1	Revision 2
2	Enrichment of manganese to spessartine saturation in granite-pegmatite systems
3	
4	James L. Maner IV ^{1*} , David London ² , and Jonathan P. Icenhower ³
5	
6	¹ Jackson School of Geosciences
7	Department of Geological Sciences
8	University of Texas at Austin
9	2275 Speedway, Stop C9000
10	Austin, Texas 78712 USA
11	*email: jlmaner87@gmail.com
12	
13	² ConocoPhillips School of Geology and Geophysics
14	University of Oklahoma
15	100 East Boyd St., Room 710
16	Norman, Oklahoma 73019 USA
17	
18	³ Corning Incorporated
19	21 Lynn Morse Drive
20	Painted Post, New York 14870
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	

Abstract 32 33 The enrichment of manganese in peraluminous (S-type) granitic melts beginning with the 34 anatexis of metapelitic rock and ending with the crystallization of highly evolved pegmatites is 35 explained using experimentally derived mineral-melt partition coefficients and solubility data for 36 Mn-rich garnet. Mineral-melt partition coefficients for Fe, Mg, and Mn between garnet, cordierite, tourmaline, and peraluminous, B-bearing hydrous granitic melt were measured 37 38 between 650°C and 850°C at 200 MPa_{H2O}. The compositions of garnet and tourmaline synthesized in these experiments are similar to those found in nature. Garnets evolve from 39 40 Sps₅₁Alm₂₃Prp₂₅ to Sps₈₁Alm₁₅Prp₄ with decreasing temperature. The Mn content of cordierite 41 increases with decreasing temperature. The composition of tourmaline does not vary with temperature. Partition coefficients, $D_M^{\alpha/L}$, and exchange coefficients, $K_D^{\alpha/L} = D_M^{\alpha/L} / D_N^{\alpha/L}$ where 42 α is a mineral, L is liquid (melt), and M and N are different elements, are presented for mineral-43 44 glass pairs. Partition coefficients for Mg, Fe, and Mn increase with decreasing temperature for garnet, tourmaline, and cordierite. The precipitation of garnet alone results in a progressive 45 increase of MgO/FeO and a decrease of MnO/FeO in the melt. Crystallization of cordierite and 46 tourmaline results in a decrease of MgO/FeO and an increase of MnO/FeO in melt. Tourmaline 47 48 is most efficient at concentrating Mn in residual liquids. The trend toward increasing Mn/Fe in 49 natural garnets in granites and pegmatites is not controlled by garnet itself, but rather by the crystallization of other mafic minerals in which Mg and Fe are more compatible than is Mn. 50 A Rayleigh fractionation model constitutes a test of the partition coefficients reported in 51 52 this manuscript. The starting composition for the model is that of a liquid (melt inclusions) from 53 an anatectic S-type source. Normative modes of cordierite and biotite are calculated from that composition and are similar to modes of these minerals in natural occurrences. The model 54 55 consists of crystallization of a cordierite-biotite granite from 850°C to 650°C. The model

60 61	Keywords
59	stages of magmatism.
58	occurrence of spessartine as restricted to highly fractionated granite-pegmatite systems at the end
57	spessartine-rich garnet at near-solidus temperatures. The model, therefore, is consistent with the
56	predicts that ~95% crystallization of the starting composition is required to reach saturation in

62 fractional crystallization, manganese, partition coefficients, tourmaline, garnet, cordierite

63

Introduction

64	Garnet rich in spessartine (Sps) component, Mn ₃ Al ₂ Si ₃ O ₁₂ , occurs principally in three
65	geologic environments. One is in coticules, which are products of metamorphism of Mn-rich
66	oxide nodules within aluminous marine sediment (Romer et al. 2011). A second setting is as
67	euhedral crystals within lithophysae formed in lava flows of F-rich rhyolites, and in their
68	analogous miarolitic granites (Christiansen et al. 1984). The third and far more common
69	occurrence is in association with highly-fractionated peraluminous granites and pegmatites, those
70	that are characterized as S-type (Chappell and White 2001). The study presented here applies
71	mostly to the third environment.

72 Melt generated by the anatexis of metasedimentary rocks, the source material of peraluminous S-type granites, contains minor to trace concentrations of the mafic elements Fe, 73 74 Mg, and Mn (e.g., Acosta-Vigil et al. 2007). However, the end stages of crystallization of S-type granitic magmas culminate in pegmatites that commonly contain spessartine-rich garnet and 75 several phosphates near their Mn end-member compositions. Černý et al. (1985) showed that the 76 77 Fe/Mn ratio of garnet decreases and the Mn content of garnet increases with the progress of crystallization from parental granites to the most evolved types of granitic pegmatites. Similarly, 78 79 Miller and Stoddard (1981) observed an increase in the Mn content of garnet from the least fractionated biotite-granite to pegmatitic, garnet-muscovite granite. The evolutionary trend in 80 garnet (Miller and Stoddard 1981; Černý et al. 1985) could be construed to signify that Fe is 81 82 more compatible in garnet than is Mn, such that the eventual crystallization of spessartine results mostly from the depletion of Fe in melt through the crystallization of garnet. Experiments that 83 entailed the crystallization of garnet from silicic melt at the moderate pressure and temperature 84 (650°-750°C, 200 MPa) of the cordierite-aluminum silicate facies demonstrated that Mn is more 85

compatible than Fe in garnet at these conditions (Icenhower 1995). Therefore, other mafic phases
(biotite, cordierite, and tourmaline) in which Mn is less compatible than Fe apparently control
the fractionation patterns for garnet in granitic igneous rocks (London et al. 2001). The
experimental study presented here serves as a test of that hypothesis.

90 **Prior Experimentation**

91 The exchange of Fe and Mg between biotite and garnet (Holdaway 2004, and references 92 therein) and between garnet and cordierite (Dwivedi et al. 1998, and references therein) have been thoroughly investigated. Van Hinsberg and Schumacher (2009) attempted to calibrate the 93 distribution of Fe and Mg between tourmaline and biotite at hydrothermal conditions, but their 94 95 experimental results showed almost no correlation between Fe-Mg exchange and temperature. Most prior studies entailed hydrothermal synthesis, and a melt was not present. Maner et al. 96 97 (2013) attempted to calibrate the exchange of Fe and Mn between garnet and tourmaline as a potential geothermometer for peraluminous granitic pegmatites. Like van Hinsberg and 98 Schumacher (2009), Maner et al. (2013) documented a wide spread in the partition coefficients 99 and a poor correlation of element exchange with temperature. The distribution of mafic 100 101 components between tourmaline and other mafic minerals and melt are unknown.

The compatibility of Mn in garnet, tourmaline, and cordierite, and the partition coefficients for Mn between these minerals and melt, are essentially unstudied through experimentation. Although mineral-melt partition coefficients for Fe and Mg might be extracted from a few experimental investigations in which mafic minerals large enough for analysis grew from the melt, that is not true for Mn. Because of low Mn concentrations in typical starting materials, the concentrations of Mn in most experimental products are at or below detection levels by electron microprobe analysis.

109

110 Goals of this research

Although progress has been made toward understanding the mechanisms that control the 111 compositions of garnet crystals in granitic igneous rocks, the partition coefficients for Mn among 112 garnet, tourmaline, cordierite, and hydrous peraluminous granitic melt have not been accurately 113 measured. These data are necessary for chemical modeling (e.g., via Rayleigh fractionation) of 114 115 the Mn contents of granitic liquids. Toward this end, the primary goals of this study are to 116 present mineral-melt partition coefficients for Mn, Fe, and Mg between hydrous peraluminous granitic melt and garnet, tourmaline, and cordierite, such as to account for the occurrence of Sps-117 rich garnet in the last stages of granite magmatism. Other experimental data (D_M^{Bt-melt}: 118 Icenhower and London 1995) are included as needed for Rayleigh modeling. The Rayleigh 119 120 model serves as a test of the validity of the experimental data for the accumulation of Mn from anatexis to crystallization of cordierite- and biotite-bearing granites. Starting with an appropriate 121 liquid composition and mineral modes, the model should, and does, predict spessartine saturation 122 only after extended crystallization of the initial melt at near-minimum temperatures. 123

124

Methods

125 Experimental Design

Experiments were designed to crystallize garnet, cordierite, and tourmaline from nearly crystal-free hydrous, boron-bearing, peraluminous granitic melt. Some experiments were heated to 800°C or 850°C and quenched to check for crystallinity and chemical homogeneity of the resultant liquid (quenched to glass) (Figure 1A). Experiments intended to produce crystalline phases were either (1) quenched to room temperature from 800°C or 850°C then heated directly

131	to the temperature of interest, (2) heated directly to a temperature between 650°C and 750°C, or
132	(3) dropped down from 800°C or 850°C in a single isobaric cooling step to a synthesis
133	temperature. The former experiments (1 and 2) are referred to as forward-direction experiments
134	and the latter (3) as reverse-direction experiments ¹ .
135	Several experiments conducted at 650°C, 700°C, and 750°C had run durations between 0
136	and 30 days, forming a time-series for these temperatures. Zero-day experiments were quenched
137	immediately after reaching the synthesis temperature. The composition of glass produced in
138	these experiments was monitored for changes over time. Partition coefficients were determined

- using the compositions of crystal rims and adjacent liquid (glass) from all experiments, both
- 140 forward and reverse thermal direction.

141 Bulk Compositions used in Experiments

The experimental study of Wolf and London (1997) provided the starting point for our 142 experiments. Wolf and London (1997) showed that the stability of tourmaline in granitic melt is 143 144 a function of the B content and the aluminum saturation index (ASI) of melt, calculated as molar 145 Al/(Na+K+2Ca), such that at 750°C, tournaline will crystallize in granitic melts having an ASI 146 of at least 1.2 and B₂O₃ contents above 2 wt.% oxide. The ASI of each starting mixture used in the present study was controlled by adding aluminous minerals or aluminum oxide/hydroxide 147 148 chemical reagents to starting material mixtures to achieve a value of at least 1.2. Boron was 149 added to all starting material mixtures as B₂O₃ glass, made by dehydrating boric acid in a Pt dish over a Bunsen burner. Two bulk compositions were used in this study. One bulk composition 150 151 (GT1.3) contained ~ 3 wt.% B_2O_3 and the other (MnGT-BC-4.1) contained ~ 8 wt.% B_2O_3 . The elevated boron content was intended to promote crystallization of tourmaline crystals large 152 enough for microanalysis. 153

154	The minimum concentrations of mafic oxide components in glass (melt) necessary to
155	promote the growth of tourmaline were reported by Wolf and London (1997), and those values
156	served as a baseline for this study. The sources of Fe, Mn, and Mg in each starting material
157	mixture are as follows: mixture GT1.3 contained rhodonite (source of Mn), Mn-Fayalite (source
158	of Fe and Mn), and forsterite (source of Mg), and mixture MnGT-BC-4.1 contained almandine
159	(source of Fe and Mg) and spessartine (source of Mn) (see Supplementary Material B for details
160	of preparation of starting materials). All starting material mixtures contained more than 1 wt.%
161	MnO to facilitate the growth of Mn-rich garnet (Icenhower 1995). Enough water was added to
162	each capsule to ensure saturation of water in melt. No more than 15 wt.% water was added to any
163	experiment/capsule. The compositions of starting material minerals and the proportions of
164	minerals and chemical reagents in each bulk composition are provided in Tables S1 and S2,
165	respectively, in Supplementary Material A. The composition of each glass formed by melting
166	each starting material mixture is reported in Table 1.

