1 Revision 1

2	Fast diffusion path for water in silica glass
3	
4	Minami Kuroda ¹ , Shogo Tachibana ^{1, 2} , Naoya Sakamoto ³ , and Hisayoshi Yurimoto ^{1, 3, 4}
5	¹ Departmant of Natural History Sciences, Hokkaido University, N10W8 Sapporo 060-0810, Japan.
6	² UTokyo Organization for Planetary and Space Science, University of Tokyo, 7-3-1 Hongo
7	113-0033, Japan.
8	³ Isotop Imaging Laboratory, Hokkaido University, N21W10 Sapporo 001-0021, Japan.
9	⁴ Institute of Space and Astronautical Science, JAXA, 3-1-1 Yoshinodai, Sagamihara 252-5120,
10	Japan.
11	
12	Corresponding author: Minami Kuroda (minami@ep.sci.hokudai.ac.jp)

14 Abstract

15	Diffusion experiments of ${}^{2}\text{H}_{2}\text{O}$ at 900-750°C and water vapor pressure of 50 bar found
16	more than one-order of magnitude faster diffusion of water in SiO ₂ glass than that reported
17	previously. The fast diffusion profile of water was observed as an extended tail of the normal water
18	diffusion profile by a line scan analysis with SIMS, and it can be fitted with a diffusion model with
19	a constant diffusivity. The obtained fast diffusion coefficient suggests that the diffusion species
20	responsible for the fast diffusion is not molecular hydrogen but molecular water. The diffusivity
21	and activation energy for the fast water diffusion can be explained by the correlation between
22	diffusivities of noble gases in silica glass and their sizes. Because noble gases diffuse through free
23	volume in the glass structure, we conclude that molecular water can also diffuse through the free
24	volume. The abundance of free volume in the silica glass structure estimated previously is higher
25	than that of ² H observed in the fast diffusion in this study, suggesting that the free volume were not
26	fully occupied by ² H under the present experimental condition. This implies that the contribution of
27	the fast water diffusion to the total water transport in volcanic glass becomes larger under higher
28	water vapor pressure conditions.

29 Key words: water, silica glass, SIMS, diffusion pathway, free volume

INTRODUCTION

32	Water inside the Earth changes physical and chemical properties of rocks, minerals, and
33	magma. Water circulates into the mantle through subduction zones and back to the surface through
34	arc volcanism. The arc volcanism is affected by water in magma because water changes the
35	physical and chemical properties of magma. For instance, water influences eruption styles through
36	changing magma ascent rates via its influence on bubble nucleation, bubble growth, and degassing
37	(e.g., Sparks, 1978; Rutherford, 2008). Bubble growth in magma is controlled by viscous
38	relaxation and water diffusion, the relative influence of which depends on magma properties such
39	as temperature, pressure, and chemical compositions.
40	Water diffusion in magma is therefore one of the important basic parameters to control
41	water degassing from magmas. Water diffusion in various silicate glasses, as an analog of silicate
42	melts, has been intensively studied (e.g., Zhang et al., 2007 and references therein). Although the
43	dependences of water diffusion on temperature, water concentration, and pressure have been
44	obtained and formulated, water diffusion in silicate glasses is not yet fully understood as an
45	atomistic-scale process. Kuroda et al. (2018) performed water diffusion experiments in silica glass,

46	and proposed a water diffusion model, where water molecules diffuse through pathways formed by
47	hydroxyls. They also showed that the model is applicable to the water diffusion in various silicate
48	glasses to explain the concentration dependence of water diffusion in rhyolite and basalt glasses.
49	Here we report a new diffusion pathway of water molecules in silica glass, through which
50	water can be transported at a rate of one-order of magnitude faster than that previously reported
51	values in similar conditions as Kuroda et al. (2018). We discuss the mechanism of water molecule
52	diffusion through the fast pathway and its potential contribution to the water transport in silicate
53	glasses.
54	
55	EXPERIMENTAL AND ANALYTICAL METHODS
56	Diffusion experiments were performed using the same protocol as in Kuroda et al. (2018).
57	An optical silica glass plate (5 mm \times 3 mm \times 2 mm; SIGMA KOKI CO.) was flame-sealed in a
58	silica glass tube (3.5 mm and 4.7 mm in inner and outer diameters, and 80 mm in length) with
59	deuterated water ($^{2}H_{2}O$) (7.10-8.17 μ L) under atmospheric pressure. The sealed glass tubes were
60	heated in a box furnace at temperatures of 900, 850, 800 and 750 °C for different durations (Table

61 1). The ${}^{2}\text{H}_{2}\text{O}$ vapor pressure inside the glass tube was controlled to be 50 bar by complete 62 evaporation of deuterated water.

