| 1        | Revision 2                                                                                                                                                |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2        | Hornblende as a Tool for Assessing Mineral-Melt Equilibrium and Recognition of Crystal                                                                    |
| 3        | Accumulation                                                                                                                                              |
| 4        |                                                                                                                                                           |
| 5        | Kevin Werts <sup>1</sup> , Calvin G. Barnes <sup>1</sup> , Valbone Memeti <sup>2</sup> , Barbara Ratschbacher <sup>3</sup> Dustin Williams <sup>2</sup> , |
| 6        | Scott Paterson <sup>4</sup>                                                                                                                               |
| 7        |                                                                                                                                                           |
| 8        | <sup>1</sup> Department of Geosciences, Texas Tech University, Lubbock, Texas 79409-1053, U.S.A.                                                          |
| 9        | <sup>2</sup> Department of Geological Sciences, California State University, Fullerton, California 92834-                                                 |
| 10       | 6850, U.S.A.                                                                                                                                              |
| 11       | <sup>3</sup> Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena,                                                 |
| 12       | California 91125, U.S.A.                                                                                                                                  |
| 13       | <sup>4</sup> Department of Earth Sciences, University of Southern California, Los Angeles, California                                                     |
| 14       | 90089, U.S.A.                                                                                                                                             |
| 15       |                                                                                                                                                           |
| 16       |                                                                                                                                                           |
| 17<br>18 | ABSTRACT                                                                                                                                                  |
| 19       | Bulk-rock compositions are commonly used as proxies for melt compositions,                                                                                |
| 20       | particularly in silicic plutonic systems. However, crystal accumulation and/or melt loss may play                                                         |
| 21       | an important role in bulk-rock compositional variability (McCarthy and Hasty, 1976; McCarthy                                                              |
| 22       | and Groves, 1979; Wiebe, 1993; Wiebe et al., 2002; Collins et al., 2006; Deering and Bachmann,                                                            |
| 23       | 2010; Miller et al., 2011; Vernon and Collins, 2011; Lee and Morton, 2015; Lee et al., 2015;                                                              |
| 24       | Barnes et al., 2016a; Schaen et al., 2018). Recognizing and quantifying the effects of crystal                                                            |

25 accumulation and melt loss in these silicic systems is challenging. Hornblende-melt Fe/Mg partitioning relationships and hornblende (Hbl) chemometry are used here to test for equilibrium 26 with encompassing bulk-rock and/or glass compositions from a number of plutonic and volcanic 27 systems. Further, we assess the extent to which these tests can be appropriately applied to Hbl 28 from plutonic systems by investigating whether Hbl from the long-lived ( $\sim 10$  m.y.) Tuolumne 29 Intrusive Complex preserves magmatic crystallization histories. On the basis of regular zoning 30 31 patterns, co-variation of both fast- and slow-diffusing trace elements, Hbl thermometry, and compositional overlap with volcanic Hbl we conclude that Hbl from plutons largely preserve 32 records supporting the preservation of a magmatic crystallization history, although many 33 compositional analyses yield calculated temperatures < 750°C, which is unusual in volcanic Hbl. 34 35 Hornblende is only rarely in equilibrium with host plutonic bulk-rock compositions over a wide-range of  $SiO_2$  contents (42–78 wt%). Hornblende chemometry indicates that the majority 36 of Hbl from the plutonic systems investigated here is in equilibrium with melts that are typically 37 38 more silicic (dacitic to rhyolitic in composition) than bulk-rock compositions. These results are consistent with crystal accumulation and/or loss of silicic melts within middle- to upper-crustal 39 plutons. Although the processes by which melts are removed from these plutonic systems is 40 41 uncertain, it is evident that these melts are either redistributed in the crust (e.g. leucogranite dikes, plutonic roofs, etc.) or are instead erupted. In contrast, Hbl from volcanic rocks is more 42 commonly in equilibrium with bulk-rock and glass compositions. In most cases, where Hbl is out 43 of equilibrium with its host glass, the glasses are more evolved than the calculated melts 44 indicating crystallization from a less fractionated melt and/or mixed crystal populations. Where 45 46 Hbl is not in equilibrium with volcanic bulk-rocks, the bulk-rock compositions are typically more mafic than the calculated melts. In some intermediate volcanic samples, the occurrence of 47

| 48                                     | wide-ranges of calculated melt compositions is indicative of magma mixing. The general                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 49                                     | absence of Hbl with temperatures < 750°C from volcanic systems suggests that magmatic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 50                                     | mushes below this temperature are unlikely to erupt. Our results indicate that bulk-rock                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 51                                     | compositions of granitic plutonic rocks only rarely approximate melt compositions and that the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 52                                     | possibility of crystal accumulation and/or melt loss cannot be ignored. We suggest that detailed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 53                                     | assessments of crystal accumulation and melt loss processes in magmatic systems is crucial to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 54                                     | evaluating magma differentiation processes and discerning petrogenetic links between plutonic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 55                                     | and volcanic systems.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 56                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 57                                     | Keywords: hornblende, crystal accumulation, granite, rhyolite, volcano – plutonic connection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 58                                     | Corresponding Author: kevin.werts@ttu.edu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 50                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 59                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 59<br>60                               | INTRODUCTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                        | <b>INTRODUCTION</b><br>Bulk-rock compositional trends in quartz-bearing plutonic rocks are commonly used to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 60                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 60<br>61                               | Bulk-rock compositional trends in quartz-bearing plutonic rocks are commonly used to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 60<br>61<br>62                         | Bulk-rock compositional trends in quartz-bearing plutonic rocks are commonly used to infer magma evolution. Traditionally, magmatic processes such as fractional crystallization                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 60<br>61<br>62<br>63                   | Bulk-rock compositional trends in quartz-bearing plutonic rocks are commonly used to infer magma evolution. Traditionally, magmatic processes such as fractional crystallization (Bowen, 1928), magma mixing (Reid et al., 1983; Davidson et al., 2001), and assimilation                                                                                                                                                                                                                                                                                                                                                                                            |
| 60<br>61<br>62<br>63<br>64             | Bulk-rock compositional trends in quartz-bearing plutonic rocks are commonly used to<br>infer magma evolution. Traditionally, magmatic processes such as fractional crystallization<br>(Bowen, 1928), magma mixing (Reid et al., 1983; Davidson et al., 2001), and assimilation<br>(DePaolo, 1981; Spera and Bohrson, 2001) are the primary magmatic processes considered in the                                                                                                                                                                                                                                                                                     |
| 60<br>61<br>62<br>63<br>64<br>65       | Bulk-rock compositional trends in quartz-bearing plutonic rocks are commonly used to<br>infer magma evolution. Traditionally, magmatic processes such as fractional crystallization<br>(Bowen, 1928), magma mixing (Reid et al., 1983; Davidson et al., 2001), and assimilation<br>(DePaolo, 1981; Spera and Bohrson, 2001) are the primary magmatic processes considered in the<br>modeling of these bulk-rock compositions. However, the effect of crystal accumulation on                                                                                                                                                                                         |
| 60<br>61<br>62<br>63<br>64<br>65<br>66 | Bulk-rock compositional trends in quartz-bearing plutonic rocks are commonly used to<br>infer magma evolution. Traditionally, magmatic processes such as fractional crystallization<br>(Bowen, 1928), magma mixing (Reid et al., 1983; Davidson et al., 2001), and assimilation<br>(DePaolo, 1981; Spera and Bohrson, 2001) are the primary magmatic processes considered in the<br>modeling of these bulk-rock compositions. However, the effect of crystal accumulation on<br>compositional trends is less commonly considered (but see McCarthy and Hasty, 1976;                                                                                                  |
| 60<br>61<br>63<br>64<br>65<br>66<br>67 | Bulk-rock compositional trends in quartz-bearing plutonic rocks are commonly used to<br>infer magma evolution. Traditionally, magmatic processes such as fractional crystallization<br>(Bowen, 1928), magma mixing (Reid et al., 1983; Davidson et al., 2001), and assimilation<br>(DePaolo, 1981; Spera and Bohrson, 2001) are the primary magmatic processes considered in the<br>modeling of these bulk-rock compositions. However, the effect of crystal accumulation on<br>compositional trends is less commonly considered (but see McCarthy and Hasty, 1976;<br>McCarthy and Groves, 1979; Wiebe, 1993; Wiebe et al., 2002; Collins et al., 2006; Deering and |

71 can be used to model other magmatic processes (i.e. fractionation, mixing, assimilation). Crystal accumulation and/or melt loss may be difficult to recognize in evolved magmatic systems given 72 73 that evidence supporting these processes may be cryptic at the outcrop scale (Weinberg, 2006; 74 Vernon and Collins, 2011) and because compositional trends driven by accumulation may follow a similar vet opposite trajectory to crystal fractionation trends (Deering and Bachmann, 2010). 75 76 The use of bulk-rock compositions as input for modeling of magmatic processes (e.g. MELTS 77 modeling) or in saturation thermometry (e.g. zircon and apatite saturation) may therefore be problematic, particularly in plutonic systems where any direct evidence of melt compositions 78 such as quenched glasses is absent. 79

The occurrence and extent of crystal accumulation in plutons has important implications 80 for discerning whether genetic links exist between plutonic and volcanic rocks as well as for 81 82 identifying the location(s) and the extent of magma differentiation in the crust (Keller et al., 2015). For example, some authors have argued that magma differentiation is mainly restricted to 83 84 lower crustal hot zones (e.g., Hildreth and Moorbath, 1988; Annen et al., 2006) and that the heterogeneity of plutons is primarily related to the diversity of melts produced from these hot 85 zones (Coleman et al., 2004; 2012). These models suggest that magma addition rates into middle 86 87 and upper crustal magma bodies is too low to allow for significant amounts of magma differentiation. Other authors argue that magma differentiation processes (e.g. crystal-liquid 88 separation) may be important within middle and upper crustal magma bodies during high magma 89 addition rate events (Bachmann and Bergantz, 2004; 2008; Hildreth, 2004; Bachmann et al., 90 2007; Lipman, 2007; Paterson et al., 2011; 2016; Lipman and Bachmann, 2015). One approach 91 92 that has been taken to address this problem is to place mass-balance constraints between eruptive 93 products and their complementary residues; however, this approach requires that melt

94 compositions are known (Gelman et al., 2014: Lee and Morton, 2015). An alternative approach 95 is to identify a means by which individual bulk-rocks or bulk-rock compositions can be evaluated to determine whether the sample approximates a melt or instead represents a cumulate 96 or some combination of cumulate  $\pm$  melt. At the outcrop scale, crystal accumulation is typically 97 discerned on the basis of excessive localization of mineral phases (e.g. schlieren, K-feldspar 98 99 megacryst rich clusters) or from the abundances of cumulus to intercumulus phases. Thin-section 100 scale studies placing textural constraints on crystal accumulation and melt loss are also useful, 101 although the uncertainties surrounding ways to visually recognize the relative importance of 102 individual accumulation and/or melt loss processes may hinder our ability to quantify their extents (Holness, 2018; Schaen et al., 2018). 103 104 Independent constraints on crystallization conditions (i.e. melt composition, temperature, 105 pressure, fugacity of volatiles) and magmatic processes can potentially be discerned through 106 mineral compositions and intracrystalline zoning patterns. For example, several recent studies 107 have demonstrated that hornblende (Hbl) compositions can be used to both characterize trace element melt compositions and to track magmatic processes in plutons (Coint et al., 2013a; 108 Barnes et al., 2016a,b,c; 2017; Schaen et al., 2018), while others (Ridolfi and Renzulli, 2012; 109 110 Putirka, 2016a; Zhang et al., 2017) have proposed that Hbl compositions can be used to estimate 111 equilibrium melt compositions and track apparent changes in temperature. Hornblende compositional variability may therefore be useful for investigating melt differentiation histories 112 and assessing the importance of crystal accumulation and/or melt loss in plutons. However, 113 unlike volcanic systems, where magmas are rapidly quenched, plutons undergo slow cooling 114 115 with the potential for recrystallization, diffusion, and dissolution-reprecipitation processes to obscure or overprint the original magmatic compositions and/or textural features. It is therefore 116

117 important to determine the extent to which primary magmatic compositions are preserved in Hbl 118 from plutons. First, we investigate whether Hbl from plutons preserves any record of a magmatic 119 crystallization history or whether wide-spread re-equilibration has occurred during slow cooling. 120 Our study focuses on Hbl from the long-lived ( $\sim 10$  Ma) Tuolumne Intrusive Complex (Figure 1) where independent workers have argued both for (Challener and Glazner, 2017) and against 121 122 (Barnes et al., 2016c) wide-spread re-equilibration of Hbl. We conclude that Hbl from plutons 123 preserves both magmatic and non-magmatic crystallization histories but that evidence of wide-124 spread re-equilibration is lacking and that petrographic constraints are crucial for discerning primary magmatic zones from those that have undergone re-equilibration at low temperatures. 125 Second, we investigate Hbl-bulk-rock and Hbl-glass equilibrium relationships from a number of 126 plutonic and volcanic systems by employing Hbl–melt <sup>Fe/Mg</sup>Kd tests (Putirka, 2016a) and Hbl 127 128 chemometry (Ridolfi and Renzulli, 2012; Putirka, 2016a; Zhang et al., 2017) in order to assess the importance of crystal accumulation and crystal-liquid separation in both plutonic and 129 130 volcanic systems. This study shows that Hbl from many plutonic and volcanic systems is not in equilibrium with bulk-rock compositions and that in any study of coarse grained-granitic rocks, 131 the effects of crystal accumulation and/or melt loss must be considered in conjunction with other 132 133 petrogenetic processes.