167 Experimental Procedure

Each experiment began by adding deionized and ultra-filtered water (DIUF; Fisher 168 169 Scientific) to a gold capsule of 20×3 mm and a wall thickness of 0.2 mm, followed by 50 to 100 170 milligrams of a starting material mixture. Loaded capsules were wrapped with a sleeve of damp 171 paper, frozen using cryogenic spray to reduce volatilization of water during welding and sealed by TIG (Tungsten-Inert Gas: argon) welding. The capsule was then weighed to check for loss of 172 water during welding, labeled with the appropriate experiment number, reweighed, placed in an 173 174 oven at ~120°C for at least 1 hour, and then reweighed again to check for leaks in the capsule (detected as water loss by weight loss). Only capsules showing no leakage after sealing were 175 utilized. 176

Experiments were conducted open to a 2-liter pressure buffer in NIMONIC[©] 105 or 177 UDIMET cold-seal pressure vessels with water (plus a trace of ImmunolTM as a rust inhibitor) as 178 the pressure medium. The cool end of each vessel was tilted $\sim 5^{\circ}$ below horizontal to prevent the 179 convection of water within the vessel. Hastelloy-C filler-rods, which surround the thermocouple, 180 181 also reduced convection of water and heat. Temperature was monitored with an internal Chromel-Alumel thermocouple, and pressure was monitored with a factory-calibrated Heise 182 bound on tube gauge. Uncertainties in temperature and pressure are $<10^{\circ}$ C and <10 MPa. 183 respectively. 184

Isobaric quenching was performed by removing the vessel from the furnace and applying a jet of compressed air. The average rate of cooling is approximately 200-300°C/min; vessels were cooled to below 150°C before de-pressurization. Once the vessel was cool enough to handle, capsules were removed, rinsed with water, dried, weighed to check for leaks produced in the capsule during the experiment, punctured to check for free water or volatiles, and then opened to examine the products. All experiments contained free water after quenching.

191 Fugacity of Oxygen in Experiments

The oxygen fugacity, $f(O_2)$, of the experimental system is buffered by a reaction between the water pressure medium and the Ni-based vessel and filler rod alloys. The $f(O_2)$ of the experimental apparatus is half a log unit below the Ni-NiO oxygen buffer (NNO) (Wolf et al. 1994) as determined from the solubility of cassiterite in reference to values cited by Taylor and Wall (1992). At this $f(O_2)$, the fraction of Fe³⁺/Fe²⁺ is less than 10%, based on the work of Moore et al. (1995) and Baker and Rutherford (1996) for metaluminous granitic melts at NNO and temperatures below 900°C. The fugacity of oxygen at the NNO oxygen buffer is below that of the Mn_{1-x}O/Mn₂O₃ oxygen buffer (Huebner and Sato 1970); therefore, all Mn should carry a 2+
charge.

201 Preparation of Experimental Products for Analysis

Experimental products were initially examined by using a stereoscopic binocular zoom 202 203 microscope and oil- or epoxy-immersed grain mounts using a transmitted light petrographic 204 microscope. Products were prepared for qualitative and quantitative electron microprobe analysis 205 (EMPA) by placing products in 1" circular molds or ¹/₄" brass holders and impregnated with EpoThinTM epoxy (Buehler). Epoxy mounts were progressively ground down with lapping films 206 to a 3 μ m grit size, and then polished using diamond in water to a final grit size of $\leq \frac{1}{4} \mu$ m. 207 208 Polished experimental products were rinsed with alcohol, dried in a jet of air, and then placed in a desiccator prior to application of a carbon coat. 209

210 Electron Beam Analytical Methodology

211 Most of the imaging and analyses were performed with a CAMECA SX50 electron 212 microprobe at the University of Oklahoma. This instrument was equipped with five wavelength-213 dispersive spectrometers, a PGT Prism 2000 Energy-Dispersive X-ray Analyzer (EDXA) with Moxtek polymer entry window, and PC-based SAMxTM automation system for both analysis and 214 imaging. A small number of analyses were performed using a CAMECA SX100 microprobe 215 216 beginning in 2015. Qualitative phase identification was accomplished using backscattered 217 electron imaging coupled with EDXA using either a 15 or 20 kV accelerating voltage and 20 nA 218 beam current.

Quantitative analyses were performed by Wavelength-Dispersive Spectrometry (WDS).
 Analytical conditions for tourmaline, garnet, and cordierite utilized a 15 kV accelerating voltage,

221	20 nA beam current, and 2 μm spot. Elements analyzed in tourmaline included B, F, Na, Mg, Al,
222	Si, Ca, Ti, Mn, and Fe. Garnet and cordierite crystals were analyzed for Fe, Mn, Na, Si, Cr, Ti,
223	Al, Mg, K, and Ca. Glass analyses used a two-condition routine to mitigate the migration of Na
224	during analysis (Morgan and London 1996; Morgan and London 2005). The first condition used
225	15 kV accelerating voltage, 2 nA beam current, and 20 μ m spot for analysis of Na, K, Ca, Al,
226	and Si; the second condition used 15 kV accelerating voltage, 40 nA beam current, and 20 μm
227	spot for analysis of Mg, Mn, Fe, Ti, F and B. Counting times for all elements resulted in
228	detection limits less than 0.05 wt.% oxide except for B and F, which had a detection limits of
229	0.24 wt.% oxide and 0.20 wt.% element, respectively. Data reduction employed the PAP method
230	(Pouchou and Pichoir 1985). The average composition of all synthetic minerals and glasses are
231	reported in Tables S3 through S6 in Supplementary Material A.

232 Mineral Formula Calculations

233	Chemical formulae for garnet and cordierite crystals were calculated from EMPA
234	chemical data based on 12 and 18 oxygen atoms, respectively (see Table 2 for end-member
235	compositions). The chemical formula of the garnet group is $\{X_3\}[Y_2](Z_3)O_{12}$ (Grew et al. 2013).
236	Site assignments follow the method of Grew et al. (2013), and only include elements analyzed in
237	this study. The chemical formula of the cordierite group is $M_2Al_4Si_5O_{18}$, where M can be
238	occupied by Fe, Mg, and Mn.
239	The chemical formula for minerals of the tourmaline supergroup is
240	$XY_3Z_6(BO_3)_3(T_6O_{18})(V)_3(W)$ (Henry et al. 2011) (see Table 2 for pertinent end-member
241	compositions). Cations were calculated from EMPA data on a 29-oxygen atom basis. An
242	Excel TM spreadsheet developed by Morgan (2016) was used to calculate the percentages of end-
243	member tourmaline components from the EMPA data.
	11

244

Results

245 Description of Products: Textures and Compositions

Synthetic crystalline products include tourmaline, cordierite, garnet, quartz, alkali 246 247 feldspar, corundum/mullite and Mn-Fe-Ni-Cr-Al oxides. The compositions of oxide minerals, as 248 determined by EDS analysis, are dominantly Fe-Al-rich (hercynite), with minor to trace amounts of Ni, Cr, and Mn. The source of Ni and Cr in the experiments is the reaction vessel itself 249 250 (NIMONIC® Ni-Cr alloy) (Puziewicz and Johannes 1988). Most oxide and all corundum/mullite 251 crystals are too small for accurate characterization by EPMA methods. At the pre-conditioning 252 step (800°C and 850°C), trace quantities of relict starting materials (garnet) persisted in experiments that used bulk composition MnGT-BC-4.1. Cordierite crystallized and grains of 253 quartz (added as a starting material) had resorbed textures in pre-conditioned experiments using 254 255 bulk composition GT-1.3. Spinel and corundum/mullite crystallized in some experiments at the 256 pre-conditioning stage.

257 Glass (melt) was the dominant phase in all pre-conditioned experiments using bulk 258 composition MnGT-BC-4.1 (Figure 1A). Garnet and tourmaline crystallized in all experiments 259 between 750°C and 650°C using bulk composition MnGT-BC-4.1 (Figure 1B-D). Cordierite and 260 garnet crystallized in all experiments using bulk composition GT-1.3. Cordierite did not 261 crystallize in any experiment that utilized bulk composition MnGT-BC-4.1. Tourmaline 262 crystallized with garnet and cordierite in one experiment (GBT103) at 650°C using bulk 263 composition GT-1.3. Forward and reverse direction experiments that started at a temperature 264 above the liquidus produced the same crystalline assemblage. Quartz and alkali feldspar were only identified in experiments that were heated directly to the temperature of interest and held at 265 266 that temperature for 720 hours (Table 3: MnGT-126, GBT-103, MnGT-125).

