1	Revision 2
2	Reconstruction of the lithosphere-asthenosphere boundary zone beneath
3	Ichinomegata maar, Northeast Japan, by geobarometry of spinel peridotite xenoliths
4	
5	Yuto SATO
6	Corresponding author
7	E-mail: syuto@eps.s.u-tokyo.ac.jp
8	
9	Kazuhito OZAWA
10	E-mail: ozawa@eps.s.u-tokyo.ac.jp
11	
12	(Institutional address)
13	Department of Earth and Planetary Science, Graduate School of Science, the University of
14	Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
15	Tel: +81-3-5841-4501
16	

Abstract

Estimation of accurate derivation depths of spinel peridotite xenoliths, for which reliable 18 19geobarometers are not available, is imperative to reconstruct precise structures of the 20lithosphere-asthenosphere boundary (LAB) zones, such as thermal, chemical, rheological, 21and petrological structures, for better understanding dynamics operating there. We 22challenged this problem for spinel peridotite xenoliths from Ichinomegata maar in the back-arc side of Northeast Japan Arc. Extensive mineral chemical examinations of nine 2324xenolith samples revealed various patterns of chemical zoning in pyroxenes suggesting diverse thermal histories. We examined the timescales of development of each zoning 25pattern to identify minerals, mineral portions, and chemical species attaining equilibrium as 26close as possible just before the xenolith extraction. Applying the best pair of 27geothermobarometers to the chosen analyses (Ca-Mg-Fe components from the outermost 2829rims of orthopyroxene and clinopyroxene), plausible derivation depths of eight samples 30 were obtained. They range 0.72-1.6 GPa in pressure and 830-1080 °C in temperature, which define a high thermal gradient of 10 K/km or 290 K/GPa. There is an intimate 31 32correlation between the zoning patterns of pyroxenes and the depth estimates: pyroxenes in 33 the deeper samples have zoning indicating cooling followed by heating just before the

34 xenolith extraction and those of the shallower samples have zoning indicating simple35 cooling.

36 Depth variations of rock microstructures, grain size of olivine, chemical compositions of minerals, and phase assemblage including the presence or absence of glass or fluid phase 3738show that the mantle beneath Ichinomegata consists of two distinct layers. The shallower 39 (28-32 km) layer is granular, less oxidized, amphibole- and plagioclase-bearing, and subsolidus, whereas the deeper (41-55 km) layer is porphyroclastic, amphibole- and 40 plagioclase-free, oxidized, and partially molten. The contrasts between the two layers 41 suggest that the upper layer represents a lithospheric mantle and the lower layer a LAB 42zone. They are similar to those reported from the bottom of the subcontinental lithospheric 43mantle in various aspects, but the boundary layer beneath Ichinomegata is much shallower 44 (40-60 km) and cooler (~1100 °C). The coincidence of the depth of rheological transition 4546 marked by the change from granular to porphyroclastic textures and that of the melting 47phase transition of hydrous peridotite system, marked by the complementary presence or absence of H2O-rich fluid/amphibole and that of melt in localized pockets, is the 4849remarkable feature of the boundary zone beneath Ichinomegata. This suggests that a rheological boundary zone in arc settings is governed by melting of the hydrous mantle and 50

51	that the unde	erlying asther	nosphere is	partially 1	nolten. Th	e depth-dej	pendent therm	nal history
----	---------------	----------------	-------------	-------------	------------	-------------	---------------	-------------

52 shown by chemical zoning in pyroxenes and the presence of melt as pockets suggest that

53 the LAB beneath Ichinomegata was in transient state and under development through

- 54 dynamic processes of heat and material transportation.
- 55
- 56

Keywords:

- 57 spinel peridotite xenolith
- 58 geobarometry
- 59 upper mantle structures
- 60 lithosphere-asthenosphere boundary
- 61

Introduction

63	Lithosphere-asthenosphere boundary (LAB) is usually defined by seismological
64	observations, across which shear wave velocity and attenuation change rapidly, and is
65	attributed to changes in either temperature, water contents, extent of partial melting,
66	chemical compositions, or grain size (Green et al., 2010; Hirschmann, 2010; Hirth and
67	Kohlstedt, 1996; Karato, 2010, 2012; O'Reilly and Griffin, 2006). In the framework of
68	plate tectonics, LAB represents a boundary zone having certain thickness, where heat,
69	momentum, and materials are exchanged between conductive mantle (lithosphere) and
70	underlying convective mantle (asthenosphere) (Anderson, 1995; Fischer et al., 2010;
71	McKenzie and Bickle, 1988; O'Reilly and Griffin, 1996). The boundary zone is thus
72	regarded as a thermal boundary layer or a rheological boundary layer (McKenzie and
73	Bickle, 1988; Sleep, 2005, 2006). Processes taking place in the boundary zone play
74	important roles in heat and material transportation from the Earth's interior, but are not well
75	understood.

Mantle xenoliths are fragments of mantle materials brought to the Earth's surface by alkali basalt or kimberlite from either lithosphere or, potentially, asthenosphere (O'Reilly and Griffin, 2010). They may be useful sources of information about the LAB zone.

79	Because appropriate barometers are available for garnet-bearing lithologies mostly brought
80	up by kimberlite magmas, structures of the LAB zone beneath cratons (e.g., Kaapvaal,
81	Siberia, and Slave) have been well examined. The thermal and rheological structure near
82	the LAB of the subcontinental lithospheric mantle (SCLM) were firstly revealed by Boyd
83	(1973), who found an inflection in geotherm with low-pressure limb composed of granular
84	samples on a conductive and high-pressure limb of sheared samples on steeper, transient
85	geotherms. He proposed that the inflection marks the top of the low-velocity zone located
86	at the bottom of SCLM. Later geochemical studies revealed the depth variations of
87	xenoliths in kimberlites; high-pressure xenoliths are fertile and low-pressure ones are
88	depleted (e.g., Griffin et al., 1999, 2003; O'Reilly and Griffin 2010). These depth variations
89	of material properties have been providing critical information on the origin of the cratonic
90	LAB (e.g., O'Reilly and Griffin, 2010).

91 The situation drastically changes for a thin and younger lithosphere, where alkali basalts 92 sampled mostly spinel peridotite xenoliths (Phanerozoic lithosphere; e.g., arc, intraplate 93 basin and plateau, and continental margin; Nixon, 1987; O'Reilly and Griffin, 2006). 94 Garnet-absent peridotites are stable at depths shallower than ~60 km, and reliable 95 geobarometers are not available for them (e.g., O'Reilly et al., 1997). Because of this,

96	structures of shallow LAB zones are poorly constrained. One way to avert this difficulty is
97	to combine geotherm calculated using heat flow data and temperature estimates from
98	xenoliths on the assumption that the current geotherm is at steady state since the period of
99	the xenolith extraction (e.g., Behr and Hirth, 2014; Titus et al., 2007). However, this
100	assumption is inappropriate if dynamic processes were operated to cause a temporal change
101	of the thermal structure of lithosphere. This study aims at the quantitative reconstruction of
102	the mantle structure beneath the Ichinomegata maar in Northeast Japan on the basis of
103	estimation of the derivation pressure of each spinel peridotite xenolith by applying
104	geothermobarometers to mineral chemical data with special care for specification of the
105	best chemical analyses representing equilibrium just before the xenolith extraction.
106	Ichinomegata maar in Northeast Japan is one of the well-studied spinel peridotite
107	xenolith localities in arc settings. Since the 1980s, many studies on mantle xenoliths from
108	Ichinomegata have documented thermal, petrological, geochemical, and rheological
109	diversities in the mantle beneath Ichinomegata. Takahashi (1980) extensively examined the
110	thermal aspect on the basis of mineral chemical data. He showed a large variation of
111	temperatures ranging 740-1000 °C estimated by various thermometers, such as a
112	two-pyroxene thermometer (Wells, 1977) and a thermometer based on Fe-Mg partitioning

113	between olivine and spinel (Fabriès, 1979). Later compilation of estimated temperatures for
114	peridotite xenoliths from Megata maars including Ichinomegata by Arai et al. (2007) gave
115	the similar temperature range of 700-1020 °C estimated using the two-pyroxene
116	thermometer of Wells (1977). Takahashi (1980) identified two xenolith groups showing
117	distinct thermal histories: one recorded simple cooling and the other cooling followed by
118	heating.
119	Takahashi (1986) also carefully examined the petrologic aspects of Ichinomegata
120	xenoliths. He demonstrated that two pyroxene-spinel symplectite, which occurs in some
121	peridotite samples and had been thought as a breakdown product of garnet (e.g., Kuno,
122	1967; Kuno and Aoki, 1970), is a breakdown product of plagioclase. He also examined the
123	occurrences of glass and amphibole in Ichinomegata xenoliths and contended partial
124	melting of the amphibole-bearing mantle. Abe et al. (1992) described various modes of
125	occurrence of amphibole and argued that the involvement of water-bearing silicate melts
126	and water-rich fluids released from them played a role in the formation of hydrous phases.
127	Diverse geochemical features are revealed by several studies. Tanaka and Aoki (1981)
128	reported that spinel peridotite xenoliths lacking pyroxene-spinel symplectite have light rare
129	earth element (LREE) -enriched rare earth element (REE) patterns, but that

130	symplectite-bearing peridotites have LREE-depleted patterns. Abe et al. (1998) later
131	confirmed this systematic relationship and also reported LREE-enrichment patterns in
132	harzburgite containing abundant amphibole ± phlogopite. Satsukawa et al. (2017) reported
133	LREE-depleted REE patterns of clinopyroxene with a weak negative anomaly of Eu, a
134	strong negative anomaly of Sr, and highly variable positive anomalies of Th and U from
135	plagioclase peridotites. They discussed partial melting, open-system reaction, and modal
136	and cryptic metasomatisms in the wedge mantle.
137	Radiogenic isotope ages of peridotite xenoliths from Ichinomegata have been examined
138	for Rb-Sr, Sm-Nd, and Re-Os systems. Abe and Yamamoto (1999) reported Rb-Sr mineral
139	isochron ages of 300-200 Ma for several xenolith samples. Brandon et al., (1996) obtained
140	ca. 400 Ma from a linear array of Sm-Nd isotopic ratios of clinopyroxene separated from
141	several Ichinomegata xenoliths, but they attributed the array to a mixing process because
142	the ¹⁸⁷ Os/ ¹⁸⁸ Os and Re/Os ratios give negative model depletion ages.
143	The wide variations of microstructures related to deformation including lattice preferred
144	orientations (LPO) of olivine were reported from Ichinomegata xenoliths (Satsukawa and
145	Michibayashi, 2014). Satsukawa and Michibayashi (2014) found that the olivine LPOs are
146	dominantly A-type with subordinate D-type, and attributed them to shallow mantle

147 deformation during the Japan Sea opening.

148	The diversity in various aspects of the mantle beneath Ichinomegata must be understood
149	in the firm framework of the space (and time) to be useful information for better
150	understanding dynamics operated in the vicinity of the LAB. However, geobarometry of
151	Ichinomegata mantle xenoliths is very scarce and limited to minimum pressure estimation
152	by using density and H ₂ O mole fraction of fluid inclusions (Kumagai et al., 2014), which
153	gives 0.66-0.78 GPa (23-28 km in depth). It is, therefore, imperative to establish proper
154	geobarometry for Ichinomegata xenoliths, based on which thermal, petrological,
155	geochemical and rheological structures may be reconstructed.
156	Chemical heterogeneity of constituent minerals of examined peridotite xenoliths is
157	presented first in this paper. Then, minerals, their grain parts, and chemical components
158	best recording chemical equilibrium just before xenolith extraction are specified by
159	evaluating the timescales of formation of the chemical heterogeneity in minerals. This is
160	followed by geothermobarometry with error estimation and verification of the depth
161	estimates by comparing with petrologic and stratigraphic information of the xenoliths.
100	
162	Finally, thermal, chemical, rheological, and petrological structures of the LAB zone of the

165

Geology and samples

166	Ichinomegata maar is one of the maars formed in the latest Pleistocene (80-60 ka;
167	Kitamura et al., 1990) on the Oga Peninsula in the back-arc side of the Northeast Japan arc
168	(Fig. 1). The depth of Mohorovičić discontinuity (MOHO) was estimated to be 25-30 km
169	by seismological observations (Iwasaki et al., 2013; Zhao et al., 1992). The depth of
170	seismic lithosphere-asthenosphere boundary (LAB) beneath Ichinomegata is constrained to
171	be shallower than 60 km (1.8 GPa), which is the depth of LAB beneath the Japan Sea
172	marked by a jump in shear wave velocity (Yoshizawa et al., 2010; Zheng et al., 2011); a
173	shallowing tendency of the velocity jump towards the volcanic arc is suggested by the
174	anisotropic shear-wave tomography.
175	Fragments of peridotites, pyroxenites, granulites, and hornblende-rich mafic and
176	ultramafic rocks are found as xenoliths in calc-alkaline andesite-dacitic pyroclastic rocks
177	distributed around Ichinomegata maar (Hayashi, 1955; Kuno, 1967; Kuno and Aoki, 1970;
178	Aoki, 1971; Katsui et al., 1979). Spinel peridotite is the most common peridotite xenoliths,
179	but a few plagioclase-bearing peridotites occur. Hydrous phases such as amphibole and
180	phlogopite are often observed as minor constituents (Aoki and Shiba, 1973; Abe et al.,

181	1992). We examined nine peridotite xenoliths (eight lherzolites and one wehrlite; Table 1)
182	from Ichinomegata. Hydrous phases are minor in the examined samples, indicating that
183	they did not experience extensive hydration as observed in harzburgite xenoliths veined by
184	hydrous phases (Abe et al., 1992). All of the samples used in this study belong to the
185	collection of the University of Tokyo. The late professor Hisashi Kuno collected some of
186	them, and their petrography is described by Kuno and Aoki (1970) and Takahashi (1986).
187	
188	Analytical methods
189	All samples were prepared as thin sections of $\sim 40 \ \mu m$ thickness and polished with
190	diamond pasts of 1 μ m size. The thin sections were observed for characterization of their
191	microstructures using an optical microscope and scanning electron microscope with a
192	field-emission electron gun (FE-SEM; JEOL JSM-7000F) at the University of Tokyo.
193	Concentrations of 11 elements (Si, Ti, Al, Cr, Fe, Mg, Ca, Mn, Ni, Na, and K) were
194	quantified using an electron probe microanalyzer (EPMA; JEOL JXA-8900L) at the
195	University of Tokyo. Accelerating voltage of 15-20 kV and beam current of 12-50 nA were
196	adopted. Peak and background counting times were 10-20 and 5-10 seconds, respectively,
197	with x2-x4 accumulations, while they were 40 and 20 seconds with x2-x4 accumulations

198	for minor elements (e.g., CaO in orthopyroxene and olivine). Chemical compositions were
199	calculated with the oxide ZAF (atomic number, absorption, and fluorescence) correction
200	method using oxides (TiO ₂ , Al ₂ O ₃ , (Fe ²⁺ ,Mg)(Cr,Al,Fe ³⁺) ₂ O ₄ , Fe ₂ O ₃ , and MgO) and
201	silicates (wollastonite, albite, and adularia) as standards. The Fe ³⁺ content was calculated
202	based on stoichiometry for spinel but ignored for the other minerals because they contain
203	too small amounts of Fe ³⁺ to be estimated accurately from EPMA analyses by assuming
204	stoichiometry. Pyroxene analyses were made avoiding lamellae visible under the
205	microscopes. The adopted intervals in line analyses of pyroxenes range from 7-22 μ m.
206	Modal compositions (Table 1) were estimated from areas of minerals occupying in each
207	thin section. Each mineral was identified by combining X-ray maps for five elements (Mg,
208	Al, Ca, Cr, and Fe) obtained in mapping analyses of EPMA over the entire thin sections
209	(Supplementary Fig. S1). Size distributions and mean grain sizes of olivine were measured
210	by processing digitized images of olivine grain boundaries traced on Mg X-ray maps under
211	the optical microscope with crossed polarizers.
212	

213

Petrography

214 Modal compositions

215	The examined samples are composed dominantly of olivine (50-81 vol.%),
216	orthopyroxene (2-40 %), clinopyroxene (6-16 %), and spinel (1-4 %) (Figs. 2a, 2b, and S1).
217	They are classified as lherzolite except for one wehrlite sample (HK64081205b, denoted as
218	HK64 in Takahashi, 1986). Minor amounts of plagioclase and amphibole are present in
219	some samples (Table 1). Three of the nine samples (HK64081206g, HK64081206c, and
220	HK66031502) contain plagioclase, which always occurs either in contact with or enclosed
221	in pyroxene-spinel symplectite (see Fig. 3f in Takahashi, 1986). Such symplectite (Figs. 2c
222	and 2d) is shown to be a reaction product of plagioclase and olivine (Takahashi, 1986).
223	These samples are thus grouped as plagioclase lherzolite in this paper. The other samples
224	have neither plagioclase nor symplectite and are grouped as spinel lherzolite
225	(HK64081206d, IC81-5, HK64081205a, IC81-8, and HK66031501) or spinel wehrlite
226	(HK64081205b) (Table 1).
227	Two types of plagioclase occurrences are recognized (Fig. 2e). "Primary" plagioclase,

which only occurs in HK64081206g, is anhedral and never coexists with olivine (Fig. 2e).

229 "Secondary" plagioclase coexists with olivine and fills grain boundaries between

- 230 pyroxenes and spinel of partly decomposed symplectite associated with a small amount of
- glass (Fig. 2e; see Figs. 2a and 2b of Abe et al., 1992). It also overgrows on the "primary"

232	plagioclase. The "primary" plagioclase is rich in anorthite (An) component and brighter
233	than the An-poor "secondary" plagioclase in back-scattered electron images (BEIs, Fig.
234	2e).

All of the plagioclase lherzolites contain amphibole (Table 1). Two of them 235(HK64081206c and HK66031502) have pargasitic amphibole rimming two-pyroxene 236spinel symplectite (Fig. 2d; cf. Abe et al., 1992; Kumagai et al., 2014). The occurrence of 237amphibole in spinel lherzolite is limited to HK64081206d, which is always in contact with 238spinel. Amphibole also occurs as lamellae in the core region of clinopyroxene in 239plagioclase lherzolites (Table 1) and as rounded inclusions (~50 µm in diameter) in 240clinopyroxene in a spinel lherzolite sample HK64081205a. These modes of occurrence of 241amphibole (lamellae and inclusions in clinopyroxene) indicate isolation from equilibrium 242with the other major constituent phases, and they are excluded in the later discussions 243related to the stability of amphibole. 244

245

246 Microstructures

Two types of the overall microstructure are recognized from the examined samples.
They are granular and porphyroclastic textures with one sample showing a transitional type,

249	which is called weakly porphyroclastic texture in this paper (Table 1; Figs. 2a and 2b). The
250	sample mean grain size of olivine varies depending on the textures (Table 1).
251	The mean grain sizes of olivine of four granular samples (HK64081206g, HK64081206c,
252	HK66031502, and HK64081205b; Fig. 2a) range 0.38-0.53 mm showing relatively narrow
253	size distributions ($1\sigma = 0.35-0.37$ mm). Four porphyroclastic samples (IC81-5,
254	HK64081205a, IC81-8, and HK66031501; Fig. 2b) are characterized by the presence of
255	pyroxenes porphyroclasts and have a smaller mean grain size of olivine ranging 0.21-0.30
256	mm and wider size distribution ($1\sigma = 0.15-0.25$ mm) than those of the granular samples.
257	The weakly porphyroclastic sample (HK64081206d; Fig. S1) is characterized by mean
258	olivine size of 0.31 mm, which is smaller than that of granular samples and comparable to
259	that of porphyroclastic samples and relatively narrow grain size distribution ($1\sigma = 0.24$
260	mm) comparable to that of granular samples.
261	

262 Glass and voids/fluid inclusions

Glass in mantle xenoliths suggests partial melting of the mantle, and microstructures such as voids, fluid inclusions, and etch pits along grain boundaries suggest saturation in a fluid. They could be stable phases in the mantle if they were not formed or introduced

266	during final xenolith extraction processes. Their presence or absence in each sample was
267	carefully examined, and relevant microstructures are described below and summarized in
268	Table 1.

Four of the examined spinel lherzolites (HK64081205a, IC81-8, HK66031501, and 269270HK64081205b) have glass (Fig. 2f). The glass is not homogeneously distributed and confined in pyroxene-rich layers defining a banding (Fig. S1). This glass forms pockets 271272with 50-500 µm in size always contacting with pyroxene grains. Mineral grains contacting 273the glass pockets commonly show facetted crystal morphology (Fig. 2f, see also Takahashi, 2741986). The glass contains vesicles and euhedral clinopyroxene, spinel, and amphibole with 275the size of <10 µm and morphologies suggesting rapid growth. Plagioclase is not observed in the glass. Sample HK64081206d contains glass- and void-bearing crystal-dominant 276277 aggregate (Takahashi, 1986). The constituent crystals of the aggregate are clinopyroxene, amphibole, olivine, and spinel. They are 10-50 µm in size and are euhedral and equant in 278spite of the high crystallinity, which is contrasting to the quench crystals in the glass 279pockets. These microstructures indicate slower growth under low supersaturation in 280crystallization to form the crystal-dominant aggregate as suggested by Takahashi (1986). 281

282	The two plagioclase lherzolite samples HK64081206c and HK66031502 and two spinel
283	lherzolite samples HK64081206d and IC81-5 have voids or open-gaps along grain
284	boundaries with aligned depressions on the open surfaces (Table 1; Fig. 2g). The
285	depressions on olivine are 1-10 μm across and have a diamond-like outline. They align
286	along straight and narrow grooves (width 0.1-0.4 μ m). These features are very similar to
287	the evaporation pits and related surface morphology developed at dislocation outcrops on
288	(001) of forsterite and olivine with Mg/(Mg+Fe ²⁺) ~0.9 (Ozawa and Nagahara, 2000;
289	Ozawa et al., 2012), suggesting that they are etch pits developed at surface outcrops of
290	dislocations owing to dissolution in contact with a fluid phase. Fluid inclusions are also
291	common in olivine grains with etch pits (Fig. 2h). They occur as negative crystals
292	resembling the surface etch pits in size, shape, and distribution. These microstructures
293	suggest the presence of fluid.