63	Polished cross sections of the run products were prepared for measurements of
64	concentration profiles of ¹ H, ² H, and ³⁰ Si along the diffusion direction from the glass surface with a
65	secondary ion mass spectrometer (SIMS; Cameca ims-6f) at Hokkaido University. A 15-20 nA
66	Cs+ primary beam was focused to form a 20-25-µm spot on the sample, and negatively charged
67	secondary ions of ¹ H, ² H, and ³⁰ Si were counted by an electron multiplier for 2, 10, and 1 seconds,
68	respectively, with a 5 μm step. A normal electron flood gun was used for charge compensation. A
69	field aperture was used to permit transmission of ions from the central area of 10 μ m in diameter of
70	the sputtered region to minimize the hydrogen signals from absorbed water on the sample surface.
71	A few profiles (mostly three) were obtained for each sample to assess the analytical reproducibility.
72	A starting material glass sample was also measured as a reference with the same analytical
73	condition. The position of the glass surface was determined as being the point from which ³⁰ Si
74	counts became constant.

RESULTS

77	Diffusion profiles of ² H in samples heated at 900 °C for 1, 3, and 20 hours are compared in
78	Fig. 1. The ² H intensity decreases rapidly from rim to core of the sample with diffusion distances of
79	about 50, 100, and 250 μm for the samples heated for 1, 3, and 20 hours, respectively. This is
80	consistent with the diffusion experiments with ${}^{1}\text{H}_{2}\text{O}$ (Kuroda et al., 2018), and the profile shape
81	can be explained by water concentration-dependent diffusion in silica glass (Kuroda et al., 2018),
82	of which detail is discussed below.
83	It is found that the tail of deuterium profile extends further into the deep region of the
84	sample, where the ² H ion intensity is higher than the original value in the starting material $(^{2}H/^{30}Si$
85	$< 2 \times 10^{-7}$) (Fig. 1). Comparison between the concentration profiles heated at 900°C for 1 and 3
86	hours clearly shows that ² H migrated into the deeper region of the glass with time (Fig. 1). The ² H
87	finally seems to have an almost homogeneous distribution inside the glass after 20-hour heating
88	(Fig. 1). This observation clearly shows that a small fraction of deuterium-bearing species migrates
89	at a faster diffusion rate than the dominant fraction that diffuses as the concentration dependent

90 profile. This newly-observed fast diffusion profile was also confirmed in samples heated at 850,

91 800, and 750 °C (Fig. 2).

92

DISCUSSION

93 **Profile fitting**

The profiles of ${}^{2}\text{H}/{}^{30}\text{Si}$ in the run products are used to discuss the ${}^{2}\text{H}_{2}\text{O}$ diffusion because it 94 has a linear relation to the water concentration (Kuroda et al., 2018). The ²H/³⁰Si profiles, 95 normalized to the ratio at the glass surface, are shown in Fig. 2. The concentration-dependent 96 diffusion profiles can be explained by the water diffusion model in silica glass (Kuroda et al., 97 2018), where molecular water is proposed to diffuse through the pathway formed by hydroxyls 98 (-OH). The model attributes the strong water concentration dependence for water diffusion in silica 99 glass to the limited number of diffusion pathways. If water molecules (H₂O_m) favor a pathway 100 formed by cuting Si-O-Si bonds to diffuse in the polymerized silica glass network, water molecules 101 themselves should form the pathways through the hydroxyl formation reaction $(H_2 O_m + O \leftrightarrow$ 102 **20***H*). On the other hand, such pathways preexist in silicate glasses due to the presence of network 103 modifier cations such as Na⁺ and K⁺ that cut the glass network. This difference results in the 104

stronger water concentration dependence for water diffusion in silica glass than in silicate glasses
because the number of diffusion pathways in silica glass depends on water concentration (Kuroda
et al., 2018).