267 Garnet. Garnet crystals are a solid solution of spessartine (Sps), almandine (Alm), and pyrope (Prp) (Table 3). Garnet formed euhedral crystals that display abrupt core-rim chemical 268 269 zonation in all experiments (Figure 2). The cores of each garnet crystal are relict Mn-rich or Ferich garnet starting material grains. Rim compositions of all garnets reflect growth at the 270 271 synthesis, low-temperature, stage of each experiment. The compositions of garnet generally 272 follow a temperature-dependent trend from Sps₅₁Alm₂₃Prp₂₅ to Sps₈₁Alm₁₅Prp₄ with decreasing 273 temperature (Table 3, Figures 3A and 3B). A full Y-site, i.e. two Al cations, is supportive evidence of a low fraction of Fe^{3+} in melt. 274 Tourmaline. In experiments that utilized bulk composition MnGT-BC-4.1, tourmaline 275 formed euhedral, prismatic crystals in experiments between 750° and 700°C, in both forward and 276 277 reverse experiments (Figures 1B-D). Below 700°C, tournaline crystallized as radial clusters intergrown with quartz (Figure 1E-F) and as isolated skeletal (soda-straw) crystals irrespective 278 279 of thermal direction. Tournaline only crystallized at 650°C in experiments that utilized bulk composition GT1.3. 280 Tournaline crystals are dominantly a solid solution of schorl, dravite, and foitite with 281 282 minor amounts of uvite (Table 3). The compositions of tourmaline do not change as a function of 283 temperature. The average MnO content of tourmaline is ranges from ~ 0.7 wt.% at 750°C to \sim 1.5 wt% at 650°C. Tourmaline crystals synthesized at 700°C display weak hourglass sector-284 zonation; the a and c axial sectors are Al- and Ca-rich and Mg-poor relative to the c^+ axial sector 285

286 (Figure 2) (Maner et al. 2014).

Cordierite. Cordierite consistently formed euhedral crystals and displays abrupt core-rim
 chemical zonation in all experiments below 800°C (Figure 1G and 1H). All cores have
 compositions that reflect growth at the pre-conditioning, high-temperature, stage. The rim

290	compositions of cordierite (Crd) crystals are Mg-rich (indialite, Ind) at high temperature and,
291	apart from a single experiment at 700°C (GBT-102), evolve toward higher Fe (sekaninaite, Sek)
292	and Mn compositions with decreasing temperature (Figure 3C). Five cordierite crystals from
293	experiment GBT-103 (650°C, 200 MPa, 456 hrs) were unintentionally analyzed using the
294	analytical method for tourmaline and were found to contain 2.59 wt.% B_2O_3 (1 σ SD: 0.22), with
295	analytical totals near 100% (i.e. little to no water content). Natural cordierite crystals contain
296	only trace amounts of B (Černý et al. 1997). The results of the present study show that B-rich
297	cordierite could crystallize from a B-rich granitic melt. Lastly, a systematic relationship between
298	Na and any other compositional parameter of cordierite or temperature was not identified.
299	Cordierite crystals in this study contain a higher concentration of Mn compared to natural
300	cordierite crystals. The Mn content of cordierite in this study increases with decreasing
301	temperature from 11.37 mol % "Mn-cordierite" at 850°C to 30.18 mol % "Mn-cordierite" at
302	650°C (Figure 3C). Jobin-Bevans and Černý (1998) noted that most natural cordierite crystals
303	contain less than $\sim 10 \text{ mol }\%$ of the Mn end-member. Dasgupta et al. (1974) conducted
304	experiments in the system MnO-Al ₂ O ₃ -SiO ₂ -H ₂ O and found that "Mn-cordierite" is a stable
305	phase below 400°C and 100 MPa but breaks down to spessartine-aluminosilicate-quartz above
306	this pressure and temperature. Though a natural occurrence of cordierite and Mn-rich garnet has
307	not been reported, and the experimental study of Dasgupta et al. (1974) suggests such an
308	assemblage could not exist, the results in the present experimental study indicate that Mn-rich
309	cordierite can exist with Mn-rich garnet at a pressure of 200 MPa and between 650°C and 750°C.
310	Glass. Compositions of all glasses (melts) are reported in Supplementary Material A. The
311	composition of glass produced at 850°C is a close approximation of the bulk composition of the
312	system, because the glasses are nearly crystal free. The bulk compositions of each system (GT1.3

313 and MnGT-BC-4.1) are reported in Table 1. The melt (glass) produced using bulk composition 314 GT1.3 has a higher normative quartz component compared to bulk composition MnGT-BC-4.1, whose composition is near the thermal minimum of the water-saturated haplogranite system at 315 316 200 MPa. The sum of FeO, MnO, and MgO in glass decreases from 1.56 wt% to 0.62 wt% from 317 750°C to 650°C in experiments that produced both garnet and tourmaline (bulk composition 318 MnGT-BC-4.1). Changes in the concentrations of MnO, FeO, and MgO were monitored over 319 time through a series of experiments conducted at one temperature but with different durations 320 (Figures 4A-4C). Steady-state conditions, in which the compositions of melt do not change over 321 time, were achieved by 30 days; these conditions represent a close approach to equilibrium 322 between melt and crystals. The results shown in Figures 4D-4G represent the concentrations of 323 FeO, MnO and MgO in glass from experiments with durations of 30 days. As shown in Figures 324 4D-4F, the concentrations of MnO, FeO, and MgO increase exponentially with temperature. The natural log of the concentrations of MnO, FeO, and MgO in melt are plotted against 1/T (K) in 325 Figure 4G, e.g. a van't Hoff-style diagram. The linear trends shown in Figure 4G are supportive 326 327 evidence of near-equilibrium conditions between crystals and melt. The normative corundum 328 component of glass increases linearly with temperature (Figure 5). The solubility data reported in 329 this study is similar to data reported in previous studies (e.g. Icenhower 1995; Icenhower and London 1995; Wolf and London 1997; Acosta-Vigil et al. 2003), which is further supportive 330 331 evidence that the values reported in all of these studies represent near-equilibrium results.

332 Mineral-Melt Partition Coefficients and Exchange Coefficients

Partition coefficients, $D_M^{\alpha/L}$, where α is a mineral and *L* is melt, were calculated as the concentration in weight percent of an oxide in mineral divided by the weight percent oxide in glass (Beattie et al. 1993; Janoušek et al. 2015). Bulk partition coefficients, $WD_M^{\alpha/L}$, are defined

336	as the partition coefficient, D, multiplied by the weight fraction of the mineral (Beattie et al.
337	1993). Values of $WD_M^{\alpha/L}$ are used in the Rayleigh equation to model the compositional evolution
338	of melt, i.e. the liquid line of descent, during fractional crystallization. Partition coefficients for
339	MnO, FeO, and MgO between garnet- and cordierite-melt were measured in the temperature
340	interval 650°C to 850°C and between 650°C to 750°C for tourmaline-melt (Table 4). Data for
341	D ^{Bt/melt} (Icenhower and London 1995), D ^{Crd/melt} (Icenhower 1995; Wolf and London 1997;
342	Evensen and London 2003), and D ^{Tur/melt} (Wolf and London 1997; Van Hinsberg 2011) are
343	reported in the Supplementary Material A to complement and compare to the data measured in
344	this study. All values of $D_M^{\alpha/L}$ measured in the present study increase with decreasing
345	temperature (Figures 6A-6F) and all partition coefficients are ≥ 1 , except for $D_{MnO}^{Tur-melt}$ above
346	650°C. It is for these reasons that the total mafic component of anatectic granitic melts (saturated
347	in one or more of these mafic minerals) is < 2 wt% total oxides up to 800°C at $fO_2 =$ NNO and $<$
348	\sim 4 % of normative mafic mineral components (see Supplementary Material A), and those values
349	decrease with crystallization toward the thermal minimum, resulting in leucogranites and
350	pegmatites that are nearly free of mafic components, except for Mn.
351	Exchange coefficients, given the symbol $K_{DM/N}$ where M and N are different oxides
352	(Beattie et al. 1993), compare pairs of mineral/melt partition coefficients for the same mineral
353	(see footnote 1). Figures 7A and 7B show exchange coefficients MgO/FeO and MnO/FeO for
354	garnet, tourmaline, biotite, and cordierite. The D values used to construct Figures 7A and 7B
355	derive from experiments reported in this study and from the literature (Icenhower 1995;
356	Icenhower and London 1995; Evensen and London 2003). It is also important to note that the D
357	values were calculated from data for mineral-melt pairs from experiments conducted in the
358	temperature range of 650°C to 850°C and 200 MPa. In Figures 7A and 7B, the slope of the line

359	regressed through the data represents the exchange coefficient, e.g. K _{DMnO/FeO} . A slope greater
360	than one indicates that the element in the numerator will be depleted from melt faster than the
361	element in the denominator. For example, in Figure 7B, values of D_{MnO} are greater than values of
362	D_{FeO} for garnet which means that crystallization of garnet will result in a decrease in the
363	MnO/FeO ratio of residual melt.
364	Although D values tend to increase with decreasing temperature (Figure 6), K _D values do
365	not appear to vary as a function of temperature (Figures 7A and 7B). Exchange coefficients for
366	Fe/Mg between olivine (Roeder and Emslie 1970, Ulmer 1989) and basaltic liquid and for Ca/Na
367	between plagioclase and basaltic liquid have been shown to be independent of temperature
368	(Berndt et al. 2005). Berndt et al. (2005) observed that the K_D value for Fe/Mg between olivine
369	and basaltic melt does change as a function of Fe/Mg ratio of the liquid phase. The K_D values
370	reported here for garnet, tourmaline, and cordierite might change over a wider range of
371	compositions. However, aside from the high concentration of B ₂ O ₃ used in the experiments, the
372	liquid compositions used in this study are similar to whole-rock compositions for many S-type
373	granites.
374	Discussion
375	The evolution of MgO/FeO and MnO/FeO of melt during fractional crystallization
376	The MgO/FeO ratio of granites decreases (Frost et al. 2001, and references therein) and
377	MnO/FeO ratio increases (Černý et al. 1985) during the fractional crystallization of
378	predominantly S-type granitic melts that are the sources of highly fractionated leucogranites
379	(e.g., Pedrobernardo, Spain: Bea et al. 1994) and rare-element pegmatites (e.g., Černý et al.
380	1985) that contain spessartine. An increase in the MnO/FeO ratio during fractional crystallization
381	of granites must be controlled by the crystallization of minerals in which Mn is less compatible

than Fe and Mg. Similarly, the MgO/FeO ratio decreases due to the greater compatibility of Mgcompared to Fe in mafic phases at high temperature.

The data plotted in Figures 7A and 7B show that crystallization of biotite and cordierite depletes the melt in MgO relative to FeO most effectively, and that the crystallization of tournaline and biotite promotes an increase in the MnO content of melt relative to FeO. Values of $K_D^{MnO/FeO}$ decrease in the sequence from garnet to cordierite to biotite to tournaline (Figure 7B). Thus, the crystallization of garnet only will produce a steady decrease in the MnO/FeO ratio of melt and of garnet (e.g., Müller et al. 2012). Among all mafic phases, the MnO/FeO ratio of the melt increases most rapidly with the crystallization of tournaline.