295

Mineral chemical compositions

296	Spatial elemental distributions in pyroxenes and olivine grains were carefully examined
297	with X-ray maps and line profiles. We found significant heterogeneities, which are mostly
298	concentric and are called "zoning" hereafter. The extent and pattern of zoning strongly

299	depend on grain size. Coarser pyroxene grains (>1 mm) show wider compositional
300	variation and more complex patterns. Such zoning patterns have information on thermal
301	history that each xenolith underwent, the clarification of which is indispensable to specify
302	appropriate minerals, mineral parts, and components for application of
303	geothermobarometry to estimate pressure and temperature just before the xenolith
304	extraction. We thus describe zoning in pyroxenes in detail before mean chemical
305	compositions of other constituent minerals and their correlations are presented.
306	
307	Chemical zonings in orthopyroxene
307 308	Four chemical zoning types in orthopyroxene denoted as type O1-O4 are identified on
308	Four chemical zoning types in orthopyroxene denoted as type O1-O4 are identified on
308 309	Four chemical zoning types in orthopyroxene denoted as type O1-O4 are identified on the basis of the distinct zoning patterns of Ca and summarized in Table 2. Each xenolith
308 309 310	Four chemical zoning types in orthopyroxene denoted as type O1-O4 are identified on the basis of the distinct zoning patterns of Ca and summarized in Table 2. Each xenolith contains orthopyroxene showing one of the four zoning types. Type O1 is characterized by
308 309 310 311	Four chemical zoning types in orthopyroxene denoted as type O1-O4 are identified on the basis of the distinct zoning patterns of Ca and summarized in Table 2. Each xenolith contains orthopyroxene showing one of the four zoning types. Type O1 is characterized by a continuous decrease of Ca, Al, Cr, Fe, and Ti from the core to the rim (Fig. 3a). Type O2
308 309 310 311 312	Four chemical zoning types in orthopyroxene denoted as type O1-O4 are identified on the basis of the distinct zoning patterns of Ca and summarized in Table 2. Each xenolith contains orthopyroxene showing one of the four zoning types. Type O1 is characterized by a continuous decrease of Ca, Al, Cr, Fe, and Ti from the core to the rim (Fig. 3a). Type O2 is characterized by a gradual decrease of Ca, Al, Cr, Fe, and Ti from the core to the margin

316	and a slight decrease of Al and Cr from the core to the rim (Fig. 3d). The variations of Si
317	and Mg are complementary to those of Ca, Al, Cr, and Fe irrespective of zoning types.
318	Significant fluctuations in the Ca profile and scatter in the Al and Cr profiles in Figure 3 are
319	due to the presence of dense and thin lamellae of clinopyroxene and spinel, which cannot
320	be completely avoided in the host orthopyroxene analyses.

321

322 Chemical zonings in clinopyroxene

Three types of zoning in clinopyroxene denoted as type C1-C3 are identified on the 323 basis of the distinct zoning patterns of Ca and are summarized in Table 2. Each xenolith 324contains clinopyroxene showing one of the three zoning types. Type C1 coexists with type 325O1 or O2, and types C2 and C3 do so with types O3 and O4, respectively (Table 2). Type 326 C1 is characterized by a gradual and intense increase of Ca, Mg, and Si and decrease of Al, 327 328 Cr, Fe, Na, and Ti from the core to the rim (Fig. 4a). Type C2 is characterized by a slight 329 decrease or a flat pattern of Ca from the core to margin with an intense decrease of Ca toward the outermost rim. Al and Cr show a slight decrease, slight increase, or a flat pattern 330 331from the core to margin and intense increase towards the outermost rim with or without minima near the rim (Fig. 4b). The variation pattern of Ti is similar to that of Cr, and the 332

333	pattern of Na is similar but more diffusive than Al. The patterns of Mg and Si are
334	complementary to the pattern of Al. Type C3 is characterized by flat patterns of Ca, Mg, Si,
335	Ti, and Na throughout grains and a slight decrease of Al and Cr contents from the core to
336	the margin where Cr is flat and Al shows a slight increase toward the outermost rim (Fig.
337	4c). Spiky fluctuations in the Ca, Al, and Cr profiles for the Type C1 and C2
338	clinopyroxenes (Figs. 4a and 4b) are due to the presence of lamellae minerals. In the core
339	of Type C1 and C2 clinopyroxenes (Figs. 4a and 4b), negative and positive spikes of Ca, Al,
340	and Cr in the zoning profiles indicate chemical heterogeneity present around the lamellae
341	minerals.

342

343 Mean chemical compositions

The mean chemical compositions of cores of olivine (8-10 analyses), cores, mantle, and rims of pyroxenes (3-5 analyses, respectively), and the other constituent minerals (1-20 analyses) for each sample are listed in Table 3. Some of them are plotted in Figure 5 with standard deviations $\pm 1\sigma$. The core, mantle, and rim compositions of pyroxenes were obtained by taking means of respective segments having minimum or maximum concentrations of key elements (Ca, Al, or Cr depending on zoning types) in line profiles 350 (Figs. 3 and 4). Each segment is $>50 \mu m$ wide for the core, $\sim 10 \mu m$ wide for the mantle,

and 10-100 μ m wide for the rim.

352	Olivine is homogeneous in $Mg\# = Mg/(Mg+Fe^{2+})$ and CaO and Al_2O_3 contents except
353	for in the margin (approximately several tens μ m). The Mg# of olivine core ranges
354	0.87-0.91, which is within the reported range 0.83-0.91 for Ichinomegata peridotite
355	xenoliths (e.g., Kuno and Aoki, 1970; Aoki and Shiba, 1974; Abe et al., 1992). The sample
356	mean CaO contents of olivine core vary from 0.03 to 0.10 wt.%, and their distributions are
357	split into two ranges: one is 0.03-0.04 and the other is 0.08-0.10 wt.% (Figs. 5a and 5d).
358	The Al ₂ O ₃ contents of olivine core range 0.002-0.016 wt.% showing a positive correlation
359	with the CaO contents (Fig. 5a). The CaO contents of olivine core are the same as those
360	reported by Takahashi (1980, 1986) including the split distribution.
361	Chemical compositions of orthopyroxene vary 0.41-1.1 in CaO wt.%, 0.98-5.1 wt.% in
362	Al ₂ O ₃ wt.%, and 0.14-0.57 wt.% in Cr ₂ O ₃ wt.%. The CaO contents at the rim of
363	orthopyroxene vary from 0.41 to 1.1 wt.% and are split into two value ranges; 0.41-0.61
364	and 0.93-1.1 wt.% (Figs. 5b, 5d, and 5e). The higher range exactly corresponds to those
365	found in samples identified as "preheated" xenoliths by Takahashi (1980, 1986). The Al ₂ O ₃
366	and Cr_2O_3 contents at the rim of orthopyroxene vary 1.2-5.1 and 0.23-0.49 wt.%,

367	respectively. Chemical compositions of clinopyroxene vary 20.5-23.8 in CaO wt.%, 1.4-6.8
368	in Al ₂ O ₃ wt.%, and 0.26-2.4 in Cr ₂ O ₃ wt.%. The CaO, Al ₂ O ₃ , and Cr ₂ O ₃ contents at the rim
369	of clinopyroxene vary 20.9-23.6, 1.2-5.9, and 0.26-0.80 wt.%, respectively.
370	The sample mean compositions of the cores of large spinel (> 200 μ m) are listed in
371	Table 3. The $Cr# = Cr/(Cr+Al)$ mostly range 0.18-0.23 with one exception of
372	HK64081206d, which has a high Cr# of 0.59. The Cr# of spinel and Mg# of olivine are
373	plotted mostly within the narrow band of the olivine-spinel mantle array (Arai, 1994; Fig.
374	6). Exceptions are HK64081206d and HK64081205b, whose olivine compositions are too
375	low in Mg# to be plotted in the mantle array. Abe et al. (1992) reported the same pattern of
376	co-variation of olivine and spinel compositions.
377	Plagioclase in the plagioclase lherzolites is very heterogeneous in anorthite content (An
378	= Ca/(Ca+Na)). The primary plagioclase defined above has zoning in An content (Fig. 2e),
379	which increases from the core (An = 0.76) to the margin (An = 0.87). The secondary
380	plagioclase is homogeneous and has a consistent An ranging 0.62-0.65 irrespective of its
381	occurrence. Amphibole in the plagioclase lherzolites contains \sim 3 wt.% Na ₂ O (Table 3) and
382	is classified as pargasite according to Leake et al. (1997). The amphibole compositions are

383 within the range reported in the previous literature (e.g., Aoki and Shiba 1973; Takahashi,

384 1986; Abe et al. 1992).

385Chemical compositions of glass (Table 3) were obtained by taking means of the multiple analyses of the central area of glass in pockets avoiding visible chemical heterogeneity 386 387 owing to the host minerals, quench crystals, and vesicles. The glass present in the pockets 388 in HK64081205a, IC81-8, and HK66031501 has Fe-rich basaltic-andesitic composition with Mg# ranging 0.53-0.56, whereas that in HK64081205b has a Fe-rich alkali basalt 389 composition with Mg# of 0.45. The former contains 5 wt.% of quartz, whereas the latter 390 contains 10 wt.% of nepheline in CIPW normative compositions. The glass compositions 391for sample HK64081205b show slightly higher Al₂O₃ contents than that reported by 392 Takahashi (1986) (HK64 in Table 1 of Takahashi, 1986). The weight deficiency of all glass 393 compositions by EPMA analyses (~2-5 wt.%; Table 3) is comparable to that by Takahshi 394 (1986). 395

396

397 Chemical correlations

398 Chemical correlations between the CaO content of olivine core and CaO, Al₂O₃, and 399 Cr₂O₃ contents of rims and cores of pyroxenes are shown in Figure 5. The CaO and Al₂O₃

400	contents at the core of olivine show a clear positive correlation (Fig. 5a). The CaO, Al_2O_3 ,
401	and Cr_2O_3 contents at the rim of orthopyroxene show notable positive correlations with
402	each other, but those at the core show very weak correlations (Fig. 5b). The CaO contents
403	at the rim of clinopyroxene show negative correlations with Al_2O_3 and Cr_2O_3 , but such
404	correlations are not clear for those at the core (Fig. 5c). The CaO content at the rim of
405	orthopyroxene shows a good positive correlation with the CaO contents of the core of
406	olivine (Fig. 5d). The CaO contents at the rim of two pyroxenes show a strong negative
407	correlation (Fig. 5e). The Al_2O_3 and Cr_2O_3 contents of pyroxenes at the rim show clear
408	positive correlations (Fig. 5f), but they are weaker than that of CaO at the rim of pyroxenes
409	(cf. Fig. 5e).
410	
411	Geothermobarometry
412	Before geothermobarometry of the xenoliths, the following procedures were taken to
413	specify minerals, their grain portions, and chemical components best recording chemical

equilibrium just before the xenolith extraction: (1) decoding thermal history of the

xenoliths from chemical zonings in minerals with estimation of timescales for the zoning

development, (2) selection of minerals, components, and grain portion representing

414

415

416

417	equilibrium just before the final heating for xenolith extraction, (3) specification of
418	appropriate geothermobarometers. The errors were estimated by using Monte Carlo method.
419	The depth estimates were verified by comparing with petrologic information from the
420	xenoliths.

422 Decoding thermal history records in pyroxenes

Chemical zonings are principally formed by deviation of old equilibrium compositions 423to a new equilibrium at the rim induced by changes in temperature, pressure, and/or bulk 424 chemical composition through homogenization by diffusion between the rim at local 425equilibrium and inside the mineral grains unless extensive grain boundary migration does 426 not take place. This is an appropriate model of zoning development in mantle peridotites 427owing to their high melting temperature since they are principally in a solid state, which is 428 429substantiated for Ichinomegata xenoliths by the reported Rb-Sr mineral isochron ages 430(200-300 Ma; Abe and Yamamoto, 1999).

The final event that the xenoliths underwent is heating and decompression by incorporation into a host magma and transportation to the surface. This event has a very short timescale (Spera, 1984). Ozawa (1984) examined the kinetics of Mg-Fe exchange

434	reaction between olivine and spinel in lherzolite xenoliths from Ichinomegata and
435	estimated that the duration of magma transportation was 1 day for HK66031501 and 1-4
436	hours for HK66031502 at 1200 $^{\circ}\mathrm{C}$ and that the duration was 1 day for HK66031502 at
437	1100 °C. Given this timescale and temperature for xenolith extraction processes, zonings in
438	pyroxenes over scales greater than 5 μ m (the upper limit of spatial resolution of EPMA) as
439	observed in the grain margin if any (Figs. 3 and 4; Table 2) cannot be attributed to the
440	exhumation process, because diffusivity of these elements in pyroxenes are more than 1-2
441	orders of magnitude smaller than that of Mg-Fe interdiffusion in olivine and spinel
442	(Chakraborty, 2010; Van Orman and Crispin, 2010; Cherniak and Dimanov, 2010).
443	Since the peridotite xenoliths were in plagioclase-spinel stability fields, the steady
444	increase in Ca, Al, and Cr towards the outermost rim in orthopyroxene of types O2 and O3
445	all implies temperature increase continued until just before the xenolith extraction (e.g.,
446	Gasparik, 2003; Lindsley, 1983; Klemme and O'Neill, 2000). This is consistent with the
447	steady decrease in Ca and the increase in Al and Cr in clinopyroxene of type C2 (Table 2;
448	e.g., Gasparik, 2003; Sachtleben and Seck, 1981). The zoning types O2, O3, and C2 are all
449	characterized by increases of Ca, Al, and Cr towards the outermost rim over the distance of
450	20-200 μ m. Therefore, xenolith samples containing pyroxenes with zoning types O2 or O3

451	and C2 underwent temperature increase shortly before their extraction, which took place
452	much longer duration than the final exhumation event. For similar reasons, xenolith
453	samples containing type O4 zoning characterized by a slight but a steady increase in Ca
454	over the distance of ${\sim}500~\mu m$ towards the outermost rim in orthopyroxene underwent a
455	more prolonged temperature increase than xenoliths containing types O2 or O3 and C2
456	pyroxenes. The nearly constant Ca of type C3 may be explained by the high CaO
457	abundance of clinopyroxene masking the small variation in the margin of type O4
458	orthopyroxene coexisting with type C3.
459	Zoning in orthopyroxene grains of type O1 characterized by a steady decrease of Ca, Al,
460	and Cr in their margin (Fig. 3; Table 2) implies a steady temperature decrease without any
461	detectable temperature increases. The Ca, Al, and Cr zonings in clinopyroxene of type C1
462	also suggest the same thermal history. The samples having pyroxenes with types O1 and C1
463	zoning, therefore, underwent continuous cooling, which is principally consistent with
464	Takahashi (1980). The zonings were either almost instantaneously frozen by the xenolith
465	extraction or frozen in a past cooling event when passing through a closure temperature
466	specific for each component. The cooling process, therefore, could have been on the way
467	until shortly before the xenolith extraction or taken place a long time ago down to much

468 lower temperatures than the closure temperatures. These two possibilities must be resolved

469 for proper geothermobarometry of these samples, which is addressed below.

470

471 Minerals and components for geothermobarometer

As discussed in the last section, heating events shortly before the xenolith transportation 472473are suggested for samples including type O3 orthopyroxene and type C2 clinopyroxene and those including type O4 orthopyroxene and C3 clinopyroxenes. On the other hand, a 474 continuous cooling event before the xenolith transportation is suggested for samples 475including type O1 orthopyroxene and type C1 clinopyroxene. Xenolith samples containing 476type O2 orthopyroxene and type C1 clinopyroxene suggest an intermediate thermal history 477 of these two extreme cases: weak heating following continuous cooling at mantle depths. 478We need to take the difference in patterns of thermal history into consideration when 479 appropriate mineral chemical compositions are chosen for geothermobarometers. 480 481 The chemical compositions representing pressure and temperature where the xenoliths resided in the mantle are most plausibly recorded at the rim of pyroxenes, if heating or 482 cooling were in progress till the xenoliths were extracted (Smith, 1999) and if 483transportation of relevant components along mineral interfaces are fast enough to follow 484

485	local equilibrium. Since diffusion of Al and Cr are slower than that of interdiffusion of
486	Mg-Fe and Ca-(Mg, Fe) by more than 1 to 2 orders of magnitude (Brady and McCallister,
487	1983; Dimanov and Sautter, 2000; Ganguly et al., 2007; Sautter et al., 1988; Smith and
488	Barron, 1991), reactions relevant to Ca, Mg, and Fe could be fast enough to maintain local
489	equilibrium and form rim zoning measurable with EPMA. Therefore, Ca-Mg-Fe
490	components at the rim of pyroxenes are more suitable for geothermobarometry than Al-Cr
491	components. This is confirmed below by examining correlations of these components at
492	pyroxene rims.
493	The rim compositions of pyroxenes in the examined samples show correlations in Ca, Al,
494	and Cr (Figs. 5b to 5f) irrespective of zoning types (Table 2), but correlations among core
495	concentrations are not necessarily good (Figs. 5b to 5f). The remarkable correlations of Ca
496	concentrations between the pyroxene rims for all the zoning types (Fig. 5e) strongly
497	support that the Ca-(Mg, Fe) components were exchanged between orthopyroxene and
498	clinopyroxene fast enough to follow local equilibrium at the rims. The weaker correlations
499	of Ca-Mg-Fe components with Al and Cr (Figs. 5b and c) suggest more deviation from the
500	equilibrium for Al and Cr components, supporting our choice of the components for
501	geothermobarometry. Moreover, the excellent correlations of the Ca-(Mg, Fe) components

502	including zoning types of O1 or O2 orthopyroxene and C1 clinopyroxene strongly suggest
503	that the profiles of these zoning types were on the way of formation by a cooling event
504	continued until before the xenolith extraction. They may not represent zoning frozen during
505	a past cooling event proceeded down below the closure temperatures. This inference is also
506	supported by the good correlation between Ca contents at the rim of orthopyroxene and
507	those at the homogeneous core of olivine (Fig. 5d). The reactions involving Ca-Mg-Fe
508	components in pyroxenes, therefore, provide the best geothermobarometers for the
509	peridotite xenoliths from Ichinomegata irrespective of zoning types.
510	The choice of Ca-Mg-Fe components at the rim of pyroxenes for geothermobarometry
511	has several merits. First, it is applicable to any pressure irrespective of the presence or
512	absence of particular aluminous phases: garnet, spinel, or plagioclase. Second, the
513	Ca-Mg-Fe components are not much affected by whole-rock chemical composition,
514	whereas Al and Cr components are difficult to be calibrated for geothermobarometry
515	because of their strong dependence on fertility of peridotites. Third, diffusivities of Ca, Mg,
516	and Fe in clinopyroxene and orthopyroxenes are within the same order of magnitude in a
517	wide range of temperatures (Cherniak and Dimanov, 2010), and thus the Ca-Mg-Fe
518	components in pyroxenes comparably respond to temperature and pressure changes.

520 Selection of geothermobarometers

521As discussed in the last subsection, the basic strategy required for estimation of 522derivation pressures and temperatures is to utilize the pressure- and temperature-sensitive 523reactions involving Ca-Mg-Fe components in both pyroxenes (e.g., Mercier et al., 1984). Possible candidates based on such reactions are two-pyroxene geothermobarometers 524(Bertrand and Mercier, 1985; Brey and Köhler, 1990; Nickel and Brey 1984) and 525Ca-in-orthopyroxene geothermobarometers (Brey and Köhler, 1990; Lindsley, 1983). A 526 pair of geothermobarometers must be selected from these candidates. We selected 527 two-pyroxene geothermobarometer (T_{BKN}) and Ca-in-orthopyroxene geothermobarometer 528 (T_{Ca-in-Opx}) both calibrated by Brey and Köhler (1990) as the most appropriate pair. They 529are empirical geothermobarometers calibrated for the expected pressure and temperature 530ranges beneath Ichinomegata (<1.8 GPa; 740-980 °C according to Takahashi, 1986) and 531532based on the same experiments, which may reduce systematic errors in paring the two geothermobarometers. 533

534

535 **Results of pressure and temperature estimation**

536	Pressures and temperatures obtained by applying the two geothermobarometers to pairs
537	of pyroxenes rims are listed for successful eight samples in Table 4 with errors and plotted
538	in Figure 7. The estimated pressures range from 0.72 to 1.6 GPa and temperatures from 828
539	to 1081 °C. One unsuccessful exception (HK64081206d) out of the examined nine
540	xenoliths gives a negative pressure and 811 °C (Table 4). This is probably attributed to that
541	the clinopyroxene rims analyzed so far lacks any zoning reflecting temperature increase
542	suggested by the zonings of Al and Cr in orthopyroxene with much slower diffusivity than
543	Ca (Table 2). This is partly attributed to grain boundary migration notably extensive for this
544	sample (Sato and Ozawa, 2018). In the following examination of depth variations of
545	various features of the xenoliths, we exclude this sample.
546	The pressure and temperature are split into two groups (Fig. 7). Three samples
547	(HK64081206g, HK64081206c, and HK66031502) give lower temperatures ranging
548	828-905 °C, and the other samples (IC81-5, HK64081205a, IC81-8, HK66031501, and
549	HK64081205b) give distinctively higher temperatures ranging 1017-1081 °C. The two
550	groups correspond to the two sample groups in CaO contents of olivine and orthopyroxene
551	(Fig. 5d). All successful pressure estimates are well above the pressure at the seismic
552	MOHO depth (25 km and 0.6 GPa) beneath Ichinomegata and lower than that at the

553	seismic LAB depth beneath the Japan Sea (60 km and 1.8 GPa). Although the distinction of
554	the two temperature groups and their estimated temperature ranges are consistent with
555	those of the previous studies (Takahashi, 1980, 1986), our study quantitatively constrains
556	the derivation depths of the xenoliths, which allows estimation of the thermal structure
557	beneath Ichinomegata.