108 The total water diffusivity $(D_{H_2O_t})$ in silica glass through the pathways formed by

109 hydroxyls ('normal diffusion' hereafter) is given by

110
$$D_{H_2O_t} = \frac{D^*K}{8} \left(\left(1 + \frac{16X_{H_2O_t}}{K} \right)^{\frac{1}{2}} - 1 \right) \left(1 - \left(1 + \frac{16X_{H_2O_t}}{K} \right)^{-\frac{1}{2}} \right), \tag{1}$$

where X_i is the molar fraction of species *i*, D^* is a concentration independent term and *K* is an equilibrium constant of the hydroxyl formation reaction (Kuroda et al., 2018). The water diffusion profiles fitted with the diffusion coefficient of Eq. (1) are shown as dotted curved in Fig. 2. The diffusivities for normal diffusion at the glass surface are about (5-0.8) ×10⁻¹³ m²/s in the present experimental conditions, and decreases with decreasing $X_{H_2O_t}$ in roughly proportion to $X^2_{H_2O_t}$ (Kuroda et al., 2018).

117 The extended tails of the diffusion profiles ('fast diffusion' hereafter) cannot be explained 118 by the normal diffusion, while they can be fitted by a one-dimensional, semi-infinite diffusion model with a fixed surface concentration and a constant diffusion coefficient (Crank, 1975)

assuming that the fast diffusion is independent of the normal diffusion (Fig. 2):

121
$$\mathbf{R}(\mathbf{x}) = (\mathbf{R}_s - \mathbf{R}_0) \left[\mathbf{1} - \operatorname{erf}\left(\frac{x}{2\sqrt{Dt}}\right) \right] + \mathbf{R}_0, \qquad (2)$$

where x is the distance from the glass surface, R(x) is the normalized ²H/³⁰Si at x, R_s is the 122 normalized ${}^{2}\text{H}/{}^{30}\text{Si}$ at the glass surface for fast diffusion, R_{0} is the background ${}^{2}\text{H}/{}^{30}\text{Si}$ relative to R_{s} , 123 respectively. The fitting curves were obtained for the first ~100-µm of the tails (Fig. 2) because the 124 ²H intensities in the deeper region became comparable to the detection limit. The obtained 125 diffusion coefficients of fast diffusion (Table 1) are about one-order of magnitude larger than those 126 of normal water diffusion at the glass surface at all temperatures. They are more than one order of 127 magnitude larger than the normal diffusion coefficients inside the glass ((5-0.8) $\times 10^{-13}$ m²/s at the 128 glass surface under the present experimental conditions), where the total water concentration is 129 lower than at the surface. 130

131 The diffusion model with a constant diffusion coefficient gives R_s of $(2-6) \times 10^{-4}$ at all the 132 temperatures. Although the estimated R_s has a large uncertainty, it is comparable to the homogeneous R(x) within the samples heated for 20 hours ((4–12) ×10⁻⁴). This suggests that the

assumption of the fixed surface concentration in Eq. (2) is valid.

135

136 Species and path for fast diffusion of water in silica glass

137	Mean values of the fast diffusion coefficients at different temperatures, obtained from
138	multiple-line profiles of a single sample, are summarized in Table 1. The Arrhenius plot of the fast
139	diffusion coefficient gives an activation energy of 80.5 ± 40.5 kJ/mol and a pre-exponential factor
140	of $6.1 \times 10^{-9} \text{ m}^2/\text{s}$ (Fig. 3).
141	The obtained diffusion coefficient at 900-750°C (Table 1) is two orders of magnitude
142	smaller than that of H_2 in the same temperature range (Lou et al., 2003), and its activation energy is
143	twice as large as that of H_2 diffusion in silica glass (Lou et al., 2003). Therefore H_2 is unlikely to be
144	a diffusing species for the fast diffusion observed in this study.
145	The activation energy of \sim 80.5 kJ/mol is similar to that of the normal diffusion of water in

silica glass (e.g., Kuroda et al., 2018; Wakabayashi and Tomozawa, 1989). This indicates that the

147	main diffusion species for fast diffusion is molecular water and that water molecules jump within
148	the glass structure with a similar energetic barrier (Kuroda et al., 2108).