391 These trends are seen more clearly in solutions to the Rayleigh fractionation equation,

$$C = F^{D-1} \times C_o$$

where *C* is the concentration of an element as an oxide in melt (e.g. MnO or FeO), C_o is the initial concentration of an element as an oxide in melt, *F* is the fraction of liquid, and *D* is the mineral-melt partition coefficient. To model a ratio, e.g. MnO/FeO, the Rayleigh equation is rearranged as

$$\frac{MnO}{FeO} = F^{(D_{Mineral-melt}^{MnO}-1) - (D_{Mineral-melt}^{FeO}-1)} \times \frac{MnO_o}{FeO_o}$$

The individual effects of biotite, garnet, cordierite, and tourmaline crystallization on the
MgO/FeO and MnO/FeO ratios of melt are shown in Figures 8A and 8B, respectively. The
model depicted in Figures 8A and 8B assumes crystallization of 95% quartz and feldspar and 5%
mafic mineral at a temperature of 650°C. Partition coefficients from experiments conducted at
650°C are used in the Rayleigh equation (Garnet, cordierite, and tourmaline: Exp GBT-103,
Table 4; Biotite: D^{MnO}_{Bt-melt}=5.4, D^{FeO}_{Bt-melt}=24.7, D^{MgO}_{Bt-melt}=58.5, average of 5 experiments

from Icenhower and London (1995)). The partition coefficients presented in this study have been 402 shown to increase with decreasing temperature. Therefore, the results of the Rayleigh model, 403 which assumes crystallization at 650°C, represents one condition. The use of partition 404 coefficients from higher temperature experiments would result in a smaller change in the 405 406 MnO/FeO ratio during fractional crystallization. The partition coefficients for quartz and feldspar 407 are set to zero. Bulk partition coefficients are calculated using experimentally measured partition coefficients for garnet and tourmaline (experiment GBT-103, Table 4) and biotite (Icenhower 408 409 and London 1995) and a mode of 5 wt.% for each individual mafic mineral, similar to modes of these minerals in natural occurrences. Initial ratios of MgO/FeO and MnO/FeO were calculated 410 from the average composition of melt inclusions hosted by garnet in a metapelitic rock (Acosta-411 412 Vigil et al. 2007)

The vertical axis in Figure 8A and 8B represents values of *C*, the modeled MnO/FeO or MgO/FeO value of melt, and the horizontal axis is *F*, the fraction of liquid (melt) remaining. An increase in *C* reflects an increase in the MgO/FeO or MnO/FeO ratio of the residual melt, i.e. the exchange coefficient is less than one. The curves representing MgO/FeO and MnO/FeO in Figures 8A and 8B, respectively, show that crystallization of garnet will increase the MgO/FeO ratio and decrease the MnO/FeO of melt, whereas crystallization of biotite, tourmaline, and cordierite has the opposite effect on melt composition.

420 Note that the modes of feldspar and quartz, or other non-mafic minerals, will not change 421 the trends shown in Figures 8A and 8B due to much lower concentrations of Fe, Mn, and Mg in 422 these non-mafic minerals. Also note that co-crystallization of two mafic minerals (e.g. cordierite 423 and biotite) will produce a curve that lies in between the curves for the individual minerals. The 424 absolute value of *C*, the ratio of MnO/FeO or MgO/FeO, depends on the temperature of

425 crystallization, because the partition coefficients are temperature dependent (Figure 6), the modes of mafic minerals, and the initial ratio of the concentrations of MnO and FeO. As a 426 result, an increase in temperature will lead to a smaller change in the elemental ratios as 427 fractional crystallization proceeds. The modes of mafic minerals used in Figures 8A and 8B are 428 429 similar to natural occurrences and the initial ratios of elements (as oxides) were calculated from 430 the composition of melt inclusions hosted by garnet in a metapelitic rock. The modeled ratios are 431 similar to measured ratios of glass shards from garnet-saturated, rhyolitic ignimbrites (Caffe et 432 al. 2012; Coira et al. 2018; Lucci et al. 2018).

433 Modeling the concentration of MnO during fractional crystallization

As a test of the $D_M^{\alpha/L}$ data reported in this manuscript, we use the garnet solubility data 434 and $D_M^{\alpha/L}$ values (Figures 4E and Table 4) in a Rayleigh model to evaluate the concentration of 435 436 MnO during the fractional crystallization of an S-type granitic melt. The model follows 437 principles described by Janoušek et al. (2015). By design, the model pertains to the crystallization of a cordierite-bearing S-type granitic melt of anatectic origin that has migrated to 438 pressures below ~ 400 MPa, such that almandine-pyrope solid solutions would likely not 439 440 crystallize (Clemens and Wall 1981; Pereira and Bea 1994; Stevens et al. 2007). These results would apply to the cordierite-bearing granites of the Lachlan fold belt, Australia (White et al. 441 442 2001), similar granites in Western Europe (e.g., Strong and Hammer 1981; Bea et al. 1994; Villaseca and Barbero 1994; Villaseca et al. 1998), and leucogranites in the Himalayas (Nepal) 443 (Visonà and Lombardo 2002). 444 The model begins with the average composition of 63 analyses of vitreous melt 445

446 inclusions (MI) hosted by garnet in a quartz-absent, Grt-Bt-Sil metapelitic enclave within the El

447 Hoyazo dacites, SE Spain, (Acosta-Vigil et al. 2007). Acosta-Vigil et al. (2010) concluded that

448	the MIs in garnet were formed during the dehydration-melting of muscovite at a temperature of
449	~685°-750°C and pressure of 500-700 MPa. Though garnet is stable in the metapelitic enclave, at
450	lower pressure (< 400 MPa), cordierite (sekaninaite) will form at the expense of garnet
451	(almandine) (Mukhopadhyay and Holdaway 1994) in a peraluminous liquid. Therefore, at 200
452	MPa and 800°C, cordierite and biotite are stable mafic phases that could crystallize from the
453	liquid represented by the MI in garnet. For comparison, a cordierite-free, biotite-granite is also
454	modeled. Details regarding the calculation of mineral modes, bulk partition coefficients, WD,
455	and how bulk partition coefficients were varied as a function of temperature (T) and liquid
456	fraction (F) are presented in Tables S7 and S8 (Supplementary Material A) and in Supplementary
457	Material B. The partition coefficients for Mg, Fe, and Mn in quartz, plagioclase, and K-feldspar
458	are set to zero. Therefore, their proportions on the liquid line of descent are irrelevant. Only their
459	aggregate fraction matters to the evolution of melt composition with respect to mafic
460	components. Note that the concentrations of all elements are used to calculate mineral modes and
461	only the concentration of Mn is modelled using the Rayleigh equation.
462	The result of the Rayleigh model is depicted in Figure 9. In addition to the Rayleigh
463	curve shown in Figure 9, the saturation surface for garnet in B-bearing, hydrous granitic melt, is
464	also plotted, using the experimental data from this work in Figure 4E. The model representing
465	the crystallization of the cordierite-bearing granite shows that the MnO content of melt intersects
466	the saturation surface for garnet after ~95% fractional crystallization (F \approx 0.05; ~660°C, ~0.4
467	wt.% MnO). The dashed curve in Figure 9 represents the result of the Rayleigh model for the
468	crystallization of a cordierite-free biotite-granite. The dashed curve intersects the garnet

- saturation surface after \sim 90% crystallization. The composition of garnet that crystallizes in the
- 470 models shown in Figure 9 ($Sps_{58}Alm_{42}Prp_{00}$) was determined using the same garnet-melt

471	partition coefficients used in the Rayleigh model (F=0.04, D_{MnO} =38.1, D_{FeO} =22.1, D_{MgO} =10.0).
472	The results of the models shown in Figures 8A, 8B, and 9 are strikingly similar to the
473	compositions of garnet and co-existing glass from Miocene-age, garnet-bearing rhyolitic
474	ignimbrites in South America (Caffe et al. 2012; Coira et al. 2018; Lucci et al. 2018).
475	The D_{MnO} for cordierite-melt is noteworthy because it is greater than the D_{MnO} for biotite-
476	melt, which means that cordierite-bearing S-type granites will require a greater extent of
477	crystallization to reach saturation in Mn-rich garnet (Figure 9), or may not achieve that saturation
478	at all (e.g. Phillips et al. 1981; Pereira and Bea 1994; White et al. 2001). The paucity of garnet in
479	the cordierite-bearing S-type granites of western Europe likely results from low-pressure
480	fractional crystallization involving cordierite as the dominant ferromagnesian phase (e.g., Peña
481	Negra complex, Avila batholith, Spain: Pereira and Bea 1994; Albuquerque pluton, Spain:
482	London et al. 1999; Land's End pluton, U.K.: Müller et al. 2006).
482 483	London et al. 1999; Land's End pluton, U.K.: Müller et al. 2006). Variations in melt composition and the choices of mafic minerals and their proportions
482 483 484	London et al. 1999; Land's End pluton, U.K.: Müller et al. 2006). Variations in melt composition and the choices of mafic minerals and their proportions will of course change the results shown in Figure 9 (see a discussion in Supplementary Material
482 483 484 485	London et al. 1999; Land's End pluton, U.K.: Müller et al. 2006). Variations in melt composition and the choices of mafic minerals and their proportions will of course change the results shown in Figure 9 (see a discussion in Supplementary Material B). Nonetheless, the Rayleigh model presented here using the partition coefficients of this study
482 483 484 485 486	London et al. 1999; Land's End pluton, U.K.: Müller et al. 2006). Variations in melt composition and the choices of mafic minerals and their proportions will of course change the results shown in Figure 9 (see a discussion in Supplementary Material B). Nonetheless, the Rayleigh model presented here using the partition coefficients of this study and partition coefficients reported in the literature produces a result with a hypothetical, but
482 483 484 485 486 487	London et al. 1999; Land's End pluton, U.K.: Müller et al. 2006). Variations in melt composition and the choices of mafic minerals and their proportions will of course change the results shown in Figure 9 (see a discussion in Supplementary Material B). Nonetheless, the Rayleigh model presented here using the partition coefficients of this study and partition coefficients reported in the literature produces a result with a hypothetical, but realistic, S-type granitic liquid that is consistent with natural occurrences of spessartine. To that
482 483 484 485 486 487 488	London et al. 1999; Land's End pluton, U.K.: Müller et al. 2006). Variations in melt composition and the choices of mafic minerals and their proportions will of course change the results shown in Figure 9 (see a discussion in Supplementary Material B). Nonetheless, the Rayleigh model presented here using the partition coefficients of this study and partition coefficients reported in the literature produces a result with a hypothetical, but realistic, S-type granitic liquid that is consistent with natural occurrences of spessartine. To that extent, the agreement between the Rayleigh model and the natural occurrences leads to the
482 483 484 485 486 487 488 489	London et al. 1999; Land's End pluton, U.K.: Müller et al. 2006). Variations in melt composition and the choices of mafic minerals and their proportions will of course change the results shown in Figure 9 (see a discussion in Supplementary Material B). Nonetheless, the Rayleigh model presented here using the partition coefficients of this study and partition coefficients reported in the literature produces a result with a hypothetical, but realistic, S-type granitic liquid that is consistent with natural occurrences of spessartine. To that extent, the agreement between the Rayleigh model and the natural occurrences leads to the conclusion that the partition coefficients derived from this study are applicable to natural
482 483 484 485 486 487 488 489 490	London et al. 1999; Land's End pluton, U.K.: Müller et al. 2006). Variations in melt composition and the choices of mafic minerals and their proportions will of course change the results shown in Figure 9 (see a discussion in Supplementary Material B). Nonetheless, the Rayleigh model presented here using the partition coefficients of this study and partition coefficients reported in the literature produces a result with a hypothetical, but realistic, S-type granitic liquid that is consistent with natural occurrences of spessartine. To that extent, the agreement between the Rayleigh model and the natural occurrences leads to the conclusion that the partition coefficients derived from this study are applicable to natural settings. Moreover, partition coefficients for Mn between cordierite-melt (Evensen and London
482 483 484 485 486 487 488 489 490 491	London et al. 1999; Land's End pluton, U.K.: Müller et al. 2006). Variations in melt composition and the choices of mafic minerals and their proportions will of course change the results shown in Figure 9 (see a discussion in Supplementary Material B). Nonetheless, the Rayleigh model presented here using the partition coefficients of this study and partition coefficients reported in the literature produces a result with a hypothetical, but realistic, S-type granitic liquid that is consistent with natural occurrences of spessartine. To that extent, the agreement between the Rayleigh model and the natural occurrences leads to the conclusion that the partition coefficients derived from this study are applicable to natural settings. Moreover, partition coefficients for Mn between cordierite-melt (Evensen and London 2003), in which Mn is a trace to minor element, are similar to the values reported in this