134

# 135 METHODS

Hornblende and bulk-rock major elements from seven plutonic systems (Tuolumne
Intrusive Complex, Wooley Creek batholith, and the English Peak, Ashland, Tenpeak, Mt Stuart,
and Black Peak plutons) are investigated here along with many Hbl, bulk-rock, and glass
analyses from twelve volcanic systems. A summary of each of the data sets used in this study is

6

140 presented in Table 1. The plutonic systems are all arc-related mid- to upper-crustal Cordilleran plutonic systems and with the exception of the Fish Canyon magma body, all of the volcanic 141 systems considered here are products of arc magmatism. Bulk-rock compositions are wide-142 143 ranging for both the volcanic systems (basalt to rhyolite) and plutonic systems (diorite to granite). The data set includes  $\sim$  7,900 Hbl compositions from the twelve volcanic systems and 144 145 more than 4,300 compositions from the seven plutonic systems. Some analyses were filtered 146 from the initial data set, including  $\sim 5\%$  of the Hbl analyses from volcanic systems and < 2% of the Hbl analyses from plutonic systems. These data were removed on the basis of totals (< 95.5147 and > 100.5 wt.%), SiO<sub>2</sub> (< 38 and > 59 wt%) and CaO (< 7 and > 15 wt%) content. In addition, 148 any Hbl analyses that were marked as originating from xenoliths, enclaves, veins, or dikes were 149 150 not considered so as to investigate only those Hbl that constitute the majority of the magmatic system and because it is unclear whether these Hbl share any genetic relationship to the 151 magmatic system. In many cases, individual Hbl analyses are paired with an associated glass 152 153 and/or bulk-rock composition; thus, tests for Hbl/melt and Hbl/bulk-rock equilibrium can be conducted. Bulk-rock compositional analyses with totals < 97 and > 100.5 wt% were not 154 utilized for these equilibrium tests. 155

Bulk-rock and Hbl major element compositions are presented here (see Supplementary Data File 1) for several Cordilleran intrusive systems (Tuolumne Intrusive Complex, Wooley Creek batholith, and English Peak, Ashland, Tenpeak, Mt Stuart, and Black Peak plutons). Some mineral compositions were published as "representative data" owing to space limitations. These published data consisted of individual core-rim or core-mantle-rim analyses (Barnes, 1983; Barnes, 1987; Gribble et al., 1990; Coint et al., 2013a), not averaged data. This paper allows publication of the complete data sets. For the Tuolumne Intrusive Complex, a primary

| 163 | focus of this study, a total of twenty seven samples were analyzed for Hbl compositions (Figure      |
|-----|------------------------------------------------------------------------------------------------------|
| 164 | 1). A minimum of three Hbl were analyzed from each sample and at least 5 spots were typically        |
| 165 | collected from each Hbl. In the earlier work (Barnes, 1983, 1987; Gribble et al., 1990), at least    |
| 166 | two and generally four to five individual grains were analyzed, with at least three spots per grain. |
| 167 | Hornblende major elements were collected by electron microprobe analysis (EMPA)                      |
| 168 | whereas bulk-rock major element compositions were collected using x-ray fluorescence (XRF)           |
| 169 | or inductively coupled plasma atomic emission spectrometry (ICP-AES). A description of the           |
| 170 | methodologies for each set of compositional analyses is presented in Supplementary Data File 2.      |
| 171 | Bulk-rock, glass, and Hbl compositional data for each of the volcanic systems were collected         |
| 172 | from the literature (Table 1). For each of the literature-based data sets, major element             |
| 173 | compositions for Hbl and glasses were acquired by EPMA whereas major element compositions            |
| 174 | for bulk-rocks were collected by XRF or ICP-OES.                                                     |
| 175 | Hornblende structural formulae were calculated on the basis of 23 oxygen atoms using                 |
| 176 | the spreadsheet of Esawi (2004) and classified according to Leake et al. (1997). Apparent            |
| 177 | crystallization temperatures were calculated using equation 5 from Putirka (2016a), which is a       |
| 178 | pressure-independent thermometer based on Si, Ti, Na, and Fe, with an uncertainty of $\pm$ 30°C.     |
| 179 |                                                                                                      |
| 180 | RESULTS                                                                                              |
| 181 |                                                                                                      |
| 182 | Textural and Compositional Variability of Hornblende from the Tuolumne Intrusive                     |
| 183 | Complex                                                                                              |
| 184 | Discerning the extent to which Hbl from plutons has experienced compositional                        |
| 185 | modification related to slow cooling and/or subsolidus recrystallization processes (compare          |

Barnes et al., 2016c to Challener and Glazner, 2017) is critical to its usefulness in assessing
mineral-melt equilibrium and evaluating magmatic processes. What follows is a detailed
investigation into the relationship between composition and texture/color in Hbl from the
Tuolumne Intrusive Complex (TIC).

The TIC is a long-lived ( $\sim 10$  Ma) concentrically zoned intrusive complex made up of 190 191 three major, partially nested rock units: the outer Kuna Crest, the Half Dome, and the innermost 192 unit, the Cathedral Peak (Figure 1) (Bateman and Chappell, 1979). Kuna Crest is the oldest unit and is characterized by abundant anhedral to subhedral Hbl and biotite (Bateman and Chappell, 193 1979). The Half Dome is instead marked by the occurrence of euhedral Hbl, biotite, and titanite 194 195 phenocrysts and is separated into both an equigranular outer phase and a porphyritic inner phase 196 (Bateman and Chappell, 1979). Porphyritic Half Dome contains K-feldspar phenocrysts up to  $\sim 3$ 197 cm in length and typically a lower modal abundance of mafic minerals compared to samples 198 from equigranular Half Dome (Bateman and Chappell, 1979). The innermost unit, Cathedral 199 Peak, contains K-feldspar megacrysts that may be > 10 cm in length, cm-sized quartz pools, fewer mafic minerals, and a higher proportion of biotite to Hbl compared to Half Dome and 200 Kuna Crest (Bateman and Chappell, 1979). The contacts between each of the TIC units may vary 201 202 from knife sharp to gradational over hundreds of meters such that the boundaries between units may be transitional (Bateman and Chappell, 1979; Bateman, 1992; Žák and Paterson 2005; 203 Paterson et al., 2016). 204

Hornblende from Kuna Crest is typically small (< 1 cm), anhedral to subhedral, and</li>
rarely displays petrographic zoning. Some Hbl from Kuna Crest contain cores of pyroxene
and/or quartz, indicative of a peritectic reaction of pyroxene to Hbl (Bateman and Chappell,
1979). Hornblende from Half Dome is typically euhedral to subhedral, up to ~ 2 cms in length,

9

| 209 | and commonly exhibits patchy zoning. Some Half Dome Hbl is rich in inclusions of other rock         |
|-----|-----------------------------------------------------------------------------------------------------|
| 210 | forming minerals (e.g. biotite, plagioclase, magnetite, apatite, and less commonly, zircon)         |
| 211 | (Challener and Glazner, 2017). Hornblende is rare (generally < 2%) in Cathedral Peak, typically     |
| 212 | small (< 1 cm), subhedral to anhedral, and also displays patchy zoning. Note that patchy color      |
| 213 | zoning (Figure 2a,b) occurs in Hbl from each of the TIC units but is best displayed in Hbl from     |
| 214 | Half Dome and Cathedral Peak. Hornblende preserving evidence of concentric zoning is                |
| 215 | exceedingly rare (Figure 2c) even in Hbl where patchy zoning is generally absent.                   |
| 216 | The compositions of TIC Hbl range from magnesiohornblende to actinolite (Figure 3)                  |
| 217 | and display little variation from unit to unit. However, Hbl from Kuna Crest is generally           |
| 218 | characterized by lower Mg# at a given Si (apfu) value compared to Hbl from Half Dome or             |
| 219 | Cathedral Peak (Figure 3). Hornblende that lacks readily distinguishable petrographic zoning        |
| 220 | generally displays only small variations in major element compositions (e.g. changes in Si (apfu)   |
| 221 | < 0.2). These small variations may or may not be systematic from core to rim. Further, these Hbl    |
| 222 | are typically characterized by calculated crystallization temperatures that are above 750°C,        |
| 223 | consistent with magmatic crystallization. Alternatively, Hbl exhibiting patchy zoning is typically  |
| 224 | characterized by a wider-range of compositions (e.g. Si (apfu) variations > 1) and calculated       |
| 225 | crystallization temperatures (e.g. from 600-800°C).                                                 |
| 226 | Many of the complex textural and compositional relationships of TIC Hbl can be                      |
| 227 | illustrated by a cm-sized Hbl from equigranular Half Dome (Figure 2a,b). This Hbl displays          |
| 228 | patchy zoning and contains inclusions of biotite, plagioclase, magnetite, and apatite. There are at |
| 229 | least three texturally distinct zones within the crystal, including an olive-brown to olive-green   |
| 230 | pleochroic zone which appears to represent the dominant core of the crystal, a pale-green to blue-  |
| 224 | mean placebraic many and a note alive eclaned exhedred rine. The heard derive hotarious the alive   |

green pleochroic zone, and a pale olive-colored euhedral rim. The boundaries between the olive-

| 232 | brown-olive-green and green-blue-green zones are variably sharp to gradational, similar to             |
|-----|--------------------------------------------------------------------------------------------------------|
| 233 | patchy zoning descriptions given by Challener and Glazner (2017) for other equigranular Half           |
| 234 | Dome Hbl. The olive-brown-olive-green core zones are magnesiohornblende and are                        |
| 235 | characterized by Si (apfu) $<$ 7.1, Ti (apfu) $>$ 0.09, and crystallization temperatures $>$ 765°C     |
| 236 | (Figure 4). The pale-green-blue-green zones instead vary from magnesiohornblende to actinolite,        |
| 237 | with Si (apfu) $>$ 7.3, Ti (apfu) $<$ 0.03, and crystallization temperatures $<$ 715°C (Figure 4). The |
| 238 | pale olive-colored rim has Si, Ti, and crystallization temperatures that are intermediate between      |
| 239 | the olive-brown-olive-green and green-blue-green pleochroic zones (Figure 4). On the basis of          |
| 240 | temperature calculations, the olive colored zones preserve records of a magmatic crystallization       |
| 241 | history, whereas pale-green-blue-green zones and the pale olive colored rim potentially represent      |
| 242 | growth from melt in a static mush or at sub-solidus conditions. Below we compare the                   |
| 243 | compositional trends of Hbl from several plutonic and volcanic suites to further test these            |
| 244 | conclusions.                                                                                           |
| 245 |                                                                                                        |
| 246 | Volcanic vs Plutonic Hornblende                                                                        |
| 247 | The Hbl investigated here originate from a wide compositional range of volcanic (basaltic              |
| 248 | to rhyolitic) and plutonic (dioritic to granitic) bulk-rocks. However, the glass compositions          |

reported from the volcanic rocks are, with rare exceptions, rhyolitic in composition. The

distribution of Hbl compositions from volcanic rocks is 71% magnesiohornblende, 17%

tschermakite, 9% magnesiohastingsite, and < 3% edenite/pargasite, whereas 89% of the Hbl

from plutonic rocks is classified as magnesiohornblende, 7% as tschermakite, 3% as actinolite,

- and < 1% edenite/pargasite (Table 1). In general, there is significant compositional overlap
- between Hbl from the plutonic and volcanic systems, particularly in the Si range of 6.1 to 7.4

(apfu) (Figure 5). Over this range of Si, Hbl from volcanic and plutonic rocks typically produce 255 similar sets of parallel trends (Figure 5, Supplementary Figure 1). However, for some elements 256 257 such as Al and Na, there are small offsets at a given Si value (Figure 5). For example, Hbl from 258 volcanic systems is generally characterized by lower Al and higher Na at a given Si value 259 compared to Hbl from plutonic systems (Figure 5, Supplementary Figure 1). These differences in 260 Al and Na are also correlated with temperature (Supplementary Figure 2). At a given 261 temperature value, Hbl from the volcanic systems is typically lower in Al and higher in Na 262 compared to Hbl from the plutonic systems (Supplementary Figure 2). 263 The Hbl from volcanic systems extends to more primitive compositions (i.e. lower Si and higher Ti, Al) and yields higher maximum temperatures of crystallization ( $T_{max} = 1031^{\circ}C$ ) 264 compared to Hbl from plutonic systems ( $T_{max} = 975^{\circ}C$ ) (Figure 5). Hornblende from plutonic 265 266 systems instead extends to more evolved compositions (i.e. higher Si, lower Ti, Al) and lower minimum temperatures ( $T_{min} = 532^{\circ}C$ ) than Hbl from volcanic systems ( $T_{min} = 686^{\circ}C$ ) (Figure 267 268 5). Over 95% of the Hbl temperature estimates from volcanic systems yield values above 750°C, with only four analyses (<<1%) below 700°C, whereas 35% of Hbl temperature estimates from 269 270 plutonic systems yield temperatures below 750°C. Thus, some Hbl analyses from plutons record 271 lower temperature histories that are not typically observed in volcanic systems. Both plutonic 272 and volcanic Hbl are characterized by a large number of calculated temperatures at  $\sim 760-780^{\circ}C$ (Figure 6). However, whereas Hbl from plutons is characterized by a roughly normal 273 274 distribution, a second temperature peak occurs in Hbl from volcanic systems at  $\sim 950^{\circ}$ C (Figure 6). This high temperature peak primarily results from temperature estimates derived from 275 276 intermediate and mafic systems such as Redoubt, Yanacocha, Augustine, and Young Shiveluch, 277 although some of the more silicic systems such as Cardones and Mt. St. Helens also display

278 peaks at high temperatures (see Supplementary Figure 3). Many of the volcanic systems with

high temperature Hbl also display bimodal distributions in their calculated temperatures (e.g.

280 Cardones, Redoubt, Yanacocha, Augustine).

In summary, the compositional trends of Hbl from volcanic and plutonic systems displays significant overlap from 6.1 to 7.4 Si (apfu) with small offsets in elements such as Na and Al. However, Hbl from volcanic systems is distinct in that it records higher maximum temperatures and more primitive (i.e. lower Si, higher Ti) compositions compared to Hbl from the plutons investigated in this study. Furthermore, the compositions of Hbl from plutonic systems extend to more evolved values (higher Si, lower Ti) and lower minimum temperatures compared to those from volcanic systems.