559 Error estimation

The uncertainty of pressure and temperature estimates for each xenolith sample 560 (standard deviation, $\pm 1 \sigma$; 68% confidence interval; Table 4) is evaluated with a 561Monte-Carlo method assuming that the source of errors is from analytical uncertainties 562with Gaussian distributions. The standard deviations (Figs. 7a and 7b) and error ellipses 563(Fig. 7b) are based on 3-5 chemical compositions at the outermost rim of different 564 pyroxenes grains (Tables 3 and 4; Supplementary Table S1). Thus, the chemical 565 566heterogeneity in the outermost rim of pyroxenes is the main source of uncertainties for pressure and temperature estimates. The standard deviations range 0.2-0.7 GPa for 567 568pressures and 12-30 °C for temperatures. There is an inevitable tendency that low temperature and pressure samples have greater uncertainties because the CaO contents at 569

570	the outermost rim of orthopyroxene grains are low and somewhat variable. Although most
571	of the samples have large standard deviations overlapping with each other particularly in
572	pressure, the overall thermal gradient is meaningful because it is highly oblique to the
573	major axes of error ellipses (Fig. 7b). This suggests that the variations of derivation
574	pressure and temperature for the xenolith samples are not originated from random chemical
575	variations of pyroxenes, but from mineral chemical variations systematically correlated
576	with each other reflecting the actual pressure and temperature conditions (Fig. 5).
577	
578	Depth structure of the mantle beneath Ichinomegata maar
578 579	Depth structure of the mantle beneath Ichinomegata maar The estimated derivation pressures allow us to determine the depth variation of material
	-
579	The estimated derivation pressures allow us to determine the depth variation of material
579 580	The estimated derivation pressures allow us to determine the depth variation of material properties of the xenoliths, such as thermal, geochemical, petrological, and rheological
579 580 581	The estimated derivation pressures allow us to determine the depth variation of material properties of the xenoliths, such as thermal, geochemical, petrological, and rheological features just before the xenolith extraction. The depth estimates actually have systematic
579 580 581 582	The estimated derivation pressures allow us to determine the depth variation of material properties of the xenoliths, such as thermal, geochemical, petrological, and rheological features just before the xenolith extraction. The depth estimates actually have systematic relationships with temperature, mineral chemistry, mineral assemblage, rock texture, and

586 **Thermal structure**

587	Figures 7 and 8 show the estimated thermal structure of the mantle beneath
588	Ichinomegata (Tables 4 and 5). The examined samples were derived from two depth
589	segments; a shallow low-temperature segment (828-905 °C, 0.72-0.85 GPa, 28-32 km) and
590	a deep high-temperature segment (1017-1081 °C, 1.16-1.62 GPa, 41-55 km). Four of the
591	five latter samples experienced a heating event before the xenolith extraction ("preheating";
592	Takahashi, 1980). If all the pressure and temperature estimates are linearly regressed, the
593	thermal gradient is given by 9.6 \pm 1.2 K/km or 290 \pm 37 K/GPa. The thermal structure gives
594	the temperature of 810 ±24 °C at the seismically estimated MOHO (25 km or 0.6 GPa) and
595	1158 \pm 26 °C at the upper limit of the seismically estimated LAB (60 km or 1.8 GPa) (Fig.
596	7a). The overall high thermal gradient within thin seismological lithospheric mantle (< 35
597	km thick) is much higher than the steady geotherm within SCLM near LAB (3-5 K/km;
598	Boyd, 1973; Kopylova et al., 1999; O'Reilly and Griffin, 2006). Although the shallow
599	low-temperature segment does not provide any meaningful geotherm, the deep
600	high-temperature segment gives a thermal gradient of 3.8 \pm 0.9 K/km or 115 \pm 26 K/GPa. It
601	is far gentler than the overall geotherm, probably suggesting non-linearity of the thermal
602	structure.

604 Mineral chemical structure

The Mg# of olivine show no or little systematic change with depth if the deepest sample 605 606 with the lowest Mg# is excluded (Fig. 8; Table 5). This sample HK64081205b shows 607 peculiar mineral chemical compositions in addition to the lowest Mg# of olivine. The 608 olivine is low in NiO and high in MnO contents (Table 5). This sample is also plotted 609 outside of and to the Fe-rich side of the olivine-spinel mantle array (Fig. 6). These characteristics suggest that this sample is of cumulus origin. There remains a weak 610 611 decreasing tendency of the Ni content and an increasing tendency of the MnO content of olivine if the deepest sample is excluded. These weak depth variations are attributable to 612 the observed temperature variation of ~300 K through temperature-dependent partitioning 613 with coexisting olivine, pyroxenes, and spinel (Ballhaus et al., 1991; Kawasaki et al., 1994; 614 von Seckendorff and O'Neill, 1993). We thus infer that the chemical stratification of the 615616 mantle beneath Ichinomegata in terms of olivine composition is insignificant. The depth 617 variation of Cr# of spinel is also insignificant (Fig. 8), which is partly due to its susceptibility to subsolidus reactions related to the formation and decomposition of 618 619 plagioclase as well as temperature.

620 Application of oxybarometer after Ballhaus et al. (1991) to chemical compositions of

621	spinel and olivine of the deep-level samples gives oxygen fugacity ranging from +0.31 to
622	+0.69 in log unit from FMQ buffer ($\delta \log(fO_2)_{FMQ}$). This range is as high as that of
623	Parkinson and Arculus (1999). By contrast, the $\delta \log(fO_2)_{FMQ}$ for the shallow-level samples
624	(28-41 km) ranges from -1.3 to +0.19, which is systematically lower than that of the
625	deep-level samples and comparable to that of abyssal peridotite (Parkinson and Arculus,
626	1990). The oxygen fugacity thus tends to increase with depth (Fig. 8).
627	
628	Melting phase transition and composition of fluid phase
629	The presence of glass and open gaps with etch-pitted walls and fluid inclusions in some
630	samples could indicate the presence of melt and fluid phase, respectively, before the
631	xenolith extraction. The fluid phase occurs in the shallow levels (30-41 km), whereas the
632	melt phase occurs in the deep levels (45-55 km) (Table 5, Fig. 8). Note that shallowest
633	sample HK64081206g does not have microstructures indicating the presence of fluid and
634	amphibole excepting lamellae. The mutually complementary depth distributions of melt
635	and fluid are very remarkable, suggesting melting phase transition. They, however, might
636	have formed during the xenolith exhumation processes such as heating, decompression, and

637 melt/fluid introduction from the host magma. Takahashi (1986) argued that the glass had

638 formed at mantle depths because of the chemical compositions of glass and the textures 639 suggesting long residence at high temperature. The possibilities of partial melting and 640 fluid/melt introduction during the xenolith extraction are negated on the basis of the 641 following three lines of evidence.

First, the compositions of glass are different from those of the host magma and the 642643 essential ejecta of Ichinomegata maar (Takahashi, 1986; Sakuyama and Koyaguchi, 1984). 644 Secondly, temperatures estimated from the glass composition (Table 3) to be saturated with olivine by using a thermometer (equation (15) of Putirka, 2008) range 1047-1115 °C with 645 water contents estimated from the weight deficiency in EPMA analyses of the glass (2-5 646 wt.%) and our pressure estimation. They are consistent with the temperatures at the 647 derivation depths estimated for the glass-bearing xenoliths. These temperatures are 648 significantly lower than the temperatures estimated for the primitive basaltic end member 649 650 of xenolith host magma (Sakuyama and Koyaguchi, 1984; 1140 and 1220 °C according to equation (13) of Putirka, 2008). Finally, all of the glass-bearing samples show 651homogeneous and high CaO contents of olivine at the core, suggesting that such high 652 653temperatures were maintained for a significant time (>1000 years; Takahashi, 1980). Therefore, we conclude that the melt phase was present before the xenolith extraction and 654

655 is attributed neither to instantaneous melting nor melt injection during the extraction by the656 host magma.

657 The glass-bearing samples do not contain amphibole but those with fluid inclusions and etch pits (HK64081206c and HK66031502) do so excepting the shallowest sample 658 659 HK64081206g, which contains amphibole as lamellae in clinopyroxene but has neither fluid inclusions nor etch pits. The amphibole occurrence as quench crystals in the 660 glass-bearing samples suggests that the melt contains a significant amount of H₂O. Such 661 consistent mutually complementary relationships of the glass and amphibole accompanying 662 fluid inclusions/etch pits strongly suggests that the fluid phase was present before the 663 xenolith extraction and that it was H₂O-rich. H₂O-rich fluid inclusions have been reported 664 from peridotite xenoliths from Ichinomegata, such as pyroxene hosted saline fluid 665 inclusions (Kumagai et al., 2014). Moreover, the depth range for the samples with evidence 666 667 for the presence of fluid phase (30-41 km) is greater than the minimum depth estimates 668 (23-28 km at ~920 °C) from the fluid inclusions of the amphibole-bearing xenoliths (Kumagai et al., 2014). It is concluded that there is a melting phase transition of H₂O-rich 669 670 fluid-saturated peridotite system (wet solidus) beneath Ichinomegata.

671

672 Subsolidus phase transition

673	Aluminous phases show a systematic variation with depth (Fig. 8 and Table 5).
674	Plagioclase and its breakdown products (pyroxene-spinel symplectite) appear exclusively
675	in the shallow levels (28-32 km), whereas spinel appears as an aluminous phase in the deep
676	levels (41-55 km). The shallowest sample with the lowest temperature estimate (28 km;
677	HK64081206g) contains primary plagioclase partially decomposed into symplectite, but
678	the other plagioclase lherzolite samples do not contain primary plagioclase, which was
679	totally decomposed into symplectite. This may indicate that the pressure is resolved even in
680	the shallow segments (Fig. 7). The chemical structure as demonstrated above does not
681	support bulk-composition control on the presence or absence of plagioclase (see discussion
682	below), which was observed in the Horoman peridotite complex (Ozawa and Takahashi,
683	1995). We conclude that there is a pressure sensitive phase transition from spinel to
684	plagioclase facies at ~40 km depth (at least somewhere within 32-41 km) beneath
685	Ichinomegata.

686

687 Rheological structure

Rock textures of the examined samples show a systematic depth variation (Fig. 8 and

689	Table 5); granular texture occurs mostly in the shallow levels (28-32 km; Fig. 2a) and
690	porphyroclastic texture dominates in the deep levels (41-52 km; Fig. 2b) except for the
691	deepest granular sample (55 km; HK64081205b), which is of cumulus origin as mentioned
692	above. This is also substantiated by the variation of olivine grain size, which shows a
693	systematic decrease with depth. The shallow granular samples (28-32 km) have larger grain
694	sizes (0.38-0.47 mm in diameter), and the deep porphyroclastic samples (41-52 km) have
695	smaller sizes (0.21-0.30 mm). These rock textures of the shallower granular samples are
696	consistent with those studied by Satsukawa and Michibayashi (2014), most of which
697	contain plagioclase or its breakdown products excepting one spinel lherzolite sample
698	showing the most deformed microstructure.
699	

700

Validation of estimated pressures and temperatures

In spite of our careful treatment of the chemical compositions and the geothermobarometry, considerable pressure errors are estimated particularly for shallow, low-temperature samples. In this section, we first use phase transitions tightly constrained by experiments to confirm our pressure estimation. They are (1) melting phase transition from subsolidus fluid-saturated and amphibole-bearing peridotite to above-solidus fluid-

706	and amphibole-absent peridotite and (2) phase transition from plagioclase to spinel
707	peridotite. After the test of consistency with the phase relations and the estimated pressures
708	and temperatures, we further show that the estimated derivation depths are consistent with
709	the stratigraphic control of the occurrence of two groups of xenoliths with or without
710	records of the heating event in the Ichinomegata maar deposits (Koyaguchi, 1986).
711	
712	Validation using melting phase transition
713	In the examined peridotite xenoliths, the transition of fluid-present to melt-present states
714	occurs at the pressure of 1.2 GPa and temperature of 1035 °C (Fig. 9a, Table 5). This
715	bounding condition is significantly lower than that of dry peridotite solidus (~1270 $^{\circ}$ C at
716	1.2 GPa according to Hirschmann, 2000), suggesting partial melting of the hydrous mantle.
717	Amphibole and microstructures indicating the presence of H ₂ O-rich fluid coexist in the
718	samples without glass (Table 1) except for one sample giving the lowest pressure and
719	temperature (HK64081206g), which suggests that at least the deeper part of plagioclase
720	peridotites was saturated with H ₂ O. By contrast, the absence of amphibole and no evidence
721	for fluid presence in glass-bearing samples indicate that the deeper part was not saturated
722	with H ₂ O. Therefore, the melting phase transition identified in our samples must be located

723	somewhere between H ₂ O-saturated (Green, 1973; Grove et al., 2006) and –undersaturated
724	solidus (Niida and Green, 1999; Green et al. 2010; Wallace and Green, 1991); this implies
725	that the amphibole and fluid-bearing samples must be plotted below the former solidus and
726	that the glass-bearing samples above the latter solidus.
727	In Figure 9a, the glass-free, amphibole- and fluid-bearing samples are consistently
728	plotted below the experimentally determined water-saturated solidi (Green, 1973; Grove et
729	al., 2006). This validates the estimated pressures and temperatures of the amphibole- and
730	fluid-bearing samples, which are under the water-saturated subsolidus condition.
731	Niida and Green (1999) demonstrated that the water-undersaturated solidi, which are
732	controlled by decomposition of amphibole (Mysen and Boecher, 1975), depend on the bulk
733	alkaline contents (Na ₂ O + K_2O wt.%) enhancing the stability of amphibole. Actually, the
734	maximum amphibole stability temperature at ~ 2.0 GPa corresponding to the solidus
735	condition varies from 1025 °C for bulk Na ₂ O + $K_2O = 0.33$ wt.% to 1150 °C for 1.17 wt.%
736	(Niida and Green, 1991). The bulk Na ₂ O + K ₂ O contents of Ichinomegata xenoliths range
737	0.09-0.24 wt.% (Kuno and Aoki, 1970), which is comparable to that of Wallace and Green
738	(1991) (0.33 wt.%) and significantly lower than that of Niida and Green (1999) (0.66 wt.%).
739	Therefore, the low-temperature solidus under the water-undersaturated condition of

740	Wallace and Green (1991) is adopted for the melting phase transition in Ichinomegata
741	xenoliths. All of the glass-bearing samples are consistently plotted above the
742	water-undersaturated solidus after Wallace and Green (1991). This validates the estimated
743	pressures and temperatures of the glass-bearing samples, which are plotted above the
744	solidus condition and water-undersaturated in Fig. 9a.
745	
746	Validation using subsolidus phase transition
747	Borghini et al. (2010) experimentally determined the stability field of plagioclase of a
748	fertile dry peridotite system (Ti, Cr-NCFMAS system; FLZ of Borghini et al. 2010), which
749	is lower than 0.7-0.8 GPa at 900-1200 °C (Fig. 9b). Contrary to this, Niida and Green
750	(1999) determined the stability field of plagioclase in hydrous peridotite system, which is
751	lower than 0.9-1.0 GPa at 900-1100 °C (Fig. 9b). The estimated pressures of the three
752	samples of plagioclase lherzolite from Ichinomegata (0.74-0.85 GPa) are within the
753	stability field of plagioclase according to Niida and Green (1999) (Fig. 9b) but are within
754	the spinel stability field according to Borghini et al. (2010).
755	The phase boundary between plagioclase and spinel facies is strongly affected by the
756	system composition, particularly Na ₂ O and CaO contents; an increase in bulk Na ₂ O/CaO

757	shifts the stability limit of plagioclase toward a high-pressure side (Fumagalli et al., 2017).
758	The Na ₂ O/CaO ratio in starting materials of Niida and Green (1999) (0.117) is higher than
759	that of Borghini et al. (2010) (0.076-0.093). The examined samples from Ichinomegata
760	have low Na ₂ O/CaO ratios (0.061-0.078; Kuno and Aoki, 1970) comparable to that of
761	Borghini et al. (2010). Because the examined peridotites contain a certain amount of H_2O ,
762	its effect on the plagioclase-spinel phase boundary must be evaluated. The amount of Na
763	and Ca available for plagioclase crystallization was affected by H2O only through the
764	formation of Na and Ca-bearing hydrous phases. The Na/Ca ratio of pargasitic amphibole is,
765	however, comparable to that of starting materials in the experiments of Niida and Green
766	(1999), and thus the presence of H_2O does not affect the phase boundary in their
767	experiments. The phase transition between plagioclase and spinel lherzolites from
768	Ichinomegata, therefore, must be evaluated according to Borghini et al. (2010), which is
769	0.7-0.9 GPa at 900-1200 °C (Fig. 9b). Our pressure estimates for two of the plagioclase
770	lherzolite samples are, however, plotted far above this range apparently being inconsistent
771	with the experimental results. The presence of pyroxene-spinel symplectite in the
772	plagioclase lherzolites indicates that they were originally equilibrated in the plagioclase
773	stability field and later brought into the spinel stability field. This puts a constraint that the

pressure and temperature conditions just before the xenolith exhumation must be in the
higher-pressure side of the spinel-plagioclase facies boundary according to Borghini et al.
(2010).

Temperature decrease, pressure increase, or both is required for reaction between olivine 777 778and plagioclase to form pyroxene-spinel symplectite (Gasparik, 2003). It should not have 779 taken place during xenolith extraction, which causes temperature increase and pressure decrease. The zoning profiles of pyroxenes in the plagioclase lherzolites feature continuous 780 decreases in Ca, Al, and Cr towards the rim for orthopyroxene and increase in Ca and 781 decrease in Al and Cr for clinopyroxene (Zoning types of O1, O2, and C1; Table 2 and Figs. 7823 and 4). These zoning patterns are reproduced by cooling with a limited decrease in 783 pressure not to increase Al towards the rim. 784 The upper limit of temperature (and pressure) condition before the cooling is 785

constrained by solidus of plagioclase peridotite since there is no evidence for melting before the formation of symplectite in plagioclase lherzolite samples. The solidus of the plagioclase lherzolites is somewhere between wet and dry solidi (Fig. 9; Green, 1973; Jaques and Green, 1980). The upper limit of pressure (and temperature) conditions for the plagioclase lherzolites can be placed by dP/dT of the Al isopleth for orthopyroxene as

shown by the upper dotted line in Fig. 9b starting from the intersection of dry solidus (Jaques and Green, 1980; a thick dashed curve in Fig. 9b) and plagioclase-spinel facies boundary (Borghini et al., 2010) at ~1200 °C and ~0.85 GPa. The shaded area in this diagram defines the widest possible pressure and temperature conditions just before the xenolith extraction for the plagioclase lherzolites.

796 This pressure and temperature regions for symplectite-bearing lherzolites includes the estimated pressures and temperatures for the plagioclase lherzolites and is much lower than 797 those of the spinel lherzolites and wehrlite (Fig. 9b). Even if a wet solidus according to 798 Green (1973) (thin curve in Fig. 9b) is used as the upper limit instead of the dry solidus, 799 estimated pressures and temperatures of all of the plagioclase lherzolites are within the 800 narrower possible regions (meshed pattern; Fig. 9b). This validates the pressure and 801 temperature estimation not only for the plagioclase lherzolites but also for the spinel 802 lherzolites and the wehrlite. 803

The plagioclase lherzolite sample giving the lowest pressure and temperature estimates (0.72 GPa, 829 °C; HK64081206g) almost lies on the boundary of plagioclase and spinel stability field after Borghini et al. (2010). The sample contains the highest abundance of primary plagioclase (~0.5 vol. %) with limited reaction extent. The suppressed extent of plagioclase decomposition in HK64081206g is consistent with its lowest estimates of
 pressure and temperature among the plagioclase lherzolites.

810

811 Validation using stratigraphic control of the occurrence of two xenolith types

812Koyaguchi (1986) documented the occurrence of xenoliths with different thermal 813 histories controlled by the stratigraphy of Ichinomegata pyroclastic rocks. Peridotite xenoliths which experienced a heating event tend to occur in the upper stratigraphic 814 horizon, and those without such heating in the lower horizon. On the basis of this 815 observation, Koyaguchi (1986) argued that a group of xenoliths with glass recorded a 816 prolonged heating event in a stratified magma chamber and were tapped in a later stage of 817 the eruption. However, the crustal heating hypothesis is not consistent with our xenolith 818 data because of the following reasons. First, the consistency of equilibration temperatures 819 820 estimated from the glass and xenolith mineralogy supports coexistence of glass and 821 minerals in the xenoliths at a mantle depth (Takahashi, 1986). Second, our pressure 822 estimates using the pyroxene compositions at the outermost rim also negate any heating 823 events for glass-bearing samples in a crustal magma chamber. The occurrence of glass 824 exclusively in samples giving higher pressures clearly supports that the melt actually

825 formed in the mantle.