493 Spessartine in granitic pegmatites

508	Implications
507	the interior zones of tourmaline-rich pegmatites.
506	Mn-phosphate equivalents (London and Burt 1982; London et al. 1999), are common phases in
505	tends to crystallize in abundance (e.g., Fig. 2 of Černý et al. 2012). As a result, spessartine, or
504	characteristic mineral of the border and wall zones of pegmatites (Cameron et al. 1949), where it
503	and MnO content that would foster the crystallization of spessartine. Tourmaline is a
502	tourmaline alone is the most effective driver of the melt composition to the high MnO/FeO ratios
501	partitioning data do show, however, that among the mafic minerals, the crystallization of
500	internal evolution of granitic pegmatites (Morgan and London 1999; London et al. 2012b). Our
499	bulk melt whose composition changes continuously with crystallization does not apply to the
498	fractional crystallization of such plutons. The condition of equilibrium between crystals and a
497	normal granite plutons than for granitic pegmatites, which are derived from the extended
496	equilibrium with the rims of growing crystals, is more applicable to the relatively large masses of
495	2001). Rayleigh fractional crystallization, wherein the entire bulk melt remains in chemical
494	Spessartine is a common accessory mineral in LCT-type pegmatites (Laurs and Knox

The experimentally derived mineral-melt partition coefficients, $D_M^{\alpha/L}$, and exchange coefficients, $K_{DM/N}$, presented in this study confirm that the general fractionation trend of garnet, in which the MnO/FeO ratio increases with increasing fractional crystallization (Černý et al. 1985), is controlled not by garnet itself but by other minerals that accommodate Fe and Mg over Mn. The data show that crystallization of garnet alone at the moderate pressures cited here will result in a decrease in the concentration of MnO in melt.

515 Among the minerals examined in this study, tourmaline is shown to be the most efficient 516 at driving the concentration of MnO in melt to garnet saturation. Although Mn behaves

517	compatibly in cordierite and biotite, Fe and Mg are so much more compatible that the MnO
518	content of melt increases when biotite or even cordierite dominates the mafic mineral
519	assemblage. However, granites that contain mostly cordierite may never reach garnet saturation.
520	This study elucidates part of the geochemical cycle of Mn in the continental crust: the
521	accommodation and enrichment of Mn in granitic liquids from deep sources of anatexis to
522	shallow levels of solidification and crystallization of spessartine-bearing granites and pegmatites.
523	These results bear directly on the formation of highly-prized, gem-quality spessartine, which is
524	mined from granitic pegmatites (Laurs and Knox 2001). The measured partition coefficients may
525	also be pertinent to other types of Mn ores (e.g., Roy 1997).
526	The model presented here indicates that extensive fractional crystallization (\geq 90%) of a
527	starting anatectic melt is necessary to bring granitic liquids to saturation in spessartine at near-
528	solidus conditions. Likewise, beryl (Be), tourmaline (B), spodumene (Li), and pollucite (Cs)
529	achieve saturation in pegmatite-forming melts only after very extended fractional crystallization,
530	and mostly at subsolidus temperatures of crystallization (i.e., in highly undercooled melt:
531	London 2008). This study adds one more piece of evidence to the paradigm for rare-element
532	pegmatites: such bodies arise only from extended fractionated of large granitic bodies, and
533	cannot arise directly from small batches of anatectic melts (cf. Stewart 1978; Shearer et al. 1992;
534	Simmons et al. 1996).
535	
536	
537	

538

539

Acknowledgements

540	This study was funded in part by NSF grants EAR-0946322 and EAR-1623110 to DL. We thank
541	George B. Morgan VI for leading the first author through the development of electron
542	microbeam methods, useful discussions on the design, documentation, interpretation of
543	experiments, and for editorial revisions on several drafts of the manuscript. The electron
544	microprobe laboratory at OU was created by DOE grant DE-FG22-87FE1146, with upgrades
545	from NSF EAR-8720498, -9404658, -0649001, and -1401940, and continuing support from the
546	Vice President of Research at OU. Thanks go to Calvin Miller, Victoria Maneta, and two
547	anonymous reviewers for their thoughtful and constructive reviews and to Associate Editor Don
548	Baker for handling of the manuscript.

550 **References**

551	Acosta-Vigil, A., London, D., Morgan IV, G.B., and Dewers, T.A. (2003) Solubility of excess
552	alumina in hydrous granitic melts in equilibrium with peraluminous minerals at 700-800°C and
553	200 MPa, and applications of the aluminum saturation index. Contributions to Mineralogy and
554	Petrology, 146, 100-119.
555	Acosta-Vigil, A., Cesare, B., London, D., and Morgan, G.B. (2007) Microstructures and
556	composition of melt inclusions in a crustal anatectic environment, represented by metapelitic
557	enclaves within El Hoyazo dacites, SE Spain. Chemical Geology, 237, 450-465.
558	Acosta-Vigil, A., Buick, I.S., Hermann, J., Cesare, B., Rubatto, D., London, D., and Morgan,
559	G.B. (2010) Mechanisms of crustal anatexis: a geochemical study of partially melted
560	metapelitic enclaves and host dacite, SE Spain. Journal of Petrology, 51, 785-821.
561	Baker, L.R., and Rutherford, M.J. (1996) The effect of dissolved water on the oxidation state of
562	silicic melts. Geochimica et Cosmochimica Acta, 60, 2179–2187.
563	Bea, F. (1996) Controls on the trace element composition of crustal melts. In M. Brown, P.A.
564	Candela, D.L. Peck, W.E. Stephens, R.J. Walker, and EA. Zen, Eds., The third Hutton
565	symposium on the origin of granites and related rocks pp. 33-41. Geological Society of
566	America Special Paper.
567	Bea, F., Pereira, M.D., Corretge, L.G., and Fershtater, G.B. (1994) Differentiation of strongly
568	peraluminous, perphosphorous granites: The Pedrobernardo pluton, central Spain. Geochimica

tet Cosmochimica Acta, 58, 2609–2627.

- 570 Beattie, P., Drake, M., Jones, J., Leeman, W., Longhi, J., McKay, G., Nielsen, R., Palme, H.,
- 571 Shaw, D., Takahashi, E., and others (1993) Terminology for trace-element partitioning.
- 572 Geochimica et Cosmochimica Acta, 57, 1605–1606.
- 573 Berndt, J., Koepke, J., and Holtz, F. (2005) An experimental investigation of the influence of
- water and oxygen fugacity on differentiation of MORB at 200 MPa. Journal of Petrology, 46,
- 575 135–167.
- 576 Caffe, P.J., Trumbull, R.B., and Siebel, W. (2012) Petrology of the Coyaguayma ignimbrite,
- 577 northern Puna of Argentina: Origin and evolution of a peraluminous high-SiO2 rhyolite
- 578 magma. Lithos, 134-135, 179-200.
- Cameron, E.N., Jahns, R.H., McNair, A.H., and Page, L.R. (1949) Internal structure of granitic
 pegmatites. Economic Geology Monograph 2.
- 581 Černý, P., Meintzer, R.E., and Anderson, A.J. (1985) Extreme fractionation in rare-element
- granitic pegmatites: Selected examples of data and mechanisms. Canadian Mineralogist, 23,
 381–421.
- Černý, P., Chapman, R., Schreyer, W., Ottolini, L., Bottazzi, P., and McCammon, C.A. (1997)
- Lithium in sekaninaite from the type locality, Dolni Bory, Czech Republic. The Canadian
- 586 Mineralogist, 35, 167–173.
- Černý, P., London, D., and Novak, M. (2012) Granitic pegmatites as reflections of their sources.
 Elements, 8, 289–294.
- 589 Chappell, B.W., and White, A.J.R. (2001) Two contrasting granite types: 25 years later.
- Australian Journal of Earth Sciences, 48, 489–499.