288

# 289 Hornblende – Melt Fe/Mg Equilibrium in Plutonic and Volcanic Systems

290 Studies of mafic magmatic systems commonly utilize mineral-melt Fe/Mg exchange as a 291 test of compositional equilibrium between crystals and melt (or bulk-rock / glass) (e.g. Roeder 292 and Emslie, 1970; Putirka, 2008; 2016b); however, these tests are rarely applied to silicic 293 systems. This is in part because the minerals most commonly utilized to investigate Fe/Mg 294 equilibrium, olivine, augite, and orthopyroxene, typically only occur in hotter and/or drier silicic 295 systems (e.g. Bachmann and Bergantz, 2008; Christiansen and McCurry, 2008). In evolved calc-296 alkaline systems, biotite and Hbl are the typical ferromagnesian silicates. Recent investigations 297 into Hbl-melt Fe/Mg equilibrium (Putirka, 2016a) and Hbl chemometry (Ridolfi and Renzulli, 2012; Putirka, 2016a; Zhang et al., 2017) provide an important means by which Hbl–bulk-rock 298 299 and Hbl–glass equilibrium can be evaluated in silicic systems.

| 300 | The Fe-Mg exchange coefficient or Hbl-melt Fe/MgKd, is independent of pressure,                                               |
|-----|-------------------------------------------------------------------------------------------------------------------------------|
| 301 | temperature, and melt composition (Putirka, 2016a). We follow the methods of Putirka (2016a)                                  |
| 302 | in calculating the Hbl-melt $^{Fe/Mg}Kd$ as $^{Hbl}Fe^{T/Hbl}Mg / {}^{Melt}Fe^{T/Melt}Mg$ where $^{Hbl}Fe$ and $^{Hbl}Mg$ are |
| 303 | cations in Hbl calculated on the basis of 23 oxygen atoms and $^{Melt}Fe^{T}$ and $^{Melt}Mg$ are $Fe^{T}$ and $Mg$           |
| 304 | calculated from the bulk-rock or glass in atomic units. The more conservative estimate for Hbl-                               |
| 305 | melt Fe/Mg Kd equilibrium proposed by Putirka (2016a) is used here in which any Hbl – melt Fe/Mg                              |
| 306 | Kd values that lie between 0.13 and 0.41 are considered to be in equilibrium. For the purpose of                              |
| 307 | studying equilibrium between Hbl and bulk-rock/glass compositions, we restrict our data set to                                |
| 308 | Hbl with Si $< 7.0$ (apfu) and temperatures $> 750$ °C. These filters are introduced because the                              |
| 309 | chemometric equations from Zhang et al. (2017) (discussed below) are calibrated for $5.7 < Si$                                |
| 310 | (apfu) < 7.0, and because we wish to compare Hbl from plutonic systems to compositionally                                     |
| 311 | similar Hbl in volcanic systems.                                                                                              |
|     | Fe/Mg $r = 1$ $Fe/Mg$ $r = 1$                                         |

Hornblende-bulk-rock <sup>Fe/Mg</sup> Kd values for the six plutons range from 0.2 to 2.8 (Figure 7). 312 Only 2% of the > 3000 Hbl-bulk-rock <sup>Fe/Mg</sup> Kd values from these plutons are in equilibrium. The 313 Hbl-bulk-rock Fe/Mg Kd values for volcanic systems range from 0.1 to 1.5, similar to the range 314 observed from plutonic systems (Figure 7). However, 67% of the ~ 3800 Hbl-bulk-rock <sup>Fe/Mg</sup>Kd 315 values for volcanic systems indicate Fe/Mg equilibrium. At bulk-rock  $SiO_2 > 65$  wt%, more than 316 86% of the Hbl compositions from volcanic systems are in Fe/Mg equilibrium, whereas at SiO<sub>2</sub> 317 < 65 wt%, only 33% of the compositions are in Fe/Mg equilibrium. Hbl-glass <sup>Fe/Mg</sup>Kd values 318 span a narrower range of values, from 0.04 to 0.7 (Figure 7). The majority of these Hbl 319 compositions (57%) are in Fe/Mg equilibrium with their associated glasses, which are primarily 320 rhyolitic in composition. It is noteworthy that the disequilibrium <sup>Fe/Mg</sup>Kd values between Hbl and 321 bulk-rock from plutonic and volcanic samples is typically restricted to values greater than, not 322

| 323 | less than, that of the nominal equilibrium range (i.e. are $> 0.43$ ), which suggests that Hbl in                                                         |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| 324 | these samples is too Fe-rich (too evolved) to be in equilibrium with melt of host-rock                                                                    |
| 325 | composition. In contrast, disequilibrium Fe/MgKd values between Hbl and glass is primarily <                                                              |
| 326 | 0.13, which suggests that Hbl in these samples is too Mg-rich (too primitive) to be in equilibrium                                                        |
| 327 | with the glass.                                                                                                                                           |
| 328 |                                                                                                                                                           |
| 329 | Hornblende Chemometry                                                                                                                                     |
| 330 | The Al-in-Hbl barometer has seen wide usage since its original conception                                                                                 |
| 331 | (Hammarstrom and Zen, 1986) and subsequent modifications. However, the use of Hbl as a                                                                    |
| 332 | barometer appears to be highly restricted (e.g. Hollister et al., 1987; Anderson and Smith, 1995)                                                         |
| 333 | due to Al-in-Hbl being more sensitive to temperature and Al <sub>2</sub> O <sub>3</sub> content of the melt than to                                       |
| 334 | pressure (Molina et al., 2015; Putirka, 2016a). The recognition that Hbl compositional variability                                                        |
| 335 | is primarily related to changes in temperature and melt composition has since brought about the                                                           |
| 336 | development of a number of equations that relate Hbl major element compositions to                                                                        |
| 337 | temperature and anhydrous melt compositions (Ridolfi et al., 2010; Ridolfi and Renzulli, 2012;                                                            |
| 338 | Molina, 2015; Putirka, 2016a; Zhang et al., 2017). Hornblende chemometry is based on                                                                      |
| 339 | multivariate least-squares regression analysis of Hbl and glass compositions along with pressure,                                                         |
| 340 | temperature, and fO <sub>2</sub> data from experimental studies (Ridolfi and Renzulli, 2012; Putirka, 2016a;                                              |
| 341 | Zhang et al., 2017). The first comprehensive series of chemometric equations for calculating                                                              |
| 342 | equilibrium melt SiO <sub>2</sub> , TiO <sub>2</sub> , Al <sub>2</sub> O <sub>3</sub> , FeO, MgO, CaO, and K <sub>2</sub> O were published by Ridolfi and |
| 343 | Renzulli (2012), however, these equations rely on pressure estimates. Zhang et al. (2017)                                                                 |
| 344 | developed a series of chemometric equations which are independent of pressure and allow for an                                                            |
| 345 | estimation of anhydrous equilibrium melt compositions for SiO <sub>2</sub> , TiO <sub>2</sub> , Al <sub>2</sub> O <sub>3</sub> , FeO, MgO, CaO,           |

and  $K_2O$ . Given that the uncertainties of pressure estimates are variably constrained for each of the plutonic and volcanic systems investigated here, we utilize the equations of Zhang et al. (2017).

Comparisons between the calculated melt and plutonic bulk-rock compositions are 349 presented in Figure 8. In most cases, there is limited or no correlation between bulk-rock 350 351 compositions and the results of the chemometric calculations. For example, > 95% of Hbl 352 analyses yield calculated melt compositions that are more evolved (i.e. higher  $SiO_2$  and lower 353 MgO, FeO, and CaO) than the bulk-rock composition. Some Hbl from Mt Stuart, Black Peak, Tenpeak, and Woolev Creek support crystallization from intermediate melt compositions. 354 However, 84% of the plutonic Hbl data yield calculated melt  $SiO_2$  values > 70 wt%, 76% of 355 analyses yield calculated melt CaO < 3 wt%, and 96% of analyses yield calculated melt MgO < 3356 1wt%. Thus, the bulk compositions of these plutonic rocks is typically more mafic, and in some 357 cases significantly more mafic, than the calculated melts in equilibrium with Hbl analyzed from 358 359 these rocks.

Comparisons of volcanic bulk-rock and glass compositions with melts calculated using 360 Hbl chemometry are presented in Figures 9 and 10, respectively. The calculated melt SiO<sub>2</sub> from 361 362 Hbl in volcanic systems varies from 41–78 wt% for 95% of the analyses. Only 55% of these estimated melt compositions are in equilibrium with their host bulk-rock SiO<sub>2</sub> composition, 363 although 70% are in equilibrium with their host glass SiO<sub>2</sub> composition. Where spatial 364 information (core and rim) exists for Hbl analyses, a similar proportion of the rims (70%) are in 365 equilibrium with their host glass SiO<sub>2</sub> composition (Supplementary Figure 4). In the cases where 366 367 estimated melt compositions are not similar to the host glass compositions, the majority (>96%)of estimated melts have lower SiO<sub>2</sub> contents than the existing glass. In contrast, comparison of 368

| 369 | estimated melts with bulk-rock compositions show that the estimated melts are more silicic than      |
|-----|------------------------------------------------------------------------------------------------------|
| 370 | the host rock for 89% of analyses that are in disequilibrium.                                        |
| 371 | In summary, for plutons, the majority of bulk-rock compositions are more mafic than                  |
| 372 | calculated melt compositions. For volcanic rocks, some of the calculated melt compositions are       |
| 373 | similar to bulk-rock and glass compositions, although, many calculated melt compositions are         |
| 374 | more evolved than the bulk-rocks, but less evolved than groundmass glass compositions.               |
| 375 |                                                                                                      |
| 376 | DISCUSSION                                                                                           |
| 377 |                                                                                                      |
| 378 | Textural and Compositional Modification of Hornblende in Plutons                                     |
| 379 | The extent to which Hbl from the TIC experienced textural and compositional                          |
| 380 | modification is controversial (e.g. Barnes et al., 2016c; Challener and Glazner 2017). Challener     |
| 381 | and Glazner (2017) cite the long durations over which TIC minerals were held at greenschist to       |
| 382 | amphibolite facies temperatures and argue that the inclusion rich assemblages preserved in Hbl       |
| 383 | are products of closed system metamorphic reactions involving the original Hbl. Thus, the            |
| 384 | original Hbl is interpreted to have undergone significant textural and compositional modification    |
| 385 | such that only remnants of the original magmatic Hbl is preserved. There are at least three          |
| 386 | important textural and compositional arguments cited by Challener and Glazner (2017) in favor        |
| 387 | of these interpretations. First, they argue that textural evidence supporting magmatic growth (e.g.  |
| 388 | concentric zoning) is absent and that irregular patchy zoning requires multiple growth events.       |
| 389 | Second, they point out that inclusions are abundant in Hbl phenocrysts (up to 45%), and that         |
| 390 | some inclusion assemblages are evidence of crystallization at greenschist-facies temperature         |
| 391 | conditions (i.e. albite, chlorite, actinolite, $\pm$ clinozoisite). Last, they suggest that the bulk |
|     |                                                                                                      |

392 composition of the observed Hbl + inclusions can be described by a reaction product of some 393 combination of high-Al Hbl with 5-30% biotite, proposing that recrystallization occurred within 394 the closed system capsule of the original igneous Hbl. In contrast, Barnes et al. (2016c) proposed 395 that compositional zoning in Hbl is common and that this zoning reflects changes in magma composition. Their arguments are based on the occurrence of core to rim compositional zoning 396 397 patterns, the co-variation of fast- and slow-diffusing trace elements (e.g. Sr and Ba versus REE), 398 calculated temperatures of crystallization that are representative of magmatic conditions, and on the preservation of compositionally distinct Hbl populations within individual samples. Barnes 399 et al. (2016c) also recognize patches of blue-green actinolitic amphibole in some Hbl and 400 401 interpret these zones as products of near-solidus to subsolidus replacement of olive-colored Hbl. Patchy zoning is common in Hbl from the TIC, however, as indicated by Barnes et al. 402 403 (2016c) its occurrence is not necessarily ubiquitous. Inclusion assemblages and the proportion of inclusions also vary widely, even within large euhedral Hbl phenocrysts. Given that patchy 404 405 zoning, inclusion assemblages, and inclusion proportions vary within and between samples, we suggest that bulk diffusive resetting of individual Hbl is unlikely and that patchy zoning instead 406 407 develops through a localized process. Furthermore, the preservation of magmatic crystallization 408 histories in Hbl from the TIC is supported in some Hbl by regular zoning patterns, co-variation of both fast- and slow-diffusing trace elements (Barnes et al., 2016c), magmatic textures such as 409 rare concentric zoning, magmatic crystallization temperatures, and compositional overlap with 410 Hbl from volcanic systems. This conclusion does not preclude the effects of late-stage magmatic 411 alteration, which is to be expected in plutons that crystallized from hydrous magmas. 412 413 Patchy zoning in Hbl from the TIC is interpreted here as a product of dissolution-414 reprecipitation at near-solidus to subsolidus conditions, whereby high-Al Hbl is replaced by low-

| 415 | Al Hbl. Dissolution of high-Al magnesiohornblende and reprecipitation of low-Al                                |
|-----|----------------------------------------------------------------------------------------------------------------|
| 416 | magnesiohornblende or actinolite leads to a decrease in molar volume (Okamoto and Toriumi,                     |
| 417 | 2005; Challener and Glazner, 2017) and therefore an increase in porosity that allows for melt                  |
| 418 | and/or fluids to stay in contact with dissolution fronts (Putnis, 2002, 2009). Textural observations           |
| 419 | agree with this interpretation. For example, the boundaries between high-Al and low-Al Hbl is                  |
| 420 | commonly sharp and rounded, suggestive of dissolution processes. Furthermore, the high-Al and                  |
| 421 | low-Al Hbl appear to share the same crystal lattice, at least optically (e.g. similar extinction               |
| 422 | angles). This suggests that an epitaxial relationship exists between the two zones, consistent with            |
| 423 | pseudomorphic replacement and coupled dissolution-reprecipitation reactions (Putnis, 2002;                     |
| 424 | 2009). Dissolution-reprecipitation is also supported by the occurrence of a compositional gap at               |
| 425 | $\sim$ 740–760°C or at $\sim$ 7.2–7.4 Si (apfu) in Hbl from most samples (e.g. Figure 4). Small variations     |
| 426 | in the maximum temperatures over which patchy zoning develops could be a function of the                       |
| 427 | temperatures at which a fluid phase developed in individual magma batches. Note that Hbl with                  |
| 428 | calculated temperatures below 750°C is rarely present as Hbl rims or as texturally homogeneous                 |
| 429 | Hbl, but is instead from patchy zones. Hornblende rims and Hbl that appears texturally                         |
| 430 | homogenous at the petrographic scale typically yield temperatures above 750°C. Therefore, Hbl                  |
| 431 | growth at near-solidus conditions primarily occurs via replacement reactions.                                  |
| 432 | The proportion of Hbl with calculated temperatures $< 750^{\circ}$ C in the TIC is $\sim 26\%$ and Hbl         |
| 433 | with temperatures $< 650^{\circ}$ C is $<< 1\%$ . If the other plutonic systems investigated in this study are |
| 434 | also considered, the proportion of Hbl with temperatures $< 750^{\circ}$ C is $< 24\%$ and Hbl with            |
| 435 | temperatures $< 650$ °C is $< 1$ %. Thus, the majority Hbl analyzed from plutonic systems records              |
| 436 | information about magmatic conditions that is comparable to conditions preserved in Hbl from                   |

437 volcanic systems. We therefore suggest that with detailed petrographic and analytical study of a

representative suite of samples, it is possible to identify local modification of Hbl compositions
by super-solidus to sub-solidus dissolution-reprecipitation as well as by sub-solidus, lower-T
deuteric alteration.