826	More consistent explanation of the stratigraphic control of the xenolith thermal history is
827	xenolith extraction by single-stage magma transportation in the mantle and subsequent
828	eruption. Xenoliths in the deep LAB zone were incorporated into magma earlier and
829	traveled longer distances than those in the shallow lithospheric mantle, and thus separation
830	and probably size sorting took place more effectively for xenoliths from the deep LAB
831	zone than those from the shallow lithospheric mantle. Such relations between depth and
832	timing of xenolith entrapment in the ascending magma and sorting effect lead to the earlier
833	exhumation of shallow mantle followed by deeper mantle materials, which is consistent
834	with the systematic stratigraphic occurrence of the xenolith types.
834 835	with the systematic stratigraphic occurrence of the xenolith types.
	with the systematic stratigraphic occurrence of the xenolith types. Reconstruction of LAB zone in the mantle beneath Ichinomegata
835	
835 836	Reconstruction of LAB zone in the mantle beneath Ichinomegata
835 836 837	Reconstruction of LAB zone in the mantle beneath Ichinomegata Our pressure estimation allows us to clarify the depth variations of the diversity of the
835 836 837 838	Reconstruction of LAB zone in the mantle beneath Ichinomegata Our pressure estimation allows us to clarify the depth variations of the diversity of the mantle beneath Ichinomegata as documented by previous studies (e.g., Takahashi, 1980,

842	summarized in Table 5. These structures are compared with the well-documented structures
843	of the LAB zone of cratonic mantle using xenolith samples to characterize LAB zone
844	beneath Ichinomegata in an arc environment. Then, the origin of the LAB zone beneath
845	Ichinomegata is discussed.

846

847 Thermal LAB zone

Although previous studies (Takahashi, 1986; Kushiro, 1987) depicted thermal structures 848 based mainly on petrology and thermometry of mafic rocks, they are qualitative and did not 849 fully utilize information from peridotite xenoliths. Our thermal structure is quantitative on 850the basis of information taken directly from the mantle. The estimated overall thermal 851 gradient shortly before the xenolith extraction is as steep as 10 K/km, which suggests a 852thermal boundary layer in the LAB zone beneath Ichinomegata at 28-55 km depth. Such 853steep xenolith geotherms are reported from the deepest part of SCLM, though its origin is 854 controversial (e.g., Boyd, 1973; O'Reilly and Griffin, 2010) and the temperature is 855 considerably higher (~1400 °C; Boyd, 1973) than beneath Ichinomegata (~1100 °C). 856 Takahashi (1980) revealed that half of the peridotite xenoliths from Ichinomegata 857 underwent a heating event shortly before the xenolith extraction and that the remaining half 858

859	did not. He, however, attributed the remarkable difference in thermal history to a local
860	effect by magmas passing through the mantle without specifying the depth of the heating
861	event. We clarified that a heating event took place at depths greater than ~45 km (Table 5),
862	which strongly supports that the heating took place near the LAB induced by
863	asthenospheric upwelling on the spatial scale much greater than that assumed by Takahashi
864	(1986).
865	
866	Rheological LAB zone
867	The shallow mantle composed of granular peridotites is underlain by that of
868	porphyroclastic peridotites beneath Ichinomegata (Fig. 8; Table 5). The depth variation of
869	microstructure supports a rheological stratification with increasing shear strain with depth.
870	Satsukawa and Michibayashi (2014) argued that the strain decreased with depth, which
871	is inconsistent with our results. They applied a geothermobarometer of Brey and Köhler
872	(1990) to CaO contents of orthopyroxene assuming 1.0 GPa pressure and obtained fairly
873	scattered temperatures for each sample covering the entire range of our estimates
874	(800-1100 °C). The large scatter is due to the CaO zoning in orthopyroxene (Fig. 3). They
875	estimated the relative depths from the variation of minimum temperatures, which are

876	assumed to have a positive correlation with pressures. They adopted the minimum
877	temperatures because lower temperatures are commonly preserved at the rim recording
878	conditions closer to the surrounding environment than the core does. Such zoning pattern is,
879	however, not the case in Ichinomegata except for Type O1 (Fig. 3). Thus, their argument
880	that the shallower mantle was more strained which was based on the negative correlation of
881	the minimum temperature and the strength of crystallographic preferred orientation is
882	irreconcilable with our data. The most deformed sample (I708) in Satsukawa and
883	Michibayashi (2014) is a symplectite-free spinel peridotite, which is unique in that the
884	other samples are symplectite-bearing plagioclase peridotites. According to our results, the
885	unique xenolith is inferred to have been derived from a depth deeper than the other
886	xenoliths studied by them. This is consistent with our contention that the deeper mantle is
887	more strained than the shallower mantle beneath Ichinomegata.
888	Similar microstructural stratification, indicating increasing deformation with depth, is
889	reported from the SCLM (e.g., Boyd, 1973; Ehrenberg, 1979; Kopylova et al., 1999;
890	Agashev et al., 2013). Such transition in microstructure may correspond to the conceptually
891	presumed rheological boundary layer between the rigid lithosphere and the ductile and

892 convective asthenosphere (e.g., Sleep, 2005, 2006). The depths of the transition in the root

of SCLM are as deep as 170-220 km (O'Reilly and Griffin, 2010; Agashev et al., 2013). By
contrast, the boundary layer in the LAB zone beneath Ichinomegata is as shallow as 40-60
km.

896

897 Chemical LAB zone

The chemical stratification of the mantle beneath Ichinomegata is unclear in terms of 898 major element chemistry of olivine such as Mg# (Fig. 8). This is different from the case at 899 the root of SCLM, where the clear decrease in the Mg# of olivine is the common feature 900 (Griffin et al., 2003; O'Reilly and Griffin, 2006, 2010). The more oxidized environment in 901 the deeper levels beneath Ichinomegata is suggested, which is opposite to the case found at 902 the root of SCLM (Frost and McCammon, 2008). 903 More clear evidence for chemical stratification in the mantle beneath Ichinomegata is 904 provided by previous geochemical studies. Tanaka and Aoki (1981) reported whole-rock 905 906 REE patterns of peridotite xenoliths and those of clinopyroxene in them. Later, Abe et al. (1998) also reported REE patterns of the clinopyroxene from various lithologies, and 907 908 Satsukawa et al. (2017) reported REE patterns of clinopyroxene from plagioclase

909 Iherzolites. Their REE patterns of plagioclase and/or symplectite- and amphibole-bearing

910	peridotites are characterized by LREE depletion and near chondritic whole-rock middle
911	rare earth element (MREE) and heavy rare earth element (HREE) abundances. By contrast,
912	those of amphibole and symplectite-absent spinel peridotite are characterized by slight
913	LREE enrichment and depletion of MREE and HREE. Combining the contrasting mineral
914	assemblages and our depth estimation allow estimation of geochemical stratification with
915	regard to REE abundances beneath Ichinomegata; the shallow layer shows REE pattern
916	akin to that of the source mantle of mid-ocean ridge basalt (MORB) and the deeper layer is
917	enriched in LREE with depleted HREE.
918	
510	
919	Discussion
	Discussion Formation condition of LAB zone beneath Ichinomegata
919	
919 920	Formation condition of LAB zone beneath Ichinomegata
919 920 921	Formation condition of LAB zone beneath Ichinomegata Defining mechanism of LAB proposed so far is dry lithospheric mantle (<0.01 wt.%
919 920 921 922	Formation condition of LAB zone beneath Ichinomegata Defining mechanism of LAB proposed so far is dry lithospheric mantle (<0.01 wt.% H ₂ O) underlain by either subsolidus H ₂ O-bearing asthenosphere (e.g., Chu and Korenaga,
 919 920 921 922 923 	Formation condition of LAB zone beneath Ichinomegata Defining mechanism of LAB proposed so far is dry lithospheric mantle (<0.01 wt.% H ₂ O) underlain by either subsolidus H ₂ O-bearing asthenosphere (e.g., Chu and Korenaga, 2012), asthenosphere having smaller grain size (e.g., Karato, 2012), or super-solidus

927	including lithospheric mantle beneath Ichinomegata is pervasively hydrated, requiring
928	another mechanism of LAB formation. We propose that the thermal structure and wet
929	solidus control LAB depth: peridotites with H2O-rich fluid and hydrous phases such as
930	amphibole consist of the lithosphere and peridotites with hydrous melt consist of the
931	uppermost asthenosphere (Green et al., 2010). We speculate that this could be one of the
932	important mechanisms for LAB formation in arc settings. The important question is if such
933	LAB zone involving highly mobile H ₂ O-rich fluid and hydrous melt can be viewed as at a
934	steady state or if it is a snapshot of dynamically developing LAB zone.
935	A major difference between lithospheric mantle in the arc and continental settings is the
936	presence of significant amounts of water in the former (0.1-1.0 vs. < 0.01 wt.% H_2O ;
937	Kelley et al., 2006; Wang, 2010). Water is stored in amphibole, phlogopite (Abe et al.,
938	1992) and fluid phase in the shallow levels beneath Ichinomegata (28-41 km), though it
939	should be noted that the shallowest sample (HK64081206g) lacks microstructures
940	indicating the presence of fluid phase (Table 1) and, thus, may be undersaturated in water.
941	By contrast, water is stored in the melt phase in the deep levels (45-55 km). The melt is
942	distributed inhomogeneously and forms pockets in pyroxene-rich layers, suggesting that the
943	microstructures were far from textural equilibrium (e.g., Waff and Bulau, 1979; Holness et

944	al., 2005, 2012). This is possibly a reason for maintaining as high as 2 vol. % of melt in the
945	glass-bearing samples. The water content of such melt is estimated to be \sim 2-5 wt.% based
946	on weight deficiency of glass in the EPMA analyses, which is below the water saturation
947	under the estimated pressure and temperature conditions (>12 wt.% at 1020 $^{\circ}$ C and 1.2
948	GPa; Grove et al., 2006). Vesicles present in glass (Fig. 3c) suggest degassing during
949	xenolith extraction, which could have decreased the water content. The temperatures
950	estimated from the glass compositions using eq. (15) of Putirka (2008) assuming the water
951	contents of ~2-5 wt.% are consistent with the derivation temperatures of the examined
952	xenoliths. If we assume the water content of ~12 wt.%, which corresponds to the value of
953	water saturation (Grove et al., 2006), the thermometer gives very low temperatures ranging
954	949-984 °C. These values are significantly lower than the xenolith derivation temperatures.
955	Therefore, we argue that the original water content of melt was close to \sim 2-5 wt.% and
956	vesiculation did not affect the water content of the glass. Combining this with the absence
957	of amphibole and fluid in peridotites from the deeper levels, we conclude that the deeper
958	samples were H ₂ O-undersaturated in the mantle before the xenolith extraction. The drastic
959	change of water carriers beneath Ichinomegata, the water undersaturation of the shallowest
960	plagioclase lherzolite (~0.7 GPa), LREE-depleted REE patterns with positive anomalies of

961	Th and U of the shallower samples and flat or LREE-enriched REE patterns of the deeper
962	samples (Tanaka and Aoki, 1981; Abe et al. 1998; Satsukawa et al., 2017), and
963	inhomogeneous distribution of melt phase as pockets all suggest that H ₂ O was supplied
964	from underlying asthenosphere up to the depth of ~ 30 km before the xenolith extraction
965	and that the process caused a decrease in the depth of the LAB zone. Water might have
966	been transported to the LAB zone through fractures or other fast transportation paths at
967	least in the shallower level before the asthenosphere upwelling. The presence of such fast
968	transportation paths is supported by the occurrence of amphibole-rich veins and
969	amphibole-rich peridotite lithology among Ichinomegata xenoliths (Abe et al., 1992).
970	Another important dynamic aspect of the LAB beneath Ichinomegata is a temporal
971	change of thermal structure, which is expected in the LAB zone, where the mechanism of
972	heat transfer changes from convection to conduction. Takahashi (1980, 1986) found that
973	half of the Ichinomegata peridotite xenoliths show evidence of prolonged heating for more
974	than one thousand years (minimum time scale). He attributed the heat source to that
975	released from magmas generated in the asthenosphere. Our barometry and depth-dependent
976	thermal history: simple cooling in the shallower layer and cooling followed by heating in
977	the deeper layer (Table 5) clearly demonstrate that heat source was actually in the

978	asthenosphere, which upwelled just before the xenolith extraction and generated basaltic
979	magma for the Ichinomegata volcanism. Heat might be effectively transported either by
980	basaltic magma generated in the upwelling asthenosphere or by extensive thermochemical
981	thinning of the lithosphere, both of which account for the short timescales of a heating
982	event.
983	All these depth dependent systematics characterizing the mantle beneath Ichinomegata
984	strongly suggest that the identified LAB zone is dynamically evolving rather than at a
985	steady state. We infer that the LAB zone beneath Ichinomegata is a dynamic entity and
986	became shallower with time driven by heat and material transportation from the underlying
987	asthenosphere.
988	One of the most important points in our study is that the sample-derived wet solidus at
989	\sim 40 km depth coincides with the transition of microstructures from granular to
990	porphyroclastic textures with increasing depth. The depth range of samples showing
991	porphyroclastic texture (41-52 km) roughly overlaps with that of the presence of melt, and
992	the depth range of samples with granular texture (28-32 km) overlaps with that of the
993	presence of H ₂ O-rich fluid phase. The coincidence of the depth-dependent transitions of
994	microstructure and phase assemblage strongly suggests that melting might have governed

995	the rheological transition. We propose that wet solidus and thermal structure control the
996	upper depth limit of the rheological boundary layer beneath Ichinomegata. This has
997	important implications for the generation of magma in an arc wedge mantle.
998	
999	Implication
1000	The depth variations of diverse properties of the mantle beneath Ichinomegata based on
1001	our geobarometry of peridotite xenoliths show that the depth of the LAB zone beneath
1002	Ichinomegata is 40-60 km and controlled by the thermal structure and wet solidus. The
1003	mean depth of LAB beneath the Japan Sea is estimated to be 60 km by shear-wave
1004	tomography studies (Yoshizawa et al., 2010; Zheng et al., 2011), which tends to decrease
1005	towards the Northeast Japan arc. Several studies of seismic structures of the wedge mantle
1006	beneath the Northeast Japan arc show that the lithospheric mantle beneath the volcanic arc,
1007	where the MOHO is 35 km deep, is very thin or even absent (Zhao et al., 1992; Nakajima
1008	and Hasegawa, 2003; Nakajima et al., 2005; Yoshizawa et al., 2010). If these results are
1009	combined with our study, the depth of the LAB zone across Northeast Japan decreases from
1010	~60 km beneath Japan Sea to <40 km beneath the volcanic front (Fig. 10).
1011	Nakajima and Hasegawa (2003) estimated the temperature of the uppermost mantle

1012	(asthenosphere or LAB zone at ~40 km) beneath the volcanic front of Northeast Japan as
1013	1000-1130 °C and that beneath the back-arc side as 960-1090 °C based on seismic
1014	attenuation data. They used 1025 °C at a 40 km depth, which was roughly estimated from
1015	petrologic studies of Ichinomegata xenoliths (Aoki, 1987; Kushiro, 1987; Takahashi, 1986),
1016	as reference conditions for the thermal structure. Our accurate geobarometry on the
1017	Ichinomegata samples (e.g., IC81-5; 1016 °C at 41 km) is fortunately very close to the
1018	reference conditions. Tatsumi et al. (1983) proposed deepening of isotherm in the wedge
1019	mantle of Northeast Japan arc towards the back-arc side on the basis of across-arc variation
1020	of experimentally estimated magma segregation depth. Kuritani et al. (2014a) estimated the
1021	conditions of magma generation (temperature, pressure, degree of melting, and water
1022	content) for Sannomegata basalt by applying multi-component thermodynamics to the
1023	basaltic scoriae. The estimated melting conditions for Sannomegata are 1220-1230 °C in
1024	temperature, ~ 1.8 GPa in pressure, and ~ 7 % in degree of melting (Fig. 10). Kuritani et al.
1025	(2014a, 2014b) also estimated the conditions of magma generation for the lava from Iwate
1026	volcano, occurring to the east of Ichinomegata at the volcanic front. The estimated melting
1027	conditions for Iwate volcano are ~1250 $^{\circ}\mathrm{C}$ in temperature, ~1.3 GPa in pressure, and
1028	~ 15 % in melting degree. These geophysical and petrologic estimates support that the

asthenosphere beneath the northeast Japan arc at a given depth becomes cooler with thedistance from the volcanic front towards the back-arc side.

1031	There are several lines of geophysical evidence for decreasing geothermal gradient of
1032	the lithosphere from the volcanic front towards the back-arc side. They are surface heat
1033	flow, Curie point depth at which the crustal temperature reaches the Curie point of
1034	magnetic minerals, and depth of seismic-aseismic boundary across which behavior of
1035	crustal materials changes from brittle to ductile. Tanaka et al. (2004) compiled heat flow
1036	data of Japan and showed that the heat flow in the volcanic front is significantly higher
1037	than that in the back-arc side in Northeast Japan. Okubo et al. (1994) revealed that the
1038	Curie point depth of Northeast Japan slightly increases from the volcanic front to back-arc.
1039	Nakajima et al. (2001) compiled the earthquake focal depth in Northeast Japan and showed
1040	a deepening tendency of the lower bound from the volcanic front to back-arc suggesting
1041	decreasing geothermal gradient towards the back-arc side (McKenzie et al., 2016).
1042	We have shown that the wet solidus and thermal structure determine the depth of the
1043	upper limit of the LAB zone beneath Ichinomegata. If this formation condition of LAB is
1044	generalized, the decreasing depth of LAB from the back-arc side to the volcanic front is
1045	consistently explained by increasing temperature of the asthenosphere and increasing

1046	geothermal gradient of the lithosphere in the Northeast Japan arc (Fig. 10). The wet solidus
1047	has a very large or even negative dP/dT at pressures lower than ~ 2 GPa, which is
1048	contrasting to a smaller and positive dP/dT for the dry solidus. Because of this, a hotter
1049	thermal profile of lithosphere and asthenosphere crosses the wet solidus at a lower pressure
1050	but at a similar temperature (Fig. 10b). Consequently, under water-saturated conditions, the
1051	mantle beneath the volcanic front at higher temperature melts at a lower pressure than that
1052	beneath the back-arc side, which results in the shallowing the LAB zone toward the
1053	volcanic front. It should be noted that the melting temperatures are similar irrespective of
1054	the thermal profile (Fig. 10).
1055	The variation of LAB depth and its temperature may play an important role in
1056	controlling the depth of melt generation and segregation beneath the Northeast Japan arc
1057	(Kuno and Aoki, 1970; Tatsumi et al., 1983; Takahashi, 1986; Kushiro, 1987, Kimura and
1058	Yoshida, 2006). Kuritani et al. (2014a, 2014b) quantified the essential feature of across-arc
1059	variations for the northeast Japan arc; deepening magma generation and segregation as well
1060	as decreasing melting degree towards the back arc side at a similar temperature (Kuritani et
1061	al., 2014a, 2014b). The melting condition for Sannomegata basalt, active ~20 ka (Kitamura,
	al., 2014a, 2014b). The menting condition for Samonegata basar, active ~20 ka (Kitamura,

1063	erupted 60-80 ka and is higher by ~100 °C than the geotherm at ~60 km depth (Fig. 10;
1064	Kuritani et al., 2014a). There is a similar relationship between the magma generation
1065	condition of Iwate volcano (Kuritani et al., 2014a) and the geotherm that we inferred for
1066	beneath the volcanic front (Fig. 10). These relationships are explained by either heat
1067	(and/or material)-fluxed melting or decompressional melting. If fluxed melting was
1068	dominant, we may argue that it took \sim 50 thousand years to increase the temperature by
1069	100 °C before the magma generation for the Sannomegata volcanism ($①$ in Fig. 10). If
1070	decompressional melting was a dominant melting mechanism, we may argue that deeply
1071	resided mantle ascended to a shallower asthenosphere to induce partial melting and melt
1072	segregation (2) in Fig. 10). The potential temperature (T_p) of the mantle can be estimated
1073	to be \sim 1250 °C by finding an intersection of the melting adiabat for Sannomegata magma
1074	and extrapolation of the Ichinomegata geotherm. This T_p is significantly lower than that for
1075	MORB (Herzberg et al., 2007; Putirka et al., 2007) and back-arc basin basalt (Wiens et al.,
1076	2006), and is lower than T_p for basalts from northeast Japan arc (Tatsumi et al., 1983,
1077	1994).