- 591 Christiansen, E.H., Bikun, J. V., Sheridan, M.F., and Burt, D.M. (1984) Geochemical evolution
- of topaz rhyolites from the Thomas Range and Spor Mountain, Utah. American Mineralogist,
- **593 69**, 223–236.
- 594 Clemens, J.D., and Wall, V.J. (1981) Origin and crystallization of some peraluminous (S-type)
- granitic magmas. Canadian Mineralogist, 19, 111–131.
- 596 Coira, B., Kay, S.M., Viramonte, J.G., Kay, R.W., and Galli, C. (2018) Origin of late Miocene
- 597 peraluminous Mn-rich garnet-bearing rhyolitic ashes in the Andean Foreland (Northern
- 598 Argentina). Journal of Volcanology and Geothermal Research.
- 599 Dasgupta, H.C., Seifert, F., and Schreyer, W. (1974) Stability of manganocordierite and related
- 600 phase equilibria in part of the system MnO-Al2O3-SiO2-H2O. Contributions to Mineralogy
- and Petrology, 43, 275–294.
- Dwivedi, S.B., Mohan, A., and Lal, R.K. (1998) Recalibration of the Fe-Mg exchange reaction
- between garnet and cordierite as a thermometer. European Journal of Mineralogy, 10, 281–
 289.
- Evensen, J.M., and London, D. (2003) Experimental partitioning of Be, Cs, and other trace
- elements between cordierite and felsic melt, and the chemical signature of S-type granite.
- 607 Contributions to Mineralogy and Petrology, 144, 739–757.
- Ewart, A., and Griffin, W.L. (1994) Application of proton-microprobe data to trace-element
- 609 partitioning in volcanic-rocks. Chemical Geology, 117, 251--284.
- 610 Frost, B.R., Barnes, C.G., Collins, W.J., Arculus, R.J., Ellis, D.J., and Frost, C.D. (2001) A
- 611 geochemical classification for granitic rocks. Journal of Petrology, 42, 2033–2048.

- Grew, E.S., Locock, A.J., Mills, S.J., Galuskina, I.O., Galuskin, E. V., and Hålenius, U. (2013)
- 613 IMA report: Nomenclature of the garnet supergroup. American Mineralogist, 98, 785–811.
- Henry, D.J., Novák, M., Hawthorne, F.C., Ertl, A., Dutrow, B.L., Uher, P., and Pezzotta, F.
- 615 (2011) Nomenclature of the tourmaline-supergroup minerals. American Mineralogist, 96, 895–
- **616 913**.
- Higuchi, H., and Nagasawa, H. (1969) Partition of trace elements between rock-forming
- 618 minerals and the host volcanic rocks. Earth and Planetary Science Letters, 7, 281–287.
- Holdaway, M.J. (2004) Optimization of some key geothermobarometers for pelitic metamorphic
- 620 rocks. Mineralogical Magazine, 68, 1–14.
- Huebner, J.S., and Sato, M. (1970) The oxygen fugacity-temperature relationships of manganese
- oxide and nickel oxide buffers. American Mineralogist, 55, 934–952.
- 623 Icenhower, J.P. (1995) Experimental determination of element behavior in silicic systems during
- hydrous partial fusion. University of Oklahoma, Norman, OK, USA.
- 625 Icenhower, J.P., and London, D. (1995) An experimental study of element partitioning among
- biotite, muscovite, and coexisting peraluminous silicic melt at 200 MPa (H2O). American
- 627 Mineralogist, 80, 1229–1251.
- Janoušek, V., Moyen, J.F., Martin, H., Erban, V., and Farrow, C. (2015) Geochemical modelling
- of igneous processes principles and recipes in R language: Bringing the power of R to a
- 630 geochemical community. New York, NY: Springer-Verlag.

- Jobin-Bevans, S., and Černý, P. (1998) The Beryllian Cordierite + Beryl + Spessartine
- Assemblage, and Secondary Beryl in Altered Cordierite, Greer Lake Granitic Pegmatites,
- 633 Southeastern Manitoba. The Canadian Mineralogist, 36, 447–462.
- Laurs, B.M., and Knox, K. (2001) Spessartine garnet from Ramona, San Diego County,
- 635 California. Gems & Gemology, 37, 278–295.
- London, D. (2008) Pegmatites, 347 p. Canadian Mineralogist Vol. 10.
- 637 London, D., and Burt, D.M. (1982) Alteration of spodumene, montebrasite and lithiophilite in
- pegmatites of the White Picacho district, Arizona. American Mineralogist, 67, 97–113.
- 639 London, D., Wolf, M.B., Morgan Vi, G.B., and Garrido, M.G. (1999) Experimental silicate-
- 640 phosphate equilibria in peraluminous granitic magmas, with a case study of the Alburquerque
- Batholith at Tres Arroyos, Badajoz, Spain. Journal of Petrology, 40, 215–240.
- London, D., Evensen, J.M., Fritz, E.A., Icenhower, J.P., Morgan, G.B., and Wolf, M.B. (2001)
- 643 Enrichment and accomodation of manganese in granite-pegmatite systems. In Eleventh Annual
- 644 V.M. Goldscmidt Conference p. abstract no.3369. Hot Springs, VA.
- London, D., Morgan, G.B., and Acosta-Vigil, A. (2012a) Experimental simulations of anatexis
- and assimilation involving metapelite and granitic melt. Lithos, 153, 292–307.
- 647 London, D., Morganvi, G.B., Paul, K.A., and Guttery, B.M. (2012b) Internal evolution of
- 648 miarolitic granitic pegmatites at the little three Mine, Ramona, California, USA. Canadian
- 649 Mineralogist, 50, 1025–1054.
- Lucci, F., Rossetti, F., Becchio, R., Theye, T., Gerdes, A., Opitz, J., Baez, W., Bardelli, L., De
- Astis, G., Viramonte, J., and others (2018) Magmatic Mn-rich garnets in volcanic settings: Age

- and longevity of the magmatic plumbing system of the Miocene Ramadas volcanism (NW
- 653 Argentina). Lithos.
- Mahood, G.A., and Hildreth, E.W. (1983) Large partition coefficients for trace elements in high-
- silica rhyolites. Geochimica et Cosmochimica Acta, 47, 11–30.
- Maner, J.L., London, D., and Morgan, G.B. (2013) Toward an experimentally calibrated garnet-
- tourmaline geothermometer. In Geological Society of America Abstracts with Programs p. 17.
- 658 Austin, TX.
- 659 (2014) Elemental partioning and zoning in tourmaline: An experimental investigation. In
- 660 Goldscmidt Conference Abstracts. Sacramento, California.
- 661 Matsui, Y., Onuma, N., Nagasawa, H., Higuchi, H., and Banno, S. (1977) Crystal structure
- 662 control in trace element partition between crystal and magma. Tectonics, 100, 315–324.
- Miller, C.F., and Stoddard, E.F. (1981) The role of manganese in the paragenesis of magmatic
- garnet: An example from the Old Woman-Piute Range, California. The Journal of Geology, 89,
 233–246.
- Moore, G., Righter, K., and Carmichael, I.S.E. (1995) The effect of dissolved water on the

oxidation state of iron in natural silicate liquids. Contributions to Mineralogy and Petrology,120.

- 669 Morgan, G.B. (2016) A spreadsheet for calculating normative mole fractions of end-member
- 670 species for Na-Ca-Li-Fe 2+ -Mg-Al tournalines from electron microprobe data. American
- 671 Mineralogist, 101, 111–119.

- Morgan, G.B., and London, D. (1996) Optimizing the electron microprobe analysis of hydrous
- alkali aluminosilicate glasses. American Mineralogist, 81, 1176–1185.
- 674 Morgan, G.B., and London, D. (1999) Crystallization of the Little Three layered pegmatite-aplite
- dike, Ramona District, California. Contributions to Mineralogy and Petrology, 136, 310–330.
- 676 (2005) Effect of current density on the electron microprobe analysis of alkali
- aluminosilicate glasses. American Mineralogist, 90, 1131–1138.
- Mukhopadhyay, B., and Holdaway, M.J. (1994) Cordierite-garnet-sillimanite-quartz equilibrium:
- I. New experimental calibration in the system FeO-Al2O3-SiO2-H2O and certain P-T-XH2O
- relations. Contributions to Mineralogy and Petrology, 116, 462–472.
- 681 Müller, A., Seltmann, R., Halls, C., Siebel, W., Dulksi, P., Jeffries, T., Spratt, J., and Kronz, A.
- (2006) The magmatic evolution of the Land's End Pluton, Cornwall, and associated pre-

enrichment of metals. Ore Geology Reviews, 28, 329–367.

Müller, A., Kearsley, A., Spratt, J., and Seltmann, R. (2012) Petrogenetic implications of

magmatic garnet in granitic pegmatites from Southern Norway. Canadian Mineralogist, 50,
1095–1115.

- Nash, W.P., and Crecraft, H.R. (1985) Partition coefficients for trace elements in silicic magmas.
 Geochimica et Cosmochimica Acta, 49, 309–322.
- 689 Pereira, M.D., and Bea, F. (1994) Cordierite-producing reactions in the Pena Negra complex,
- Avila batholith, central Spain: The key role of cordierite in low-pressure anatexis. Canadian
- 691 Mineralogist, 31, 763–780.

- 692 Phillips, G.N., Wall, V.J., and Clemens, J.D. (1981) Petrology of the Strathbogie batholith: a
- 693 cordierite-bearing granite. Canadian Mineralogist, 19, 47–63.
- 694 Pouchou, J.L., and Pichoir, F. (1985) "PAP" (φ-ρ-z) correction procedure for improved
- quantitative microanalysis. In Microbeam Analysis pp. 104–106. San Francisco Press,

696 California.

697 Puziewicz, J., and Johannes, W. (1988) Phase equilibria and compositions of Fe-Mg-Al minerals

and melt in water saturated peraluminous granitic systems. Contributions to Mineralogy andPetrology, 100, 156–168.

- Roeder, P.L. and Emslie, R.F. (1970) Olivine-liquid equilibrium. Contributions to Mineralogy
- and Petrology, 29, 275-289.
- Romer, R.L., Kirsch, M., and Kroner, U. (2011) Geochemical signature of Ordovician Mn-rich
- sedimentary rocks on the Avalonian shelf. Canadian Journal of Earth Sciences, 48, 703–718.
- Roy, S. (1997) Genetic diversity of manganese deposition in the terrestrial geological record,
- Special Pu., 5-27 p. (K. Nicholson, J.R. Hein, B. Buhn, & S. Dasgupta, Eds.). Geological
- 706 Society, London.
- 707 Shearer, C.K., Papike, J.J., and Jolliff, B.L. (1992) Petrogenetic links among granites and
- pegmatites in the Harney Peak rare-element granite-pegmatite system, Black Hills, South
- 709 Dakota. Canadian Mineralogist, 30, 785–809.
- 710 Simmons, W.B., Foord, E.E., Falster, A.U., and King, V.T. (1996) Evidence for an anatectic
- origin of granitic pegmatites, western Maine, USA. In Geological Society of America
- Abstracts with Programs p. 27:411.

