1 REVISION 1

- 2
- 3 A Low-Aluminum Clinopyroxene-Liquid Geothermometer for High-Silica Magmatic
- 4 Systems
- 5

6	Karal	ee K.	Brugman
0	Ixuru	UU IX.	Drugmun

- 7 School of Earth and Space Exploration, Arizona State University
- 8 781 Terrace Mall, ISTB4, Room 795
- 9 Tempe, AZ 85287-6004, USA
- 10 (480) 727-2559
- 11 <u>kara.brugman@asu.edu</u>
- 12
- 13 Christy B. Till
- 14 School of Earth and Space Exploration, Arizona State University
- 15 781 Terrace Mall, ISTB4, Room 795
- 16 Tempe, AZ 85287-6004, USA
- 17 (480) 727-2828
- 18 <u>christy.till@asu.edu</u>
- 19

20	Abstract
21	A number of geothermobarometric tools have focused on clinopyroxene due to its
22	prevalence in igneous rocks, however clinopyroxene produced in high-silica igneous systems is
23	high in iron and low in aluminum, causing existing geothermometers that depend on aluminum
24	exchange to fail or yield overestimated temperatures. Here we present a new clinopyroxene-
25	liquid geothermometer recommended for use in natural igneous systems with bulk SiO ₂ \geq \Box 70 \Box
26	wt%, which contain clinopyroxene with $M_{2} = 5 \square$ and $M_{2} = 7 \square$ wt%
27	
28	$T[^{\circ}C] = 300[-1.89 - 0.601(X_{CaTs}^{cpx}) - 0.186(X_{DiHd_{2003}}^{cpx}) + 4.71(X_{SiO_2}^{liq}) +$
29	$77.6(X_{TiO_2}^{liq}) + 10.9(X_{FeO}^{liq}) + 33.6(X_{MgO}^{liq}) + 15.5(X_{CaO}^{liq}) + 15.6(X_{KO_{0.5}}^{liq})] $ (1)
30	
31	The new geothermometer lowers calculated temperatures by 85°C on average relative to
32	Putirka (2008, Eq. 33) and reduces the uncertainty by a factor of two (standard error of estimate
33	\pm 20°C). When applied to natural systems, we find this new clinopyroxene-liquid
34	geothermometer reconciles many inconsistencies between experimental phase equilibria and
35	preexisting geothermometry results for silicic volcanism, including those from the Bishop Tuff
36	and Yellowstone caldera-forming and post-caldera rhyolites. We also demonstrate that
37	clinopyroxene is not restricted to near-liquidus temperatures in rhyolitic systems; clinopyroxene
38	can be stable over a broad temperature range, often down to the solidus. An Excel spreadsheet
39	and Python notebook for calculating temperature with this new geothermometer may be
40	downloaded from GitHub at http://bit.ly/cpxrhyotherm.
41	

- 41
- 42 Keywords: geothermometer, clinopyroxene, high-silica

43

44

Introduction

Investigations of igneous systems often begin with an assessment of the temperature 45 during eruption, crystallization, and/or magma storage, and geothermometers are generally 46 calibrated to work with a broad range of rock types and mineral compositions. At least 40 47 clinopyroxene geothermometers have been developed, and many improve on past 48 geothermometers or build on a previously published activity model. Two-pyroxene 49 geothermometers are the most common type (e.g., Lindsley and Andersen 1983; Anderson et al. 50 1993; Sack and Ghiorso 1994; Putirka 2008; Liang et al. 2013) and take advantage of the 51 temperature-dependent solvus of the pyroxene system. But, these geothermometers necessitate 52 the presence of equilibrium pairs of clinopyroxene and orthopyroxene in the host rock and are 53 almost exclusively calibrated for diopside (Di; $CaMgSi_2O_6$), the low-Fe endmember of calcic 54 clinopyroxene. Another type of geothermometer, clinopyroxene-liquid (e.g., Putirka 2008; 55 Masotta et al. 2013), does not require co-crystallizing orthopyroxene and relies on the equilibria 56 of Di, hedenbergite (Hd; CaFeSi₂O₆), and jadeite (Jd; NaAlSi₂O₆), the high-Al endmember of 57 sodic clinopyroxene. However, geothermometers dependent on this equilibria are likely to be 58 inaccurate if there is very little Al in the clinopyroxene and thus very little to no Jd component 59 (which is calculated based on the estimated Al^{IV} rather than Na when Al^{IV} is low—see 60 Supplementary Table 1). This caveat becomes significant when studying high-silica systems, in 61 which clinopyroxene is typically high in Fe (up to 30 wt% oxide) and low in Al (< 2 wt% oxide; 62 Figure 1). 63

⁶⁴ Unfortunately, the high-Fe, low-Al clinopyroxene from high-silica systems are not well
 ⁶⁵ represented in experimental data used to calibrate existing geothermometers, as the majority of

66	experimental studies tend to explore Mg-rich augite to diopside, and in mafic rather than silicic
67	systems. In silica-saturated systems, the major phases are Al-bearing plagioclase and alkali
68	feldspar, and clinopyroxene have relatively low CaO; consequently, these clinopyroxene
69	crystallize with almost all tetrahedral sites filled with Si rather than Al (Salviulo et al. 2000). A
70	result of the historical sampling bias is that in Al ₂ O ₃ -Mg# space, there is no overlap between the
71	clinopyroxene found in many natural high-silica magmatic systems and the clinopyroxene used
72	to calibrate two of the most commonly used clinopyroxene geothermometers, the Putirka (2008)
73	clinopyroxene-liquid geothermometer and the MELTS two-pyroxene geothermometer (Sack and
74	Ghiorso 1994) (Figure 1). For many high-Fe, low-Al clinopyroxene, the most popular
75	clinopyroxene-liquid geothermometer (Putirka 2008, Eq. 33) does not successfully calculate a
76	temperature. When it does, it returns systematically high temperatures, up to 170°C greater than
77	the conditions of high-Fe, low-Al clinopyroxene-saturated experiments, indicating that this
78	geothermometer is not well suited for this restricted mineral composition. Thus, if we wish to
79	utilize clinopyroxene in our thermal investigations of high-silica systems such as Long Valley,
80	Yellowstone, and Valles Calderas, it is prudent to develop a new geothermometer that is
81	calibrated for the clinopyroxene found in these eruptive products.
82	Here we present a new clinopyroxene-liquid geothermometer, calibrated using data from
83	experiments on high-silica systems that crystallized high-Fe, low-Al clinopyroxene, that is able

to consistently calculate temperatures where other geothermometers fail and reproduces

experimental temperatures to within 17°C. Also, for high-silica system experiments below

86 850°C—the temperature range of most interest for these systems—the new clinopyroxene-liquid

geothermometer offers a five-fold decrease in the deviation between calculated and actual

experimental temperatures as compared to the Putirka (2008, Eq. 33) geothermometer ($\pm 20^{\circ}$ C

89	versus \pm 110°C). We apply the geothermometer to a series of silicic igneous systems to examine
90	the effect of these adjusted temperatures on our petrologic understanding of phase relations and
91	magma storage conditions.
92	
93	Methods
94	In order to calibrate a new geothermometer, a dataset of clinopyroxene and glass
95	compositions was compiled from recent experimental studies on high-silica magmatic systems
96	(Supplementary Table 2). The selected studies were conducted at 675–1025°C and 75–503 MPa
97	and yielded experimental run products with a bulk silica content of > 70 wt% and clinopyroxene
98	with □ ≰ wt% Al ₂ O ₃ and Mg# from 2.5–77 (Figure 1, Supplementary Table 2). These data
99	included relatively few experiments performed between 750-875°C, therefore new hydrothermal
100	cold-seal pressure vessel (CSPV) experiments (4) were conducted in this temperature range to
101	supplement the experiments from the literature.
102	For the new experiments, the starting material, the Scaup Lake rhyolite from
103	Yellowstone Caldera (sample 12CTYC-01), was twice powdered, homogenized, and glassed at
104	1400°C for 30 minutes in a 1 atm vertical furnace at the Experimental Petrology and Igneous
105	processes Center (EPIC) at Arizona State University (ASU) (Table 1). Single Scaup Lake
106	clinopyroxene crystals with intact, euhedral faces were hand-picked under stereo microscope
107	from a \leq 1 mm size fraction of mineral separates in order to mitigate compositional
108	heterogeneity due to subtle intracrystalline zoning. These clinopyroxene were used as seed
109	crystals in the whole rock powder. The CSPV experiments were conducted at the Massachusetts
110	Institute of Technology experimental petrology lab in Stellite No. 25 cold-seal hydrothermal
111	pressure vessels with filler rods, and were heated in horizontal, split-tube furnaces. Temperatures