441

# 442 Mineral-Melt Disequilibrium and Evidence of Crystal Accumulation

The petrogenetic relationship between silicic plutonic and volcanic systems is still 443 unclear (e.g. Read, 1957; Buddington, 1959; Lipman, 1984, 2007; Bachmann and Bergantz, 444 2004; Hildreth, 2004; Bachmann et al., 2007; Coleman et al., 2012; Lipman and Bachmann, 445 2015; Glazner et al., 2018). Authors in favor of a petrogenetic link cite the spatial and temporal 446 447 proximity between many plutonic and volcanic systems (Lipman, 2007; Lipman and Bachmann, 448 2015; Watts et al., 2016), the occurrence of negative gravity anomalies (suggestive of silicic 449 batholiths) beneath some large-volume ignimbrites (Lipman 2007; Lipman and Bachmann, 2015), and the complementary relationship between silicic plutonic and volcanic rocks (e.g. 450 451 Gelman et al., 2014; Lee and Morton, 2015). However, the recognition that plutons may be 452 assembled incrementally over millions of years, with low average magma addition rates, has led some authors (e.g. Coleman et al., 2004; Glazner et al., 2004; Glazner et al., 2018) to suggest 453 454 that plutons and large-volume ignimbrites are not genetically linked and by extension of these arguments, that magma chambers that are capable of crystal-liquid separation, mixing, 455 assimilation, and recycling of material are not important in the middle to upper crust. If magma 456 differentiation is restricted to lower crustal hot zones (Annen et al., 2006) and plutons are 457 assembled incrementally through low magma addition rates without producing magma bodies 458 459 capable of in-situ differentiation, then crystal accumulation and melt loss should not be prevalent 460 within upper crustal plutonic systems. Alternatively, if magma addition rates are high, allowing

461 for extensive magma bodies to form and differentiate at the site of emplacement and for 462 connections between volcanic and plutonic systems to occur, then crystal accumulation and melt loss should be important magmatic processes. Hornblende-melt <sup>Fe/Mg</sup>Kd tests and Hbl-463 464 chemometry provide ways in which individual samples can be evaluated for crystal accumulation and melt loss effects. 465 Hornblende from the seven plutonic systems (Tuolumne, Wooley Creek, English Peak, 466 467 Ashland, Tenpeak, Black Peak, and Mt Stuart) investigated in this study is only rarely in 468 compositional equilibrium with host bulk-rock compositions (Figure 8). Instead, bulk-rock compositions are typically too Mg-rich on the basis of Hbl-melt <sup>Fe/Mg</sup>Kd tests and too mafic 469 470 compared to melts calculated from Hbl-chemometry. The calculated melts are mostly rhyolitic, 471 with few analyses yielding intermediate melt compositions (Figure 8). These calculated rhyolitic 472 melts do not represent low temperature differentiates given that 90% of the Hbl analyses reported 473 here yield calculated crystallization temperatures above 780°C. Furthermore, plagioclase 474 compositions from these plutons also support evolved melt compositions. For example, the 475 maximum and minimum anorthite content of plagioclase in samples where Hbl was a primary rather than peritectic phase ranges from: An<sub>57</sub>–An<sub>12</sub> in the Wooley Creek batholith (Barnes, 476 477 1983); An<sub>53</sub>–An<sub>19</sub> in the English Peak pluton (Barnes et al., 2016a); and An<sub>42</sub>–An<sub>9</sub> in the Tuolumne Intrusive Complex (Bateman and Chappell, 1979; Barnes et al., 2016c). Note that the 478 calculated melt compositions generally show a narrow range of values regardless of the range in 479 bulk-rock compositions (Figure 8). Thus, the compositional variability of these plutonic bulk-480 rock samples seems to be dominated by varying extents of crystal accumulation and/or melt loss 481 482 rather than to a diversity of melt compositions. The general absence of calculated intermediate 483 melt compositions in plutons agrees with melt inclusion studies from arc volcanic rocks, which

484 indicate that melt compositions are largely bimodal, with peaks at 54 and 76 wt% SiO<sub>2</sub> (Reubi 485 and Blundy, 2009). Melt loss from these intrusive systems potentially results from a variety of 486 processes such as hindered settling, compaction, gas-filter pressing, and/or regional deformation, 487 although, the ways in which the relative importance of these processes can be deciphered from individual plutonic systems is uncertain (Holness, 2018). Regardless of the processes by which 488 489 melt escapes, the result is either that these silicic melts are redistributed in the crust (e.g. silicic 490 dikes or plutons) or that the melts escape subcrustal reservoirs and erupt. Detailed mass-balance studies that consider the effects of crystal accumulation and melt loss on bulk-rock compositions 491 are needed in order first to quantify the volumes of silicic melt that are lost from these plutonic 492 493 systems (e.g. Barnes et al., 2016a; Barnes et al., in revision) and second to determine the 494 proportion of melt that is redistributed in the crust versus the proportion that has escaped through 495 volcanic eruption. It should be noted that the dissolution-reprecipitation processes discussed 496 above coupled with the likelihood of crystal accumulation and/or melt loss present additional 497 challenges to the application of Al-in-Hbl barometry. For example, in Hbl from the TIC and 498 English Peak pluton (Barnes et al., 2017), the majority of Hbl growth at near-solidus conditions is related to dissolution-reprecipitation reactions. Therefore, in cumulate samples where low 499 500 temperature melt has escaped and/or where low temperature dissolution-reprecipitation processes 501 did not operate, pressure estimates will be restricted to higher temperature Hbl and therefore lead to higher pressure estimations (cf. Putirka, 2016a). 502

In volcanic systems, Hbl in dacitic to rhyolitic samples is more likely to be in Fe-Mg equilibrium compared to Hbl from more mafic and intermediate rocks (Figure 9). As with the plutonic rocks, in cases where calculated melts are dissimilar to bulk-rock compositions, the calculated melts are typically more evolved, but note that volcanic glasses that are not in

22

equilibrium with Hbl are instead typically too evolved (Figure 10). The differences between 507 calculated melts and the rhyolitic glasses is commonly minor such that the Hbl may have 508 509 originated from a less fractionated melt, although in some cases (e.g. in intermediate bulk-rock 510 samples) the differences between the calculated melts and glass compositions is significant and may indicate the occurrence of mixed crystal populations. For dacitic to rhyolitic bulk-rock 511 512 samples, the variability observed between bulk-rock and calculated melt SiO<sub>2</sub> is small and could therefore be attributable to either melt fractionation or to small amounts of crystal accumulation. 513 However, bulk-rock compositions and calculated melts may both vary by > 20 wt% SiO<sub>2</sub> for the 514 more mafic and intermediate bulk-rock samples. Thus, either extreme fractional crystallization is 515 516 recorded in these Hbl or these wide variations in SiO<sub>2</sub> instead reflect magma mixing between 517 mafic and silicic magmas. Magma mixing seems plausible given that calculated melt  $SiO_2$ 518 compositions from individual samples (e.g. Redoubt) is bimodal in some cases (Coombs et al., 2013). It is noteworthy that there is a general absence of lower temperature (< 750°C) Hbl from 519 520 volcanic systems. The absence of lower temperature Hbl is consistent with the idea that 521 magmatic mushes at temperatures lower than 750°C are unlikely to erupt. In a more complex scenario, if magmas that cooled below 750°C were reheated and then erupted, then evidence for 522 523 dissolution of low T Hbl is expected.

524

# 525 **IMPLICATIONS**

The preservation of magmatic conditions in Hbl from plutons allows for Hbl – melt
 Fe/MgKd tests (Putirka, 2016a) and Hbl chemometry (Ridolfi and Renzulli, 2012; Putirka, 2016a;
 Zhang et al., 2017) to be used to both assess the significance of crystal accumulation and/or melt
 loss processes (in conjunction with other magmatic processes) and to determine equilibrium melt

530 compositions. This work indicates that melts from which Hbl crystallized in quartz-bearing plutons in the mid- to upper-crust are generally rhyolitic in composition and that bulk-rock 531 532 diversity in these plutons is dominated by varying extents of crystal accumulation and/or melt 533 loss. Hornblende from more mafic to intermediate volcanic systems instead yield wide ranges of calculated melt compositions, which in some samples display bimodality between mafic and 534 535 silicic melts. Thus, many of the more mafic to intermediate bulk-rock samples investigated in 536 this study are likely products of magma mixing. If the petrogenetic links between plutonic and volcanic rocks is to be understood and quantified, then detailed assessment and analysis of 537 crystal accumulation and melt loss processes is needed from individual magmatic systems. It will 538 539 also be critically important to identify the mechanisms by which evolved melts escape from 540 magmatic mushes (e.g., Bachmann and Huber, 2018; Holness, 2018). This task will require 541 individual case studies that focus on plutonic rock textures, rock and mineral compositions, and 542 modeling of melt compositions and physical properties.

543

# 544 ACKNOWLEDGEMENTS

This work was supported by NSF EAR grants awarded to Barnes (EAR 155509), Memeti (EAR
1550935), and Paterson (EAR 1250219 and EAR 1624847). We thank George Morgan, Melanie
Barnes, and Jake Sullivan for their assistance in the laboratory. The manuscript was greatly
improved by reviews from Phil Piccoli, Charlotte Allen, and an anonymous reviewer and
editorial comments from Jade Star Lackey.

550

| 551 | REFERENCES                                                                                     |
|-----|------------------------------------------------------------------------------------------------|
| 552 | Anderson, J. L. and Smith., D.R. (1995). The effects of temperature and $f_{02}$ on the Al-in- |
| 553 | hornblende barometer. American Mineralogist 80, 549-559.                                       |
| 554 | Allan, A. S. R., Barker, S. J., Millet, MA., Morgan, D. J., Rooyakkers, S. M., Schipper, C. I. |
| 555 | and Wilson, C. J. N. (2017). A cascade of magmatic events during the assembly and              |
| 556 | eruption of a super-sized magma body. Contributions to Mineralogy and Petrology 172,           |
| 557 | 49.                                                                                            |
| 558 | Annen, C., Blundy, J.D., and Sparks, J. (2006). The Genesis of Intermediate and Silicic Magmas |
| 559 | in Deep Crustal Hot Zones. Journal of Petrology 47, 505-539.                                   |
| 560 | Bachmann, O. and Bergantz, G. W. (2004). On the Origin of Crystal-poor Rhyolites: Extracted    |
| 561 | from Batholithic Crystal Mushes. Journal of Petrology 45, 1565-1582.                           |
| 562 | Bachmann, O. and Bergantz, G. W. (2008). Rhyolites and their Source Mushes across Tectonic     |
| 563 | Settings. Journal of Petrology 49, 2277-2285.                                                  |
| 564 | Bachmann, O., and Dungan, M.A. (2002). Temperature-induced Al-zoning in hornblendes of the     |
| 565 | Fish Canyon magma, Colorado. American Mineralogist 87, 1062-1076.                              |
| 566 | Bachmann, O., Dungan. M.A., and Lipman, P.W. (2002). The Fish Canyon Magma Body, San           |
| 567 | Juan Volcanic Field, Colorado: Rejuvenation and Eruption of an Upper-Crustal Batholith.        |
| 568 | Journal of Petrology 43, 1469-1503.                                                            |
| 569 | Bachmann, O., and Huber, C. (2018). The inner workings of crustal distillation columns; the    |
| 570 | physical mechanisms and rates controlling phase separation in silicic magma reservoirs.        |
| 571 | Journal of Petrology, doi/10.1093/petrology/egy103/5184274.                                    |

- 572 Bachmann, O., Miller, C. F. and de Silva, S. L. (2007). The volcanic–plutonic connection as a
- stage for understanding crustal magmatism. Journal of Volcanology and Geothermal
  Research 167, 1-23.
- Barnes, C. G. (1983). Petrology and Upward Zonation of the Wooley Creek Batholith, Klamath
- 576 Mountains, California. Journal of Petrology 24, 495-537.
- 577 Barnes, C.G. (1987). Mineralogy of the Wooley Creek Batholith, Slinkard Pluton, and related

dikes, Klamath Mountains, Northern California. American Mineralogist 72, 879-901.

- 579 Barnes, C. G., Berry, R., Barnes, M. A. and Ernst, W. G. (2017). Trace element zoning in
- 580 hornblende: Tracking and modeling the crystallization of a calc-alkaline arc pluton.
- 581 American Mineralogist 102, 2390-2405.
- Barnes C. G., Coint, N. and Yoshinobu, A. (2016a). Crystal accumulation in a tilted arc
  batholith. American Mineralogist, 1719.
- Barnes, C. G., Ernst, W. G., Berry, R. and Tsujimori, T. (2016b). Petrology and Geochemistry of
  an Upper Crustal Pluton: a view into Crustal-scale Magmatism during Arc to Retro-arc
  Transition. Journal of Petrology 57, 1361-1388.
- 587 Barnes, C. G., Memeti, V. and Coint, N. (2016c). Deciphering magmatic processes in calc-
- alkaline plutons using trace element zoning in hornblende. American Mineralogist 101,
  328-342.
- 590 Barnes, C.G., Werts, K., Memeti, V. and Ardill, K. (in revision). Most granitoid rocks are
- 591 cumulates: deductions from hornblende compositions and zircon saturation. Journal of592 Petrology.
- Bateman, P. C. (1992). Plutonism in the Central Part of the Sierra Nevada Batholith, California.
- 594 U.S. Geological Survey Professional Paper 1483, 1-186.