1078

1079

Acknowledgments

1080	The authors are grateful to Dr. Dan McKenzie for fruitful discussions and suggestions,
1081	Dr. T. Koyaguchi of the University of Tokyo for critical discussions, Drs. T. lizuka and S.
1082	Wallis of the University of Tokyo for helpful discussions, and H. Yoshida for help in EPMA
1083	analyses at The University of Tokyo. We also acknowledge the constructive reviews of
1084	Eiichi Takahashi and an anonymous reviewer as well as the editorial handling and
1085	comments by Dr. Heather Handley. This study was supported by JSPS KAKENHI Grant
1086	Number 17H02982.
1087	
1007	
1088	References
	References Abe, S., and Yamamoto, M. (1999) Rb-Sr mineral isochron ages of mantle peridotite
1088	
1088 1089	Abe, S., and Yamamoto, M. (1999) Rb-Sr mineral isochron ages of mantle peridotite
1088 1089 1090	Abe, S., and Yamamoto, M. (1999) Rb-Sr mineral isochron ages of mantle peridotite xenoliths from Ichinomegata and Kurose, Japan. Journal of Mineralogy, Petrology
1088 1089 1090 1091	Abe, S., and Yamamoto, M. (1999) Rb-Sr mineral isochron ages of mantle peridotite xenoliths from Ichinomegata and Kurose, Japan. Journal of Mineralogy, Petrology and Economic Geology, 94, 295-310 (in Japanese with an English abstract).

abstract).

1096	Abe, N., Arai, S.,	and Yurimoto, H.	(1998) Geochemical	characteristics of the	e uppermost
------	--------------------	------------------	--------------------	------------------------	-------------

- 1097 mantle beneath the Japan island arcs: implications for upper mantle evolution.
- 1098 Physics of the Earth and Planetary Interiors, 107, 233-248.
- 1099 Agashev, A.M., Ionov, D.A., Pokhilenko, N.P., Golovin, A.V., Cherepanova, Y., and
- 1100 Sharygin, I.S. (2013) Metasomatism in lithospheric mantle roots: Constraints from
- 1101 whole-rock and mineral chemical composition of deformed peridotite xenoliths from
- 1102 kimberlite pipe Udachnaya. Lithos, 160, 201-215.
- Anderson, D.L. (1995) Lithosphere, asthenosphere, and perisphere. Reviews of Geophysics,
 33, 125-149.
- 1101 55,120 11,51
- 1105 Aoki, K. (1971) Petrology of mafic inclusions from Itinome-gata, Japan. Contributions to
- 1106 Mineralogy and Petrology, 30, 314-331.
- 1107 Aoki, K. (1987) Japanese Island arc: xenoliths in alkali basalts, high-alumina basalts, and
- 1108 calc-alkaline andesites and dacites. In P.H., Nixon, Ed., Mantle Xenoliths, p. 319-333.
- 1109 Wiley, NewYork.
- 1110 Aoki, K. and Shiba, I. (1973) Pargasites in Iherzolite and websterite inclusions from
- 1111 Itinome-gata, Japan. The Journal of the Japanese Association of Mineralogists,
- 1112 Petrologists and Economic Geologists, 68, 303-310.

1113	Aoki, K. and Shiba, I. (1974) Olivines from lherzolite inclusions of Itinome-gata, Japan.
1114	Memories of the Geological Society of Japan, 11, 1-10.
1115	Arai, S. (1994) Characterization of spinel peridotites by olivine-spinel compositional
1116	relationships: review and interpretation. Chemical geology, 113, 191-204.
1117	Arai, S., Abe, N., and Ishimaru, S. (2007) Mantle peridotites from the Western Pacific.
1118	Gondwana Research, 11, 180-199.
1119	Ballhaus, C., Berry, R.F., and Green, D.H. (1991) High pressure experimental calibration of
1120	the olivine-orthopyroxene-spinel oxygen geobarometer: implications for the
1121	oxidation state of the upper mantle. Contributions to Mineralogy and Petrology, 107,
1122	27-40.
1123	Behr, W.M., and Hirth, G. (2014) Rheological properties of the mantle lid beneath the
1124	Mojave region in southern California. Earth and Planetary Science Letters, 393,
1125	60-72.
1126	Bertrand, P., and Mercier, J.C.C. (1985) The mutual solubility of coexisting ortho-and
1127	clinopyroxene: toward an absolute geothermometer for the natural system?. Earth and
1128	Planetary Science Letters, 76, 109-122.

- 1129 Borghini, G., Fumagalli, P., and Rampone, E. (2010) The stability of plagioclase in the
- 1130 upper mantle: subsolidus experiments on fertile and depleted lherzolite. Journal of
- 1131 Petrology, 51, 229-254.
- Boyd, F.R. (1973) A pyroxene geotherm. Geochimica et Cosmochimica Acta, 37,
 2533-2546.
- 1134 Brady, J.B., and MacCallister, R.H. (1983) Diffusion data for clinopyroxenes from
- 1135 homogenization and self-diffusion experiments. American Mineralogist, 68, 95-105.
- 1136 Brandon, A.D., Creaser, R.A., Shirey, S.B., and Carlson, R.W. (1996) Osmium recycling in
- subduction zones. Science, 272, 861-863.
- 1138 Brey, G.P., and Köhler, T. (1990) Geothermobarometry in four-phase lherzolites II. New
- thermobarometers, and practical assessment of existing thermobarometers. Journal of
- 1140 Petrology, 31, 1353-1378.
- 1141 Chakraborty, S. (2010) Diffusion coefficients in olivine, wadsleyite and ringwoodite.
- 1142 Reviews in mineralogy and geochemistry, 72, 603-639.
- 1143 Cherniak, D.J., and Dimanov, A. (2010) Diffusion in pyroxene, mica and amphibole.
- 1144 Reviews in Mineralogy and Geochemistry, 72, 641-690.

1145	Chu, X., and Korenaga, J. (2012) Olivine rheology, shear stress, and grain growth in the
1146	lithospheric mantle: Geological constraints from the Kaapvaal craton. Earth and
1147	Planetary Science Letters, 333, 52-62.
1148	Dimanov, A., and Sautter, V. (2000) "Average" interdiffusion of (Fe, Mn)-Mg in natural
1149	diopside. European Journal of Mineralogy, 12, 749-760.
1150	Ehrenberg, S.N. (1979) Garnetiferous ultramafic inclusions in minette from the Navajo
1151	volcanic field. In F.R. Boyd and H.O.A. Meyer Ed., The Mantle Sample: Inclusion in
1152	Kimberlites and Other Volcanics, Volume 16, p. 330-344.
1153	Fabriès, J. (1979) Spinel-olivine geothermometry in peridotites from ultramafic complexes.
1154	Contributions to Mineralogy and Petrology, 69, 329-336.
1155	Fischer, K.M., Ford, H.A., Abt, D.L., and Rychert, C.A. (2010) The
1156	lithosphere-asthenosphere boundary. Annual Review of Earth and Planetary Sciences,
1157	38, 551-575.
1158	Frost, D.J., and McCammon, C.A. (2008) The redox state of Earth's mantle. Annual
1159	Review of Earth and Planetary Sciences, 36, 389-420.

- 1160 Fumagalli, P., Borghini, G., Rampone, and E., Poli, S. (2017) Experimental calibration of
- 1161 Forsterite-Anorthite-Ca-Tschermak-Enstatite (FACE) geobarometer for mantle

1162	peridotites. Contributions to Mineralogy and Petrology, 172, 19, doi:
1163	10.1007/s00410-017-1352-2.
1164	Ganguly, J., Ito, M., and Zhang, X. (2007) Cr diffusion in orthopyroxene: Experimental
1165	determination, ⁵³ Mn- ⁵³ Cr thermochronology, and planetary applications. Geochimica
1166	et Cosmochimica Acta, 71, 3915-3925.
1167	Gasparik, T. (2003) Phase diagrams for geoscientists. An Atlas of the Earth's Interior, 462 p.
1168	Springer Ed.
1169	Green, D.H. (1973) Experimental melting studies on a model upper mantle composition at
1170	high pressure under water-saturated and water-undersaturated conditions. Earth and
1171	Planetary Science Letters, 19, 37-53.
1172	Green, D.H., Hibberson, W.O., Kovács, I., and Rosenthal, A. (2010) Water and its influence
1173	on the lithosphere-asthenosphere boundary. Nature, 467, 448-451.
1174	Griffin, W.L., Doyle, B.J., Ryan, C.G., Pearson, N.J., O'Reilly, S.Y., Davies, R., Kivi, K.,
1175	Van Achterbergh, E., and Natapov, L.M. (1999) Layered mantle lithosphere in the
1176	Lac de Gras area, Slave craton: composition, structure and origin. Journal of
1177	Petrology, 40, 705-727.

1178	Griffin, W.L., O'Reilly, S.Y., Natapov, L.M., and Ryan, C.G. (2003) The evolution of
1179	lithospheric mantle beneath the Kalahari Craton and its margins. Lithos, 71, 215-241.
1180	Grove, T.L., Chatterjee, N., Parman, S.W., and Médard, E. (2006) The influence of H ₂ O on
1181	mantle wedge melting. Earth and Planetary Science Letters, 249, 74-89.
1182	Hayashi, H. (1955). Volcanic ejecta around Ichinomegata, Oga peninsula, Akita prefecture.
1183	Journal of Geological Society of Japan, 61, 240-248 (in Japanese with a French
1184	abstract).
1185	Harigane, Y., Mizukami, T., Morishita, T., Michibayashi, K., Abe, N., and Hirano, N.
1186	(2011) Direct evidence for upper mantle structure in the NW Pacific Plate:
1187	Microstructural analysis of a petit-spot peridotite xenolith. Earth and Planetary
1188	Science Letters, 302, 194-202.
1189	Herzberg, C., Asimow, P.D., Arndt, N., Niu, Y., Lesher, C.M., Fitton, J.G., Cheadle, M.J.,
1190	and Saunders, A.D. (2007) Temperatures in ambient mantle and plumes: Constraints
1191	from basalts, picrites, and komatiites. Geochemistry, Geophysics, Geosystems, 8, 34,
1192	doi:10.1029/2006GC001390.

- 1193 Hirschmann, M.M. (2000) Mantle solidus: Experimental constraints and the effects of
- 1194 peridotite composition. Geochemistry, Geophysics, Geosystems, 1, 26,
- 1195 doi:10.1029/2000GC000070.
- 1196 Hirschmann, M.M. (2010) Partial melt in the oceanic low velocity zone. Physics of the
- Earth and Planetary Interiors, 179, 60-71.
- 1198 Hirth, G., and Kohlstedt, D.L. (1996) Water in the oceanic upper mantle: implications for
- rheology, melt extraction and the evolution of the lithosphere. Earth and PlanetaryScience Letters, 144, 93-108.
- 1201 Holness, M.B., Cheadle, M.J., and McKenzie, D. (2005) On the use of changes in dihedral
- angle to decode late-stage textural evolution in cumulates. Journal of Petrology, 46,1203 1565-1583.
- 1204 Holness, M.B., Humphreys, M.C., Sides, R., Helz, R.T., and Tegner, C. (2012) Toward an
- 1205 understanding of disequilibrium dihedral angles in mafic rocks. Journal of
- 1206 Geophysical Research: Solid Earth, 117, 31, doi:10.1029/2011JB008902.
- 1207 Iwasaki, T., Levin, V., Nikulin, A., and Iidaka, T. (2013) Constraints on the Moho in Japan
- and Kamchatka. Tectonophysics, 609, 184-201.

1209	Jaques, A.L., and Green, D.H. (1980) Anhydrous melting of peridotite at 0-15 kb pressure
1210	and the genesis of tholeiitic basalts. Contributions to mineralogy and petrology, 73,
1211	287-310.
1212	Karato, S. (2010) Rheology of the deep upper mantle and its implications for the
1213	preservation of the continental roots: A review. Tectonophysics, 481, 82-98.
1214	Karato, S. (2012) On the origin of the asthenosphere. Earth and Planetary Science Letters,
1215	321, 95-103.
1216	Katsui, Y., Yamamoto, M., Nemoto, S., and Niida, K. (1979) Genesis of Calc-Alkalic
1217	Andesites from Oshima-Ōshima and Ichinomegata Volcanoes, North Japan. Journal
1218	of the Faculty of Science, Hokkaido University. Series 4, Geology and Mineralogy,
1219	19, 157-168.
1220	Kawasaki, T., and Ito, E. (1994) An experimental determination of the exchange reaction of
1221	Fe ²⁺ and Mg ²⁺ between olivine and Ca-rich clinopyroxene. American Mineralogist,
1222	79, 461-477.
1223	Kelley, K.A., Plank, T., Grove, T.L., Stolper, E.M., Newman, S., and Hauri, E. (2006)
1224	Mantle melting as a function of water content beneath back-arc basins. Journal of

1225 Geophysical Research: Solid Earth, 111, 27, doi:10.1029/2005JB003732.

1226 Kimura, J., and Yoshida, T. (2006) Contributions of slab fluid, mantle wedge and crust to

- 1227 the origin of Quaternary lavas in the NE Japan arc. Journal of Petrology, 47,
- 1228 2185-2232.
- 1229 Kitamura, S. (1990) Ages of Megata maars in the Oga peninsula, Japan. Annals of The

1230 Tohoku Geographycal Asocciation, 42, 161-167 (in Japanese).

- 1231 Klemme, S., and O'Neill, H.S. (2000) The effect of Cr on the solubility of Al in
- orthopyroxene: experiments and thermodynamic modelling. Contributions toMineralogy and Petrology, 140, 84-98.
- 1234 Kopylova, M.G., Russell, J.K., and Cookenboo, H. (1999) Petrology of peridotite and
- 1235 pyroxenite xenoliths from the Jericho kimberlite: implications for the thermal state of
- 1236 the mantle beneath the Slave craton, northern Canada. Journal of Petrology, 40,
- 1237 79-104.
- 1238 Koyaguchi, T. (1986) Life-time of a stratified magma chamber recorded in ultramafic 1239 xenoliths from Ichinomegata volcano, northeastern Japan. Bulletin of Volcanology,
- 1240
 48, 313-323.

1241	Kumagai,	Y., Kaw	amoto, T.,	and `	Yamamoto,	J.	(2014)	Evolution	of	carbon	dioxid	e-be	earing

- saline fluids in the mantle wedge beneath the northeast Japan Arc. Contributions to
- 1243 Mineralogy and Petrology, 168, 1-13.
- 1244 Kuno, H. (1967). Mafic and ultramafic nodules from Itinome-gata Japan. In P.J. Wyllie, Ed.,
- 1245 Ultramafic and related rocks, p. 337-342. John Wiley, New York.
- 1246 Kuno, H., and Aoki, K. (1970) Chemistry of ultramafic nodules and their bearing on the
- 1247 origin of basaltic magmas. Physics of the Earth and Planetary Interiors, 3, 273-301.
- 1248 Kuritani, T., Yoshida, T., Kimura, J., Takahashi, T., Hirahara, Y., Miyazaki, T., Senda, R.,
- 1249 Chang, Q., and Ito, Y. (2014a) Primary melt from Sannome-gata volcano, NE Japan
- 1250 arc: constraints on generation conditions of rear-arc magmas. Contributions to
- 1251 Mineralogy and Petrology, 167, 969.
- 1252 Kuritani, T., Yoshida, T., Kimura, J., Hirahara, Y., and Takahashi, T. (2014b) Water content
- 1253 of primitive low-K tholeiitic basalt magma from Iwate Volcano, NE Japan arc:
- implications for differentiation mechanism of frontal-arc basalt magmas. Mineralogy
- 1255 and Petrology, 108, 1-11.

- 1256 Kushiro, I. (1987) A petrological model of the mantle wedge and lower crust in the
- 1257 Japanese island arcs. In B.O. Mysen, Ed., Magmatic processes: physicochemical
- 1258 principles, p. 165-181. Geochemical Society, Washington, D.C.
- 1259 Leake, B.E., Woolley, A.R., Arps, C.E.S., Birch, W.D., Gilbert, M.C., Grice, J.D.,
- 1260 Hawthorne, F.C., Kato, A., Kish, H.J., Krivovichev, V.G., and others. (1997)
- 1261 Nomenclature of amphiboles; report of the subcommittee on amphiboles of the
- 1262 International Mineralogical Association Commission on New Minerals and Mineral
- 1263 Names. The Canadian Mineralogist, 35, 219-246.
- Lindsley, D.H. (1983) Pyroxene thermometry. American Mineralogist, 68, 477-493.
- 1265 McKenzie, D., and Bickle, M.J. (1988) The volume and composition of melt generated by
- 1266 extension of the lithosphere. Journal of Petrology, 29, 625-679.
- 1267 McKenzie, D., Jackson, J. and Priestley, K. (2016) Thermal structure of oceanic and 1268 continental lithosphere. Earth and Planetary Science Letters, 233, 337-349.
- 1269 Mercier, J.C.C., Benoit, V., and Girardeau, J. (1984) Equilibrium state of diopside-bearing
- 1270 harzburgites from ophiolites: geobarometric and geodynamic implications.
- 1271 Contributions to Mineralogy and Petrology, 85, 391-403.
- 1272 Mysen, B.O., and Boettcher, A.L. (1975) Melting of a Hydrous Mantle: I. Phase Relations

- 1273 of Natural Peridotite at High Pressures and Temperatures with Controlled Activities
- 1274 of Water, Carbon Dioxide, and Hydrogen. Journal of Petrology, 16, 520-548.
- 1275 Nakajima, J., and Hasegawa, A. (2003) Estimation of thermal structure in the mantle wedge
- 1276 of northeastern Japan from seismic attenuation data. Geophysical Research Letters,
- 1277 30, 4, doi:10.1029/2003GL017185.
- 1278 Nakajima, J., Matsuzawa, T., Hasegawa, A., and Zhao, D. (2001) Three-dimensional
- 1279 structure of Vp, Vs, and Vp/Vs beneath northeastern Japan: Implications for arc
- magmatism and fluids. Journal of Geophysical Research: Solid Earth, 106,21843-21857.
- 1282 Nakajima, J., Takei, Y., and Hasegawa, A. (2005) Quantitative analysis of the inclined
- 1283 low-velocity zone in the mantle wedge of northeastern Japan: A systematic change of
- melt-filled pore shapes with depth and its implications for melt migration. Earth and
- 1285 Planetary Science Letters, 234, 59-70.
- 1286 Nickel, K.G., and Brey, G. (1984) Subsolidus orthopyroxene-clinopyroxene systematics in
- 1287 the system CaO-MgO-SiO₂ to 60 kb: a re-evaluation of the regular solution model.
- 1288 Contributions to Mineralogy and Petrology, 87, 35-42.

- 1289 Niida, K., and Green, D.H. (1999) Stability and chemical composition of pargasitic
- amphibole in MORB pyrolite under upper mantle conditions. Contributions to
- 1291 Mineralogy and Petrology, 135, 18-40.
- 1292 Nixon P.H. (1987) Mantle Xenoliths, 844 p. Wiley, New York.
- 1293 Okubo, Y., and Matsunaga, T. (1994) Curie point depth in northeast Japan and its
- 1294 correlation with regional thermal structure and seismicity. Journal of Geophysical
- 1295 Research: Solid Earth, 99, 22363-22371.
- 1296 O'Reilly, S.Y., and Griffin, W.L. (1996) 4-D lithosphere mapping: methodology and
- examples. Tectonophysics, 262, 3-18.
- 1298 O'Reilly, S.Y., and Griffin, W.L. (2006) Imaging global chemical and thermal heterogeneity
- in the subcontinental lithospheric mantle with garnets and xenoliths: Geophysical
- implications. Tectonophysics, 416, 289-309.
- 1301 O'Reilly, S.Y., and Griffin, W.L. (2010) The continental lithosphere-asthenosphere
- boundary: can we sample it?. Lithos, 120, 1-13.
- 1303 O'Reilly, S.Y., Chen, D., Griffin, W.L., and Ryan, C.G. (1997) Minor elements in olivine
- 1304 from spinel lherzolite xenoliths: implications for thermobarometry. Mineralogical
- 1305 Magazine, 61, 257-269.

- 1306 Ozawa, K. (1984) Olivine-spinel geospeedometry: Analysis of diffusion-controlled
- 1307 Mg-Fe²⁺ exchange. Geochimica et Cosmochimica Acta, 48, 2597-2611.
- 1308 Ozawa, K., and Nagahara, H. (2000) Kinetics of diffusion-controlled evaporation of Fe-Mg
- 1309 olivine: Experimental study and implication for stability of Fe-rich olivine in the
- 1310 solar nebula. Geochimica et Cosmochimica Acta, 64, 939-955.
- 1311 Ozawa, K., and Takahashi, N. (1995) PT history of a mantle diapir: the Horoman peridotite
- complex, Hokkaido, northern Japan. Contributions to Mineralogy and Petrology, 120,
 223-248.
- 1314 Ozawa, K., Nagahara, H., Morioka, M., Matsumoto, N., Hutcheon, I.D., Noguchi, T., and
- 1315 Kagi, H. (2012) Kinetics of evaporation of forsterite in vacuum. American
- 1316 Mineralogist, 97, 80-99.
- 1317 Parkinson, I.J., and Arculus, R.J. (1999) The redox state of subduction zones: insights from
- 1318 arc-peridotites. Chemical Geology, 160, 409-423.
- 1319 Putirka, K.D. (2008) Thermometers and barometers for volcanic systems. Reviews in
- 1320 Mineralogy and Geochemistry, 69, 61-120.

1321	Putirka, K.D., Perfit, M., Ryerson, F.J., and Jackson, M.G. (2007) Ambient and excess
1322	mantle temperatures, olivine thermometry, and active vs. passive upwelling.
1323	Chemical Geology, 241, 177-206.