149	The similar energetic barrier for normal and fast diffusion suggests that the difference in
150	diffusivity should be attributed to factors related to the pre-exponential term for diffusion such as a
151	frequency factor and a diffusion pathway. Here we propose that a small fraction of water molecules
152	diffuse through the pathways connecting free volume (Fig. 4) without reacting with the silica glass
153	structure to form hydroxyls. The free volume is the intrinsic gap formed within the polymerized
154	network (e.g., Cohen and Turnbull, 1959; Vrentas and Duda, 1977), and it has been proposed that
155	noble gases diffuse through the free volume in the network structure of silica and silicate glasses
156	(e.g., Behrens, 2010; Amalberti et al., 2016) (Fig. 4(a)). In the free-volume diffusion model, the
157	free volumes are connected by "doorways" of an average radius r_0 . The activation energy for the
158	diffusion may be given as the energy required to deform the glass network large enough to allow an
159	atom to pass from one side to another. For instance, the following expression has been proposed for
160	the relationship between the activation energy for diffusion and the atomic radius (r) for noble
161	gases;

162
$$E_a = 8\pi G r_0 (r - r_0)^2,$$
 (3)

where *G* represents a shear modulus of the glass. *G* and r_0 for silica glass are estimated to be 305 kbar and 1.1 Å, respectively (Anderson and Stuart, 1954).

165	The obtained diffusivity and the activation energy for the fast diffusion of water molecules
166	are compared with those of noble gas diffusion in silica glass (Swets et al., 1961 for He; Wortmann
167	and Shakelford, 1990 for Ne; Carroll and Stolper, 1991 for Ar; Roselieb et al., 1995 for Kr and Xe)
168	(Fig. 4(b)). The radii of noble gasses and molecular water are taken from Zhang and Xu (1995),
169	where molecule radii were obtained by treating the noble gas atoms as ions of zero oxidation states.
170	The free volume diffusion of noble gases in silicate glasses shows the non-Arrhenius relation at
171	temperatures close to the glass transition temperature (e.g., Amalberti et al., 2016) most likely
172	because of the structural change of the glass network. However, the effect of the structural change
173	on the free volume diffusion is negligibly small in this study because the temperature range
174	discussed here is much below the glass transition temperature of silica glass (~1163°C; Calculated
175	with Deubener et al., 2003), where the free volume diffusion of noble gases show a simple
176	Arrhenius relation.

177	The activation energies of noble gas diffusion in silica glass show a clear relation with the
178	atomic radius, and they increase with increasing the atomic size (Fig. 4(b)). Although the reported
179	activation energies of noble gases are not well fit by the relation with Eq. (3), the activation energy
180	for the fast diffusion of molecular water lies on the same trend of noble gas diffusion in silica glass.
181	Moreover, the pre-exponential factor for the fast water diffusion (6.1 \times 10 ⁻⁹ m ² /s) fits within the
182	range of those for noble gas diffusion in silica glass (7 \times 10 $^{-8}$ and 2 \times 10 $^{-9}$ m²/s for He and Kr,
183	respectively) (Fig. 4 (b)). These similarities of activation energy and pre-exponential factors
184	suggest that fast diffusion of molecular water is also governed by molecular jumps between
185	connecting free volume in the silica glass structure.
186	
187	Implications
188	We found that there are, at least, two different pathways for water diffusion in silica glass
189	(normal diffusion through pathways created by the hydroxyl formation reaction and fast diffusion
190	through connected free volume). We here discuss the possible
191	contribution of the fast water diffusion to water transport in silica glass.

192	The amount of water transported by the fast diffusion can be estimated by integrating the
193	fast diffusion profiles, and it is ~0.5 % of the amount of water transported by normal diffusion at
194	900 °C. The surface concentration of water for the fast diffusion path is 3-4 orders of magnitude
195	smaller than the total water concentration at the surface (Fig. 2). Because the surface concentration
196	of dissolved water under the present experimental conditions is ~0.3 mol% (Kuroda et al., 2018),
197	the surface concentration of fast diffusion is estimated to range from a few ppm to several hundred
198	ppb. The estimated surface concentration of fast diffusion is likely to represent the water
199	concentration in connected free volume at the surface, and is much smaller than the concentration
200	of free volume in silica glass that was estimated from the solubility of Ar (~0.2 mol%; ShackIford,
201	1999). This implies that the free volumes were not fully occupied by water molecules at water
202	vapor pressure of 50 bar in the present experiments. We note that water concentration in the
203	starting silica glass is 10 ppm, well below the free volume concentration, such that it should not
204	affect the fast diffusion of ${}^{2}\text{H}_{2}\text{O}$ even if the initial water was present in glass' free volumes.
205	The solubility of molecular water in the fast diffusion path is expected to increase with

206 increasing the water vapor pressure until free volume saturation. The concentration of molecular