- Bateman, P. C., and Chappel, B.W. (1979). Crystallization, fractionation, and solidification of
- the Tuolumne Intrusive Series, Yosemite National Park, California. Geological Society ofAmerica Bulletin 90, 465-482.
- 598 Berry, R.A. (2015) Hornblende as an indicator of magma batches and magmatic processes in the
- English Peak pluton, Klamath Mountains, California. M.S. thesis, Texas Tech University,
  Lubbock, 201
- Bowen, N.L. (1928). The Evolution of the Igneous Rocks. Princeton University Press. Princeton,
  NJ.
- Buddington, A. F. (1959). Granite Emplacement With Special Reference to North America. GSA
  Bulletin 70, 671-747.
- 605 Challener, S. C. and Glazner, A. F. (2017). Igneous or metamorphic? Hornblende phenocrysts as
- greenschist facies reaction cells in the Half Dome Granodiorite, California. American
  Mineralogist 102, 436-444.
- 608 Chambefort, I., Dilles, J. H. and Longo, A. A. (2013). Amphibole Geochemistry of the
- 609 Yanacocha Volcanics, Peru: Evidence for Diverse Sources of Magmatic Volatiles
  610 Related to Gold Ores. Journal of Petrology 54, 1017-1046.
- 611 Chan, C. F., Shea, E. K., Kent, A. J., Miller, R. B., Miller, J. S., and Bowring, S. A. (2017)
- Formation of a sheeted intrusive complex within the deep-crustal Tenpeak pluton, North
  Cascades, Washington. Geosphere, 13, 5, 1610-1639.
- 614 Christiansen, E. H. and McCurry, M. (2008). Contrasting origins of Cenozoic silicic volcanic
- rocks from the western Cordillera of the United States. Bulletin of Volcanology 70, 251-
- 616 267.

- 617 Coint, N., Barnes, C.G., Yoshinobu, A.S., Barnes, M.A., Buck, S. (2013b). Use of trace element
- abundances in augite and hornblende to determine the size, connectivity, timing, and
- evolution of magma batches in a tilted batholith. Geosphere 9, 1747-1765.
- 620 Coint, N., Barnes, C.G., Yoshinobu, A.S., Chamberlain, K.R., Barnes, M.A. (2013a). Batch-wise
- assembly and zoning of a tilted calc-alkaline batholith: Field relations, timing, and
- 622 compositional variation. Geosphere 9, 1729-1746.
- 623 Coleman, D. S., Gray, W., Glazner, A.F. (2004). Rethinking the emplacement and evolution of
- 24 zoned plutons: Geochronologic evidence for incremental assembly of the Tuolumne
- Intrusive Suite, California. Geological Society of America 32, 433-436.
- 626 Coleman, D. S., Bartley, J.M., Glazner, A.F., Pardue, M.J. (2012). Is chemical zonation in
- 627 plutonic rocks driven by changes in source magma composition or shallow-crustal628 differentiation? Geosphere 8, 1568-1587.
- 629 Collins, W., Wiebe, R., Healy, B. and W. Richards, S. (2006). Replenishment, Crystal
  630 Accumulation and Floor Aggradation in the Megacrystic Kameruka Suite, Australia.
- 631 Coombs, M. L., Sisson, T. W., Bleick, H. A., Henton, S. M., Nye, C. J., Payne, A. L., Cameron,
- 632 C. E., Larsen, J. F., Wallace, K. L. and Bull, K. F. (2013). Andesites of the 2009 eruption
- 633 of Redoubt Volcano, Alaska. Journal of Volcanology and Geothermal Research 259, 349-
- **634** 372.
- Davidson, J., Tepley, F., III, Palacz, Z. and Meffan-Main, S. (2001). Magma recharge,
- 636 contamination and residence times revealed by in situ laser ablation isotopic analysis of
- 637 feldspar in volcanic rocks. Earth and Planetary Science Letters 184, 427–442.

- 638 Davis, J. W., Coleman, D. S., Gracely, J. T., Gaschnig, R. and Stearns, M. (2012). Magma
- accumulation rates and thermal histories of plutons of the Sierra Nevada batholith, CA.
  Contributions to Mineralogy and Petrology 163, 449-465.
- 641 De Angelis, S. H., Larsen, J. and Coombs, M. (2013). Pre-eruptive Magmatic Conditions at
- 642 Augustine Volcano, Alaska, 2006: Evidence from Amphibole Geochemistry and
- Textures. Journal of Petrology 54, 1939-1961.
- 644 DePaolo, D. J. (1981). Trace element and isotopic effects of combined wallrock assimilation and
- 645 fractional crystallization. Earth and Planetary Science Letters 53, 189-202.
- 646 Deering, C. D. (2009). Cannibalization of an amphibole-rich andesitic progenitor induced by
- 647 caldera-collapse during the Matahina eruption: Evidence from amphibole compositions.
- 648 American Mineralogist 94, 1162-1174.
- Deering, C. D., Bachmann, O. (2010). Trace element indicators of crystal accumulation in silicic
  igneous rocks. Earth and Planetary Science Letters 297, 324-331.
- 651 Deering, C. D., Cole, J. W., and Vogel, T. A. (2011). Extraction of crystal-poor rhyolite from a
- hornblende-bearing intermediate mush: a case study of the caldera-forming Matahina
- eruption, Okataina volcanic complex. Contributions to Mineralogy and Petrology 161,
- 654 129-151.
- Druitt, T. H. and Bacon, C. R. (1989). Petrology of the zoned calc alkaline magma chamber of
  Mount Mazama, Crater Lake, Oregon. Contributions to Mineralogy and Petrology 101,
  245-259.
- Esawi, E. K. (2004). AMPH-CLASS: An Excel spreadsheet for the classification and
- nomenclature of amphiboles based on the 1997 recommendations of the International
- 660 Mineralogical Association. Computers and Geosciences 30, 753-760.

- 661 Gelman, S. E., Deering, C. D., Bachmann, O., Huber, C. and Gutiérrez, F. J. (2014). Identifying
- the crystal graveyards remaining after large silicic eruptions. Earth and Planetary Science
  Letters 403, 299-306.
- Glazner, A.F., Bartley, J.M., Coleman, D.S., Gray, W., and Taylor, R.Z., (2004). Are plutons
- assembled over millions of years by amalgamation from small magma chambers?: GSA
- 666 Today, 14, 4–11.
- Glazner, A., Coleman, D., and Mills, R. (2018). The Volcanic-Plutonic Connection. Springer
  Berlin Heidelberg, 1-22.
- Gorbach, N. V. and Portnyagin, M. V. (2011). Geology and petrology of the lava complex of
  Young Shiveluch Volcano, Kamchatka. Petrology 19, 134.
- Gribble, R. F., Barnes, C. G., Donato, M. M., Hoover, J. D. and Kistler, R. W. (1990).
- 672 Geochemistry and Intrusive History of the Ashland Pluton, Klamath Mountains,

673 California and Oregon. Journal of Petrology 31, 883-923.

Hammarstrom, J. M., Zen, E-an. (1986). Aluminum in hornblende: An empirical igneous

geobarometer. American Mineralogist 71, 1297-1313.

- Hawthorne, F. C., Oberti, R., Harlow, G. E., Maresch, W. V., Martin, R. F., Schumacher, J. C.
- and Welch, M. D. (2012). Nomenclature of the amphibole supergroup. American
  Mineralogist 97, 2031-2048.
- Hepeng, T. (2016). Using hornblende geochemistry to unravel the emplacement of magmatic
- 680 structures, Tuolumne Intrusive Complex, California [MS Thesis]: Lubbock, Texas Tech
- 681 University, 1-99.

- Hildreth, W. (2004). Volcanological perspectives on Long Valley, Mammoth Mountain, and
- Mono Craters: several contiguous but discrete systems. Journal of Volcanology and
  Geothermal Research 136, 169-198.
- Hildreth, W. and Moorbath, S. (1988). Crustal contributions to arc magmatism in the Andes of
- 686 Central Chile. Contributions to Mineralogy and Petrology 98, 455-489.
- Hollister, L. S., Grissom, G.C., Peters, E.K., Stowell, H.H., and Sisson, V.B. (1987).
- 688 Confirmation of the empirical correlation of Al in hornblende with pressure of
- solidification of calc-alkaline plutons. American Mineralogist 72, 231-239.
- Holness, M. B. (2018). Melt segregation from silicic crystal mushes: a critical appraisal of
- possible mechanisms and their microstructural record. Contributions to Mineralogy andPetrology 173, 48.
- Keller, C.B., Schoene, B., Barboni, M., Samperton, K.M., and Husson, J.M. (2015) Volcanic–
- 694 plutonic parity and the differentiation of the continental crust. Nature, 523, 301–307.
- 695 Klaver, M., Blundy, J. D. and Vroon, P. Z. (2017). Generation of arc rhyodacites through
- 696 cumulate-melt reactions in a deep crustal hot zone: Evidence from Nisyros volcano. Earth697 and Planetary Science Letters 497, 169-180.
- Larsen, J. F., Nye, C. J., Coombs, M. L., Tilman, M., Izbekov, P. and Cameron, C. (2010).
- 699 Petrology and geochemistry of the 2006 eruption of Augustine Volcano: Chapter 15 in
- The 2006 eruption of Augustine Volcano, Alaska. In: Power, J. A., Coombs, M. L. and
  Freymueller, J. T. (eds.) Professional Paper, 335-382.
- Leake, B. E., Woolley, A.R., Arps, C.E.S., Birch, W.D., Gilbert, M.C., Grice, J.D., Hawthorne,
- F.C., Kato, A., Kisch, H.J., Krivovichev, V.G., Linthout, K., Laird, J., Mandarino, J.A.,
- 704 Maresch, W.V., Nickel, E.H., Rock, N.M.S., Schumacher, J.C., Smith, D.C., Stephenson,

| 705 | N.C.N., Ungaretti, L., Whittaker, E.J.W., Youzhi, G. (1997). Nomenclature of                 |
|-----|----------------------------------------------------------------------------------------------|
| 706 | Amphiboles: Report of the subcommittee on amphiboles of the international                    |
| 707 | mineralogical association, commission on new minerals and mineral names. The                 |
| 708 | Canadian Mineralogist 35, 219-246.                                                           |
| 709 | Lee, CT. A. and Morton, D. M. (2015). High silica granites: Terminal porosity and crystal    |
| 710 | settling in shallow magma chambers. Earth and Planetary Science Letters 409, 23-31.          |
| 711 | Lee, CT. A., Morton, D. M., Farner, M. J. and Moitra, P. (2015). Field and model constraints |
| 712 | on silicic melt segregation by compaction/hindered settling: The role of water and its       |
| 713 | effect on latent heat release. American Mineralogist 100, 1762-1777.                         |
| 714 | Lipman, P. W. (1984). The roots of ash flow calderas in western North America: Windows into  |
| 715 | the tops of granitic batholiths. Journal of Geophysical Research: Solid Earth 89, 8801-      |
| 716 | 8841.                                                                                        |
| 717 | Lipman, P. W. (2007). Incremental assembly and prolonged consolidation of Cordilleran magma  |
| 718 | chambers: Evidence from the Southern Rocky Mountain volcanic field. Geosphere 3, 42-         |
| 719 | 70.                                                                                          |
| 720 | Lipman, P. W. and Bachmann, O. (2015). Ignimbrites to batholiths: Integrating perspectives   |
| 721 | from geological, geophysical, and geochronological data. Geosphere 11, 705-743.              |
| 722 | McCarthy, T. S. and Hasty, R. A. (1976). Trace element distribution patterns and their       |
| 723 | relationship to the crystallization of granitic melts. Geochimica et Cosmochimica Acta       |
| 724 | 40, 1351-1358.                                                                               |
| 725 | Memeti, V., Paterson, S., Mundil, R. (2014). Day 4: Magmatic evolution of the Tuolumne       |
| 726 | Intrusive Complex. Geological Society of America Field Guide 34, 43-74.                      |

| 727 | Miller, C. F., Furbish, D. J., Walker, B. A., Claiborne, L. L., Koteas, G. C., Bleick, H. A. and |
|-----|--------------------------------------------------------------------------------------------------|
| 728 | Miller, J. S. (2011). Growth of plutons by incremental emplacement of sheets in crystal-         |
| 729 | rich host: Evidence from Miocene intrusions of the Colorado River region, Nevada, USA.           |
| 730 | Tectonophysics 500, 65-77.                                                                       |
| 731 | Molina, J. F., Moreno, J. A., Castro, A., Rodríguez, C. and Fershtater, G. B. (2015). Calcic     |
| 732 | amphibole thermobarometry in metamorphic and igneous rocks: New calibrations based               |
| 733 | on plagioclase/amphibole Al-Si partitioning and amphibole/liquid Mg partitioning. Lithos         |
| 734 | 232, 286-305.                                                                                    |
| 735 | Nakada, S., Bacon, C. R. and Gartner, A. E. (1994). Origin of Phenocrysts and Compositional      |
| 736 | Diversity in Pre-Mazama Rhyodacite Lavas, Crater Lake, Oregon. Journal of Petrology              |
| 737 | 35, 127-162.                                                                                     |
| 738 | Pallister, J. S., Thornber, C. R., Cashman, K. V., Clynne, M. A., Lowers, H., Mandeville, C. W., |
| 739 | Brownfield, I. K. and Meeker, G. P. (2008). Petrology of the 2004-2006 Mount St.                 |
| 740 | Helens lava dome implications for magmatic plumbing and eruption triggering. In:                 |
| 741 | Sherrod, D. R., Scott, W. E. and Stauffer, P. H. (eds.) Professional Paper. Reston, VA,          |
| 742 | 647-702.                                                                                         |
| 743 | Paterson, S. R., Okaya, D., Memeti, V., Economos, R., Miller, R.B. (2011). Magma addition and    |
| 744 | flux calculations of incrementally constructed magma chambers in continental margin              |
| 745 | arcs: Combined field, geochronologic, and thermal modeling studies. Geosphere 7, 1439-           |
| 746 | 1468.                                                                                            |
| 747 | Paterson, S., Memeti, V., Mundil, R. and Žák, J. (2016). Repeated, multiscale, magmatic erosion  |
| 748 | and recycling in an upper-crustal pluton: Implications for magma chamber dynamics and            |
| 749 | magma volume estimates. American Mineralogist 101, 2176-2198.                                    |

- Putnis, A. (2002). Mineral replacement reactions: from macroscopic observations to microscopic
  mechanisms. Mineralogical Magazine 66, 689-708.
- Putnis, A. (2009). Mineral Replacement Reactions. Reviews in Mineralogy and Geochemistry
  70, 87-124.
- Putirka, K. D. (2008). Thermometers and Barometers for Volcanic Systems. Reviews in
   Mineralogy and Geochemistry 69, 61-120.
- Putirka, K. (2016a). Amphibole thermometers and barometers for igneous systems and some

757 implications for eruption mechanisms of felsic magmas at arc volcanoes. American

- 758 Mineralogist 101, 841-858.
- Putirka, K. (2016b). Rates and styles of planetary cooling on Earth, Moon, Mars, and Vesta,

using new models for oxygen fugacity, ferric-ferrous ratios, olivine-liquid Fe-Mg
exchange, and mantle potential temperature. American Mineralogist 101, 819-840.