- 1324 Sachtleben, T., and Seck, H.A. (1981) Chemical control of Al-solubility in orthopyroxene
- and its implications on pyroxene geothermometry. Contributions to Mineralogy and
- 1326 Petrology, 78, 157-165.
- 1327 Sakuyama, M., and Koyaguchi, T. (1984) Magma mixing in mantle xenolith-bearing
- calc-alkalic ejecta, Ichinomegata volcano, northeastern Japan. Journal of Volcanologyand Geothermal Research, 22, 199-224.
- 1330 Sato, Y. and Ozawa, K. (2018) Dynamic processes in lithosphere-asthenosphere boundary
- 1331 zone; rheological structure from Ichinomegata mantle xenoliths. SIT28-11,
- 1332 Proceedings of Japan Geoscience Union Meeting, Makuhari.
- 1333 Satsukawa, T., and Michibayashi, K. (2014) Flow in the uppermost mantle during back-arc
- 1334 spreading revealed by Ichinomegata peridotite xenoliths, NE Japan. Lithos, 189,1335 89-104.
- 1336 Satsukawa, T., Godard, M., Demouchy, S., Michibayashi, K., and Ildefonse, B. (2017).
- 1337 Chemical interactions in the subduction factory: New insights from an in situ trace

1338	element and hydrogen study of the Ichinomegata and Oki-Dogo mantle xenoliths
1339	(Japan). Geochimica et Cosmochimica Acta, 208, 234-267.
1340	Sautter, V., Jaoul, O., and Abel, F. (1988) Aluminum diffusion in diopside using the ²⁷ Al (p,
1341	γ) ²⁸ Si nuclear reaction: preliminary results. Earth and Planetary Science Letters, 89,
1342	109-114.
1343	Sleep, N.H. (2005) Evolution of the continental lithosphere. Annual Review of Earth and
1344	Planetary Sciences, 33, 369-393.
1345	Sleep, N.H. (2006) Mantle plumes from top to bottom. Earth-Science Reviews, 77,
1346	231-271.
1347	Smith, D. (1999). Temperatures and pressures of mineral equilibration in peridotite
1348	xenoliths: review, discussion, and implications. In Y. Fei, C.M. Bertka and B.O.
1349	Mysen, Ed., Mantle petrology: field observations and high pressure experimentation:
1350	a tribute to Francis R.(Joe) Boyd, p. 171-188. Geochemical Society, Washington,
1351	D.C.
1352	Smith, D., and Barron, B.R. (1991) Pyroxene-garnet equilibration during cooling in the

1353 mantle. American Mineralogist, 76, 1950-1963.

1354 Spera, F.J. (1984) Carbon dioxide in petrogenesis III: role of volatiles in the ascent of

- 1355 alkaline magma with special reference to xenolith-bearing mafic lavas. Contributions
- to Mineralogy and Petrology, 88, 217-232.
- 1357 Takahashi, E. (1980) Thermal history of lherzolite xenoliths-I. Petrology of lherzolite
- 1358 xenoliths from the Ichinomegata crater, Oga peninsula, northeast Japan. Geochimica
- 1359 et Cosmochimica Acta, 44, 1643-1658.
- 1360 Takahashi, E. (1986) Genesis of calc-alkali andesite magma in a hydrous mantle-crust
- 1361 boundary: Petrology of lherzolite xenoliths from the Ichinomegata crater, Oga
- 1362 peninsula, northeast Japan, part II. Journal of Volcanology and Geothermal Research,
- 1363 **29**, 355-395.
- 1364 Tanaka, A., Yamano, M., Yano, Y., and Sasada, M., (2004) Geothermal Gradient and Heat
- Flow Data in and around Japan, Digital Geoscience Map DGM P-5, GeologicalSurvey of Japan.
- 1367 Tanaka, T., and Aoki, K. (1981). Petrogenic implications of REE and Ba data on mafic and
- 1368 ultramafic inclusions from Itinome-gata, Japan. The Journal of Geology, 89, 369-390.

1369	Tatsumi, Y., Furukawa, Y., and Yamashita, S. (1994) Thermal and geochemical evolution of
1370	the mantle wedge in the northeast Japan arc: 1. Contribution from experimental
1371	petrology. Journal of Geophysical Research: Solid Earth, 99, 22275-22283.
1372	Tatsumi, Y., Sakuyama, M., Fukuyama, H., and Kushiro, I. (1983) Generation of arc basalt
1373	magmas and thermal structure of the mantle wedge in subduction zones. Journal of
1374	Geophysical Research: Solid Earth, 88, 5815-5825.
1375	Titus, S.J., Medaris, L.G., Wang, H.F., and Tikoff, B. (2007) Continuation of the San
1376	Andreas fault system into the upper mantle: evidence from spinel peridotite xenoliths
1377	in the Coyote Lake basalt, central California. Tectonophysics, 429, 1-20.
1378	Van Orman, J.A., and Crispin, K.L. (2010) Diffusion in oxides. Reviews in Mineralogy and
1379	Geochemistry, 72, 757-825.
1380	von Seckendorff, V., and O'Neill, H.S.C. (1993) An experimental study of Fe-Mg
1381	partitioning between olivine and orthopyroxene at 1173, 1273 and 1423 K and 1.6
1382	GPa. Contributions to Mineralogy and Petrology, 113, 196-207.
1383	Waff, H.S., and Bulau, J.R. (1979) Equilibrium fluid distribution in an ultramafic partial
1384	melt under hydrostatic stress conditions. Journal of Geophysical Research: Solid

1385 Earth, 84, 6109-6114.

- 1386 Wallace, M.E., and Green, D.H. (1991) The effect of bulk rock composition on the stability
- of amphibole in the upper mantle: implications for solidus positions and mantlemetasomatism. Mineralogy and Petrology, 44, 1-19.
- 1389 Wang, Q. (2010) A review of water contents and ductile deformation mechanisms of
- 1390 olivine: implications for the lithosphere-asthenosphere boundary of continents. Lithos,
- 1391 120, 30-41.
- 1392 Wells, P.R.A. (1977) Pyroxene thermometry in simple and complex systems. Contributions
- to Mineralogy and Petrology, 62, 129-139.
- 1394 Wiens, D.A., Kelley, K.A., & Plank, T. (2006) Mantle temperature variations beneath
- 1395 back-arc spreading centers inferred from seismology, petrology, and bathymetry.
- Earth and Planetary Science Letters, 248, 30-42.
- 1397 Yoshizawa, K., Miyake, K., and Yomogida, K. (2010) 3D upper mantle structure beneath
- Japan and its surrounding region from inter-station dispersion measurements of
 surface waves. Physics of the Earth and Planetary Interiors, 183, 4-19.
- 1400 Zhao, D., Hasegawa, A., and Horiuchi, S. (1992) Tomographic imaging of P and S wave
- 1401 velocity structure beneath northeastern Japan. Journal of Geophysical Research: Solid
- 1402 Earth, 97, 19909-19928.

1403	Zheng,	Y., Shen, W., Zhou, L., Yang, Y., Xie, Z., and Ritzwoller, M.H. (2011) Crust and
1404	uj	ppermost mantle beneath the North China Craton, northeastern China, and the Sea
1405	0	f Japan from ambient noise tomography. Journal of Geophysical Research 116, 25,
1406	d	oi:10.1029/2011JB008637.
1407		
1408		Figure captions
1409	Fig. 1.	Locations of Ichinomegata (a large open cross) and other volcanoes yielding
1410		mantle xenoliths in and around the Japan arc (small gray crosses) modified after
1411		Arai et al. (2007) and Harigane et al. (2011).
1412		
1413	Fig. 2.	Characteristic petrographic features of Ichinomegata xenoliths under an optical
1414		microscope (open nicol images: a, b, d, and h) and FE-SEM (back-scattered
1415		electron images: c, e, and f; a secondary electron image: g). Two contrasting
1416		textural types: (a) granular texture and (b) porphyroclastic texture. Microstructures
1417		commonly observed in granular samples are (c) symplectite consisting of
1418		clinopyroxene, orthopyroxene, and aluminous spinel; (d) amphibole and
1419		orthopyroxene partially rimming symplectite; and (e) "primary" plagioclase

1420		(Prm-PL) and "secondary" plagioclase (2nd-PL). Glass indicating the presence of
1421		melt is commonly observed in porphyroclastic samples (f). Diamond-shaped
1422		aligned depression on the surface of olivine along grain boundaries (g) and fluid
1423		inclusions (arrows) in olivine (h), both suggesting the presence of fluid, are
1424		common in the granular samples. Abbreviations: $OL = olivine$, $OPX =$
1425		orthopyroxene, CPX = clinopyroxene, SPL = spinel, SYMP = two-pyroxene spinel
1426		symplectite after plagioclase, AMP = amphibole, PL = plagioclase, FLUID = fluid
1427		inclusion, and $G = glass$.
1428		
1429	Fig. 3.	Four types of chemical zoning (O1, O2, O3, and O4; Table 2) in large
1430		orthopyroxene grains recognized in Ca, Al, and Cr X-ray maps and a

- back-scattered electron image (BEI). Line profiles along solid lines in the BEIs are
 also shown. Abbreviations: apfu = atom per formula unit, Ca x5 = 5 times of Ca
- 1433 atom, Cr x 10 = 10 times of Cr atom, and V = vesicles in glass. Other abbreviations
- are the same as in Figure 2. Sample names are given in the upper left corner of
 each panel. Chemical zoning of orthopyroxene in each xenolith is shown in
 Supplementary Figure S2.

1437

1438	Fig. 4.	Three types of chemical zoning (C1, C2, and C3; Table 2) in large clinopyroxene
1439		grains recognized in Ca, Al, and Cr X-ray maps and BEI. Line profiles along solid
1440		lines in the BEIs are also shown. See Figures 2 and 3 for abbreviations. Sample
1441		names are given in the upper left corner of each panel. Chemical zoning of
1442		clinopyroxene in each xenolith is shown in Figure S2.
1443		
1444	Fig. 5.	Covariation of mean chemical compositions of olivine core and pyroxene rims
1445		(solid symbols) and cores (open symbols) with error bars ($\pm 1\sigma$). Symbols for a
1446		pair of core and rim from the same sample are tied with gray thin lines. Black
1447		circles in Figures b, c, and f indicate Al ₂ O ₃ contents, and the gray squares are ten
1448		times of Cr ₂ O ₃ contents. The error for CaO contents of orthopyroxene rim is
1449		smaller than the size of symbols.
1450		
1451	Fig. 6.	Relationship between Mg# = Mg/(Mg+Fe) of olivine and Cr# = Cr/(Cr+Al) of
1452		spinel. Seven of the nine samples are plotted within the olivine-spinel upper
1453		mantle array (Arai, 1994), but two of them are too low in Mg# of olivine to be in

the array field.

1455

1456	Fig. 7.	Estimated pressures and temperatures of the examined xenoliths plotted with
1457		errors. In (a), two thin dashed lines for each sample represent isopleths giving a
1458		solution for the sample by applying a two-pyroxene geothermobarometer (T_{BKN} ;
1459		short-dashed line) and a Ca-in-orthopyroxene geothermobarometer ($T_{Ca-in-Opx}$;
1460		long-dashed line). In (b), a linearly regressed overall geotherm (a thick and gray
1461		line with dashed ends) and calculated error ellipses with a probability of 68 % are
1462		shown. The horizontal dot-dashed lines are seismic MOHO at 0.6 GPa (Iwasaki et
1463		al., 2013; Zhao et al., 1992) and the upper limit of seismic
1464		lithosphere-asthenosphere boundary at 1.8 GPa (Yoshizawa et al., 2010; Zheng et
1465		al., 2011).

1466

Fig. 8. Reconstructed thermal, chemical, petrological, and rheological structures beneath
Ichinomegata. The shallow levels (28-32 km) are characterized by low
temperature, low oxygen fugacity, coarse granular texture, and the presence of
amphibole, etched pits, and fluid inclusions (denoted as "fluid"), and the deep

1471	levels (41-55 km) by high temperature, high oxygen fugacity, fine-grained
1472	porphyroclastic texture, and the presence of glass (denoted as "melt"). Sample
1473	numbers and estimated depth are shown in the far-left column. The dashed pattern
1474	in the bottom of columns for texture, Al phases, and melt/fluid imply a probable
1475	continuation of the features identified in the deeper samples. Abbreviations: LABZ
1476	= lithosphere-asthenosphere boundary zone, $\delta \log(fO_2)_{FMQ}$ = oxygen fugacity
1477	relative to the fayalite-magnetite-quartz buffer in log unit, $Mg\# = Mg/(Mg+Fe^{2+})$,
1478	and $Cr# = Cr/(Cr+Al)$. Other abbreviations are the same as in Figure 2.

1479

Fig. 9. Comparison of the estimated pressures and temperatures with experimentally 1480 determined phase relations; (a) melting condition of hydrous peridotite 1481 (water-saturated and -undersaturated solidi of peridotite) and (b) the 14821483 plagioclase-spinel phase transition and dry and wet solidi. Symbols in (a): filled circles = glass-bearing and amphibole-free peridotites, open circles = amphibole-1484 and fluid-bearing lherzolites, and small triangles = other cases such as amphibole-1485and fluid-free lherzolite (HK64081206g) and amphibole-free but fluid-bearing 1486 lherzolite (IC81-5); in (b): filled squares = symplectite-free spinel lherzolites and 1487

1488	open squares = symplectite-bearing plagioclase lherzolites. Line patterns are: thin
1489	solid lines = water-saturated solidi; thin dashed lines = water-undersaturated
1490	solidi; a thick dashed line = a dry solidus from Jaques and Green (1980); thick
1491	solid lines = spinel-plagioclase phase boundaries; and dotted lines = isopleths of
1492	Al in orthopyroxene in the plagioclase stability field (Gasparik, 2003). The shaded
1493	area in (b) indicates a possible pressure and temperature range for the formation of
1494	pyroxene-spinel symplectite from olivine and plagioclase. Its lower bound is
1495	defined by spinel-plagioclase phase transition (1) after Borghini et al. (2010) and
1496	the upper bound by the isopleth of Al in orthopyroxene (Gasparik, 2003) starting
1497	from the intersection of the dry solidus (Jaques and Green, 1980) and the
1498	spinel-plagioclase phase boundary of (1). The possible temperature-pressure
1499	region for the plagioclase lherzolites (shaded area) becomes narrower as shown by
1500	meshed pattern if wet solidus (Green, 1973) is used instead of the dry solidus.
1501	
1509	Fig. 10 (a) Inferred denth variation of the lithogenhere asthenogenhere boundary (LAR)

Fig. 10. (a) Inferred depth variation of the lithosphere-asthenosphere boundary (LAB)
along the E-W section of the Northeast Japan arc shown in Figure 1 from the
back-arc basin (BAB) through back-arc (BA) to the Quaternary volcanic front

1505	(QVF). A meshed area with its upper limit shown by a thick solid curve is LAB
1506	zone (10 km in thickness) inferred in our study. The inverted open triangle
1507	indicates the location of Ichinomegata. The dotted (A), dot-dashed (B), and dashed
1508	(C) vertical bars indicate locations and depth ranges of the thermal structure
1509	shown in (b). The depth is exaggerated, and the horizontal distance is measured
1510	from the Japan Trench. The depth of the MOHO is after Iwasaki et al., (2013). (b)
1511	Depth variations of temperature estimated from this study beneath Ichinomegata
1512	(B) and inferred for beneath the volcanic arc (A) and the back-arc basin (C). The
1513	locations and depth ranges of them are shown in (a). The thermal profiles of (A)
1514	and (C) are inferred by considering: (1) the upper limit of LAB zone corresponds
1515	to the wet solidus (Green, 1973), (2) the lithospheric thermal profile follows
1516	conductive geotherm, and (3) the thermal profile of LAB zone follows thermal
1517	gradient exhibited by the spinel peridotites beneath Ichinomegata. Open circles are
1518	estimated pressures and temperatures for the Ichinomegata xenoliths. The
1519	estimated condition for the magma generation of Sannomegata maar, one of the
1520	Megata maars occurring near Ichinomegata, is plotted as a white star in (a) and (b)
1521	and that of Iwate volcano, one of the volcanoes situated at the volcanic front and

1522	to the east of Ichinomegata as a gray star (Kuritani et al., 2014a, 2014b). Note that
1523	the LAB becomes shallower and hotter with an increase in the geothermal gradient.
1524	A gray thick dot-dashed line in (b) is a linear extrapolation of the high pressure
1525	segment of the geotherm estimated from the Ichinomegata xenoliths, representing
1526	the thermal structure of LAB zone. The temperature of the melting condition for
1527	Sannomegata is higher than the Ichinomegata geotherm by ~ 100 °C at 60 km
1528	depth can be explained either (1) heat (and material) fluxed melting and (2)
1529	decompressional melting. See the main text for detail.

1530

Sample	Rock type	Texture	Gr. size*1		Mod	lal abı	undan	ce (v	vol%)		Lam	ella in
Sample	коск туре	Texture	(mm)	Ol	Opx	Срх	Spl	Pl	Amp g	lass	Opx	Amp
HK64081206g	g Pl lherzolite	granular	0.465	59	20	16	1	4	tr.* ²		\checkmark	\checkmark
HK64081206c	Pl lherzolite	granular	0.466	58	28	7	1	tr.	6		\checkmark	\checkmark
HK64081206d	l Spl lherzolite	weakly porphyroclastic	0.314	50	39	9	1		tr.	1* ⁴	\checkmark	\checkmark
HK66031502	Pl lherzolite	granular	0.377	69	14	10	4	tr.	3		\checkmark	\checkmark
IC81-5	Spl lherzolite	porphyroclastic	0.291	73	20	6	1					
HK64081205a	Spl lherzolite	porphyroclastic	0.297	65	20	11	2		tr.* ³	2	\checkmark	
IC81-8	Spl lherzolite	porphyroclastic	0.205	65	23	11	1		tr.* ³	tr.		
HK66031501	Spl lherzolite	porphyroclastic	0.259	65	22	9	2		tr.* ³	2		
HK64081205b	Spl wehrlite	granular	0.527	81	2	15	1		tr.* ³	1		

Table 1. Texture, grain size of olivine, modal composition of minerals, and microstructures

*¹ Sample mean diameters of olivine. *² Abundance of amphibole as lamellae in clinopyroxene. *³ Abundance inclusions in clinopyroxene. *⁴ Abundance of the fine-grained aggregates. Abbreviations: tr. = a trace amount (< symplectite, and pit & fl. inc. = the etch pits and the fluid inclusions on and in olivine.

in the samples.

Срх	Lamella	in Op	x _	pit &
Spl	Срх	Spl	Symp	fl. inc.
\checkmark	\checkmark	\checkmark	0	
\checkmark	\checkmark	\checkmark	ο	0
\checkmark	\checkmark	\checkmark		0
\checkmark	\checkmark	\checkmark	ο	0
	\checkmark			0
\checkmark	\checkmark	√		
\checkmark	\checkmark	√		
\checkmark	\checkmark	\checkmark		
√	\checkmark			

> of amphibole as quench crystals and <0.5 vol. %), Symp = pyroxene-spinel</pre>

Zoning trme	Samulas		Elements
Zoning type	Samples	Ca	Al
		Orthopyroxene	
01	HK64081206g, HK64081206c	simple decrease	simple decrease
02	HK64081206d	decrease followed by	decrease followed by wea
02	HK66031502	weak increase	decrease followed by weak increase
03	HK64081205a, HK64081205b, HK66031501, IC81-8	decrease followed by intense increase	decrease followed by inter
04	IC81-5	faint increase	faint decrease
		Clinopyroxene	
C1	HK64081206g, HK64081206c, HK64081206d, HK66031502	simple increase	simple decrease
C2	HK64081205a, HK64081205b, HK66031501, IC81-8	simple decrease	simple increase of decrease followed by inter
C3	IC81-5	flat	faint decrease followed by faint increase

Table 2. Patterns of chemical zonings in orthopyroxene and clinopyroxene.