207	water occupying the free volume is likely to increase linearly with the water vapor pressure
208	following the Henry's law as noble gases, while the solubility of water in the bulk glass depends on
209	the square root of water vapor pressure (<~200 MPa) (e.g., Zhang et al., 2007).
210	We emphasize that more experimental work is clearly needed to determine the pressure
211	dependence of water solubility in free volume, but the finding in this study may imply that the
212	contribution of fast water diffusion to water transport in silica glass may become larger under
213	higher water vapor pressures. Especially, its contribution could be significant for water diffusion
214	occurring within a timescale shorter than a few hours as seen in this study, which the timescale of
215	magma ascent for explosive eruption (e.g., Lloyd et al., 2014). The fast water diffusion might affect
216	the nucleation and growth of bubbles in ascending magma.
217	
218	Acknowledgments
219	This work was supported by Ministry of Education, Sports, Science and Technology

220 Kakenhi Grant. Constructive reviews from C.L. Losq and J. Amalberti are greatly appreciated.

References

223	Amalberti, J., Burnard,	P., Laporte, D.	., Tissandier, L.	., and Neuville,	D.R. (2016)	Multidiffusion
-----	-------------------------	-----------------	-------------------	------------------	--------	-------	----------------

- 224 mechanisms for noble gases (He, Ne, Ar) in silicate glasses and melts in the transition
- 225 temperature domain: Implications for glass polymerization. Geochemica et Cosmochemica
- Acta, 172, 107-126.

227 Anderson, O.L., and Stuart, D.A. (1954) Calculation of activation energy of ionic conductivity in

silica glasses by classical methods. Journal of the American Ceramic Society, 37, 573-580.

- Behrens, H. (2010) Noble gas diffusion in silicate glasses and melts. Reviews in Mineralogy and
- 230 Geochemistry, 72, 227-267.
- Behrens, H., and Zhang, Y. (2001) Ar diffusion in hydrous silicic melts: implications for volatile
- diffusion mechanisms and fractionation. Earth and Planetary Science Letters, 192, 363-376.

233	Carroll, M.R., and Stolper, E.M. (1991) Argon solubility and diffusion in silica glass: Implications
234	for the solution behavior of molecular gases. Geochemica et Cosmochemica Acta, 55,
235	211-225.
236	Cohen, M.H., and Turnbull, D. (1959) Molecular transport in liquids and glasses. The Journal of
237	Chemical Physics, 31, 1164-1169.
238	Crank, J. (1975) The Mathematics of Diffusion Second Edition, 414 p. Oxford University Press,
239	Oxford.
240	Deubener, J., Müller, R., Behrens, H., and Heide, G. (2003) Water and the glass transition
241	temperature of silicate melts. Journal of Non-Crystalline Solids, 330, 268-273.
242	Kuroda, M., Tachibana, S., Sakamoto, N., Okumura, S., Nakamura, M., and Yurimoto, H. (2018)
243	Water diffusion in silica glass through pathways formed by hydroxyls. American
244	Mineralogist, 103, 412-417.
245	Lloyd, A.S., Euprecht, P., Hauri, E.H., Rose, W., Gonnermann, H.M., and Plank, T. (2014)
246	NanoSIMS results from olivine-hosted melt embayments: Magma ascent rete during
247	explosive basaltic eruptions, 283, 1-18

- 248 Lou, V., Sato, R., and Tomozawa. M. (2003) Hydrogen diffusion in fused silica at high
- temperatures. Journal of Non-Crystalline Solids, 315, 13-19.
- Ni, H., Hui, H., and Steinle-Neumann, G. (2015) Transport properties of silicate melts. Review of
- 251 Geophysics, 53, 715-744.
- 252 Roselieb, K., Rammensee, W., Büttner, H., and Rosenhaure, M. (1995) Diffusion of noble gases in
- 253 melts of the system SiO_2 -NaAl Si_2O_6 . Chemical Geology, 120, 1-13.
- Rutherford, M.J. (2008) Magma Ascent Rates, Reviews in Mineralogy and Geochemistry, 69,
- 255 241-271.
- 256 Shackelford, J.F. (1999) Gas solubility in glasses principles and structural implications. Journal
- of Non-Crystalline Solids, 231-241.
- 258 Sparks, R.S.J. (1978) The dynamics od bubble formation and growth in magmas: a review and
- analysis, Journal of Volcanology and Geothermal Research, 3, 1-37.
- 260 Swets, D.E., Lee, R.W., and Frank, R.C. (1961) Diffusion coefficients of helium in fused quarts,
- 261 The Journal of Chemical Physics, 34, 17-22.