- 713 Stevens, G., Villaros, A., and Moyen, J.F. (2007) Selective peritectic garnet entertainment as the
- origin of geochemical diversity in S-type granites. Geology, 35, 9–12.
- Stewart, D.B. (1978) Petrogenesis of lithium-rich pegmatites. American Mineralogist, 63, 970–
 980.
- 717 Strong, D.F., and Hammer, S.K. (1981) The leucogranites of southern Brittany: origin by
- faulting, frictional heating, fluid flux and fractional melting. Canadian Mineralogist, 19, 163–
- 719 176.
- Taylor, J.F., and Wall, V.J. (1992) The behavior of tin in granitoid magmas. Economic Geology,
 87, 403–420.
- 722 Ulmer, P. (1989) The dependence of the Fe2+-Mg cation-partitioning between olivine and
- basaltic liquid on pressure, temperature, and composition An experimental study to 30 kbars.
- Contributions to Mineralogy and Petrology, 101, 261–273.
- van Hinsberg, V.J., and Schumacher, J.C. (2009) The geothermobarometric potential of
- tourmaline, based on experimental and natural data. American Mineralogist, 94, 761–770.
- 727 Van Hinsberg, V.J. (2011) Preliminary experimental data on trace-element partitioning between
- tourmaline and silicate melt. Canadian Mineralogist, 49, 153–163.
- 729 Villaseca, C., and Barbero, L. (1994) Chemical variability of Al-Ti-Fe-Mg minerals in
- peraluminous granitoid rocks from Central Spain. European Journal of Mineralogy, 6, 691–

731 710.

- 732 Villaseca, C., Barbero, L., and Rogers, G. (1998) Crustal origin of Hercynian peraluminous
- 733 granitic batholiths of Central Spain: petrological, geochemical amd isotopes (Sr, Nd)
- 734 contsraints. Lithos, 43, 55–79.
- 735 Visonà, D., and Lombardo, B. (2002) Two-mica and tourmaline leucogranites from the Everest-
- 736 Makalu region (Nepal Tibet). Himalayan leucogranite genesis by isobaric heating? Lithos.
- 737 White, A.J.R., Allen, C.M., Beams, S.D., Carr, P.F., Champion, D.C., Chappell, B.W., Wyborn,
- D., and Wyborn, L.A.I. (2001) Granite suites and supersuites of Eastern Australia. Australian
- Journal of Earth Sciences, 48, 515–530.
- 740 Whitney, D.L., and Evans, B.W. (2010) Abbreviations for names of rock-forming minerals.
- 741 American Mineralogist, 95, 185–187.
- 742 Wolf, M.B., and London, D. (1997) Boron in granitic magmas: stability of tourmaline in
- requilibrium with biotite and cordierite. Contributions to Mineralogy and Petrology, 130, 12–
 30.
- 745 Wolf, M.B., London, D., and Morgan, G.B. (1994) Effects of boron on the solubility of
- cassiterite and tantalite in granitic liquids. In Geological Society of America Abstracts withPrograms.
- 748

749

Figure captions

750	Fig. 1: Back-scattered electron images (BSEI) of experimental run products. Grt garnet, Tur
751	tourmaline, Crd cordierite, Qtz quartz, Gl glass. (A) Glass run product (Exp#: MnGT-80, 850°C).
752	(B) Euhedral garnet and tourmaline (Exp#: MnGT-49, 'forward' to 700°C). (C) Euhedral
753	tourmaline crystals (Exp#: MnGT-56, 'reverse' to 700°C. (D) Euhedral garnet and tourmaline
754	crystals dissolved out of glass using hydrofluoric acid (Exp#: MnGT-56). (E &F) Individual,
755	euhedral cordierite crystals and clusters of cordierite, tourmaline, and quartz (Exp#: GBT-103,
756	'forward' to 650°C). (G) Cordierite (Exp#: GBT-90, 850°C). (H) Intergrowth of quartz and
757	cordierite (Exp#: GBT-102, 'forward' to 700°C).
758	Fig. 2: X-ray maps of Fe, Mn, Mg, Ca, and Al in garnet and tourmaline produced in experiment
759	MnGT49 (700°C, 264 hrs). Experiment MnGT49 was heated to 800°C, quenched, and then
760	heated directly 700°C. Note the sector zoning of Al, Ca, and Mg in tourmaline. The Mn-rich
761	cores of garnets are relict Mn-rich garnet starting material.
762	Fig. 3: (A) Composition of garnet, represented as the mole percentage of almandine (alm) and
763	pyrope (prp), produced in this study. The mole percent of spessartine can be calculated by
764	subtracting the % almandine and % pyrope from 100%. (B) Mole percentages of end-member
765	garnet species (spessartine, almandine, and pyrope) plotted against temperature. Note the linear
766	trend of decreasing Fe and Mg and increasing Mn with decreasing temperature. (C) The
767	composition of cordierite, as molar percentages of "Mn-cordierite" and indialite (Mg-Crd),
768	produced in experiments in this study. The mole percentage of sekaninaite (Fe-Crd) can be
769	calculated by subtracting the % "Mn-cordierite" and % indialite from 100%. Apart from the
770	single experiment conducted at 700°C, the Mn and Fe content increases with decreasing

- temperature. All symbols reflect the average composition of garnet or cordierite from each
- experiment reported in this manuscript (not from literature).

Fig. 4: Solubility of FeO, MgO, and MnO at garnet and tourmaline saturation. (A), (B), and (C) 773 display a time series of experiments conducted between 0 and 720 hours at 750°C, 700°C, and 774 775 650°C, respectively. Circles, squares, and diamonds represent the concentrations of MnO, FeO, and MgO, respectively, in glass. Data shown in panels (D), (E), and (F) represent the 776 concentrations of FeO, MnO, and MgO in glass, respectively, at garnet and tourmaline 777 saturation. Solid squares are data presented in this manuscript from long-duration (720 hrs) 778 experiments using bulk composition MnGT-BC-4.1 in which steady-state conditions have been 779 780 validated via a time-series of experiments. Open circles and solid circles are data from Wolf and 781 London (1997) for tournaline growth and dissolution, respectively, from/into granitic melt. 782 Open squares are from Acosta-Vigil et al. (2003) for tournaline dissolution in granitic melt. Data 783 from F-rich (~1wt.% F) experiments of Icenhower (1995) and from B- and F-free, hydrous (~5-7% H₂O) experiments of London et al. (2012) are shown for comparison (open diamonds). Error 784 bars represent 2σ standard deviations. (G) Natural log of the concentrations of FeO (squares), 785 MnO (triangles), and MgO (diamonds) in hydrous, boron-bearing granitic melt plotted against 786 787 1/T (K). The data are from long-duration (720 hrs) experiments. The linear nature of the data, and the high correlation coefficients ($r^2 > 0.98$) for each line, confirm that the compositions 788 presented in this study represent near-equilibrium conditions between crystal and melt. 789 Fig. 5: Normative corundum component of boron-bearing, peraluminous, hydrous granitic melts 790 791 (glasses) that produced garnet and cordierite crystals (solid squares: bulk composition GT1.3) 792 and tourmaline (solid triangle: bulk composition MnGT-BC-4.1). Data from Acosta-Vigil et al. 793 (2003) for dissolution of cordierite (open squares) and tourmaline (open triangles) into boron-

free (for cordierite) and boron-bearing (for tourmaline), hydrous granitic melt. The italicized equation and correlation coefficient belong to the dashed line. Errors for solid squares are 2σ standard deviations. Errors for open symbols are similar to the size of the symbol. Note the lower normative corundum for cordierite dissolution into B-free granitic melt compared with the data for B-bearing granitic melt.

799 *Fig. 6: (A)* Crd-melt partition coefficients, D_M, plotted against temperature. Individual points represent average values from individual experiments. (B) Tur-melt partition coefficients, D_M , 800 plotted against temperature. Individual points represent average values of multiple experiments 801 conducted at a given temperature. (C) Grt-melt partition coefficients, D_M , plotted against 802 803 temperature. Individual points represent average values of multiple experiments conducted at a given temperature. (D)-(F) The partition coefficients presented in this study form a line when 804 805 plotted in natural log D versus 1/T (K) space, which is supportive evidence of near-equilibrium 806 conditions between crystals and melt.

807 Fig. 7: Mineral-melt exchange coefficients, K_D , calculated as the slope of a linear regression 808 through the D_{FeO} and D_{MgO} data (A) and D_{MnO} and D_{FeO} data (B) for garnet-, tourmaline-, cordierite-, and biotite-melt. Solid symbols represent all data for garnet (squares), tourmaline 809 810 (diamonds), and cordierite (circles) reported in the present manuscript. Open triangles, open 811 circles, circles with horizontal lines, and circles with diagonal lines represent data from 812 Icenhower and London (1995), Icenhower (1995), Evenson and London (2003), and Wolf and 813 London (1997), respectively. The dashed black line without an arrow represents a one-to-one 814 correlation of D_{FeO} and $D_{MgO}(A)$ and D_{MnO} and $D_{FeO}(B)$. The slope of each linear regression 815 (solid black lines with arrows) represents an exchange coefficient for each mineral, K_{DMgO/FeO}. 816 The exchange coefficients do not appear to depend on temperature considering data from

817	experiments conducted in the temperature range of 850°C to 650°C. Individual data points
818	represent average values calculated per individual experiment. Error bars show 2σ standard
819	deviations, which were propagated through the calculation of partition coefficients.
820	Fig. 8: Rayleigh models for the evolution of the MgO/FeO (A) and MnO/FeO (B) ratios of
821	granitic melt resulting from fractional crystallization of garnet, biotite, tourmaline, and cordierite
822	individually at 650°C and 200 MPa. F=1 represent 100% melt (liquid) and F=0 represents
823	complete crystallization. The vertical axis represents values of C (MgO/FeO or MnO/FeO).
824	Crystallization of garnet alone produces an increase in the MgO/FeO ratio and a decrease in the
825	MnO/FeO ratio. Higher pressures (> 400 MPa) may result in a different partitioning behavior.
826	Fig. 9: Rayleigh fractional crystallization model of an S-type granite liquid. The dashed line and
827	the lower solid black line represent the results of two different Rayleigh models. The upper solid
828	black line denotes the MnO saturation surface for garnet in B-bearing, hydrous granitic melt. The
829	first model (solid black line) entails crystallization of a cordierite-biotite granite. The second
830	model entails crystallization of a biotite granite (dashed line). Parameters for each Rayleigh
831	model are reported in Supplementary Material A. The models reveal that an anatectic S-type
832	granitic magma must undergo 90% (biotite granite) to 95% (cordierite-biotite granite)
833	crystallization before Mn-rich garnet will crystallize. Garnet-melt partition coefficients were
834	varied as a function of temperature to calculate the composition of garnet that would crystallize
835	from the modeled melt (D_{MnO} =38.1, D_{FeO} =22.1, D_{MgO} =10.0 at F=0.05).