Cr

;

ık increase

simple decrease

se increase

э

ər

se increase

faint decrease

Sample			HK	6408120	6g		
Mineral	Ol		Opx-r			Spl	P
Zoning			01	C			
N =	10	5	4	5	3	5	8
SiO_2	41.22	55.42	56.35	51.84	52.94	0.01	50.
TiO ₂	0.00	0.12	0.03	0.43	0.14	0.04	0.
Al_2O_3	0.002	3.75	2.94	4.86	3.08	49.63	32.
Cr ₂ O ₃	0.00	0.50	0.30	1.17	0.47	18.98	0.
FeO	9.13	6.05	5.80	2.42	2.19	11.89	0.
MgO	50.45	32.99	34.26	15.53	16.72	19.32	0.
CaO	0.031	0.68	0.43	22.81	23.15	0.00	15.
MnO	0.13	0.15	0.15	0.07	0.07	0.15	0.
NiO	0.39	0.08	0.09	0.05	0.05	0.30	0.
Na ₂ O	0.00	0.06	0.03	0.68	0.43	0.00	2.
K ₂ O	n.a.	0.02	n.a.	0.02	n.a.	n.a.	0.
Total	101.36	99.82	100.35	99.87	99.23	100.01	101.
Si	0.995	1.917	1.933	1.889	1.935	0.000	2.2
Ti	0.000	0.003	0.001	0.012	0.004	0.001	0.0
Al	0.000	0.153	0.119	0.209	0.133	1.558	1.7
Cr	0.000	0.014	0.008	0.034	0.014	0.400	0.0
Fe ³⁺	-	-	-	-	-	0.042	-
Fe ²⁺	0.184	0.175	0.166	0.074	0.067	0.223	0.0
Mg	1.815	1.701	1.752	0.843	0.911	0.767	0.0
Ca	0.001	0.025	0.016	0.891	0.906	0.000	0.7
Mn	0.003	0.004	0.004	0.002	0.002	0.003	0.0
Ni	0.008	0.002	0.003	0.002	0.001	0.006	0.0
Na	0.000	0.004	0.002	0.048	0.030	0.000	0.2
K	n.a.	0.001	n.a.	0.001	n.a.	n.a.	0.0
Total	3.005	3.999	4.003	4.003	4.003	3.000	4.9
Mg#	0.908	0.907	0.913	0.920	0.932	0.775	-
Cr#	-	0.082	0.063	0.139	0.093	0.204	-

Total Fe oxides as FeO. Cations are calculated based on 4 (oliving Zoning types, O1, O2, O3, and O4 for orthopyroxene and C1, C2, mean compositions of minerals are listed in Supplementary Table Cr/(Cr+A1), n.a. = not analyzed, c = core, m = mantle, r = rim, ag =

						Table 3 (continued).								
Sample				Hŀ	K6603150)2						IC8	31-5	
Mineral	Ol	Opx-c	Opx-m	Opx-r	Cpx-c	Cpx-r	Spl	Pl	Amp	Ol	Opx-c	Opx-r	Cpx-c	Cpx-r
Zoning			O2		C	1					С	94	С	3
N =	8	4	1	5	5	5	5	5	5	11	5	4	3	4
SiO_2	40.73	55.60	56.09	56.11	52.03	53.33	0.00	49.99	43.52	40.66	56.43	55.45	53.76	52.67
TiO ₂	0.00	0.12	0.03	0.05	0.39	0.18	0.11	0.03	0.27	0.00	0.04	0.04	0.09	0.09
Al_2O_3	0.002	3.82	3.17	3.19	4.27	2.88	46.33	31.32	15.44	0.011	3.58	3.61	3.55	3.61
Cr ₂ O ₃	0.00	0.50	0.41	0.25	0.90	0.26	21.09	0.00	0.31	0.01	0.50	0.49	0.65	0.63
FeO	10.22	6.65	6.60	6.55	2.59	2.63	14.61	0.46	4.22	9.37	5.97	5.89	2.56	2.61
MgO	49.00	32.61	33.32	33.61	15.82	16.99	18.15	0.14	18.02	50.02	33.03	33.37	17.23	17.53
CaO	0.041	0.72	0.45	0.61	23.16	22.88	0.00	14.99	12.16	0.079	0.88	0.93	22.41	22.19
MnO	0.14	0.16	0.16	0.15	0.07	0.08	0.18	0.01	0.07	0.13	0.14	0.14	0.09	0.07
NiO	0.35	0.08	0.10	0.08	0.04	0.05	0.27	0.01	0.10	0.34	0.11	0.09	0.05	0.06
Na ₂ O	0.00	0.01	0.02	0.02	0.39	0.30	0.00	3.22	2.69	0.00	0.01	0.01	0.22	0.20
K ₂ O	n.a.	0.01	n.a.	n.a.	0.01	n.a.	n.a.	0.02	0.08	n.a.	0.00	n.a.	0.01	n.a.
Total	100.49	100.28	100.35	100.61	99.66	99.59	100.75	100.19	96.88	100.63	100.69	100.02	100.61	99.67
Si	0.997	1.918	1.932	1.927	1.900	1.942	0.000	2.283	6.205	0.990	1.932	1.915	1.933	1.915
Ti	0.000	0.003	0.001	0.001	0.011	0.005	0.002	0.001	0.029	0.000	0.001	0.001	0.002	0.003
Al	0.000	0.155	0.129	0.129	0.184	0.124	1.476	1.685	2.594	0.000	0.144	0.147	0.150	0.155
Cr	0.000	0.014	0.011	0.007	0.026	0.008	0.451	0.000	0.034	0.000	0.013	0.013	0.018	0.018
Fe ³⁺	-	-	-	-	-	-	0.071	-	-	-	-	-	-	-
Fe ²⁺	0.209	0.192	0.190	0.188	0.079	0.080	0.259	0.017	0.503	0.191	0.171	0.170	0.077	0.079
Mg	1.787	1.677	1.711	1.721	0.861	0.922	0.731	0.009	3.830	1.816	1.686	1.717	0.924	0.950
Ca	0.001	0.027	0.016	0.022	0.906	0.893	0.000	0.733	1.857	0.002	0.032	0.034	0.863	0.864
Mn	0.003	0.005	0.005	0.004	0.002	0.002	0.004	0.000	0.009	0.003	0.004	0.004	0.003	0.002
Ni	0.007	0.002	0.003	0.002	0.001	0.001	0.006	0.000	0.012	0.007	0.003	0.003	0.001	0.002
Na	0.000	0.001	0.001	0.001	0.028	0.021	0.000	0.285	0.742	0.000	0.001	0.001	0.015	0.014
Κ	0.000	0.000	n.a.	n.a.	0.000	n.a.	n.a.	0.001	0.014	n.a.	0.000	0.000	0.000	0.000
Total	3.003	3.995	3.998	4.004	3.998	3.998	3.000	5.016	15.830	3.009	3.988	4.005	3.988	4.003
	o o o -		0.000	0.001	0.01.5				0.001	0.06-	0.000	0.010	0.00-	
Mg#	0.895	0.897	0.900	0.901	0.916	0.920	0.739	-	0.884	0.905	0.908	0.910	0.923	0.923
Cr#	-	0.080	0.080	0.050	0.124	0.058	0.234	-	0.013	-	0.085	0.083	0.110	0.105

				HK	6408120)5a			
Spl	Ol	Opx-c	Opx-m	Opx-r		Cpx-r	Spl	Amp	glass
			O3		C	22			
5	11	3	1	5	4	5	5	1	10
0.03	40.72	55.25	55.80	54.61	52.39	51.99	0.03	42.35	54.24
0.07	0.00	0.11	0.08	0.14	0.19	0.43	0.18	1.60	0.79
47.18	0.015	3.64	3.58	4.77	3.97	5.71	49.54	15.12	20.05
21.49	0.01	0.48	0.29	0.38	0.51	0.55	16.14	0.97	0.04
11.52	10.21	6.53	6.43	6.90	3.24	3.44	14.06	4.40	3.76
18.92	49.14	33.27	33.29	31.95	16.90	16.50	19.20	17.69	2.73
0.00	0.090	0.72	0.49	1.02	22.44	21.62	0.00	11.60	9.67
0.16	0.17	0.14	0.13	0.16	0.09	0.10	0.16	0.06	0.10
0.29	0.36	0.08	0.08	0.10	0.06	0.05	0.34	0.11	0.01
0.00	0.00	0.02	0.01	0.03	0.31	0.37	0.00	2.24	2.58
n.a.	n.a.	0.00	n.a.	n.a.	0.00	n.a.	n.a.	1.03	1.21
99.66	100.72	100.23	100.17	100.06	100.10	100.75	99.66	97.17	95.17
0.001	0.994	1.909	1.923	1.893	1.905	1.874	0.001	6.071	-
0.001	0.000	0.003	0.002	0.004	0.005	0.012	0.004	0.172	-
1.504	0.000	0.148	0.146	0.195	0.170	0.242	1.563	2.555	-
0.460	0.000	0.013	0.008	0.010	0.015	0.016	0.341	0.109	-
0.034	-	-	-	-	-	-	0.091	-	-
0.227	0.209	0.189	0.185	0.200	0.098	0.104	0.223	0.528	-
0.763	1.789	1.713	1.710	1.651	0.915	0.887	0.766	3.781	-
0.000	0.002	0.026	0.018	0.038	0.874	0.835	0.000	1.781	-
0.004	0.003	0.004	0.004	0.005	0.003	0.003	0.004	0.008	-
0.006	0.007	0.002	0.002	0.003	0.002	0.001	0.007	0.013	-
0.000	0.000	0.001	0.001	0.002	0.022	0.026	0.000	0.623	-
n.a.	n.a.	0.000	n.a.	n.a.	0.000	0.000	n.a.	0.189	-
3.000	3.005	4.008	3.999	4.001	4.009	3.999	3.000	15.830	-
0.771	0.896	0.901	0.902	0.892	0.903	0.895	0.774	0.878	0.564
0.771	0.090	0.901	0.902	0.892	0.903	0.895	0.179	0.078	0.001
0.234	-	0.001	0.031	0.050	0.079	0.001	0.179	0.041	0.001

												Table	e 3 (cont	inued).
Sample					IC81-8					_			HI	K660315
Mineral	Ol	Opx-c	Opx-m	Opx-r	Cpx-c		Cpx-r	Spl	glass	Ol	Opx-c	Opx-m	Opx-r	Cpx-c
Zoning			03			C2						O3		
N =	11	5	1	5	4	1	5	5	1	11	5	1	5	5
SiO ₂	40.40	55.58	55.99	55.28	52.64	52.92	51.87	0.03	57.75	40.63	55.36	54.96	54.83	52.44
TiO ₂	0.00	0.09	0.07	0.08	0.24	0.18	0.31	0.15	0.73	0.00	0.07	0.05	0.13	0.18
Al_2O_3	0.016	3.67	3.68	3.60	3.80	3.33	5.11	48.28	21.28	0.016	3.76	3.83	4.82	4.42
Cr ₂ O ₃	0.01	0.50	0.51	0.33	0.49	0.31	0.66	17.40	0.01	0.01	0.51	0.49	0.35	0.54
FeO	10.26	6.82	6.64	6.66	3.21	3.08	3.43	15.07	2.86	9.73	6.51	6.43	6.29	3.24
MgO	49.43	32.54	33.26	32.89	16.90	17.43	16.78	18.75	1.97	49.23	32.69	32.83	32.45	16.58
CaO	0.088	0.69	0.54	1.00	22.35	22.19	21.53	0.00	7.14	0.090	0.72	0.51	1.01	22.35
MnO	0.16	0.16	0.14	0.16	0.08	0.04	0.11	0.16	0.05	0.16	0.15	0.17	0.16	0.09
NiO	0.34	0.09	0.09	0.09	0.05	0.07	0.05	0.32	0.00	0.37	0.09	0.08	0.09	0.06
Na ₂ O	0.00	0.02	0.00	0.02	0.33	0.33	0.42	0.00	3.20	0.00	0.02	0.02	0.02	0.32
K ₂ O	n.a.	0.00	n.a.	n.a.	0.00	n.a.	n.a.	n.a.	1.60	n.a.	0.00	n.a.	n.a.	0.00
Total	100.70	100.17	100.93	100.10	100.10	99.87	100.27	100.17	96.58	100.24	99.89	99.35	100.15	100.22
Si	0.988	1.921	1.919	1.914	1.912	1.923	1.880	0.001	-	0.995	1.917	1.913	1.893	1.902
Ti	0.988	0.002	0.002	0.002	0.007	0.005	0.008	0.001	-	0.995	0.002	0.001	0.003	0.005
Al	0.000	0.002	0.149	0.002	0.163	0.142	0.008	1.527	-	0.000	0.002	0.157	0.196	0.189
Cr	0.000	0.014	0.014	0.009	0.014	0.009	0.019	0.369	_	0.000	0.014	0.013	0.009	0.016
Fe ³⁺	-	-	-	-	-	-	-	0.099	-	-	-	-	-	-
Fe ²⁺	0.210	0.197	0.190	0.193	0.098	0.093	0.104	0.239	-	0.199	0.188	0.187	0.182	0.098
Mg	1.802	1.677	1.699	1.697	0.915	0.944	0.907	0.750	-	1.797	1.688	1.703	1.671	0.896
Ca	0.002	0.025	0.020	0.037	0.870	0.864	0.836	0.000	-	0.002	0.027	0.019	0.037	0.869
Mn	0.003	0.005	0.004	0.005	0.002	0.001	0.003	0.004	-	0.003	0.004	0.005	0.005	0.003
Ni	0.007	0.003	0.003	0.002	0.002	0.002	0.002	0.007	-	0.007	0.002	0.002	0.003	0.002
Na	0.000	0.002	0.000	0.001	0.024	0.023	0.029	0.000	-	0.000	0.002	0.001	0.001	0.023
Κ	n.a.	0.000	n.a.	n.a.	0.000	n.a.	n.a.	n.a.	-	0.000	0.000	n.a.	n.a.	0.000
Total	3.012	3.995	3.998	4.007	4.005	4.008	4.007	3.000	-	3.005	3.998	4.002	4.001	4.002
Mg#	0.896	0.895	0.899	0.898	0.904	0.910	0.897	0.758	0.550	0.900	0.899	0.901	0.902	0.901
Cr#	-	0.084	0.084	0.058	0.080	0.059	0.080	0.195	0.000	-	0.084	0.078	0.046	0.076

01							HK640	81205b			
Cpx-m	Cpx-r	Spl	glass	Ol	Opx-c	Opx-m	Opx-r	Cpx-c	Cpx-r	Spl	glass
C2				-		O3		C	2		
1	5	5	12	11	3	1	4	3	3	5	20
52.58	50.94	0.02	56.70	39.99	55.16	55.51	54.16	52.59	51.42	0.05	48.90
0.12	0.44	0.15	0.69	0.00	0.12	0.09	0.14	0.57	0.38	0.26	2.00
3.95	5.85	47.34	20.46	0.012	3.50	3.41	4.44	4.90	5.51	48.43	21.52
0.32	0.62	19.06	0.01	0.01	0.43	0.39	0.41	1.01	0.66	14.62	0.01
3.10	3.37	14.26	3.17	12.61	6.75	6.97	7.87	2.99	4.24	19.17	6.71
17.06	16.37	19.16	2.04	47.20	32.69	33.13	31.76	15.87	16.24	17.53	3.02
22.06	21.42	0.00	8.25	0.087	0.60	0.49	1.08	22.09	20.88	0.00	10.48
0.10	0.10	0.17	0.09	0.19	0.16	0.17	0.17	0.09	0.12	0.17	0.13
0.09	0.05	0.34	0.01	0.28	0.07	0.10	0.08	0.03	0.04	0.27	0.02
0.32	0.37	0.00	2.82	0.00	0.03	0.02	0.03	0.48	0.39	0.00	3.69
n.a.	n.a.	n.a.	1.43	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	1.80
99.70	99.53	100.50	95.67	100.38	99.52	100.27	100.14	100.60	99.89	100.50	98.29
1.914	1.861	0.001	-	0.991	1.919	1.918	1.887	1.898	1.875	0.001	-
0.003	0.012	0.003	-	0.000	0.003	0.002	0.004	0.016	0.011	0.005	-
0.169	0.252	1.496	-	0.000	0.144	0.139	0.182	0.208	0.237	1.537	-
0.009	0.018	0.404	-	0.000	0.012	0.011	0.011	0.029	0.019	0.311	-
-	-	0.096	-	-	-	-	-	-	-	0.145	-
0.094	0.103	0.223	-	0.261	0.196	0.202	0.229	0.090	0.129	0.287	-
0.926	0.891	0.766	-	1.744	1.696	1.707	1.650	0.853	0.883	0.704	-
0.860	0.838	0.000	-	0.002	0.023	0.018	0.040	0.854	0.815	0.000	-
0.003	0.003	0.004	-	0.004	0.005	0.005	0.005	0.003	0.004	0.004	-
0.003	0.001	0.007	-	0.006	0.002	0.003	0.002	0.001	0.001	0.006	-
0.023	0.026	0.000	-	0.000	0.002	0.001	0.002	0.033	0.028	0.000	-
n.a.	n.a.	n.a.	-	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	-
4.005	4.006	3.000	-	3.009	4.001	4.005	4.013	3.985	4.001	3.000	-
0.009	0.007	0 774	0.524	0.870	0.000	0.804	0.070	0.005	0 072	0.710	0.445
0.908	0.897	0.774	0.534	0.870	0.896	0.894	0.878	0.905	0.872	0.710	0.445
0.052	0.067	0.213	0.000	-	0.076	0.071	0.058	0.121	0.075	0.168	0.000

Sample	Н	IK640	81206g		H	IK640	81206c		H	IK640	81206d]
Minerals	Opx-r	1 σ	Cpx-r	1 σ	Opx-r	1 σ	Cpx-r	1 σ	Opx-r	1 σ	Cpx-r	1 σ	Opx-r
N =	4		3		4		5		4		4		5
SiO ₂	56.35	.284	52.94	.174	56.43	.208	52.70	.209	57.17	.121	53.97	.084	56.11
TiO ₂	0.03	.007	0.14	.022	0.03	.002	0.30	.038	0.06	.013	0.08	.008	0.05
Al_2O_3	2.94	.280	3.08	.234	2.52	.175	3.79	.181	1.22	.057	1.23	.036	3.19
Cr ₂ O ₃	0.30	.134	0.47	.062	0.14	.071	0.80	.079	0.23	.025	0.31	.026	0.25
FeO	5.80	.067	2.19	.033	6.25	.035	2.42	.106	7.34	.226	2.81	.102	6.55
MgO	34.26	.327	16.72	.141	34.15	.214	16.38	.192	33.94	.403	17.64	.284	33.61
CaO	0.43	.002	23.15	.016	0.41	.003	23.44	.080	0.52	.009	23.58	.077	0.61
MnO	0.15	.007	0.07	.001	0.14	.006	0.07	.007	0.20	.018	0.09	.008	0.15
NiO	0.09	.003	0.05	.009	0.09	.002	0.04	.008	0.07	.006	0.03	.006	0.08
Na ₂ O	0.03	.029	0.43	.014	0.00	.005	0.36	.027	0.01	.004	0.20	.018	0.02
Total	100.35		99.23		100.16		100.28		100.75		99.95		100.61
P (GPa)		0.72	± 0.52			0.80	± 0.70		-0.50 ((0.82)	± 0.61		
T (°C)		829	± 23			828	± 30		811	(875)	± 27		

Table 4. Mean chemical compositions at the rim of pyroxenes with analytical errors, and estimated pressures

Total Fe oxides as FeO. "N" is a number of data used for calculation of a average chemical composition. "o" estimates are shown with one standard deviation values. The pressure and the temperature of HK640812 geotherm and $T_{Ca-in-Opx}$.

Sample	H	IK640	81205a			IC8	1-8		1	HK66(031501		Η
Minerals	Opx-r	1 σ	Cpx-r	1 σ	Opx-r	1 σ	Cpx-r	1 σ	Opx-r	1 σ	Cpx-r	1 σ	Opx-r
Ave. no.	5		5		5		5		5		5		4
SiO ₂	54.61	.489	51.99	.227	55.28	.276	51.87	.186	54.83	.392	50.94	.205	54.16
TiO ₂	0.14	.023	0.43	.045	0.08	.011	0.31	.018	0.13	.015	0.44	.047	0.14
Al_2O_3	4.77	.239	5.71	.111	3.60	.323	5.11	.116	4.82	.187	5.85	.177	4.44
Cr ₂ O ₃	0.38	.028	0.55	.049	0.33	.074	0.66	.029	0.35	.042	0.62	.171	0.41
FeO	6.90	.115	3.44	.119	6.66	.170	3.43	.066	6.29	.147	3.37	.083	7.87
MgO	31.95	.157	16.50	.080	32.89	.185	16.78	.160	32.45	.108	16.37	.122	31.76
CaO	1.02	.008	21.62	.075	1.00	.003	21.53	.135	1.01	.005	21.42	.123	1.08
MnO	0.16	.022	0.10	.008	0.16	.007	0.11	.029	0.16	.007	0.10	.014	0.17
NiO	0.10	.020	0.05	.004	0.09	.004	0.05	.017	0.09	.003	0.05	.010	0.08
Na ₂ O	0.03	.007	0.37	.026	0.02	.006	0.42	.048	0.02	.003	0.37	.044	0.03
Total	100.06		100.75		100.10		100.27		100.15		99.53		100.14
P (GPa)		1.29	± 0.24			1.46	± 0.37			1.51	± 0.36		

Table 4 (continued).

P (GPa)

3 and temperatures of the Ichinomegata xenoliths.