- 762 Ratschbacher, B. C., Keller, C. B., Schoene, B., Paterson, S. R., Anderson, J. L., Okaya, D.,
- 763 Putirka, K. and Lippoldt, R. (2018). A New Workflow to Assess Emplacement Duration
- and Melt Residence Time of Compositionally Diverse Magmas Emplaced in a Sub-
- volcanic Reservoir. Journal of Petrology 59, 1787-1809.
- Read, H. H. (1957). The Granite Controversy. Geologiska Föreningen i Stockholm
  Förhandlingar 79, 591-593.
- 768 Reid, J. B., Jr., Evans, O. C. and Fates, D. G. (1983). Magma mixing in granitic rocks of the
- central Sierra Nevada, California. Earth and Planetary Science Letters 66, 243-261
- 770 Reubi, O. and Blundy, J. (2009). A dearth of intermediate melts at subduction zone volcanoes
- and the petrogenesis of arc andesites. Nature 461, 1269.

| 772 | Ridolfi, F. and Renzulli, A. (2012). Calcic amphiboles in calc-alkaline and alkaline magmas:      |
|-----|---------------------------------------------------------------------------------------------------|
| 773 | thermobarometric and chemometric empirical equations valid up to 1,130°C and 2.2 GPa.             |
| 774 | Contributions to Mineralogy and Petrology 163, 877-895.                                           |
| 775 | Ridolfi, F., Renzulli, A. and Puerini, M. (2010). Stability and chemical equilibrium of amphibole |
| 776 | in calc-alkaline magmas: an overview, new thermobarometric formulations and                       |
| 777 | application to subduction-related volcanoes. Contributions to Mineralogy and Petrology            |
| 778 | 160, 45-66.                                                                                       |
| 779 | Roeder, P. L. and Emslie, R. F. (1970). Olivine-liquid equilibrium. Contributions to Mineralogy   |
| 780 | and Petrology 29, 275-289.                                                                        |
| 781 | Rooney, T. O., Franceschi, P. and Hall, C. M. (2011). Water-saturated magmas in the Panama        |
| 782 | Canal region: a precursor to adakite-like magma generation? Contributions to Mineralogy           |
| 783 | and Petrology 161, 373-388.                                                                       |
| 784 | Rowe, M. C., Thornber, C. R. and Kent, A. J. R. (2008). Identification and evolution of the       |
| 785 | juvenile component in 2004-2005 Mount St. Helens ash: Chapter 29 in A volcano                     |
| 786 | rekindled: the renewed eruption of Mount St. Helens, 2004-2006. In: Sherrod, D. R.,               |
| 787 | Scott, W. E. and Stauffer, P. H. (eds.) Professional Paper. Reston, VA, 629-646.                  |
| 788 | Schaen, A. J., Singer, B. S., Cottle, J. M., Garibaldi, N., Schoene, B., Satkoski, A. M. and      |
| 789 | Fournelle, J. (2018). Textural and Mineralogical Record of Low-pressure Melt Extraction           |
| 790 | and Silicic Cumulate Formation in the Late Miocene Risco Bayo-Huemul Plutonic                     |
| 791 | Complex, Southern Andes. Journal of Petrology 59, 1991-2016.                                      |
| 792 | Shane, P. and Smith, V. C. (2013). Using amphibole crystals to reconstruct magma storage          |
| 793 | temperatures and pressures for the post-caldera collapse volcanism at Okataina volcano.           |
| 794 | Lithos 156-159, 159-170.                                                                          |

- 795 Spera, F. J. and Bohrson, W. A. (2001). Energy-Constrained Open-System Magmatic Processes
- 796 I: General Model and Energy-Constrained Assimilation and Fractional Crystallization
- 797 (EC-AFC) Formulation. Journal of Petrology 42, 999-1018.
- 798 Thornber, C. R., Pallister, J. S., Lowers, H., Rowe, M. C., Mandeville, C. W. and Meeker, G. P.
- 799 (2008). Chemistry, mineralogy, and petrology of amphibole in Mount St. Helens 2004-
- 2006 dacite. In: Sherrod, D. R., Scott, W. E. and Stauffer, P. H. (eds.) Professional Paper.
- 801 Reston, VA, 727-754.
- van Zalinge, M. E., Sparks, R. S. J. and Blundy, J. D. (2017). Petrogenesis of the Large-volume
- 803 Cardones Ignimbrite, Chile; Development and Destabilization of a Complex Magma–
  804 Mush System. Journal of Petrology 58, 1975-2006.
- Vernon, R. H. and Collins, W. J. (2011). Structural Criteria for Identifying Granitic Cumulates.
  The Journal of Geology 119, 127-142.
- 807 Watts, K. E., John, D. A., Colgan, J. P., Henry, C. D., Bindeman, I. N. and Schmitt, A. K.
- 808 (2016). Probing the Volcanic–Plutonic Connection and the Genesis of Crystal-rich
- 809 Rhyolite in a Deeply Dissected Supervolcano in the Nevada Great Basin: Source of the
- Late Eocene Caetano Tuff. Journal of Petrology 57, 1599-1644.
- 811 Weinberg, R. F. (2006). Melt segregation structures in granitic plutons. Geology 34, 305-308.
- Wiebe, R. A. (1993). The Pleasant Bay Layered Gabbro—Diorite, Coastal Maine: Ponding and
- 813 Crystallization of Basaltic Injections into a Silicic Magma Chamber. Journal of Petrology
  814 34, 461-489.
- 815 Wiebe, R. A., Blair, K. D., Hawkins, D. P. and Sabine, C. P. (2002). Mafic injections, in situ
- 816 hybridization, and crystal accumulation in the Pyramid Peak granite, California. GSA
- 817 Bulletin 114, 909-920
| 818 | Žák, J. and Paterson, S. R. (2005). Characteristics of internal contacts in the Tuolumne Batholith, |
|-----|-----------------------------------------------------------------------------------------------------|
| 819 | central Sierra Nevada, California (USA): Implications for episodic emplacement and                  |
| 820 | physical processes in a continental arc magma chamber. Geological Society of America                |
| 821 | Bulletin 117, 1242-1255.                                                                            |
| 822 | Zhang, J., Humphreys, M. C., Cooper, G. F., Davidson, J. P. and Macpherson, C. G. (2017).           |
| 823 | Magma mush chemistry at subduction zones, revealed by new melt major element                        |
| 824 | inversion from calcic amphiboles. American Mineralogist 102, 1353-1367.                             |
| 825 |                                                                                                     |
| 826 |                                                                                                     |
| 827 |                                                                                                     |
| 828 |                                                                                                     |
| 829 |                                                                                                     |
| 830 |                                                                                                     |
| 831 |                                                                                                     |
| 832 |                                                                                                     |
| 833 |                                                                                                     |
| 834 |                                                                                                     |
| 835 |                                                                                                     |
| 836 |                                                                                                     |
| 837 |                                                                                                     |
| 838 |                                                                                                     |
| 839 |                                                                                                     |
| 840 |                                                                                                     |
| 841 |                                                                                                     |
| 842 |                                                                                                     |
| 843 |                                                                                                     |