836

837	Footnote
838	(located in text on pg. 7, line 134)
839	¹ Mineral-melt exchange coefficients are equivalent to Nernst distribution coefficients, which
840	represent the product of a homogeneous exchange reaction. In this case, the reaction is between
841	crystal and melt. Crystallization of minerals from melt represents the principal and only feasible
842	means of measuring the elemental partition coefficients. A reversal of this reaction requires
843	diffusion of the element(s) of interest out of a crystal into melt until both phases, crystal and
844	melt, have been equilibrated. Solid-state diffusion of mafic components through a crystalline
845	phase is impossibly slow on the time frames of experiments. Moreover, a crystal that is not in
846	equilibrium with melt will dissolve at a rate much greater than that of the solid-state diffusion of
847	ions through the crystal (e.g., Bea 1996).

Table 1: EPMA of starting liquid (glass) composition										
System GT1.3 MnGT-BC-4.1										
Exp#	GBT86		MnGT80							
T (°C)	850	850								
t (hrs)	24		168							
	Weight Percer	nt Oxides								
SiO_2	68.47	(1.17)	62.73	(0.78)						
B_2O_3	3.09	(0.34)	(0.34) 8.13 (0.44)							
Al_2O_3	11.18	(0.36)	11.68	(0.15)						
FeO*	1.39	(0.09)	0.89	(0.04)						
MnO	1.52	(0.11)	1.86	(0.07)						
MgO	1.00	(0.07)	0.43	(0.01)						
CaO	0.22	(0.05)	0.07	(0.03)						
Na ₂ O	1.83	(0.08)	2.80	(0.11)						
K ₂ O	3.01	(0.11)	3.32	(0.11)						
Total	91.70	(0.58) 91.92 (0.62)								
H_2O	8.30	(0.58) 8.08 (0.62)								
Ν	25		50							
ASI	1.683	(0.070)	1.403	(0.041)						
K#	0.520	(0.014)	0.439	(0.013)						
Mn*	52.531	(0.828)	53.138	(0.872)						
Mg#	0.561	(0.009) 0.217 (0.003)								
	CIPW Normat	tive Mineralog	у							
Qz	47.32		30.63							
Or	20.05		19.62							
Ab	17.44		23.69							
An	1.21		0.35							
Crn	5.11		3.35							
Hy	8.88		6.16							
	Mineral symb	ols after Whitn	ey and Evans (2010)						
	205D in paren	uneses								
	ASI = aluminu	im saturation i	ndex (molar: A	I/Na+K)						
	K [#] = molar K/	K+Na								

Table 1, EDMA of starting liquid (aloss) composition

Mn* = molar Mn/(Mn+Fe)*100

Mg# = molar Mg/(Mg+Fe)

Table 2: Chemical formulas of pertinent minerals

Species	Abbreviation	Chemical Formula
Indialite	Ind	$Mg_2Al_4Si_5O_{18}$
Sekaninaite	Sek	$Fe_2Al_4Si_5O_{18}$
Spessartine	Sps	$Mn_3Al_2Si_3O_{12}$
Almandine	Alm	$Fe_3Al_2Si_3O_{13}$
Pyrope	Prp	$Mg_3Al_2Si_3O_{12}$
Schorl	Srl	NaFe3Al6(BO3)3Si6O18(OH)4
Dravite	Drv	$NaMg_3Al_6(BO_3)_3Si_6O_{18}(OH)_4$
"Tsilaisite"	Tsi	$NaMn_3Al_6(BO_3)_3Si_6O_{18}(OH)_4$
Olenite	Ol	$NaAl_3Al_6(BO_3)_3Si_6O_{18}(O)_3(OH)$
Foitite	Ftt^1	[](Fe ₂ Al)Al ₆ (BO ₃) ₃ Si ₆ O ₁₈ (OH) ₄
Magnesiofoitite	Ftt ²	$[](Mg_2Al)Al_6(BO_3)_3Si_6O_{18}(OH)_4$
Uvite	Uv^2	$CaMg_3(MgAl_5)(BO_3)_3Si_6O_{18}(OH)_4$
Feruvite	Uv^2	CaFe ₃ (MgAl ₅)(BO ₃) ₃ Si ₆ O ₁₈ (OH) ₄

¹Foitite and Mg-foitite are combined into a single Foitite component in the text

²Uvite and Fe-uvite are combined into a single Uvite component in the text Most mineral symbols after Whitney and Evans (2010)

[] – site vacancy

			-				Garne	t		Tou	rmaline			Cordierite	e
	Т							_					-		_
Experiment #	(°C)	Direction ¹	Time (hrs)	System ²	Products ³	Xsps	Xalm	Xprp	Xdrv	Xsrl	Xftt	Xuv	Xind	Xsek	XMn
GBT90	850	F	45	GT1.3	Grt, Crd	50.63	23.38	25.99					74.47	14.16	11.37
GBT88	750	FF	168	"	Grt, Crd	55.89	26.86	17.24					67.84	18.97	13.19
GBT89	750	F	168	"	Grt, Crd	67.17	21.93	10.89							
GBT101	750	FF	456	"	Grt, Crd	63.20	22.80	14.00					66.25	16.36	17.39
GBT102	700	FF	336	"	Grt (trace), Crd								68.89	12.95	18.06
GBT103	650	FF	456	"	Grt, Tur, Crd, Qtz	81.12	14.98	3.91	36.30	24.48	17.77	14.27	48.03	21.79	30.18
MnGT111	850	F	168	MnGT-BC-4.1											
MnGT103	750	R	0	"											
MnGT77	750	R	24	"	Grt, Tur (trace)	72.80	15.26	11.93	39.59	25.53	30.90	0.79			
MnGT104	750	R	24	"											
MnGT110	750	R	168	"											
MnGT112	750	R	336	"											
MnGT126	750	F	720	"	Grt (relict), Tur, Qtz, AFS										
MnGT65	700	R	0	"											
MnGT66	700	R	24	"	Grt (trace), Tur				41.61	27.44	18.62	7.45			
MnGT67	700	R	72	"	Grt (trace), Tur				40.21	27.44	20.08	7.60			
MnGT49	700	FF	264	"	Grt, Tur	70.80	19.95	9.25	34.90	27.98	20.46	8.14			
MnGT56	700	R	336	"	Grt, Tur	80.83	13.29	5.89	40.80	28.05	18.34	8.39			
MnGT125	700	F	720	"	Grt (relict), Tur, Qtz										
MnGT114	650	R	0	"	Bt										
MnGT116	650	R	24	"											
MnGT117	650	R	720	"	Bt										
MnGT124	650	F	720	"	Grt (relict), Tur										

Table 3: Conditions of experiments and summary of compositions of crystalline products

¹F (Heated directly to temperature), FF (heated to temperature above liquidus, quenched, and then heated directly to temperature of interest), R (heated to temperature above liquidus, quenched, and then cooled to temperature of interest)

2System = Bulk Composition (Table 1)

³Garnet (Grt), Cordierite (Crd), Tourmaline (Tur), Quartz (Qtz), alkali-feldspar (AFS). All products include glass and trace amounts of mullite/corundum and Fe-Mn-Ni-Cr oxides X: mol fraction mineral end-member [spessartine (sps), almandine (alm), pyrope (prp), dravite (drv), schorl (srl), total foitite (ftt), uvite (uv), indialite (ind), sekanianite (sek), Mn-crd (Mn)] foitite and uvite components represent total Mg-foitite+foitite and ferruvite+uvite, respectively

Table 4: Mineral-melt partition coefficients

	Exp #	BC	Т (°С)	D_{FeO}	D _{MnO}	$\mathrm{D}_{\mathrm{MgO}}$	
Grt/melt	GBT-90	1.3	850	8.07	15.62	7.45	w/Crd
Grt/melt	GBT-88	1.3	750	11.82	20.74	8.74	w/Crd
Grt/melt	GBT-101	1.3	750	21.56	24.85	8.91	w/Crd
Grt/melt	GBT-89	1.3	750	14.91	44.96	11.93	w/Crd
Grt/melt	MnGT-77	4.1	750	11.31	23.01	7.23	w/Tur
Grt/melt	MnGT-49	4.1	700	26.78	35.69	16.01	w/Tur
Grt/melt	MnGT-56	4.1	700	19.95	36.37	14.02	w/Tur
Grt/melt	GBT-103	1.3	650	22.53	38.76	7.93	w/Crd&Tur
Crd/melt	GBT-90	1.3	850	2.55	1.83	11.14	w/Grt
Crd/melt	GBT-88	1.3	750	4.39	2.57	18.07	w/Grt
Crd/melt	GBT-101	1.3	750	8.01	3.54	21.84	w/Grt
Crd/melt	GBT-102	1.3	700	6.79	3.64	31.95	w/Grt
Crd/melt	GBT-103	1.3	650	16.73	7.37	49.77	w/Grt&Tur
Tur/melt	MnGT-77	4.1	750	14.64	0.46	14.11	w/Grt
Tur/melt	MnGT-49	4.1	700	23.52	0.64	37.88	w/Grt
Tur/melt	MnGT-56	4.1	700	31.11	0.90		w/Grt
Tur/melt	MnGT-66	4.1	700	20.89	0.64	26.14	Tur only
Tur/melt	MnGT-67	4.1	700	25.42	0.72	33.02	Tur only
Tur/melt	GBT-103	1.3	650	30.28	1.62	49.93	w/Grt&Crd

BC: Bulk Composition

Tourmaline (Tur), Garnet (Grt), Cordierite (Crd)

Errors for mean D values are less than 10% relative, and most commonly $\sim 5\%.$