112	were monitored using chromel-alumel thermocouples. Experiments were H ₂ O-saturated and
113	buffered at NNO using double Au capsules with powdered Ni-NiO buffer in the outer capsule.
114	The pressure for all experiments was 1 kbar, run durations were ~16–24 days (Table 2), and
115	experiments were quenched by blowing compressed air over the vessels while at pressure. After
116	quenching, inner and outer capsules were weighed before and after they were pierced and dried
117	in a warming oven for 10 minutes. If mass was lost after piercing and drying, often in
118	conjunction with water visible upon piercing, the capsule was presumed to be H ₂ O-saturated.
119	The CSPV experimental products (Supplementary Table 2) were mounted in epoxy in
120	wells drilled into 1" aluminum rounds and then measured on the JXA-8530F \Box EMA at \Box ASJ's \Box
121	Eyring Materials Center using an accelerating voltage of 15 kV and beam current of 15 nA.
122	Beam sizes were 1 μ m for clinopyroxene and 10 μ m for glass. Time-dependent intensity (TDI)
123	correction was applied to glass measurements of Na, K, and Si to mitigate migration of light
124	elements away from the electron beam.
125	
126	Results and Discussion
127	CSPV calibration experiments
128	Four successful experiments (750-825°C, 1 kbar) were glassy with bubbles and included
129	amphibole, indicating the charges remained H ₂ O-saturated for the run duration. All experiments
130	crystallized clinopyroxene (Figure 2, Supplementary Table 2) and contained equilibrated,
131	unzoned seed crystals, with variable minor amounts of alkali feldspar, plagioclase, Fe-Ti oxides,
132	and quartz.
133	Accepted clinopyroxene data were sourced from crystals that showed no zoning in
134	backscattered electron (BSE) images. These data were from either newly grown crystals or rims

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. DOI: https://doi.org/10.2138/am-2019-6842

Brugman 7

- of equilibrated seed cryads (easily distinguished by sie: $<05 \text{ m} \cdot \text{vs} \geq 100$) that differed from their starting composition (Supplementary Table 3).
- 137

138 Geothermometer calibration and performance

The CSPV experiment data were combined with the previously published experiment 139 data (see Methods). 64 of these data points constitute the geothermometer calibration dataset of 140 high-Fe, low-Al clinopyroxene and glass pairs (Table 3, Supplementary Table 2). 13 data points 141 were not included in the calibration dataset and instead were set aside as a test dataset to check 142 the efficacy of the geothermometer. To preserve temperature variation in the calibration data, a 143 data point was excluded from the calibration dataset and reserved for the test dataset only if the 144 experiment was conducted at the same temperature as other experiments in that particular study. 145 The calibration dataset clinopyroxene and glass compositions (60 previously published 146 and 4 from this work) were converted to clinopyroxene components and liquid cation fractions 147 148 following the procedure used in previous clinopyroxene-liquid geothermometers (Putirka et al. 2003 and references therein) (see Supplementary Table 1 for full procedure). Backwards step-149 wise regression was used to determine which parameters best explained the variation in 150 151 experimental temperatures. Significant parameters were selected based on statistics of significance from preliminary linear regressions on the calibration dataset. These initial linear 152 regressions were performed with T as the dependent variable, and one of two groups of 153 parameters as independent variables. Parameter Group A was comprised of those calculated for 154 use in the Putirka (2008, Eq. 33) geothermometer and Group B encompassed Group A as well as 155 calculations of cations based on 6 oxygens for clinopyroxene (Supplementary Table 1). A 156

parameter progressed to the next stage of the process if the 95% confidence interval for its
coefficient did not include 0.
These limited sets of parameters were used in new linear regression trials to create new
candidate geothermometer equations. These equations were evaluated for efficacy by their ability
to return accurate temperatures from the test dataset (e.g., R² and standard error of estimate
(SEE)). Ultimately, the parameters from both clinopyroxene and liquid that most improved
regression statistics were sourced from Group A, resulting in the geothermometer equation:

164

165
$$T[^{\circ}C] = 300[-1.89 - 0.601(X_{CaTs}^{cpx}) - 0.186(X_{DiHd_{2003}}^{cpx}) + 4.71(X_{SiO_{2}}^{liq}) + 166 \qquad 77.6(X_{TiO_{2}}^{liq}) + 10.9(X_{FeO}^{liq}) + 33.6(X_{MgO}^{liq}) + 15.5(X_{CaO}^{liq}) + 15.6(X_{KO_{05}}^{liq})]$$
(1)

167

168 $X_{DiHd_{2003}}^{cpx}$ represents the Di plus Hd components of clinopyroxene as described in Putirka et al. 169 (2003), and $X_{SiO_2}^{liq}$ represents the cation fraction of SiO₂ in the liquid.

The new geothermometer reproduced the temperatures of the test dataset well, with an R^2 170 value of 0.95 as compared to $R^2 = 0.72$ for temperatures calculated using the Putirka (2008) 171 clinopyroxene-liquid geothermometer (using Putirka 2008 Eq. 33 in concert with the reported 172 experimental P) (Figure 3b). Based on results from the test dataset, the new geothermometer has 173 an SEE of \pm 20°C, and when applied to both the calibration and test dataset of high-Fe, low-Al 174 experimental clinopyroxene, recovers these temperatures to within an average of 17°C. In 175 comparison, the Putirka (2008, Eq. 33) geothermometer, which is calibrated for a broad range of 176 systems, has a reported SEE of \pm 45°C, and can overestimate the same experiments' 177 temperatures by > 170°C. For experiments \Box performed $\Box \leq \Box 850$ °, the new geothermometer 178

179	returned temperatures within an average of 20°C, a five-fold improvement over the Putirka
180	(2008, Eq. 33) clinopyroxene-liquid geothermometer (Figure 3).
181	The new geothermometer eliminates any dependence on Jd, and the H ₂ O and pressure
182	terms in the Putirka (2008, Eq. 33) geothermometer were found to have no significant effect on
183	this empirical calibration. The only clinopyroxene parameters on which the geothermometer
184	relies are the Ca-Tschermak's \Box (Ca \mathfrak{F}) \Box ad \Box DiH \mathfrak{g}_{003} components. The new geothermometer has a
185	strong dependence on the TiO_2 and MgO content of the liquid, and greatly increases the
186	dependence on SiO_2 and CaO in the liquid over that of the Putirka (2008, Eq. 33)
187	geothermometer. Beause of the new geothe ometer's stong dependece on he liquid
188	composition, for input conditions we recommend only using actual glass compositions measured
189	as close as is prudent to the clinopyroxene of interest. This is in part because the rhyolitic whole
190	rock oxide composition can deviate from that of the glass, particularly in those oxides used in the
191	geothermometer e.g., MgO which tends to be higher in crystal cores. Using whole rock instead
192	of glass compositions with the geothermometer increases the SEE of the calculated temperature.
193	For example, a temperature calculated for Bishop Tuff samples using whole rock is > 60°C
194	higher (> 3x the SEE) than a temperature calculated correctly with glass.
195	Calibration trials were also conducted using the same parameters as the Putirka (2008,
196	Eq. 33) clinopyroxene-liquid geothermometer, including Jd and P. Although temperature
197	estimates using these parameters were somewhat improved over the original Putirka (2008, Eq.
198	33) geothermometer (SEE \pm 30°C vs. \pm 60°C for our test dataset), this parameterization produced
199	a lower R^2 than our new empirically-based regression equation (0.81 vs. 0.95) and the SEE was
200	~10°C greater (SEE \pm 30°C vs. \pm 20°C) for both the entire test dataset and the experiments
201	performed□≤850°CThis result is not surprising, because although the Putirka (2008)