| 844       Figure Captions         845       Figure 1         846       Figure 1         847       Map of the Tuolumme Intrusive Complex after Memeti et al., 2014, modified by Katie Ardiil with help         848       from Snir Attia. The map highlights the locations of Tuolumne Intrusive Complex samples that are         849       reported on in this study. Note that the sample numbers displayed on the map are all preceded by 'TLM'         850       in the data reported within Supplementary Data File 1.         851       Figure 2         852       Figure 2         853       Photomicrographs of homblende from the Tuolumme Intrusive Complex illustrating complex patchy color         854       roinig (A,B) and concentric zoning (C). The dots and numbers in (A) correspond to individual electron         855       roineoptoe spot locations. (a) Homblende with patchy color zoning from the equigranular Half Dome.         856       (b) Close up view of the white box from (A) highlighting the textural variability between the distinctly         857       colored zones. (c) Photomicrograph of a concentrically zoned Homblende from the Tuolumne Intrusive         858       complex. The orange dots represent individual electron microprobe spot locations and the values next to         859       complex. The shaded fields encompass > 99% of the homblende analyses from Kuna Crest (n = 204) and         854       Figure 3                                                                                                                                                                                               |     | DOI. https://doi.org/10.2136/am-2020-6972                                                                                    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------------------------------------------------------------------------------------------------------------------------------|
| 846Figure 1847Map of the Tuolumne Intrusive Complex after Memeti et al., 2014, modified by Katie Ardill with help<br>from Snir Attia. The map highlights the locations of Tuolumne Intrusive Complex samples that are<br>reported on in this study. Note that the sample numbers displayed on the map are all preceded by 'TLM'<br>in the data reported within Supplementary Data File 1.850Figure 2852Figure 2853Photomicrographs of hornblende from the Tuolumne Intrusive Complex illustrating complex patchy color<br>zoning (A,B) and concentric zoning (C). The dots and numbers in (A) correspond to individual electron<br>microprobe spot locations. (a) Hornblende with patchy color zoning from the equigranular Half Dome.<br>(b) Close up view of the white box from (A) highlighting the textural variability between the distinctly<br>colored zones. (c) Photomicrograph of a concentrically zoned Hornblende from the Tuolumne Intrusive<br>Complex. The orange dots represent individual electron microprobe spot locations and the values next to<br>each dot represent calculated crystallization temperatures (Putirka, 2016a).860Figure 3861Figure 3862Plot of hornblende Si vs Mg/(Mg+Fe <sup>2+</sup> ) for each of the lithological units of the Tuolumne Intrusive<br>Complex. The shaded fields encompass > 99% of the hornblende analyses from Kuna Crest (n = 204) and<br>equigranular Half Dome (n = 696). Note that there is significant compositional overlap between<br>hornblende from each of the units, although hornblende from Half Dome and Cathedral Peak is<br>commonly more magnesian than horblende from Kuna Crest al location. | 844 | Figure Captions                                                                                                              |
| MapMap of the Tuolumne Intrusive Complex after Memeti et al., 2014, modified by Katie Ardill with helpfrom Snir Attia. The map highlights the locations of Tuolumne Intrusive Complex samples that arereported on in this study. Note that the sample numbers displayed on the map are all preceded by 'TLM'in the data reported within Supplementary Data File 1.Figure 2Photomicrographs of hornblende from the Tuolumne Intrusive Complex illustrating complex patchy colorzoning (A,B) and concentric zoning (C). The dots and numbers in (A) correspond to individual electronmicroprobe spot locations. (a) Hornblende with patchy color zoning from the equigranular Half Dome.(b) Close up view of the white box from (A) highlighting the textural variability between the distinctlycolored zones. (c) Photomicrograph of a concentrically zoned Hornblende from the Tuolumne IntrusiveComplex. The orange dots represent individual electron microprobe spot locations and the values next toeach dot represent calculated crystallization temperatures (Putirka, 2016a).Figure 3Plot of hornblende Si vs Mg/(Mg+Fe <sup>2*</sup> ) for each of the lithological units of the Tuolumne Intrusivecomplex. The shaded fields encompass > 99% of the hornblende analyses from Kuna Crest (n = 204) andequigranular Half Dome (n = 696). Note that there is significant compositional overlap betweenhornblende from each of the units, although hornblende from Half Dome and Cathedral Peak iscommonly more magnesian than hornblende from Kuna Crest at low Si (apfu).                                                                                            | 845 |                                                                                                                              |
| <ul> <li>from Snir Attia. The map highlights the locations of Tuolumne Intrusive Complex samples that are</li> <li>reported on in this study. Note that the sample numbers displayed on the map are all preceded by 'TLM'</li> <li>in the data reported within Supplementary Data File 1.</li> <li>Figure 2</li> <li>Photomicrographs of hornblende from the Tuolumne Intrusive Complex illustrating complex patchy color</li> <li>zoning (A,B) and concentric zoning (C). The dots and numbers in (A) correspond to individual electron</li> <li>microprobe spot locations. (a) Hornblende with patchy color zoning from the equigranular Half Dome.</li> <li>(b) Close up view of the white box from (A) highlighting the textural variability between the distinctly</li> <li>colored zones. (c) Photomicrograph of a concentrically zoned Hornblende from the Tuolumne Intrusive</li> <li>Complex. The orange dots represent individual electron microprobe spot locations and the values next to</li> <li>each dot represent calculated crystallization temperatures (Putirka, 2016a).</li> <li>Figure 3</li> <li>Plot of hornblende Si vs Mg/(Mg+Fe<sup>2+</sup>) for each of the lithological units of the Tuolumne Intrusive</li> <li>Complex. The shaded fields encompass &gt; 99% of the hornblende analyses from Kuna Crest (n = 204) and</li> <li>equigranular Half Dome (n = 696). Note that there is significant compositional overlap between</li> <li>hornblende from each of the units, although hornblende from Half Dome and Cathedral Peak is</li> <li>commonly more magnesian than hornblende from Kuna Crest at low Si (apfu).</li> </ul>             | 846 | Figure 1                                                                                                                     |
| <ul> <li>reported on in this study. Note that the sample numbers displayed on the map are all preceded by 'TLM' in the data reported within Supplementary Data File 1.</li> <li>Figure 2</li> <li>Photomicrographs of hornblende from the Tuolumne Intrusive Complex illustrating complex patchy color zoning (A,B) and concentric zoning (C). The dots and numbers in (A) correspond to individual electron microprobe spot locations. (a) Hornblende with patchy color zoning from the equigranular Half Dome.</li> <li>(b) Close up view of the white box from (A) highlighting the textural variability between the distinctly colored zones. (c) Photomicrograph of a concentrically zoned Hornblende from the Tuolumne Intrusive Complex. The orange dots represent individual electron microprobe spot locations and the values next to each dot represent calculated crystallization temperatures (Putirka, 2016a).</li> <li>Figure 3</li> <li>Plot of hornblende Si vs Mg/(Mg+Fe<sup>2+</sup>) for each of the lithological units of the Tuolumne Intrusive Complex. The shaded fields encompass &gt; 99% of the hornblende analyses from Kuna Crest (n = 204) and equigranular Half Dome (n = 696). Note that there is significant compositional overlap between hornblende from each of the units, although hornblende from Half Dome and Cathedral Peak is commonly more magnesian than hornblende from Kuna Crest at low Si (apfu).</li> </ul>                                                                                                                                                                                                                 | 847 | Map of the Tuolumne Intrusive Complex after Memeti et al., 2014, modified by Katie Ardill with help                          |
| <ul> <li>in the data reported within Supplementary Data File 1.</li> <li>Figure 2</li> <li>Photomicrographs of hornblende from the Tuolumne Intrusive Complex illustrating complex patchy color</li> <li>zoning (A,B) and concentric zoning (C). The dots and numbers in (A) correspond to individual electron</li> <li>microprobe spot locations. (a) Hornblende with patchy color zoning from the equigranular Half Dome.</li> <li>(b) Close up view of the white box from (A) highlighting the textural variability between the distinctly</li> <li>colored zones. (c) Photomicrograph of a concentrically zoned Hornblende from the Tuolumne Intrusive</li> <li>Complex. The orange dots represent individual electron microprobe spot locations and the values next to</li> <li>each dot represent calculated crystallization temperatures (Putirka, 2016a).</li> <li>Figure 3</li> <li>Plot of hornblende Si vs Mg/(Mg+Fe<sup>2+</sup>) for each of the lithological units of the Tuolumne Intrusive</li> <li>Complex. The shaded fields encompass &gt; 99% of the hornblende analyses from Kuna Crest (n = 204) and</li> <li>equigranular Half Dome (n = 696). Note that there is significant compositional overlap between</li> <li>hornblende from each of the units, although hornblende from Half Dome and Cathedral Peak is</li> <li>commonly more magnesian than hornblende from Kuna Crest at low Si (apfu).</li> </ul>                                                                                                                                                                                                                                       | 848 | from Snir Attia. The map highlights the locations of Tuolumne Intrusive Complex samples that are                             |
| R51R52Figure 2R53Photomicrographs of hornblende from the Tuolumne Intrusive Complex illustrating complex patchy colorR54zoning (A,B) and concentric zoning (C). The dots and numbers in (A) correspond to individual electronR55microprobe spot locations. (a) Hornblende with patchy color zoning from the equigranular Half Dome.R56(b) Close up view of the white box from (A) highlighting the textural variability between the distinctlyR57colored zones. (c) Photomicrograph of a concentrically zoned Hornblende from the Tuolumne IntrusiveR58Complex. The orange dots represent individual electron microprobe spot locations and the values next toR59each dot represent calculated crystallization temperatures (Putirka, 2016a).R60Figure 3R61Figure 3R62Plot of hornblende Si vs Mg/(Mg+Fe <sup>2+</sup> ) for each of the lithological units of the Tuolumne IntrusiveR63complex. The shaded fields encompass > 99% of the hornblende analyses from Kuna Crest (n = 204) andR64equigranular Half Dome (n = 696). Note that there is significant compositional overlap betweenR65hornblende from each of the units, although hornblende from Half Dome and Cathedral Peak isR66commonly more magnesian than hornblende from Kuna Crest at low Si (apfu).                                                                                                                                                                                                                                                                                                                                                                                                      | 849 | reported on in this study. Note that the sample numbers displayed on the map are all preceded by 'TLM'                       |
| <ul> <li>Figure 2</li> <li>Potomicrographs of homblende from the Tuolumne Intrusive Complex illustrating complex patchy color</li> <li>zoning (A,B) and concentric zoning (C). The dots and numbers in (A) correspond to individual electron</li> <li>microprobe spot locations. (a) Homblende with patchy color zoning from the equigranular Half Dome.</li> <li>(b) Close up view of the white box from (A) highlighting the textural variability between the distinctly</li> <li>colored zones. (c) Photomicrograph of a concentrically zoned Homblende from the Tuolumne Intrusive</li> <li>complex. The orange dots represent individual electron microprobe spot locations and the values next to</li> <li>each dot represent calculated crystallization temperatures (Putirka, 2016a).</li> <li>Figure 3</li> <li>Plot of homblende Si vs Mg/(Mg+Fe<sup>2+</sup>) for each of the lithological units of the Tuolumne Intrusive</li> <li>complex. The shaded fields encompass &gt; 99% of the homblende analyses from Kuna Crest (n = 204) and</li> <li>equigranular Half Dome (n = 696). Note that there is significant compositional overlap between</li> <li>homblende from each of the units, although homblende from Half Dome and Cathedral Peak is</li> <li>commonly more magnesian than homblende from Kuna Crest at low Si (apfu).</li> </ul>                                                                                                                                                                                                                                                                                                                | 850 | in the data reported within Supplementary Data File 1.                                                                       |
| <ul> <li>Photomicrographs of hornblende from the Tuolumne Intrusive Complex illustrating complex patchy color</li> <li>zoning (A,B) and concentric zoning (C). The dots and numbers in (A) correspond to individual electron</li> <li>microprobe spot locations. (a) Hornblende with patchy color zoning from the equigranular Half Dome.</li> <li>(b) Close up view of the white box from (A) highlighting the textural variability between the distinctly</li> <li>colored zones. (c) Photomicrograph of a concentrically zoned Hornblende from the Tuolumne Intrusive</li> <li>Complex. The orange dots represent individual electron microprobe spot locations and the values next to</li> <li>each dot represent calculated crystallization temperatures (Putirka, 2016a).</li> <li>Figure 3</li> <li>Plot of hornblende Si vs Mg/(Mg+Fe<sup>2+</sup>) for each of the lithological units of the Tuolumne Intrusive</li> <li>Complex. The shaded fields encompass &gt; 99% of the hornblende analyses from Kuna Crest (n = 204) and</li> <li>equigranular Half Dome (n = 696). Note that there is significant compositional overlap between</li> <li>hornblende from each of the units, although hornblende from Half Dome and Cathedral Peak is</li> <li>commonly more magnesian than hornblende from Kuna Crest at low Si (apfu).</li> </ul>                                                                                                                                                                                                                                                                                                                         | 851 |                                                                                                                              |
| <ul> <li>zoning (A,B) and concentric zoning (C). The dots and numbers in (A) correspond to individual electron</li> <li>microprobe spot locations. (a) Hornblende with patchy color zoning from the equigranular Half Dome.</li> <li>(b) Close up view of the white box from (A) highlighting the textural variability between the distinctly</li> <li>colored zones. (c) Photomicrograph of a concentrically zoned Hornblende from the Tuolumne Intrusive</li> <li>Complex. The orange dots represent individual electron microprobe spot locations and the values next to</li> <li>each dot represent calculated crystallization temperatures (Putirka, 2016a).</li> <li>Figure 3</li> <li>Plot of hornblende Si vs Mg/(Mg+Fe<sup>2+</sup>) for each of the lithological units of the Tuolumne Intrusive</li> <li>Complex. The shaded fields encompass &gt; 99% of the hornblende analyses from Kuna Crest (n = 204) and</li> <li>equigranular Half Dome (n = 696). Note that there is significant compositional overlap between</li> <li>hornblende from each of the units, although hornblende from Half Dome and Cathedral Peak is</li> <li>commonly more magnesian than hornblende from Kuna Crest at low Si (apfu).</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                       | 852 | Figure 2                                                                                                                     |
| 855microprobe spot locations. (a) Hornblende with patchy color zoning from the equigranular Half Dome.856(b) Close up view of the white box from (A) highlighting the textural variability between the distinctly857colored zones. (c) Photomicrograph of a concentrically zoned Hornblende from the Tuolumne Intrusive858Complex. The orange dots represent individual electron microprobe spot locations and the values next to859each dot represent calculated crystallization temperatures (Putirka, 2016a).860Figure 3861Figure 3862Plot of hornblende Si vs Mg/(Mg+Fe <sup>2+</sup> ) for each of the lithological units of the Tuolumne Intrusive863Complex. The shaded fields encompass > 99% of the hornblende analyses from Kuna Crest (n = 204) and864equigranular Half Dome (n = 696). Note that there is significant compositional overlap between865hornblende from each of the units, although hornblende from Half Dome and Cathedral Peak is866commonly more magnesian than hornblende from Kuna Crest at low Si (apfu).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 853 | Photomicrographs of hornblende from the Tuolumne Intrusive Complex illustrating complex patchy color                         |
| 856(b) Close up view of the white box from (A) highlighting the textural variability between the distinctly857colored zones. (c) Photomicrograph of a concentrically zoned Hornblende from the Tuolumne Intrusive858Complex. The orange dots represent individual electron microprobe spot locations and the values next to859each dot represent calculated crystallization temperatures (Putirka, 2016a).860861861Figure 3862Plot of hornblende Si vs Mg/(Mg+Fe <sup>2+</sup> ) for each of the lithological units of the Tuolumne Intrusive863Complex. The shaded fields encompass > 99% of the hornblende analyses from Kuna Crest (n = 204) and864equigranular Half Dome (n = 696). Note that there is significant compositional overlap between865hornblende from each of the units, although hornblende from Half Dome and Cathedral Peak is866commonly more magnesian than hornblende from Kuna Crest at low Si (apfu).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 854 | zoning (A,B) and concentric zoning (C). The dots and numbers in (A) correspond to individual electron                        |
| 857colored zones. (c) Photomicrograph of a concentrically zoned Hornblende from the Tuolumne Intrusive858Complex. The orange dots represent individual electron microprobe spot locations and the values next to859each dot represent calculated crystallization temperatures (Putirka, 2016a).860861861Figure 3862Plot of hornblende Si vs Mg/(Mg+Fe <sup>2+</sup> ) for each of the lithological units of the Tuolumne Intrusive863Complex. The shaded fields encompass > 99% of the hornblende analyses from Kuna Crest (n = 204) and864equigranular Half Dome (n = 696). Note that there is significant compositional overlap between865hornblende from each of the units, although hornblende from Half Dome and Cathedral Peak is866commonly more magnesian than hornblende from Kuna Crest at low Si (apfu).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 855 | microprobe spot locations. (a) Hornblende with patchy color zoning from the equigranular Half Dome.                          |
| 858Complex. The orange dots represent individual electron microprobe spot locations and the values next to859each dot represent calculated crystallization temperatures (Putirka, 2016a).860861861Figure 3862Plot of hornblende Si vs Mg/(Mg+Fe <sup>2+</sup> ) for each of the lithological units of the Tuolumne Intrusive863Complex. The shaded fields encompass > 99% of the hornblende analyses from Kuna Crest (n = 204) and864equigranular Half Dome (n = 696). Note that there is significant compositional overlap between865hornblende from each of the units, although hornblende from Half Dome and Cathedral Peak is866commonly more magnesian than hornblende from Kuna Crest at low Si (apfu).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 856 | (b) Close up view of the white box from (A) highlighting the textural variability between the distinctly                     |
| <ul> <li>each dot represent calculated crystallization temperatures (Putirka, 2016a).</li> <li>Figure 3</li> <li>Plot of hornblende Si vs Mg/(Mg+Fe<sup>2+</sup>) for each of the lithological units of the Tuolumne Intrusive</li> <li>Complex. The shaded fields encompass &gt; 99% of the hornblende analyses from Kuna Crest (n = 204) and</li> <li>equigranular Half Dome (n = 696). Note that there is significant compositional overlap between</li> <li>hornblende from each of the units, although hornblende from Half Dome and Cathedral Peak is</li> <li>commonly more magnesian than hornblende from Kuna Crest at low Si (apfu).</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 857 | colored zones. (c) Photomicrograph of a concentrically zoned Hornblende from the Tuolumne Intrusive                          |
| 860861Figure 3862Plot of hornblende Si vs Mg/(Mg+Fe2+) for each of the lithological units of the Tuolumne Intrusive863Complex. The shaded fields encompass > 99% of the hornblende analyses from Kuna Crest (n = 204) and864equigranular Half Dome (n = 696). Note that there is significant compositional overlap between865hornblende from each of the units, although hornblende from Half Dome and Cathedral Peak is866commonly more magnesian than hornblende from Kuna Crest at low Si (apfu).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 858 | Complex. The orange dots represent individual electron microprobe spot locations and the values next to                      |
| <ul> <li>Figure 3</li> <li>Plot of hornblende Si vs Mg/(Mg+Fe<sup>2+</sup>) for each of the lithological units of the Tuolumne Intrusive</li> <li>Complex. The shaded fields encompass &gt; 99% of the hornblende analyses from Kuna Crest (n = 204) and</li> <li>equigranular Half Dome (n = 696). Note that there is significant compositional overlap between</li> <li>hornblende from each of the units, although hornblende from Half Dome and Cathedral Peak is</li> <li>commonly more magnesian than hornblende from Kuna Crest at low Si (apfu).</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 859 | each dot represent calculated crystallization temperatures (Putirka, 2016a).                                                 |
| Plot of hornblende Si vs Mg/(Mg+Fe <sup>2+</sup> ) for each of the lithological units of the Tuolumne Intrusive<br>Complex. The shaded fields encompass > 99% of the hornblende analyses from Kuna Crest (n = 204) and<br>equigranular Half Dome (n = 696). Note that there is significant compositional overlap between<br>hornblende from each of the units, although hornblende from Half Dome and Cathedral Peak is<br>commonly more magnesian than hornblende from Kuna Crest at low Si (apfu).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 860 |                                                                                                                              |
| <ul> <li>Complex. The shaded fields encompass &gt; 99% of the hornblende analyses from Kuna Crest (n = 204) and</li> <li>equigranular Half Dome (n = 696). Note that there is significant compositional overlap between</li> <li>hornblende from each of the units, although hornblende from Half Dome and Cathedral Peak is</li> <li>commonly more magnesian than hornblende from Kuna Crest at low Si (apfu).</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 861 | Figure 3                                                                                                                     |
| <ul> <li>equigranular Half Dome (n = 696). Note that there is significant compositional overlap between</li> <li>hornblende from each of the units, although hornblende from Half Dome and Cathedral Peak is</li> <li>commonly more magnesian than hornblende from Kuna Crest at low Si (apfu).</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 862 | Plot of hornblende Si vs Mg/(Mg+Fe <sup><math>2+</math></sup> ) for each of the lithological units of the Tuolumne Intrusive |
| <ul> <li>hornblende from each of the units, although hornblende from Half Dome and Cathedral Peak is</li> <li>commonly more magnesian than hornblende from Kuna Crest at low Si (apfu).</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 863 | Complex. The shaded fields encompass > 99% of the hornblende analyses from Kuna Crest ( $n = 204$ ) and                      |
| 866 commonly more magnesian than hornblende from Kuna Crest at low Si (apfu).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 864 | equigranular Half Dome ( $n = 696$ ). Note that there is significant compositional overlap between                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 865 | hornblende from each of the units, although hornblende from Half Dome and Cathedral Peak is                                  |
| 867                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 866 | commonly more magnesian than hornblende from Kuna Crest at low Si (apfu).                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 867 |                                                                                                                              |