- Vrentas, J.S., and Duda, J.L. (1977) Diffusion in polymer solvent systems. i. reexamination of the
- free-volume theory. Journal of Polymer Sciene, 15, 403-416.
- 264 Wakabayashi, H., and Tomozawa, M. (1989) Diffusion of water into silica glass at low
- temperature. Journal of the American Ceramic Society, 72, 1850-1855.
- 266 Wortman, R.S., and Shackelford, J.F. (1990) Gas transport in vitreous silica fibers. Journal of
- 267 Non-Crystalline Solids, 125, 280-286.
- 268 Zhang, Y., and Xu, Z. (1995) Atomic radii of noble gas elements in condensed phases. American
- 269 Mineralogist, 80, 670-675.
- 270 Zhang, Y., Xu, Z., Zhu, M., and Wang, H. (2007) Silicate melt properties and volcanic resutions.
- 271 Reviews of Geophysics, 45, RG4004.

272

Figure 1. Typical ion intensity profiles of ¹H, ²H and ³⁰Si (900 °C for 1, 3, and 20 hours). ¹H signals inside the glass are from backgrounds.

276	Figure 2. Typical diffusion profiles of 2 H, shown as 2 H/ 30 Si normalized to that at the surface, in
277	silica glass at 900, 850, 800, and 750 °C and a water pressure of 50 bar. The "normal water
278	diffusion" profiles are fitted with the concentration-dependent water diffusion model (dashed
279	curves) (Kuroda et al., 2018), and the "fast water diffusion" profiles are fitted with the
280	constant-independent water diffusion model (solid curves). All ² H/ ³⁰ Si ratios are normalized to the
281	² H/ ³⁰ Si at the glass surface. For fitting of the "normal water diffusion" profiles, D^* , K , and the
282	surface water concentration were taken from Kuroda et al. (2018), where diffusion experiments
283	were performed under the same condition as in the present study (850-650 °C). <i>K</i> and <i>D</i> * for 900
284	°C were obtained by the extrapolation of those in Kuroda et al. (2018), and the surface
285	concentration was assumed to be the same as at 850 °C. The surface water concentration of all run
286	products in this study is estimated to be about ~ 0.3 mol% based on the experiments by Kuroda et al.
287	(2018).

288	Figure 3. The Arrhenius plot of the diffusion coefficient of fast water diffusion (eq. 2). The line is
289	a fit to the data. Error bars represent 2-sigma standard deviations of the diffusion coefficients
290	evaluated from multiple diffusion profiles.

291	Figure 4. (a) Schematic illustration of the diffusion mechanism through connected free volume.
292	(b) Comparisons of activation energy for fast water diffusion and noble gas diffusion in silica glass
293	(left) and of temperature dependence of diffusion coefficients (right). Activation energies and
294	diffusion coefficients of noble gases in silica glass are taken from Swets et al. (1961) for He,
295	Wortmann and Shakelford (1990) for Ne, Carroll and Stolper (1991) for Ar, and Roselieb et al.
296	(1995) for Kr and Xe. Radii of noble gases and water molecule are taken from Zhang and Xu
297	(1995). The relation between the activation energy and the radius of the diffusing species, obtained
298	with Eq. (3) with $G = 305$ kbar and $r_0 = 1.1$ Å (Anderson and Stuart, 1954), is also shown.
299	

300	Table 1. Experimental conditions and diffusion coefficients of fast water diffusion in silica glass.
301	Errors are 2-sigma standard deviations of the diffusion coefficients evaluated from multiple
302	diffusion profiles. The samples heated for 1 hour and 20 hours were not used to determine the
303	diffusion coefficients because of their short diffusion profiles and homogeneous ² H distributions,
304	respectively.

Run No.	T(°C)	t (hours)	<i>D</i> (m²/s)
900-1	900	3	1.61 (±0.42) x10 ⁻¹²
900-2	900	3	1.87 (±0.60) x10 ⁻¹²
900-3	900	20	-
900-4	900	1	-
850-1	850	3	0.92 (±0.25) x10 ⁻¹²
850-2	850	3	1.58 (±0.41) x10 ⁻¹²
800-1	800	3	0.42 (±0.14) x10 ⁻¹²
800-2	800	3	0.66 (±0.11) x10 ⁻¹²
800-3	800	3	0.57 (±0.37) x10 ⁻¹²
750-1	750	3	0.67 (±0.17) x10 ⁻¹²
750-2	750	3	0.55 (±0.08) x10 ⁻¹²
750-3	750	20	-

306

Figure 1

Figure 2

Figure 3

Figure 4