202	geothermometer is thermodynamically motivated, it relies on Di, Hd, and Jd equilibria-the Jd
203	content of natural high-silica system clinopyroxene can be zero and the estimated Jd content of
204	the new \Box gedtermometer's calibration dataset is as low as 0.002.
205	Additionally, we explored a universal clinopyroxene-liquid geothermometer calibrated
206	with a dataset comprised of both our calibration dataset and that used to calibrate Putirka (2008,
207	Eq. 33). Although this geothermometer was able to return a temperature for all test data and
208	improved $\Box \mathbf{E} E \Box \text{ of } experiments \Box \text{ conduted} \Box \leq \Box 850^{\circ} \text{ versus the original Putirka (2008, Eq. 33)}$
209	geothermometer, it was not pursued as it did not improve the SEE for the high-Fe, low-Al test or
210	calibration datasets. And, with $R^2 = 0.80$, the universal geothermometer had the poorest R^2 value
211	of any of the candidate geothermometer equations. This is also not surprising, as the two
212	calibration datasets—our high-Fe, low-Al \Box dhopyroxene \Box and $Putka(2008)$'s \Box generkly \Box mre \Box
213	mafic clinopyroxene—have little overlap in Al ₂ O ₃ vs. Mg# space or on the pyroxene
214	quadrilateral (Figure 1).
215	Although the Putirka (2008, Eq. 33) clinopyroxene-liquid geothermometer was calibrated
216	to be broadly applied and is an excellent tool for use with the majority of igneous rock
217	compositions, including more augitic or high-Al clinopyroxene from high-silica systems, high-
218	Fe, low-Al clinopyroxene appear to be an end member case that requires special handling. For
219	high-Fe, low-Al clinopyroxene, a universal geothermometer is unable to match the accuracy of a
220	specialized tool.
221	In some cases, the temperatures calculated with the new geothermometer are within
222	uncertainty of the Putirka (2008, Eq. 33) geothermometer. However, the Putirka (2008)
223	geothermometer will sometimes fail to return a temperature for high-Fe, low-Al clinopyroxene,
224	particularly if $Jd = 0$ (i.e., when $AI^{IV} = 0$), and the new geothermometer eliminates this issue in

225	addition to decreasing uncertainty. Although the new geothermometer calibration dataset
226	clinopyroxene has median 2.25 wt% Al_2O_3 (23% of the dataset has < 1 wt%) it includes
227	clinopyroxene with up to 7.08 wt% Al_2O_3 (Fig. 1). Thus, our new clinopyroxene-liquid
228	geothermometer is recommended for use with natural systems that have bulk $SiO_2 \ge \Box 70 \Box wt \% da$
229	bear clinopyroxene \Box with \Box Mg# \Box \leq and Al ₂ O ₃ \leq \Box \Box wt%An Excel spreadsheet and Python
230	notebook for calculating temperature with this new geothermometer are included in the
231	Supplementary Materials. The most up to date version may be downloaded from GitHub at
232	http://bit.ly/cpxrhyotherm.

233

234 Equilibrium of natural samples

An important question when considering using a clinopyroxene-liquid geothermometer is 235 whether natural clinopyroxene are in equilibrium with coexisting liquid in natural samples. If the 236 mineral did not crystallize in equilibrium with the liquid, results returned by a geothermometer 237 that is based on these two compositions—such as ours—will be suspect. To investigate 238 clinopyroxene-liquid equilibrium and provide a tool for assessing equilibrium in conjunction 239 with our geothermometer, major element partition coefficients were calculated for all 240 experimental compositions in the calibration dataset (n = 64), as well as for the larger dataset (n241 = 1290) used to calibrate the Putirka (2008) geothermometer. Using this combined experimental 242 dataset, we find SiO_2 clinopyroxene-liquid partition coefficients to be a reliable indicator of 243 equilibrium, with mafic samples having $Kd_{SiO_2}^{cpx-liquid} > 1.0$ (average = 1.03), rhyolitic samples 244 having $Kd_{SiO_2}^{cpx-liquid} < 0.75$ (average = 0.68), and intermediate silica samples having intermediate 245 $Kd_{SiO_2}^{cpx-liquid}$ values (average = 0.81). Thus, we advise using clinopyroxene-liquid pairs with our 246 geothermometer only when the $Kd_{SiO_2}^{cpx-liquid}$ is < 0.75. The natural samples explored in the 247

248	discussion section have average $Kd_{SiO_2}^{cpx-liquid} = 0.66$, indicating clinopyroxene is in equilibrium
249	with rhyolitic liquids in these systems.
250	
251	Application to Natural Systems
252	Here we use the new geothermometer to calculate temperatures for several natural high-
253	silica systems (Table 4, Supplementary Table 3). In all cases the new geothermometer yields
254	temperatures that are lower than those calculated with the Putirka (2008, Eq. 33)
255	geothermometer; for the Bishop Tuff, Bandelier Tuff, and Paektu comendite, this difference is
256	130°C on average (Figure 4). For all high-silica systems considered, the new geothermometer
257	calculates temperatures that are more consistent with our understanding of those systems, as well
258	as with experimental phase equilibria and other mineral-derived temperatures.
259	
260	Late-erupted Bishop Tuff, Long Valley
261	The 0.76 Ma Late-erupted Bishop Tuff (Ig2) was emplaced at Long Valley Caldera in
262	eastern California near the end of an eruption whose eruptive products covered as much as
263	2.5×10^6 km ² of North America (Hildreth and Wilson 2007). The Bishop Tuff has been intensely
264	studied (e.g., Hildreth 1977, 1981; Hervig and Dunbar 1992; Wilson and Hildreth 1997;
265	Anderson et al. 2000; Bindeman and Valley 2002; Reid et al. 2011; Gualda and Ghiorso 2013;
266	Chamberlain et al. 2014; Gualda and Sutton 2016) with particular interest in the possible
267	stratification of the magma body before eruption, based on Fe-Ti oxide geothermometry. Fe-Ti
268	oxide QUILF geothermometry (Anderson et al. 1993) of the later ignimbrite returns temperatures
269	over 800°C and a temperature of ~720°C for the earlier units (Hildreth and Wilson 2007;
270	Ghiorso and Evans 2008). Similarly, quartz-magnetite oxygen isotope geothermometry returns

271	815°C for the Late-erupted units and 715°C for the Early-erupted units (Bindeman and Valley
272	2002). However, Gardner et al. (2014) and Ghiorso and Gualda (2013) suggest that the Fe-Ti
273	oxides did not crystallize in equilibrium with the rest of the Bishop Tuff phase assemblage, and
274	that the oxygen isotope geothermometry may not reflect magmatic storage temperatures. Instead,
275	Gardner et al. (2014) suggest a pre-eruptive storage temperature of $< 740^{\circ}$ C based on phase
276	equilibria experiments on the Late-erupted Bishop Tuff composition.
277	Pyroxene phenocrysts are not present in the Early-erupted Bishop Tuff, but
278	clinopyroxene is present in the Late-erupted Bishop Tuff (Table 4, Supplementary Table 3).
279	Experimental studies of Late-erupted Bishop Tuff pumice containing 20% phenocrysts of quartz,
280	sanidine, plagioclase, clinopyroxene, orthopyroxene, biotite, magnetite, and ilmenite indicate
281	that clinopyroxene does not crystallize at temperatures above 800°C at pressures > 1.4 kbar and
282	is unlikely to crystallize above 820°C at \Box pressures $\Box \leq \Box 1.2 \Box k$ (Ramukcu et al. 2012; Gardner et
283	al. 2014). The Putirka (2008, Eq. 33) clinopyroxene-liquid geothermometer calculates 870°C for
284	the Late-erupted Bishop Tuff natural clinopyroxene rims, which places the clinopyroxene
285	crystallization interval far above the experimental liquidus of Gardner et al. (2014) (Figure 5).
286	The new geothermometer calculates a Late-erupted clinopyroxene temperature of 759°C which
287	is□wd□wthin□the□clinopyroxeneStability□fiedin□teperimental□studiestnd⊡si□also©nsistent□
288	with the Gardner et al. (2014) storage temperature and Ti-in-zircon geothermometry (Gualda and
289	Ghiorso 2013) (Figure 5). The lower clinopyroxene temperature of 759°C is also closer to the
290	Fe-Ti oxide and oxygen isotope temperatures for the Early-erupted units, lending support to the
291	argument that this material may not have been stored at much higher temperatures than the
292	Early-erupted products, and thus does not support a vertical stratification model for the Bishop
293	Tuff magma body. Workers have suggested the pyroxene-free Early-erupted material may have

294	been stored laterally to the Late-erupted material (Wilson and Hildreth 1997; Cashman and
295	Giordano 2014), and the new geothermometer results for the Bishop Tuff could lend credence to
296	this hypothesis.

