21 1.64 3.19 1.62 0.92 1.03 0.68 0.81 0.10 0.65 0.08 0.00 0.43
Ce2O3 3.38 2.89 5.32 1.81 2.81 3.23 2.76 1.33 1.84 1.34 1.30 0.48 0.74 0.06 0.00 0.42
Pr2O3 0.00 0.00 0.03 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.05 0.00 0.00 0.00 0.00 0.00
Nd2O3 0.23 0.27 1.12 0.54 0.67 0.45 0.51 0.03 0.29 0.14 0.05 0.03 0.08 0.07 0.00 0.13
Sm2O3 0.00 0.00 0.00 0.02 0.35 0.00 0.00 0.00 0.06 0.06 0.00 0.00 0.07 0.00 0.00 0.32
Eu2O3 0.11 0.20 0.07 0.30 0.09 0.00 0.18 0.30 0.10 0.20 0.25 0.20 0.01 0.00 0.00 0.07
Gd2O3 0.00 0.18 0.05 0.13 0.14 0.00 0.00 0.00 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Y2O3 0.00 0.00 0.00 0.28 0.08 0.12 0.06 0.02 0.13 0.15 0.01 0.07 0.13 0.04 0.02 0.10
Total 97.97 97.12 98.32 98.54 98.04 97.64 97.80 97.74 98.02 97.22 98.26 97.69 97.48 97.79 97.32 98.80

O=12.5
Si 3.00 3.02 3.02 2.99 3.00 2.98 2.98 3.01 3.00 2.99 3.00 2.98 2.97 2.99 2.97 3.00
Ti 0.00 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00
Al 2.11 2.14 2.10 2.25 2.17 2.11 2.19 2.13 2.19 2.19 2.17 2.13 2.19 2.25 2.21 2.16

Fe3+ 0.67 0.61 0.55 0.64 0.64 0.71 0.69 0.76 0.70 0.74 0.75 0.85 0.81 0.75 0.78 0.80
Fe2+ 0.19 0.22 0.32 0.17 0.19 0.17 0.14 0.08 0.12 0.07 0.05 0.00 0.00 0.00 0.00 0.01
Mn 0.05 0.05 0.04 0.04 0.03 0.04 0.04 0.06 0.03 0.03 0.04 0.06 0.04 0.01 0.07 0.05
Mg 0.03 0.03 0.03 0.01 0.02 0.03 0.02 0.01 0.01 0.01 0.01 0.00 0.01 0.01 0.01 0.01
Ca 1.71 1.73 1.61 1.76 1.76 1.74 1.76 1.85 1.84 1.88 1.89 1.95 1.91 1.99 1.95 1.93
Na 0.01 0.00 0.01 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00
K 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
La 0.12 0.09 0.10 0.04 0.05 0.10 0.05 0.03 0.03 0.02 0.02 0.00 0.02 0.00 0.00 0.01
Ce 0.10 0.09 0.16 0.05 0.08 0.10 0.08 0.04 0.05 0.04 0.04 0.01 0.02 0.00 0.00 0.01
Pr 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Nd 0.01 0.01 0.03 0.02 0.02 0.01 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Sm 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01
Eu 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.01 0.00 0.01 0.01 0.01 0.00 0.00 0.00 0.00
Gd 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Y 0.00 0.00 0.00 0.01 0.00 0.01 0.00 0.00 0.01 0.01 0.00 0.00 0.01 0.00 0.00 0.00

Sum 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00
REEtol 0.23 0.20 0.30 0.13 0.17 0.21 0.15 0.08 0.10 0.08 0.07 0.03 0.05 0.01 0.00 0.04

Fe2++Fe3++Al3++Mg 3.00 3.00 3.01 3.07 3.02 3.02 3.05 2.99 3.02 3.02 2.99 2.98 3.01 3.01 2.99 2.98
Mn2++Ca+REEtol 2.00 1.98 1.95 1.93 1.97 2.00 1.96 1.99 1.97 1.99 2.00 2.03 2.00 2.00 2.02 2.02

Fe2O3 10.67 9.81 8.63 10.65 10.37 11.34 11.29 12.58 11.59 12.24 12.55 14.24 13.47 12.61 13.09 13.46
FeO 2.70 3.12 4.58 2.46 2.80 2.42 2.08 1.26 1.81 1.07 0.80 0.00 0.05 0.00 0.00 0.13