868 Figure 4

| 869 | Plots of (a) Ti (apfu) vs Si (apfu) and (b) Ti (apfu) vs calculated temperature for the Half Dome                                                                |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 870 | Hornblende from Figure 2a. Note that the numbers correspond to the electron microprobe spot locations                                                            |
| 871 | from Figure 2a.                                                                                                                                                  |
| 872 |                                                                                                                                                                  |
| 873 | Figure 5                                                                                                                                                         |
| 874 | Density contour plots of hornblende Si (apfu) vs major elements (Ti, Al, Mg, Na, K) and calculated                                                               |
| 875 | temperature (Putirka, 2016a) for the twelve volcanic (red) and seven plutonic (blue) systems (see Table 1                                                        |
| 876 | for details). The four density contour levels reflect 100%, 75%, 50%, and 25% density intervals.                                                                 |
| 877 |                                                                                                                                                                  |
| 878 | Figure 6                                                                                                                                                         |
| 879 | Histogram of volcanic and plutonic hornblende temperatures. Note the low temperature tail produced by                                                            |
| 880 | hornblende from the plutonic systems and the high temperature peak (at ~ $950^{\circ}$ C) produced by                                                            |
| 881 | hornblende from the volcanic systems.                                                                                                                            |
| 882 |                                                                                                                                                                  |
| 883 | Figure 7                                                                                                                                                         |
| 884 | Bulk-rock SiO <sub>2</sub> vs Hbl-bulk-rock $^{Fe/Mg}$ Kd for ( <b>a</b> ) plutonic and ( <b>b</b> ) volcanic systems and ( <b>c</b> ) glass SiO <sub>2</sub> vs |
| 885 | Hbl-glass <sup>Fe/Mg</sup> Kd for volcanic systems. The yellow boxes highlight the analyses that are in Fe/Mg                                                    |
| 886 | equilibrium with their bulk-rock compositions. Note that Hbl is too Fe-rich to be in equilibrium with                                                            |
| 887 | many of the plutonic and volcanic bulk-rocks and too Mg-rich to be in equilibrium with most glass                                                                |
| 888 | compositions.                                                                                                                                                    |
| 889 |                                                                                                                                                                  |
| 890 | Figure 8                                                                                                                                                         |
| 891 | Bulk-rock vs calculated Hbl equilibrium melt compositions for plutonic systems. (a) $SiO_2$ (b) CaO (c)                                                          |
| 892 | FeO and (d) K <sub>2</sub> O. Equations 3, 7, 11, and 13 from Zhang et al., 2017 were used. Solid lines are 1:1 lines                                            |
| 893 | and dashed lines represent the errors associated with each of the chemometric equations.                                                                         |
| 894 |                                                                                                                                                                  |

## 895 Figure 9

- 896 Bulk-rock vs calculated Hbl equilibrium melt compositions for volcanic systems. (a) SiO<sub>2</sub> (b) CaO (c)
- FeO and (d) K<sub>2</sub>O. Equations 3, 7, 11, and 13 from Zhang et al., 2017 were used. Solid lines are 1:1 lines
- and dashed lines represent the errors associated with each of the chemometric equations.
- 899
- 900 Figure 10
- 901 Volcanic glass vs calculated Hbl equilibrium melt compositions. (a) SiO<sub>2</sub> (b) CaO (c) FeO and (d) K<sub>2</sub>O.
- 902 Equations 3, 7, 11, and 13 from Zhang et al., 2017 were used. Solid lines are 1:1 lines and dashed lines
- 903 represent the errors associated with each of the chemometric equations.

904

| Location               | Ref.     | n    | Bulk-Rock<br>SiO2 (wt%)<br>* | Glass SiO2<br>(wt%)* | Hbl<br>Temperature<br>(° C) | Avg Hbl<br>Temp (° C) |      | Avg Si<br>(apfu) | Min Ti<br>(apfu) | Avg Ti<br>(apfu) |     | <b>V</b> _A H71 | % Mg-<br>Hs | % Mg-<br>Hbl | %<br>Prg | % Ts | Other |
|------------------------|----------|------|------------------------------|----------------------|-----------------------------|-----------------------|------|------------------|------------------|------------------|-----|-----------------|-------------|--------------|----------|------|-------|
| Cerro Patacon          | 1        | 279  | 58–59                        | n/a                  | 854–973                     | 934                   | 5.97 | 6.23             | 0.13             | 0.18             |     |                 | 29.7        | 0.4          |          | 69.9 |       |
| Fish Canyon            | 2,3      | 2060 | 68                           | 77–78                | 754–959                     | 800                   | 6.18 | 6.95             | 0.1              | 0.15             |     | 7.0             | 2.8         | 89.1         | 1.0      |      | 1     |
| Mt St Helens           | 4,5      | 530  | 65                           | 73–77                | 740-1016                    | 909                   | 5.93 | 6.43             | 0.05             | 0.25             |     | 0.4             | 15.1        | 16.6         |          | 67.9 |       |
| Redoubt                | 6        | 190  | 57-62                        | 77–80                | 772–975                     | 887                   | 5.96 | 6.54             | 0.12             | 0.20             |     |                 | 23.7        | 51.1         |          | 25.3 |       |
| Yanacocha              | 7        | 114  | 59–65                        | n/a                  | 777–973                     | 898                   | 6.06 | 6.48             | 0.13             | 0.21             |     |                 | 43.0        | 32.5         |          | 24.6 |       |
| Young Shiveluch        | 8        | 35   | 56-61                        | n/a                  | 842-968                     | 914                   | 6.04 | 6.43             | 0.11             | 0.18             |     |                 | 40.0        | 20.0         |          | 40.0 |       |
| Nisyros                | 9        | 212  | 46-70                        | n/a                  | 831-1031                    | 957                   | 6.08 | 6.26             | 0.13             | 0.29             |     |                 | 80.2        | 1.9          | 1.9      | 15.1 | 0.9   |
| Oruanui                | 10       | 1705 | 55–77                        | 72–76                | 686–968                     | 806                   | 6.05 | 6.86             | 0.08             | 0.20             |     |                 | 2.6         | 83.5         | 0.1      | 13.8 |       |
| Okataina               | 11-13    | 1982 | 51-78                        | 74–78                | 702-970                     | 813                   | 6.25 | 6.86             | 0.06             | 0.19             |     |                 | 2.3         | 82.7         |          | 14.9 |       |
| Augustine              | 14,15    | 98   | 54-63                        | 69–76                | 778-1009                    | 869                   | 5.99 | 6.66             | 0.11             | 0.19             |     |                 | 8.2         | 69.4         |          | 22.4 |       |
| Crater Lake            | 16,17    | 17   | 51-72                        | 63–74                | 804–978                     | 926                   | 6.24 | 6.44             | 0.2              | 0.31             |     |                 | 41.2        | 23.5         |          | 35.3 |       |
| Cardones               | 19       | 291  | 74–76                        | n/a                  | 851-976                     | 858                   | 6.05 | 6.67             | 0.09             | 0.18             |     | 0.3             | 26.8        | 51.2         |          | 21.6 |       |
| Volcanic Systems       |          | 7513 | 46-78                        | 63-80                | 686-1031                    | 881                   | 6.07 | 6.57             | 0.11             | 0.21             |     | 2.0             | 9.1         | 71.3         | 0.3      | 17.3 | 0.0   |
| Wooley Creek           | 20-22    | 469  | 51-71                        | n/a                  | 633-868                     | 774                   | 6.32 | 6.92             | 0.01             | 0.14             | 1.1 |                 |             | 95.7         | 0.4      | 2.8  |       |
| English Peak           | 22-24    | 444  | 56-71                        | n/a                  | 616-858                     | 762                   | 6.53 | 6.97             | 0.01             | 0.15             | 2.7 |                 |             | 97.1         |          |      | 0.2   |
| Ashland                | 22,25    | 119  | 51-65                        | n/a                  | 657-801                     | 761                   | 6.51 | 7.03             | 0.01             | 0.11             | 1.7 |                 | 0.8         | 92.4         |          | 5.0  |       |
| Tenpeak                | 22,26,27 | 928  | 42-67                        | n/a                  | 690–975                     | 822                   | 6.14 | 6.74             | 0.01             | 0.09             | 0.9 | 1.1             |             | 72.7         | 1.2      | 22.0 | 2.2   |
| Tuolumne               |          |      |                              |                      |                             |                       |      |                  |                  |                  |     |                 |             |              |          |      |       |
| Kuna Crest             | 22       | 204  | 58-66                        | n/a                  | 599-807                     | 772                   | 6.74 | 8.3              | 0.00             | 0.13             | 7.4 |                 |             | 92.6         |          |      |       |
| Transitional KC-eHD    | 22       | 322  | 60–67                        | n/a                  | 662-814                     | 759                   | 6.66 | 7.86             | 0.00             | 0.11             | 5.6 |                 |             | 94.4         |          |      |       |
| equigranular Half Dome | 22       | 706  | 60–69                        | n/a                  | 646-834                     | 761                   | 6.59 | 7.93             | 0.00             | 0.10             | 4.2 |                 |             | 95.3         |          | 0.4  | 0.1   |
| Transitional eHD-pHD   | 22       | 97   | 62-70                        | n/a                  | 656-807                     | 764                   | 6.79 | 7.79             | 0.00             | 0.09             | 1.0 |                 |             | 99.0         |          |      |       |
| porphyritic Half Dome  | 22       | 109  | 65                           | n/a                  | 659-817                     | 764                   | 6.76 | 7.83             | 0.00             | 0.10             | 0.9 |                 |             | 99.1         |          |      |       |
| Cathedral Peak         | 28       | 101  | n/a                          | n/a                  | 702-816                     | 766                   | 6.38 | 7.52             | 0.01             | 0.09             |     |                 |             | 100.0        |          |      | 1     |
| Mt Stuart              | 22, 27   | 448  | 46-71                        | n/a                  | 655-908                     | 779                   | 6.25 | 7.03             | 0                | 0.12             | 2.2 |                 |             | 92.2         |          | 5.4  | 0.2   |
| Black Peak             | 22, 27   | 310  | 45-69                        | n/a                  | 532-936                     | 765                   | 6.36 | 7.09             | 0                | 0.13             | 6.1 | 0.3             | 4.2         | 79.0         | 0.3      | 8.4  | 1.6   |
| Plutonic Systems       |          | 4247 | 42-71                        | n/a                  | 532-975                     | 775                   | 6.39 | 6.98             | 0.01             | 0.12             | 2.8 | 0.3             | 0.3         | 89.1         | 0.3      | 6.5  | 0.7   |

Table 1. Summary of Hornblende, Bulk-Rock, and Glass Data

\* Note that the range of bulk-rock and glass SiO2 reflects only those analyses for which hornblende and bulk-rock or hornblende and glass pairs are determined.

*References:* (1) Rooney et al., 2011; (2) Bachmann and Dungan, 2002 (3) Bachmann et al., 2002; (4) Thornber et al., 2008; (5) Pallister et al., 2008; (6) Coombs et al., 2013; (7) Chambefort et al., 2013; (8) Gorbach and Portnyagin, 2011; (9) Klaver et al., 2017; (10) Allan et al., 2017; (11) Deering, 2009; (12) Deering et al., 2011; (13) Shane and Smith, 2013; (14) De Angelis et al., 2013; (15) Larsen et al., 2010; (16) Bacon and Druitt, 1988; (17) Druitt and Bacon, 1989; (18) Nakada et al., 1994; (19) Van Zalinge et al., 2017; (20) Coint et al., 2013; (22) this study; (23) Berry, 2015; (24) Barnes et al., 2017b; (25) Gribble et al., 1990; (26) Chan et al., 2017; (27) Ratschbacher, 2017; (28) Hepeng, 2016









Figure 4

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. DOI: https://doi.org/10.2138/am-2020-6972











Figure 9