297

298 Millennium Eruption comendite, Paektu

Paektu (also known as Changbaishan) is a high-silica igneous system located on the 299 border of the Democratic \square Pople's \square Republic \square of \square Kea and China. Circa 946 AD, the Paektu 300 Millennium Eruption deposited 23 ± 5 km³ DRE of tephra. most of which is comendite pumice 301 containing alkali feldspar, clinopyroxene (Table 4, Supplementary Table 3), favalite, Fe-Ti 302 oxides, and quartz (Horn and Schmincke 2000). Phase equilibria experiments for this system 303 indicate that clinopyroxene is the liquidus phase, with the liquidus at ~720°C at 1 kbar and 304 ~770°C at 500 bar (Iacovino et al. 2015, 2016). Similar to the above results for the Bishop Tuff, 305 the Putirka (2008, Eq. 33) clinopyroxene-liquid geothermometer returns a superliquidus 306 temperature of 889°C for the Millennium Eruption comendite pumice, whereas the new 307 geothermometer yields a temperature of 755°C, which approximates the temperature 308 experimentally determined to best reproduce the natural phase assemblage (725°C at 500 bar; 309 Iacovino et al. 2015, 2016). Paektu is yet to be studied in depth, and it remains unclear whether 310 the Millennium Eruption was the caldera-forming eruption. The new clinopyroxene-liquid 311 312 geothermometer $Could \square blp \square clcidate \square Rektu's \square history \square in \square fute \square investigations.$

313

314 Scaup Lake rhyolite, Yellowstone

High-Fe, low-Al clinopyroxene is the most abundant mafic phase in the Scaup Lake
rhyolite, a lava emplaced effusively ca. 257 ka, after the last caldera-forming eruption at

317	Yellowstone (Christiansen et al. 2007; Girard and Stix 2009). Scaup Lake clinopyroxene (Table
318	4, Supplementary Table 3) exhibit exsolution lamellae, are reverse zoned with higher-Fe cores,
319	and have alternating higher- and lower-Fe fine rim zones, all indicators of a complex pre-
320	eruptive history involving both thermal and chemical variation (Till et al. 2015). The Putirka
321	(2008, Eq. 33) clinopyroxene-liquid geothermometer was unable to calculate temperatures for a
322	number of Scaup Lake clinopyroxene-liquid pairs because the Scaup Lake clinopyroxene have,
323	on average, $Jd < 0.008$. The new clinopyroxene-liquid geothermometer yields a temperature of
324	800°C for the outermost rim of these clinopyroxene, which is slightly lower than that of the
325	Putirka (2008, Eq. 33) geothermometer (827°C when able to be calculated) and much lower than
326	the two-pyroxene temperature of ~880°C obtained via PyMELTS (Sack and Ghiorso 1994) and
327	QUILF. Other post-caldera lavas from Yellowstone, the South Biscuit Basin and Solfatara
328	Plateau rhyolites emplaced ca. 255 and 103 ka, respectively (Christiansen 2001; Bindeman et al.
329	2008), yield new geothermometer temperatures \sim 80°C lower than the temperatures calculated by
330	the Putirka (2008, Eq. 33) clinopyroxene-liquid geothermometer (Figure 4), underlining the
331	importance of using the new geothermometer for the Yellowstone system.
332	We judge the new temperature to be the preferred temperature for Scaup Lake
333	clinopyroxene rim growth because, unlike the Putirka (2008, Eq. 33) clinopyroxene-liquid
334	geothermometer, the new geothermometer is able to calculate temperatures for all Scaup Lake
335	clinopyroxene compositions and does not rely on the presence of co-crystallizing orthopyroxene,
336	so it can be used if there is any uncertainty about phase equilibria. This temperature is slightly
337	lower than that recorded by prior Fe-Ti oxide geothermometry (834–880°C: Hildreth et al. 1984;
338	Vazquez et al. 2009) and two-feldspar geothermometry (819±20°C: Till et al. 2015), differences
339	we do not interpret as an error in geothermometry, but rather as a reflection of the relative

location of phase boundaries and a particular mineral-element □ par's □ abilit to □fatisively □aequilibrate.

For example, Scaup Lake quartz return temperatures of 849±13°C for cores and 342 862±10°C for rims (Vazquez et al. 2009) via TitaniQ (Wark and Watson 2006). The new 343 geothermometer's clinoproxene rim temperature of 800°C indicates that clinopyroxene 344 continues to crystallize at or below the temperatures of the quartz-in phase boundary for the 345 Scaup Lake rhyolite. Although there are questions as to the effect of growth rate and a_{TiO2} on 346 TitaniQ (e.g., Huang and Audétat 2012; Ghiorso and Gualda 2013; Pamukcu et al. 2016), this is 347 the same relative positioning of the quartz-in and clinopyroxene-in phase boundaries observed in 348 experiments on other similar composition systems such as the Blacktail Creek Tuff (Bolte et al. 349 2015) and Solfatara Plateau rhyolite (Befus and Gardner 2016). 350

The 800°C rim crystallization temperature returned by the new geothermometer is also 351 more consistent with our understanding of how exsolution lamellae form parallel to [100] in the 352 cores of clinopyroxene, a feature that is observed in the Scaup Lake clinopyroxene. Experimental 353 studies show that orthopyroxene-in-augite lamellae require temperatures below 825°C to form 354 (Huebner 1980; Lindsley 1983). Temperatures calculated for Scaup Lake by other methods are 355 too high to account for the formation of the lamellae, e.g., 862±36°C (Shaffer and Till 2016) via 356 plagioclase-liquid geothermometry (Putirka 2008) and 876±29°C via QUILF two-pyroxene 357 geothermometry. 358

359

360 Lava Creek Tuff and Huckleberry Ridge Tuff, Yellowstone

The Lava Creek Tuff is the product of the third, and most recent, caldera-forming eruption at Yellowstone that blanketed much of the continental United States in ash ca. 6.31 ka

363	(Matthews et al. 2015). The Lava Creek Tuff is dominantly composed of two members, LCT-A
364	and LCT-B, which are indistinguishable in age and separated by a layer of fallout ash
365	(Christiansen 2001). High-Fe, low-Al clinopyroxene (Table 4, Supplementary Table 3) were
366	described in both members by Hildreth (1984). The new clinopyroxene-liquid geothermometer
367	calculates temperatures for LCT-A and LCT-B of 805 and 776°C, respectively. These
368	temperatures correspond within error with geothermometry of other LCT-B phases, sanidine:
369	814±23°C via the Putirka (2008) alkali feldspar-liquid geothermometer and quartz: 815±25°C
370	via TitaniQ (Shamloo and Till 2017), as well as an LCT-B magma storage temperature of
371	800±50°C determined using the rhyolite-MELTS geothermometer (Gualda and Ghiorso 2015;
372	Befus et al. 2018). Hildreth (1981) conducted Fe-Ti oxide geothermometry of both members,
373	calculating ~800°C for LCT-A and ~950°C for LCT-B, implying a thermal gradient in the
374	magma body similar to that proposed for the Bishop Tuff. However, the new clinopyroxene-
375	liquid temperatures are just within uncertainty of each other, and do not support the
376	interpretation of a thermal gradient. The Putirka (2008, Eq. 33) clinopyroxene-liquid
377	geothermometer does not return temperatures for any of these natural samples, reinforcing the
378	utility of the new geothermometer.
379	The Putirka (2008, Eq. 33) clinopyroxene-liquid geothermometer does return
380	temperatures for clinopyroxene-liquid pairs from the Huckleberry Ridge Tuff, which was erupted

compositionally similar clinopyroxene to that of the Lava Creek Tuff. The new clinopyroxene-

during Yellowstone's first caldera-forming eruption ca. 2.1 Ma (Christiansen 2001), and contains

- liquid geothermometer returns a temperature for Huckleberry Ridge of 769°C, which is more
- than 30°C lower than the Putirka (2008, Eq. 33) geothermometer and below the rhyolite-

381

MELTS-calculated liquidus for this system when modeled at 4.7 wt% H₂O (Gualda et al. 2012;

386	Myers et al. 2016). A clinopyroxene-liquid temperature of 769°C is also consistent with two-
387	feldspar geothermometry for the ignimbrite of 768-855°C (Elkins and Grove 1990; Swallow et
388	al. 2018). The new clinopyroxene-liquid \Box emperatures \Box for here \Box arge \Box sibeous \Box tffs $\Box \leq \Box 80$ C
389	implies that these minerals were last crystallizing at near-solidus conditions and at relatively high
390	crystal/liquid ratios.
391	
392	Implications
393	In general, the new clinopyroxene-liquid geothermometer lowers calculated temperatures
394	for a given sample by an average of almost 90°C relative to prior clinopyroxene-liquid
395	geothermometers (Figure 4). In all cases where experiments are available, the temperature
396	returned by the new geothermometer is between the solidus and liquidus for the relevant bulk
397	composition-indicating that the new clinopyroxene-liquid geothermometer is a better
398	approximation of the relevant geologic conditions than the Putirka (2008, Eq. 33)
399	geothermometer, which consistently returns temperatures above the experimental liquidi or the
400	clinopyroxene-in phase boundaries of silicic magmas. Thus, the new geothermometer reconciles

401 many inconsistencies in previous thermometric results.