Table 1  Representative epidote compositions in the epidote spherulites and radial euhedral epidote aggregates (REEA)

Note: "-" denotes not analyzed. REEA=radial euhedral epidote aggregates.

fibrous inclusion interfibrilliar euhedral overgrowth in REEA (R



18 19 21 22 23 24 26 27 28 29
38.33 38.08 37.30 37.93 38.20 34.59 37.69 37.57 37.61 38.06
0.07 0.12 0.05 0.12 0.06 0.11 0.07 0.06 0.03 0.11
23.39 24.24 23.74 23.81 24.32 19.95 23.60 24.52 23.06 23.24
12.64 11.71 11.01 11.27 11.63 11.84 12.54 11.61 12.98 12.91
0.77 0.87 1.50 1.13 0.43 1.52 0.88 0.98 0.64 0.63
0.00 0.05 0.05 0.03 0.03 0.57 0.01 0.02 0.01 0.02
23.04 22.83 20.63 21.96 22.39 14.74 22.15 22.40 22.69 22.75
0.00 0.00 0.02 0.04 0.01 0.06 0.02 0.00 0.00 0.01
0.02 0.02 0.01 0.03 0.02 0.03 0.03 0.01 0.05 0.02
0.10 0.04 0.66 0.23 0.00 1.87 - - - -
0.11 0.03 1.43 0.17 0.02 7.37 - - - -
0.00 0.00 0.00 0.00 0.07 0.00 - - - -
0.00 0.00 0.48 0.06 0.00 3.87 - - - -
0.00 0.05 0.15 0.00 0.00 0.28 - - - -
0.17 0.00 0.33 0.02 0.10 0.03 - - - -
0.00 0.00 0.00 0.00 0.00 0.11 - - - -
0.01 0.02 0.08 0.10 0.01 0.29 - - - -
98.64 98.05 97.43 96.90 97.31 97.22 96.99 97.18 97.07 97.75

3.01 2.99 3.01 3.02 3.02 3.03 3.00 2.97 2.99 3.01
0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.01
2.16 2.24 2.26 2.24 2.27 2.06 2.21 2.29 2.16 2.16
0.81 0.76 0.63 0.69 0.68 0.43 0.79 0.76 0.86 0.82
0.02 0.01 0.11 0.06 0.09 0.44 0.04 0.01 0.00 0.04
0.05 0.06 0.10 0.08 0.03 0.11 0.06 0.07 0.04 0.04
0.00 0.01 0.01 0.00 0.00 0.07 0.00 0.00 0.00 0.00
1.94 1.92 1.78 1.88 1.90 1.38 1.89 1.90 1.93 1.92
0.00 0.00 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.02 0.01 0.00 0.06 - - - -
0.00 0.00 0.04 0.00 0.00 0.24 - - - -
0.00 0.00 0.00 0.00 0.00 0.00 - - - -
0.00 0.00 0.01 0.00 0.00 0.12 - - - -
0.00 0.00 0.00 0.00 0.00 0.01 - - - -
0.00 0.00 0.01 0.00 0.00 0.00 - - - -
0.00 0.00 0.00 0.00 0.00 0.00 - - - -
0.00 0.00 0.00 0.00 0.00 0.01 - - - -
8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00
0.01 0.00 0.09 0.02 0.01 0.44 - - - -
2.99 3.02 3.01 2.99 3.04 3.00 3.05 3.06 3.03 3.02
2.00 1.98 1.98 1.97 1.93 1.94 1.95 1.96 1.98 1.97
13.73 12.85 10.38 11.54 11.45 6.47 13.24 12.82 14.35 13.75
0.28 0.15 1.68 0.88 1.32 6.01 0.63 0.08 0.07 0.54

in REEA (REE-zoned) individual euhedralREE-poor)



Plagioclase K-feldspar Phengite Biotite epidote Garnet Hematite
SiO2 65.24 63.84 46.53 37.40 38.47 37.25 0.31
TiO2 0.07 0.07 0.91 2.00 0.13 0.15 0.01
Al2O3 21.60 18.50 28.80 15.15 24.32 20.32 0.13
Cr2O3 0.00 0.00 0.00 0.00 0.00 0.01 0.08
FeO 0.22 0.08 6.41 19.75 11.66 16.16 90.91
MnO 0.00 0.00 0.05 0.85 0.07 15.44 0.00
MgO 0.00 0.02 1.98 10.36 0.06 0.88 0.00
CaO 2.49 0.04 0.02 0.35 22.19 9.23 0.01
Na2O 10.31 0.48 0.26 0.08 0.01 0.00 0.01
K2O 0.16 15.62 10.59 9.36 0.00 0.00 0.00