HK660	31502			IC8	1-5				
1 σ	Cpx-r	1 σ	Opx-r	1 σ	Cpx-r	1 σ			
	5		4		4				
.202	53.33	.177	55.45	.132	52.67	.241			
.014	0.18	.018	0.04	.005	0.09	.009			
.258	2.88	.200	3.61	.011	3.61	.013			
.118	0.26	.019	0.49	.005	0.63	.011			
.168	2.63	.088	5.89	.032	2.61	.049			
.408	16.99	.156	33.37	.185	17.53	.230			
.005	22.88	.061	0.93	.002	22.19	.053			
.014	0.08	.009	0.14	.008	0.07	.045			
.002	0.05	.004	0.09	.005	0.06	.030			
.015	0.30	.010	0.01	.005	0.20	.029			
	99.59		100.02		99.67				
0.85	± 0.42		1.16 ± 0.29						
905	± 19			1017	± 15				

' is a standard deviation. Pressure and temperature 06d in brackets are based on the sample-derived

IK64081205b			
1 σ	Cpx-r 1 o		
	3		
.252	51.42	.250	
.003	0.38	.048	
.145	5.51	.297	
.044	0.66	.111	
.124	4.24	.100	
.181	16.24	.456	
.006	20.88	.127	
.007	0.12	.010	
.009	0.04	.005	
.002	0.39	.029	
	99.89		

 $1.62\,\pm 0.44$

 $1081\,\pm23$

Sample	Pressure	Depth (km) Temperature (°C) -		Pressure Depth (Irm) Temperature (%C) Ol			Olivine com	livine compositions	
Sample	(GPa)	(GPa) Depth (km) Temperature (C)	iii) Temperature (C) –	Ca (ppm)	NiO (wt.%)	MnO (
HK64081206g	$0.72\pm.52$	28 ± 16	829 ± 23	219 ± 10	$0.390\pm.007$	0.128			
HK64081206c	$0.80\pm.70$	30 ± 21	828 ± 30	216 ± 10	$0.396\pm.003$	0.140			
HK64081206d	(0.82)	(31)	(875)	287 ± 70	$0.280 \pm .012$	0.168			
HK66031502	$0.85\pm.42$	32 ± 13	905 ± 19	294 ± 10	$0.349\pm.005$	0.145			
IC81-5	$1.16\pm.29$	41 ± 9	1017 ± 15	566 ± 16	$0.342\pm.016$	0.134			
HK64081205a	$1.29\pm.24$	$45\ \pm 7$	1050 ± 12	645 ± 19	$0.365\pm.006$	0.167			
IC81-8	$1.46\pm.37$	50 ± 11	1052 ± 19	627 ± 14	$0.339\pm.004$	0.156			
HK66031501	$1.51\pm.36$	52 ± 11	1057 ± 18	643 ± 18	$0.367\pm.003$	0.161			
HK64081205b	1.62 ± .44	55 ± 13	1081 ± 23	624 ± 31	$0.283 \pm .022$	0.191			

Table 5. Summary of depth variations of all the features observed or estimated for the Ichi

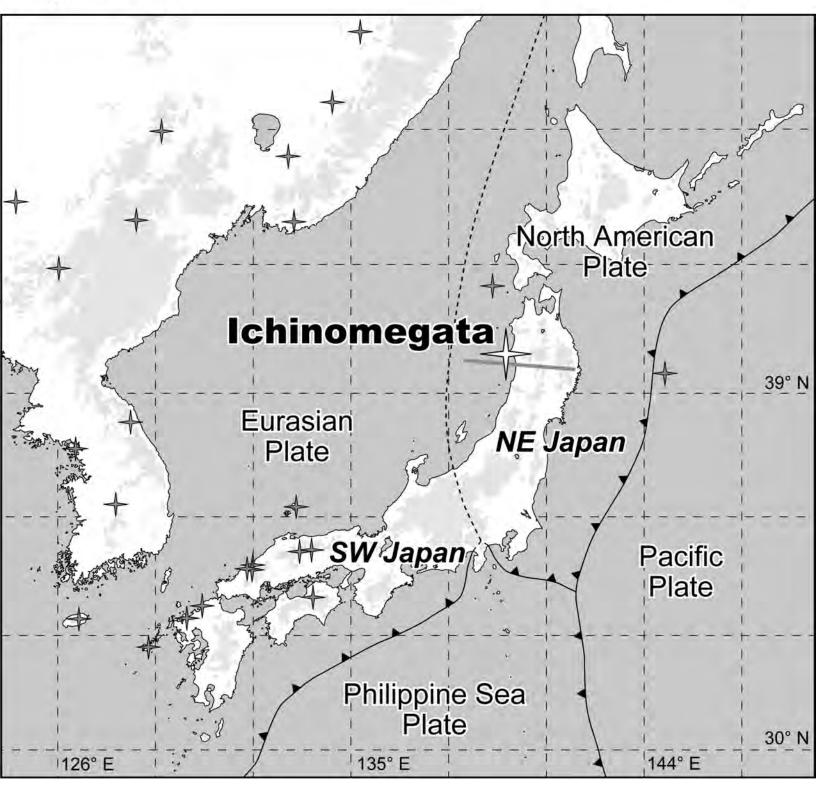
The pressure, depth, and temperature of HK64081206d in brackets are based on the sample-derived geo

nomegata xenoliths.

Table 5.	(continued)
----------	-------------

		- δlog(fO ₂) _{FMO}
(wt.%)	Mg#	olog(102)FMQ
± .006	0.908	-0.49
± .005	0.902	+0.19
± .027	0.881	+1.94
± .003	0.895	+0.08
± .005	0.905	-1.27
± .006	0.896	+0.31
± .005	0.896	+0.39
± .003	0.900	+0.32
± .007	0.870	+0.69
therm and T _{Ca-in-Opx} (Table 4).		

	_	Table 5. (continued			nued)
log(fO ₂) _{FMQ}	Sample	Al-rich phase	Hydrous phases	Texture	Gr. Size (mm)
-0.49	HK64081206g	Pl	n.d.	granular	0.465
+0.19	HK64081206c	Pl	Amp + fluid	granular	0.466
+1.94	HK64081206d	Spl	Amp + fluid + Agg.	weakly porphyroclastic	0.314
+0.08	HK66031502	Pl	Amp + fluid	granular	0.377
-1.27	IC81-5	Spl	fluid	porphyroclastic	0.291
+0.31	HK64081205a	Spl	melt	porphyroclastic	0.297
+0.39	IC81-8	Spl	melt	porphyroclastic	0.205
+0.32	HK66031501	Spl	melt	porphyroclastic	0.259
+0.69	HK64081205b	Spl	melt	granular	0.527


l_{Ca-in-Opx} (Ia

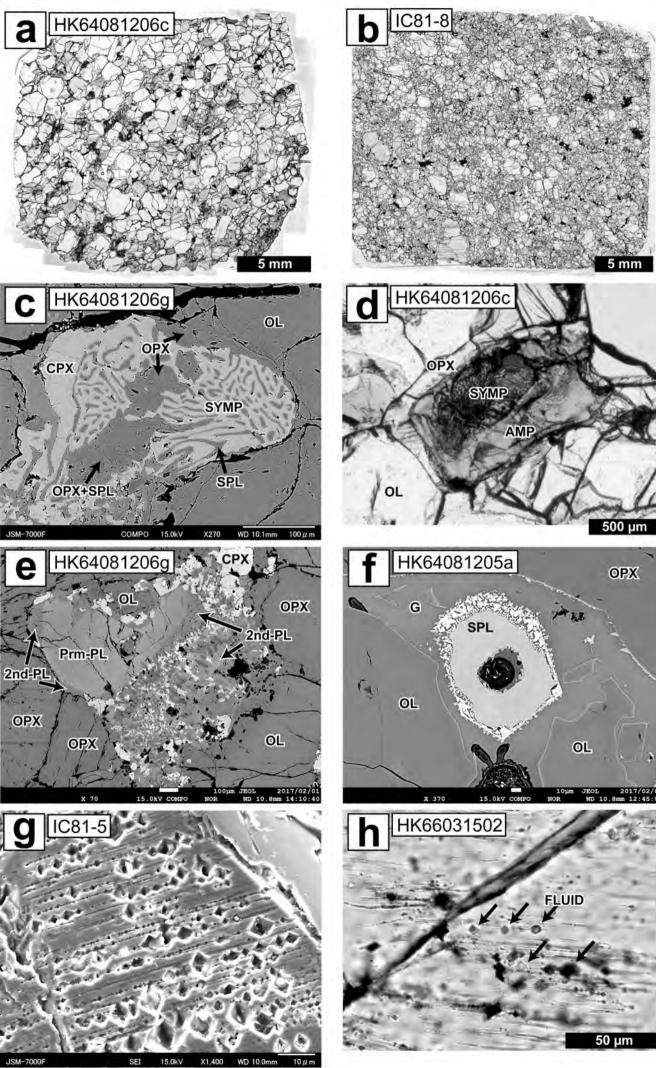
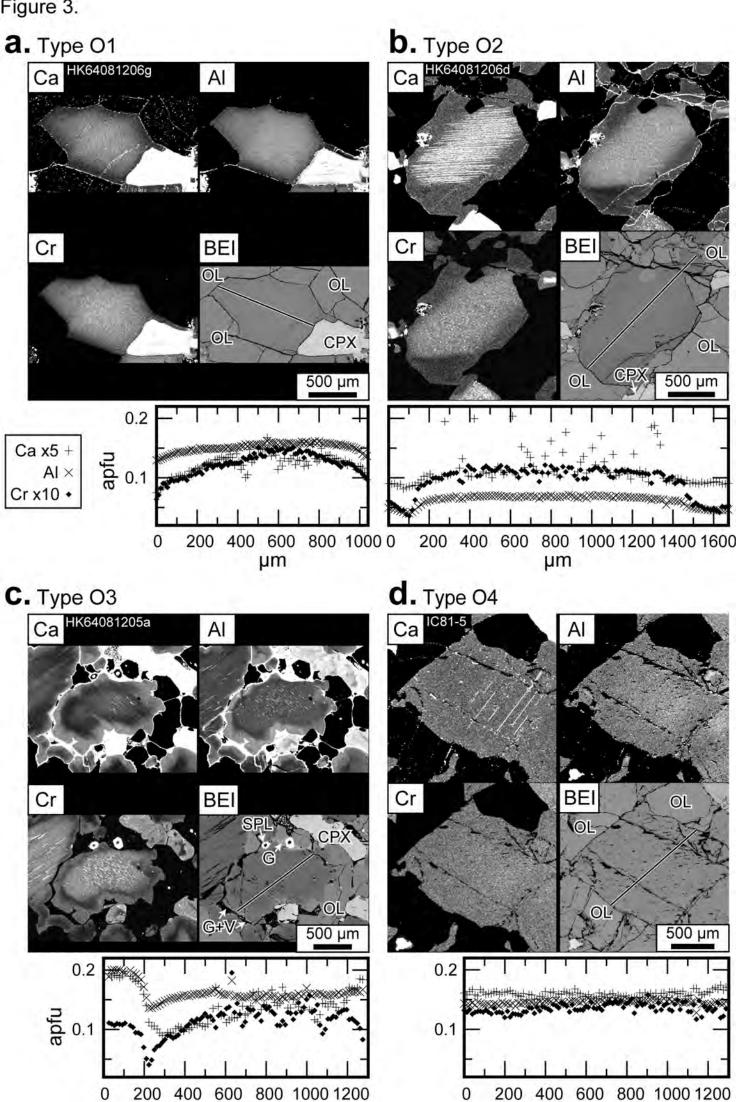
Agg. = fine-grained crystal aggregate after melt; n.d. = not detected. The occurr clinopyroxene and quench crystals in glass are excluded.

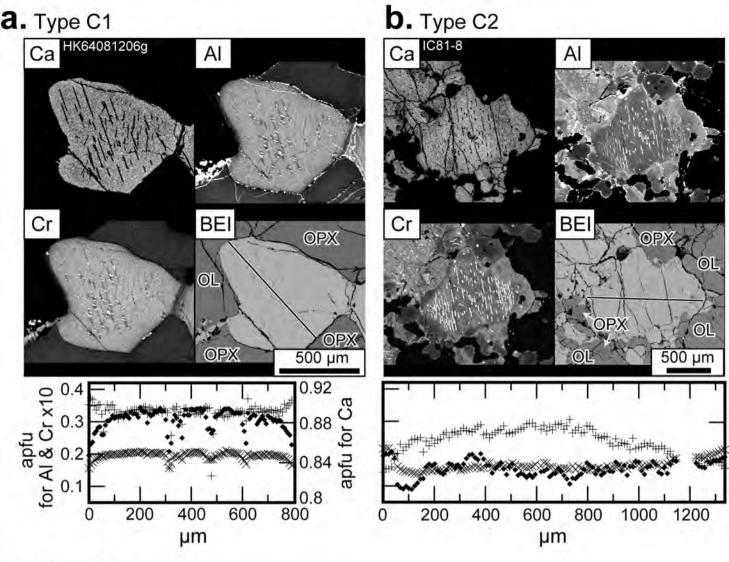
Ch	Chemical zoning of pyroxenes		
Types	Decoded thermal history		
O1 & C1	Simple cooling.		
O1 & C1	Simple cooling.		
O2 & C1	Cooling followed by weak heating.		
O2 & C1	Cooling followed by weak heating.		
O4 & C3	Cooling and long heating.		
O3 & C2	Cooling followed by intense heating		
O3 & C2	Cooling followed by intense heating		
O3 & C2	Cooling followed by intense heating		
O3 & C2	Cooling followed by intense heating		

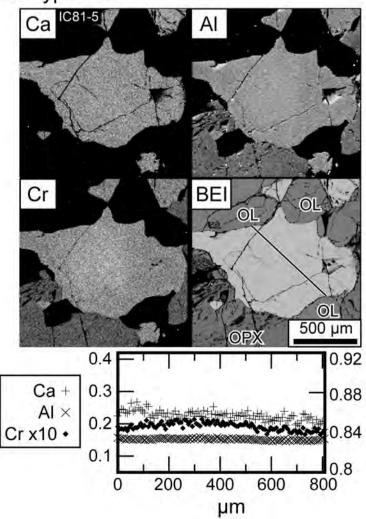
ences of amphibole as lamellae and inclusions in

Figure 1.

Figure 2.


Figure 3.


μm

μm

Figure 4.

C. Type C3

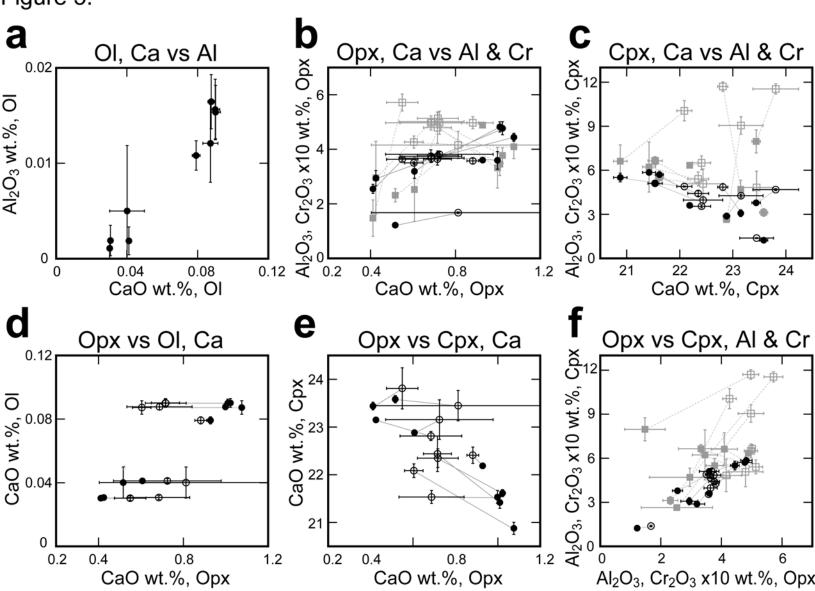
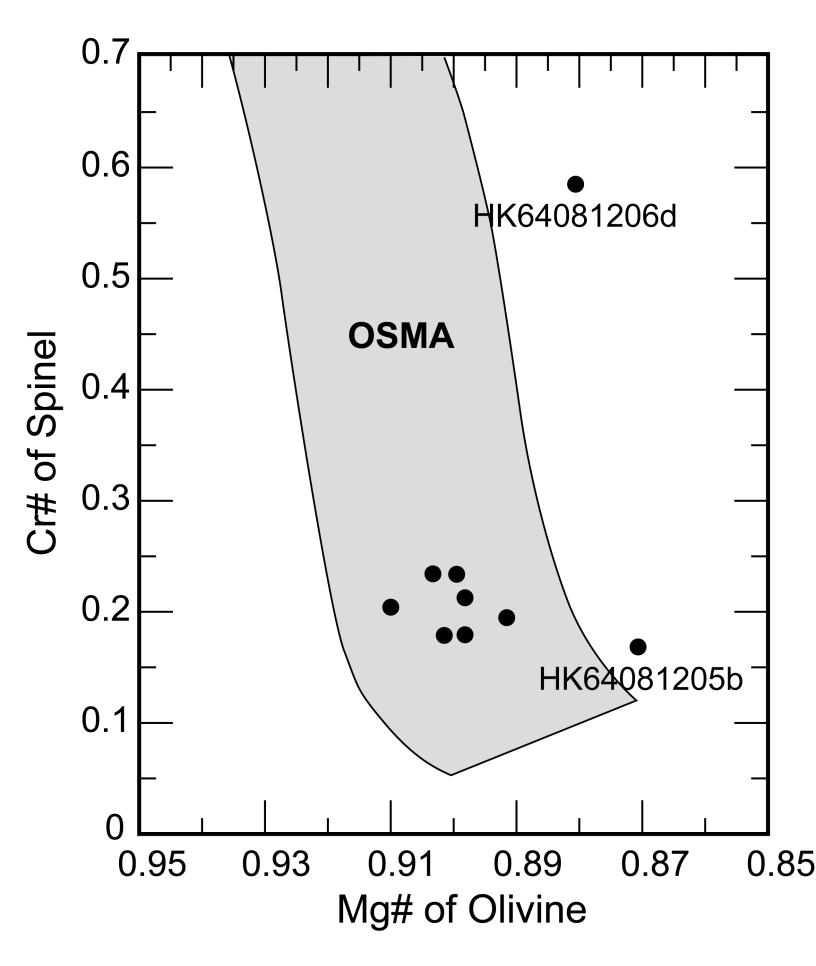
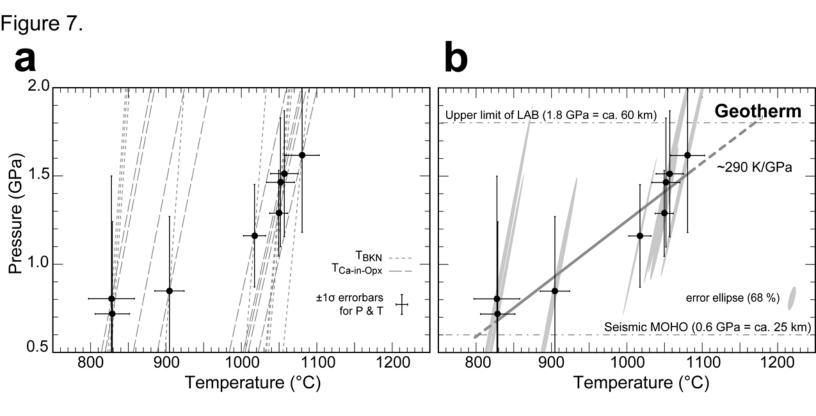




Figure 5.

```
Figure 6.
```

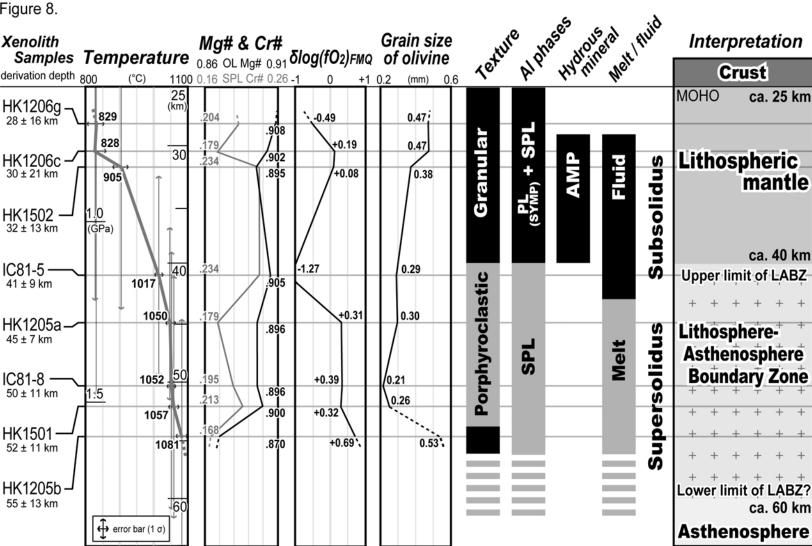
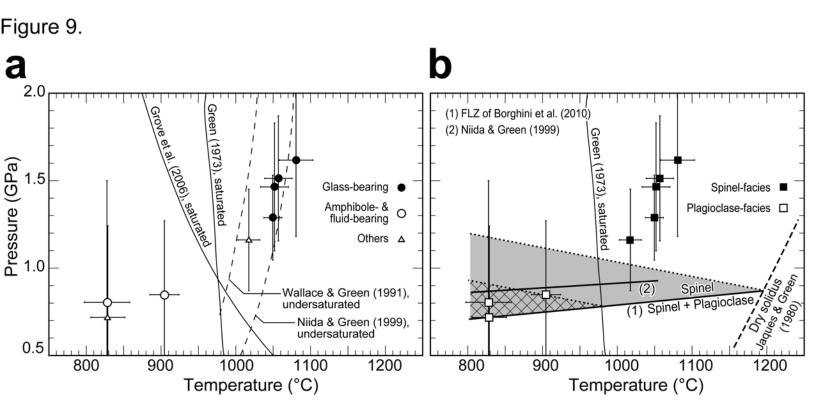
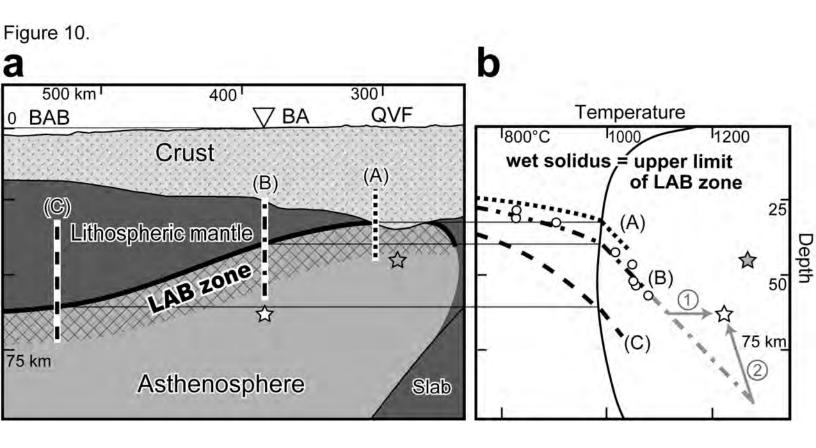





Figure 8.