It is important to note that clinopyroxene chemistry and stability in high-silica systems is not the same as in mafic systems. Dry experiments on mafic bulk compositions reveal that clinopyroxene is stable from ~1470–1180°C at 1 atm to 25 kbar and is usually stable in these experiments to at least 25° below its first appearance (e.g., Bartels et al. 1991; Elthon and Scarfe 1984; Feig et al. 2010, 2006; Grove et al. 1992; Grove and Juster 1989; Juster et al. 1989; Kinzler and Grove 1992), whereas experiments on silicic bulk compositions that constrain clinopyroxene stability are exclusively hydrous and restrict clinopyroxene stability to below

409	1000°C (e.g., Almeev et al. 2012; Bolte et al. 2015; Gardner et al. 2014; Iacovino et al. 2015). In
410	dry mafic systems above 11 kbar, clinopyroxene is rarely a liquidus phase and may become
411	unstable 25–40° after its first appearance (e.g., Bartels et al. 1991; Elthon and Scarfe 1984; Feig
412	et al. 2010, 2006; Grove et al. 1992; Grove and Juster 1989; Juster et al. 1989; Kinzler and Grove
413	1992). Conversely, in high-silica systems, experiments often place clinopyroxene on the liquidus
414	(Almeev et al. 2012; Gardner et al. 2014; Bolte et al. 2015; Iacovino et al. 2015). And although
415	clinopyroxene is a mafic phase, experiments and our temperature calculations demonstrate that
416	its stability is not restricted to near-liquidus temperatures; we have calculated clinopyroxene in
417	high-silica natural systems to below 775°C for the Late-erupted Bishop Tuff, Paektu comendite,
418	and Bandelier Tuff (Figure 4, Table 4), and experiments have shown the mineral to crystallize at,
419	or near, the solidus to temperatures as low as 675°C (e.g., Almeev et al. 2012; Befus and
420	Gardner 2016; Bolte et al. 2015; Gardner et al. 2014; Iacovino et al. 2015). If clinopyroxene
421	stability extends from the liquidus to the solidus in high-silica magma, the presence of
422	clinopyroxene does not necessitate the invocation of xenocrysts, mixing with a hotter magma
423	body, nor imply a low (or high) crystallinity. Instead, clinopyroxene, when present, appears to be
424	a persistent phase throughout the crystallization interval of high-silica systems.
425	Because of the lack of relevant experiments in its calibration dataset, thermodynamic
426	phase equilibria modeling of clinopyroxene-bearing systems using rhyolite-MELTS remains
427	problematic. Although Rhyolite-MELTS produces a realistic clinopyroxene crystallization
428	interval—that is, one consistent with the new gthermometer's temperature—for the Bishop
429	Tuff (Figure 5), it should be noted that Rhyolite-MELTS was calibrated for this particular
430	locality and the model does not perform as well for other high-silica systems. Rhyolite-MELTS
431	modeling often places clinopyroxene in the middle of, or late in, the high-silica system

432	crystallization sequence, rather than on the liquidus as suggested by experiments (e.g., Almeev et
433	al. 2012; Gardner et al. 2014; Iacovino et al. 2015). Rhyolite-MELTS failed to predict
434	crystallization of clinopyroxene for 70% of the systems examined for this work, all of which
435	contain clinopyroxene in the equilibrium mineral assemblage. For the trials in which
436	clinopyroxene was predicted (not including the Bishop Tuff), on average rhyolite-MELTS
437	predicted the clinopyroxene-in phase boundary over 120°C below the temperatures returned by
438	the new clinopyroxene-liquid geothermometer and experimental phase equilibria, where
439	available. We join other workers in urging caution when using rhyolite-MELTS to simulate
440	systems in which clinopyroxene is present (e.g., Gardner et al. 2014), as its failure to accurately
441	simulate the mineral's behavior may give the mistaken impression that clinopyroxene has a
442	much narrower crystallization interval than in reality, as well as suggest an inaccurate degree of
443	crystallinity.

Finding low-Al clinopyroxene in a lava may be evaluative in and of itself. In high-silica 444 systems, clinopyroxene contains $< 2 \text{ wt}\% \text{ Al}_2\text{O}_3$ (Figure 1), while it is possible for mafic 445 clinopyroxene to contain > 10 wt% Al₂O₃, when compositions are queried from the GEOROC 446 database. The low Al content in rhyolitic clinopyroxene is a result of a need for more Si in 447 tetrahedral sites to compensate for the charge imbalance with O_3 oxygens produced by low Ca 448 content in the crystal (CaO can be < 17 wt% in rhyolitic clinopyroxene and up to > 23 wt% in 449 basaltic clinopyroxene; data from GEOROC) (Salviulo et al. 2000). Thus, the presence of low-Al 450 clinopyroxene outside of a rhyolite may indicate that the mineral has been inherited from a 451 higher-silica magma or country rock. 452

Low-Al, high-Fe clinopyroxene may also hint at the thermal history of the lava.
Clinopyroxene high in Al have been linked to fast crystal growth and thus high undercooling;

during this process the crystal grows faster than the melt can deliver nutrients to the growth 455 surface, causing a depletion of compatible elements in the surrounding melt as well as an 456 enrichment in incompatible elements. As the crystal grows, it incorporates more incompatible 457 elements into its structure, causing an increase in these elements rim-ward (Lofgren et al. 2006; 458 Zhang 2008; Mollo and Hammer 2017). Conversely, crystal rims low in incompatible and high 459 in compatible elements as described herein counterindicate interface-controlled growth and 460 instead imply diffusion-controlled growth wherein the diffusive velocity of elements in the melt 461 is sufficient to deliver the ideal nutrients to the crystal. Additionally, experimental studies on 462 basaltic compositions have correlated low Al with slow cooling rates (e.g., Mollo et al. 2010). 463 The above suggests a slow growth rate for the low-Al, high-Fe clinopyroxene found in high-464 silica magmatic systems, relative to high-Al clinopyroxene (Zhang 2008). This, combined with 465 our new geothermometer and clinopyroxene's boad stablity in high silica magmatic systems, 466 makes the mineral an attractive tool for investigating a range of processes in these hazardous 467 geological settings. 468

469

Acknowledgements

470

Special thanks to Tim Grove for the use of the experimental petrology lab at MIT, and to 471 Wes Hildreth for sharing his unpublished probe data. Additional thanks to Axel Wittmann, Kayla 472 Iacovino, Jessica Noviello, Crystylynda Fudge, and the EPIC group at ASU. Great appreciation 473 to Keith Putirka whose thoughtful questions and insights have helped guide this research. This 474 work was supported by the National Park Services research permit YELL-2015-SCI-6078 and by 475 the United States National Science Foundation under Graduate Research Fellowship #026257-476 001 to K.K.B. and CAREER EAR-1654584 to C.B.T. The EPMA facilities at ASU are in part 477 supported by the National Nanotechnology Coordinated Infrastructure grant ECCS-1542160. 478