  Total  100.10 98.66 95.55 95.30 96.91 99.45 91.46

Si 2.86 2.98 3.18 2.86 3.03 3.00 0.01
Ti 0.00 0.00 0.05 0.11 0.01 0.01 0.00
Al 1.15 1.03 2.32 1.37 2.28 1.93 0.00
Cr 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Fe2+ 0.01 0.00 0.37 1.26 0.13 1.06 0.00
Mn 0.00 0.00 0.00 0.06 0.00 1.05 0.00
Mg 0.00 0.00 0.20 1.18 0.01 0.11 0.00
Ca 0.12 0.00 0.00 0.03 1.89 0.80 0.00
Na 0.87 0.05 0.03 0.01 0.00 0.00 0.00
K 0.01 0.92 0.92 0.91 0.00 0.00 0.00

Fe3+ - - - - 0.65 0.04 1.98
Total 5.01 4.99 7.09 7.80 8.00 8.00 2.00

Table 2  Representative electron microprobe analyses of minerals in the matrix



Epidote
SiO2 65.47 65.39 66.67 65.84 65.44 63.69 63.50 46.28 46.43 46.00 46.93 46.01 38.40
TiO2 0.00 0.00 0.01 0.00 0.00 0.02 0.01 0.44 0.35 0.40 0.39 0.37 0.13
Al2O3 21.88 21.73 20.79 22.07 22.18 19.16 19.62 28.72 28.58 28.78 28.64 28.86 25.35
Cr2O3 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.01 0.02
FeO 0.24 0.13 0.14 0.16 0.14 0.03 0.02 6.43 6.52 6.60 6.04 6.30 9.30
MnO 0.03 0.03 0.02 0.00 0.00 0.00 0.00 0.06 0.06 0.07 0.05 0.10 0.79
MgO 0.03 0.00 0.01 0.01 0.00 0.00 0.00 2.00 1.96 1.91 1.95 2.00 0.08
CaO 1.97 1.85 1.03 2.09 2.15 0.01 0.00 0.04 0.05 0.03 0.05 0.03 22.26
Na2O 10.37 10.37 10.94 10.32 10.30 0.27 0.39 0.27 0.27 0.25 0.29 0.27 0.14
K2O 0.25 0.13 0.20 0.18 0.13 15.75 15.65 10.67 10.74 10.67 10.64 10.63 0.26

  Total  100.24 99.64 99.82 100.69 100.33 98.94 99.19 94.93 94.98 94.74 94.98 94.58 96.74

Si 2.87 2.88 2.90 2.87 2.87 2.97 2.95 3.19 3.20 3.18 3.22 3.18 3.03
Ti 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.02 0.02 0.02 0.02 0.01
Al 1.13 1.13 1.10 1.14 1.15 1.05 1.08 2.33 2.32 2.35 2.32 2.35 2.36
Cr 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Fe2+ 0.01 0.00 0.01 0.01 0.01 0.00 0.00 0.37 0.38 0.38 0.35 0.36 0.00
Mn 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.05
Mg 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.21 0.20 0.20 0.20 0.21 0.01
Ca 0.09 0.09 0.09 0.10 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.88
Na 0.88 0.89 0.90 0.87 0.88 0.02 0.03 0.04 0.04 0.03 0.04 0.04 0.02
K 0.01 0.01 0.01 0.01 0.01 0.94 0.93 0.94 0.95 0.94 0.93 0.94 0.03

Fe3+ - - - - - - - - - - - - 0.61
Total 5.01 5.00 5.01 5.00 5.00 4.98 4.99 7.11 7.11 7.11 7.08 7.11 8.00

XAn 0.09 0.09 0.09 0.10 0.10 0.00 0.00 XPg 0.037 0.037 0.035 0.039 0.038
XAb 0.89 0.90 0.90 0.89 0.89 0.03 0.04 Fe/Mg 1.80 1.86 1.94 1.74 1.77
XKfs 0.01 0.01 0.01 0.01 0.01 0.97 0.96

Table 3  Representative electron microprobe analyses of minerals in the plagioclase pseudomorphs
Plagioclase K-feldspar Phengite
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