479	References Cited
480	
481	Almeev, R.R., Bolte, T., Nash, B.P., Holtz, F., Erdmann, M., and Cathey, H.E. (2012) High-
482	temperature, low-H2O Silicic Magmas of the Yellowstone Hotspot: an Experimental
483	Study of Rhyolite from the Bruneau-Jarbidge Eruptive Center, Central Snake River Plain,
484	USA. Journal of Petrology, 53, 1837–1866.
485	Anderson, A.T., Davis, A.M., and Lu, F. (2000) Evolution of Bishop Tuff Rhyolitic Magma
486	Based on Melt and Magnetite Inclusions and Zoned Phenocrysts. Journal of Petrology,
487	41, 449–473.
488	Anderson, D.J., Lindsley, D.H., and Davidson, P.M. (1993) QUILF: A pascal program to assess
489	equilibria among Fe, Mg, Mn, Ti oxides, pyroxenes, olivine, and quartz. Computers &
490	Geosciences, 19, 1333–1350.
491	Bartels, K.S., Kinzler, R.J., and Grove, T.L. (1991) High pressure phase relations of primitive
492	high-alumina basalts from Medicine Lake volcano, northern California. Contributions to
493	Mineralogy and Petrology, 108, 253–270.
494	Befus, K.S., and Gardner, J.E. (2016) Magma storage and evolution of the most recent effusive
495	and explosive eruptions from Yellowstone Caldera. Contributions to Mineralogy and
496	Petrology, 171.
497	Befus, K.S., Bruyere, R.H., and Manga, M. (2018) Lava Creek Tuff Love. Presented at the

498 Goldschmidt, Boston, MA, USA.

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. DOI: https://doi.org/10.2138/am-2019-6842

499	Bindeman, I.N., and Valley, J.W. (2002) Oxygen isotope study of the Long Valley magma
500	system, California: isotope thermometry and convection in large silicic magma bodies.
501	Contributions to Mineralogy and Petrology, 144, 185–205.
502	Bindeman, I.N., Fu, B., Kita, N.T., and Valley, J.W. (2008) Origin and Evolution of Silicic
503	Magmatism at Yellowstone Based on Ion Microprobe Analysis of Isotopically Zoned
504	Zircons. Journal of Petrology, 49, 163–193.
505	Bolte, T., Holtz, F., Almeev, R., and Nash, B. (2015) The Blacktail Creek Tuff: an analytical and
506	experimental study of rhyolites from the Heise volcanic field, Yellowstone hotspot
507	system. Contributions to Mineralogy and Petrology, 169.
508	Cashman, K.V., and Giordano, G. (2014) Calderas and magma reservoirs. Journal of
509	Volcanology and Geothermal Research, 288, 28–45.
510	Chamberlain, K.J., Morgan, D.J., and Wilson, C.J.N. (2014) Timescales of mixing and
511	mobilisation in the Bishop Tuff magma body: perspectives from diffusion chronometry.
512	Contributions to Mineralogy and Petrology, 168.
513	Christiansen, R.L. (2001) The Quaternary and Pliocene Yellowstone Plateau volcanic field of
514	Wyoming, Idaho, and Montana, 145 p. U.S. Geological Survey, Reston, Va.
515	Christiansen, R.L., Lowenstern, J.B., Smith, R.B., Heasler, H., Morgan, L.A., Nathenson, M.,
516	Mastin, L.G., Muffler, L.J.P., and Robinson, J.E. (2007) Preliminary Assessment of
517	Volcanic and Hydrothermal Hazards in Yellowstone National Park and Vicinity p. 94.
518	USGS.

Brugman 25

519	Elkins, L.T., and Grove, T.L. (1990) Ternary feldspar experiments and thermodynamic models.
520	American Mineralogist, 75, 544–559.
521	Elthon, D., and Scarfe, C.M. (1984) High-pressure phase equilibria of a high-magnesian basalt
522	and the genesis of primary oceanic basalts. American Mineralogist, 69, 1–15.
523	Feig, S.T., Koepke, J., and Snow, J.E. (2006) Effect of water on tholeiitic basalt phase equilibria:
524	an experimental study under oxidizing conditions. Contributions to Mineralogy and
525	Petrology, 152, 611–638.
526	——— (2010) Effect of oxygen fugacity and water on phase equilibria of a hydrous tholeiitic
527	basalt. Contributions to Mineralogy and Petrology, 160, 551–568.
528	Frost, B.R., and Lindsley, D.H. (1992) Equilibria among Fe-Ti oxides, pyroxenes, olivine, and
529	quartz: Part II. Application. American Mineralogist, 77, 1004–1020.
530	Gardner, J.E., Befus, K.S., Gualda, G.A.R., and Ghiorso, M.S. (2014) Experimental constraints
531	on rhyolite-MELTS and the Late Bishop Tuff magma body. Contributions to Mineralogy
532	and Petrology, 168.
533	Ghiorso, M.S., and Evans, B.W. (2008) Thermodynamics of Rhombohedral Oxide Solid
534	Solutions and a Revision of the FE-TI Two-Oxide Geothermometer and Oxygen-
535	Barometer. American Journal of Science, 308, 957–1039.
536	Ghiorso, M.S., and Gualda, G.A.R. (2013) A method for estimating the activity of titania in
537	magmatic liquids from the compositions of coexisting rhombohedral and cubic iron-
538	titanium oxides. Contributions to Mineralogy and Petrology, 165, 73-81.

539	Girard, G., and Stix, J. (2009) Magma Recharge and Crystal Mush Rejuvenation Associated with
540	Early Post-collapse Upper Basin Member Rhyolites, Yellowstone Caldera, Wyoming.
541	Journal of Petrology, 50, 2095–2125.
542	Girard, G., and Stix, J. (2010) Rapid extraction of discrete magma batches from a large
543	differentiating magma chamber: the Central Plateau Member rhyolites, Yellowstone
544	Caldera, Wyoming. Contributions to Mineralogy and Petrology, 160, 441–465.
545	Grove, T.L., and Juster, T.C. (1989) Experimental investigations of low-Ca pyroxene stability
546	and olivine-pyroxene-liquid equilibria at 1-atm in natural basaltic and andesitic liquids.
547	Contributions to Mineralogy and Petrology, 103, 287-305.
548	Grove, T.L., Kinzler, R.J., and Bryan, W.B. (1992) Fractionation of Mid-Ocean Ridge Basalt
549	(MORB). Geophysical Monograph, 71, 281-310.
550	Gualda, G.A.R., and Ghiorso, M.S. (2013) The Bishop Tuff giant magma body: an alternative to
551	the Standard Model. Contributions to Mineralogy and Petrology, 166, 755–775.
552	(2015) MELTS_Excel: A Microsoft Excel-based MELTS interface for research and
553	teaching of magma properties and evolution. Geochemistry, Geophysics, Geosystems, 16,
554	315–324.
555	Gualda, G.A.R., and Sutton, S.R. (2016) The Year Leading to a Supereruption. (A.K. Schmitt,
556	Ed.)PLOS ONE, 11, e0159200.

557	Gualda, G.A.R., Ghiorso, M.S., Lemons, R.V., and Carley, T.L. (2012) Rhyolite-MELTS: a
558	Modified Calibration of MELTS Optimized for Silica-rich, Fluid-bearing Magmatic
559	Systems. Journal of Petrology, 53, 875–890.
560	Hervig, R.L., and Dunbar, N.W. (1992) Cause of chemical zoning in the Bishop (California) and
561	Bandelier (New Mexico) magma chambers. Earth and Planetary Science Letters, 111,
562	97–108.
563	Hildreth, E.W. (1977) The magma chamber of the Bishop Tuff: Gradients in temperature,
564	pressure, and composition. Ph.D. thesis, University of California, Berkeley.
565	Hildreth, W. (1981) Gradients in silicic magma chambers: Implications for lithospheric
566	magmatism. Journal of Geophysical Research: Solid Earth, 86, 10153–10192.
567	Hildreth, W., and Wilson, C.J.N. (2007) Compositional Zoning of the Bishop Tuff. Journal of
568	Petrology, 48, 951–999.
569	$Hildreth, \Box W, \Box Chritiansen, \Box R.L, \Box and \Box O'NeilJ.R. \Box (1984) \Box a Statophic \Box sotopic \Box m dification \Box of \Box Statophic Distribution \Box of \Box Statophic Distribution \Box of \Box Statophic Distribution Dist$
570	rhyolitic magma at times of caldera subsidence, Yellowstone Plateau Volcanic Field.
571	Journal of Geophysical Research: Solid Earth, 89, 8339–8369.
572	Horn, S., and Schmincke, HU. (2000) Volatile emission during the eruption of Baitoushan
573	Volcano (China/North Korea) ca. 969 AD. Bulletin of Volcanology, 61, 0537–0555.
574	Huang, R., and Audétat, A. (2012) The titanium-in-quartz (TitaniQ) thermobarometer: A critical
575	examination and re-calibration. Geochimica et Cosmochimica Acta, 84, 75-89.

576	Huebner, J.S. (1980) Pyroxene phase equilibria at low pressure. In C.T. Preweitt, Ed., Pyroxenes
577	Vol. 7. Mineralogical Society of America.
578	Iacovino, K., Kim, J.S., Sisson, T.W., Lowenstern, J.B., Jang, J.N., Song, K.H., Ham, H.H., Ri,
579	K.H., Donovan, A.R., Oppenheimer, C., and others (2015) New Constraints on the
580	Geochemistry of the Millennium Eruption of Mount Paektu (Changbaishan), Democratic
581	People's $\mathbb{R}_{public} \cap f \mathbb{C}_{kea}/China. \square In \square 2015G \mathbb{W} \square Fall Meeting. \square S \square Fracisco, \square CA, \square SA.$
582	Iacovino, K., Kim, JS., Sisson, T., Lowenstern, J., Ri, KH., Jang, JN., Song, KH., Ham, S
583	H., Oppenheimer, C., Hammond, J.O.S., and others (2016) Quantifying gas emissions
584	from the "Miennium Erupton" of a Pktu volcan Denocratic Pople's Republic of
585	Korea/China. Science Advances, 2, 1–11.
586	Juster, T.C., Grove, T.L., and Perfit, M.R. (1989) Experimental constraints on the generation of
587	FeTi basalts, and esites, and rhyodacites at the Galapagos Spreading Center, 85°W and
588	95°W. Journal of Geophysical Research, 94, 9251.
589	Kinzler, R.J., and Grove, T.L. (1992) Primary magmas of mid-ocean ridge basalts 1.
590	Experiments and methods. Journal of Geophysical Research, 97, 6885.
591	Liang, Y., Sun, C., and Yao, L. (2013) A REE-in-two-pyroxene thermometer for mafic and
592	ultramafic rocks. Geochimica et Cosmochimica Acta, 102, 246–260.
593	Lindsley, D.H. (1983) Pyroxene thermometry. American Mineralogist, 68, 477-493.
594	Lindsley, D.H., and Andersen, D.J. (1983) A two-pyroxene thermometer. Journal of Geophysical
595	Research, 88, A887.

596	Lofgren, G.E., Huss, G.R., and Wasserburg, G.J. (2006) An experimental study of trace-element
597	partitioning between Ti-Al-clinopyroxene and melt: Equilibrium and kinetic effects
598	including sector zoning. American Mineralogist, 91, 1596–1606.
599	Masotta, M., Mollo, S., Freda, C., Gaeta, M., and Moore, G. (2013) Clinopyroxene-liquid
600	thermometers and barometers specific to alkaline differentiated magmas. Contributions to
601	Mineralogy and Petrology, 166, 1545–1561.
602	Matthews, N.E., Vazquez, J.A., and Calvert, A.T. (2015) Age of the Lava Creek supereruption
603	and magma chamber assembly from combined 40 Ar/ 39 Ar and U-Pb dating of sanidine
604	and zircon crystals. Geochemistry, Geophysics, Geosystems, n/a-n/a.
605	Mollo, S., and Hammer, J.E. (2017) Dynamic crystallization in magmas. In W. Heinrich and R.
606	Abart, Eds., Mineral reaction kinetics: Microstructures, textures, chemical and isotopic
607	signatures Vol. 16, pp. 378–418. Mineralogical Society of Great Britain & Ireland.
608	Mollo, S., Del Gaudio, P., Ventura, G., Iezzi, G., and Scarlato, P. (2010) Dependence of
609	clinopyroxene composition on cooling rate in basaltic magmas: Implications for
610	thermobarometry. Lithos, 118, 302–312.
611	Myers, M.L., Wallace, P.J., Wilson, C.J.N., Morter, B.K., and Swallow, E.J. (2016) Prolonged
612	ascent and episodic venting of discrete magma batches at the onset of the Huckleberry
613	Ridge supereruption, Yellowstone. Earth and Planetary Science Letters, 451, 285–297.
614	Pamukcu, A.S., Gualda, G.A.R., and Anderson, A.T. (2012) Crystallization Stages of the Bishop
615	Tuff Magma Body Recorded in Crystal Textures in Pumice Clasts. Journal of Petrology,
616	53, 589–609.

617	Pamukcu, A.S., Ghiorso, M.S., and Gualda, G.A.R. (2016) High-Ti, bright-CL rims in volcanic
618	quartz: a result of very rapid growth. Contributions to Mineralogy and Petrology, 171.
619	Putirka, K.D. (2008) Thermometers and Barometers for Volcanic Systems. Reviews in
620	Mineralogy and Geochemistry, 69, 61–120.
621	Putirka, K.D., Mikaelian, H., Ryerson, F., and Shaw, H. (2003) New clinopyroxene-liquid
622	thermobarometers for mafic, evolved, and volatile-bearing lava compositions, with
623	applications to lavas from Tibet and the Snake River Plain, Idaho. American
624	Mineralogist, 88, 1542–1554.
625	Reid, M.R., Vazquez, J.A., and Schmitt, A.K. (2011) Zircon-scale insights into the history of a
626	Supervolcano, Bishop Tuff, Long Valley, California, with implications for the Ti-in-
627	zircon geothermometer. Contributions to Mineralogy and Petrology, 161, 293-311.
628	Sack, R.O., and Ghiorso, M.S. (1994) Thermodynamics of multicomponent pyroxenes: II. Phase
629	relations in the quadrilateral. Contributions to Mineralogy and Petrology, 116, 287-300.
630	Salviulo, G., Secco, L., Marzoli, A., Piccirillo, E.M., and Nyobe, J.B. (2000) Ca-rich pyroxene
631	from basic and silicic volcanic rocks from the Cameroon Volcanic Line (West-Africa):
632	crystal chemistry and petrological relationships. Mineralogy and Petrology, 70, 73-88.
633	Shaffer, J.S., and Till, C.B. (2016) New Temperature and H2O Estimates for Post Caldera
634	Yellowstone Rhyolite Lavas using Feldspar Geothermometry and Rhyolite-MELTS. In
635	2016 AGU Fall Meeting. San Francisco, CA, USA.

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. DOI: https://doi.org/10.2138/am-2019-6842

636	Shamloo, H.I., and Till, C.B. (2017) Petrologic Insights into the Timing and Triggering
637	Mechanism of the Lava Creek Tuff Supereruption, Yellowstone Caldera, WY, USA. In
638	2017 IAVCEI Scientific Assembly p. 995. Presented at the IAVCEI, Portland, OR.
639	Sisson, T.W. (1991) Pyroxene-high silica rhyolite trace element partition coefficients measured
640	by ion microprobe. Geochimica et Cosmochimica Acta, 55, 1575–1585.
641	Swallow, E.J., Wilson, C.J.N., Myers, M.L., Wallace, P.J., Collins, K.S., and Smith, E.G.C.
642	(2018) Evacuation of multiple magma bodies and the onset of caldera collapse in a
643	supereruption, captured in glass and mineral compositions. Contributions to Mineralogy
644	and Petrology, 173.
645	Till, C.B., Vazquez, J.A., and Boyce, J.W. (2015) Months between rejuvenation and volcanic
646	eruption at Yellowstone caldera, Wyoming. Geology, 43, 695-698.
647	Vazquez, J.A., Kyriazis, S.F., Reid, M.R., Sehler, R.C., and Ramos, F.C. (2009)
648	Thermochemical evolution of young rhyolites at Yellowstone: Evidence for a cooling but
649	periodically replenished postcaldera magma reservoir. Journal of Volcanology and
650	Geothermal Research, 188, 186–196.
651	Wark, D.A., and Watson, E.B. (2006) TitaniQ: a titanium-in-quartz geothermometer.
652	Contributions to Mineralogy and Petrology, 152, 743–754.
653	Wark, D.A., Hildreth, W., Watson, E.B., and Cherniak, D.J. (2004) Origin of Thermal and
654	Compositional Zoning in the Bishop Magma Reservoir: Insights from Zoned Quartz
655	Phenocrysts p. 3. Presented at the 2004 AGU Fall Meeting, San Francisco, CA, USA.

656	Wark, D.A., Hildreth, W., Spear, F.S., Cherniak, D.J., and Watson, E.B. (2007) Pre-eruption
657	recharge of the Bishop magma system. Geology, 35, 235.
658	Warshaw, C.M., and Smith, R.L. (1988) Pyroxenes and fayalites in the Bandelier Tuff, New
659	Mexico: temperatures and comparison with other rhyolites. American Mineralogist, 73,
660	1025–1037.
661	Wilcock, J., Goff, F., Minarik, W.G., and Stix, J. (2013) Magmatic Recharge during the
661	wheelek, J., Oon, F., Minarik, W.O., and Sux, J. (2013) Maginatic Reenarge during the
662	Formation and Resurgence of the Valles Caldera, New Mexico, USA: Evidence from
663	Quartz Compositional Zoning and Geothermometry. Journal of Petrology, 54, 635–664.
664	Wilson, C.J.N., and Hildreth, W. (1997) The Bishop Tuff: New Insights From Eruptive
665	Stratigraphy. The Journal of Geology, 105, 407-440.
666	Zhang, Y. (2008) Geochemical Kinetics, 631 p. Princeton University Press, Princeton, New
667	Jersey.

668

669	Figure Captions
670	
671	Figure 1. Clinopyroxene compositions from experiments and silicic igneous systems. Gray
672	symbols: clinopyroxene used to calibrate existing geothermometers (Sack and Ghiorso 1994,
673	Putirka personal communication). Black solid and matching black outlined symbols:
674	clinopyroxene used to calibrate and test the new clinopyroxene-liquid geothermometer (Almeev
675	et al. 2012; Gardner et al. 2014; Bolte et al. 2015; Iacovino et al. 2015). Colored symbols:
676	compositions of clinopyroxene from natural high-silica magmatic systems (Hildreth 1977;
677	Warshaw and Smith 1988; Sisson 1991; Girard and Stix 2009; Gardner et al. 2014; Iacovino et
678	al. 2016). Inset: Pyroxene quadrilateral of the same clinopyroxene as the main figure.
679	
680	Figure 2. Clinopyroxene crystallized during CSPV experiment SCL01-3 (775°C 1 kbar 572 hrs).
681	Crystals used for calibration indicated with white arrows. Gray background is glass.
682	
683	Figure 3. Calculated vs. experimental temperature. Temperatures are calculated using both the
684	Putirka (2008, Eq. 33) clinopyroxene-liquid geothermometer (open symbols) and the new
685	geothermometer (solid green symbols), and are plotted against the experimental conditions.
686	Symbols are the same for both panels. The solid line represents unity between the calculated and
687	experimental temperatures. Dashed lines show the best fit through each dataset to better illustrate
688	the \Box new \Box generators generators \Box effects acy. (a) Calibration data. Arrow emphasizes that in the
689	temperature range of most interest for high-silica magmatic systems, temperatures calculated
690	with the new geothermometer are consistently closer to unity. (b) Test data.
691	

692	Figure 4. Natural clinopyroxene temperatures calculated with clinopyroxene-liquid
693	geothermometers. Average ΔT is 84°C. Compositional data from ^a Hildreth (1977) and Gardner
694	et al. (2014), ^b Warshaw and Smith (1988) and Wilcock et al. (2013), ^c Iacovino et al. (2016), ^d
695	Sisson (1991), ^e Girard and Stix (2010), and ^f Befus and Gardner (2016) and Girard and Stix
696	(2010) available in Supplementary Table 3.
697	
698	Figure 5. Comparison of temperatures and clinopyroxene stability for the Late-erupted Bishop
699	Tuff (Ig2). Clinopyroxene-liquid (Putirka 2008, Eq. 33), two-pyroxene (Frost and Lindsley
700	1992), two-feldspar (Chamberlain et al. 2014), and quartz-magnetite oxygen isotope (Bindeman
701	and Valley 2002) temperatures all are higher than the experimental liquidus/clinopyroxene-in of
702	Gardner et al. (2014). Fe-Ti oxide (Frost and Lindsley 1992) and TitaniQ (Wark et al. 2004,
703	2007) temperature ranges straddle this liquidus (white square = average TitaniQ temperature).
704	The clinopyroxene-liquid temperature of this work is below the experimental liquidus, consistent
705	with the rhyolite-MELTS clinopyroxene-in, and is more consistent with the Gardner et al. (2014)
706	Bishop Tuff pre-eruptive storage temperature and Ti in zircon temperature (Gualda and Ghiorso
707	2013) than the Putirka (2008, Eq. 33) clinopyroxene-liquid temperature.
708	

Tables

Table 1 Experiment starting glass							
Oxide	wt%	st.d ¢ ¥2					
SiO ₂	74.59	2.7 ³ ¹³					
TiO ₂	0.23	0.15^{714}_{715}					
Al_2O_3	13.75	715 1.96 716					
Cr ₂ O ₃	0.01	$0.0\frac{10}{717}$					
FeOtot	1.75	0.7 ≱ 18					
MnO	0.04	0.0 3 19					
MgO	0.19	0.0920					
CaO	1.03	0.3421					
Na ₂ O	2.55	0.3722					
K ₂ O	5.15	0.19^{723}_{724}					
EPMA data; n = 14. 725							

⁷²⁶

 Table 2 CSPV experimental conditions
 727

Experiment	T (°C)	P (kbar)	728 t (<u>hrs</u>)
SCL01-4	750	1.0	577330
SCL01-3	775	1.0	57281
SCL01-5	800	1.0	385 ⁷³²
SCL01-1	825	1.0	410^{733}_{734}
			735

Table 3 Calibration dataset experimental	736						
Locality	n	T (°C)	P (kbar) 738				
Scaup Lake rhyolite	4	750-825	1.0739				
Cougar Point and Indian Batt rhyolites ^a	36	875-1025	2.0-57.98				
Blacktail Creek rhyolite tuff ^b	4	790-850	2.0741				
Late-erupted Bishop Tuff pumice ^c	10	700-800	1.0-2.0				
Paektu Millennium comendite pumice ^d	10	675–750	$0.5 - \frac{743}{1.5}$				
Composition data from ^a Almeev et al. (2012), ^b Bolte et al. (2015), ^c Gardner et al. (2014), and ^d Iacovino et al. (2015) are available in Supplementary Table 2. 745							

Table 4 Average natural clinopyroxene compositions and clinopyroxene-liquid temperatures. Standard deviation in italics for this work.

Locality	SiO ₂	TiO ₂	Al_2O_3	Cr ₂ O ₃	FeO ^{tot}	MnO	MgO	CaO	Na ₂ O	K ₂ O	T (°C)
Scaup Lake	51.56	0.17	0.64	0.01	15.42	0.75	11.13	19.97	0.32	0.03	800
	0.26	0.02	0.04	0.01	0.51	0.05	0.23	0.24	0.02	0.01	
South Biscuit Basin ^a	51.81	0.19	0.68	0.00	16.54	0.84	10.76	18.87	0.29	0.02	793
Solfatara Plateau ^b	49.34	0.22	0.48	0.00	26.37	0.87	4.12	18.29	0.30	0.01	771
Bishop Tuff ^e	51.98	0.15	0.74	0.00	12.82	0.57	12.69	20.65	0.38	0.00	759
Paektu Millennium ^d	48.94	0.22	0.20	0.00	28.75	0.88	0.86	18.46	1.70	0.00	755
Lava Creek Tuff A ^e	48.95	0.20	0.64	0.00	25.11	0.71	5.59	18.48	0.32	0.00	805
Lava Creek Tuff B ^e	48.57	0.23	0.62	0.00	26.68	0.73	4.48	18.38	0.31	0.00	776
Huckleberry Ridge Tuff ^f	48.49	0.20	0.60	0.00	27.40	0.86	3.28	18.89	0.30	0.00	769
Bandelier Tuff ^g	52.08	0.14	0.51	0.00	22.19	1.97	7.10	15.46	0.56	0.00	780

Oxides given in wt% and normalized. SEE for temperature calculations is $\pm 20^{\circ}$ C. Complete data from ^a Girard and Stix (2010), ^b Girard and Stix (2010) and Befus and Gardner (2016), ^c Hildreth (1977) and Gardner et al. (2014), ^d Iacovino et al. (2016), ^e Hildreth, personal communication, ^f Sisson (1991), and ^g Warshaw and Smith (1988) are available in Supplementary Table 3.

Mq#

