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ABSTRACT 17 

The Dahutang tungsten deposit, located in the Yangtze Block, South China, is 18 

one of the largest tungsten deposits in the world. The tungsten mineralization is 19 

closely related to Mesozoic granitic plutons. A drill core through a pluton in the 20 

Dalingshang ore block in the Central segment of the Dahutang tungsten deposit shows 21 

that the pluton is characterized by multi-stage intrusive phases including biotite 22 

granite, muscovite granite, and Li-mica granite. The granites are strongly 23 

peraluminous and rich in P and F. Decreasing bulk-rock (La/Yb)N ratios and total rare 24 

earth element (∑REE) concentrations from the biotite granite to muscovite granite and 25 

Li-mica granite suggest an evolution involving the fractional crystallization of 26 

plagioclase. Bulk-rock Li, Rb, Cs, P, Sn, Nb and Ta contents increase with decreasing 27 

Zr/Hf and Nb/Ta ratios, denoting that the muscovite granite and Li-mica granite have 28 

experienced higher degree of magmatic fractionation than the biotite granite. In 29 

addition, the muscovite and Li-mica granites show M-type lanthanide tetrad effect, 30 

which indicates hydrothermal alteration during the post-magmatic stage. The micas 31 

are classified as lithian biotite and muscovite in the biotite granite, muscovite in the 32 

muscovite granite, and Li-muscovite and lepidolite in the Li-mica granite. The Li, F, 33 

Rb and Cs contents of micas increase, while FeOT, MgO and TiO2 contents decrease 34 

with increasing degree of magmatic fractionation. Micas in the muscovite granite and 35 

Li-mica granite exhibit compositional zonation in which Si, Rb, F, Fe and Li increase, 36 

and Al decreases gradually from core to mantle, consistent with magmatic 37 

differentiation. However, the outermost rim contains much lower contents of Si, Rb, F, 38 



Fe and Li, and higher Al than the mantle domains due to metasomatism in the 39 

presence of fluids. The variability in W contents of the micas matches the variability 40 

in Li, F, Rb and Cs contents, indicating that both the magmatic and hydrothermal 41 

evolutions were closely associated with W mineralization in the Dahutang deposit. 42 

The chemical zoning of muscovite and Li-micas not only traces the processes of W 43 

enrichment by magmatic differentiation and volatiles, but also the leaching of W by 44 

the fluids. Therefore, micas are indicators not only for the magmatic–hydrothermal 45 

evolution of granite, but also for the tungsten mineralization. 46 
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INTRODUCTION 51 

Tungsten deposits are mainly involved in vein-like bodies, including 52 

quartz-greisen, quartz–sericite–K-feldspar, skarn, pegmatite, and quartz–tourmaline–53 

chlorite rocks (Beus 1986), in which wolframite and scheelite are the two main 54 

tungsten-bearing ore minerals. Tungsten deposits are spatially and temporally 55 

associated with differentiated granites (Förster et al. 1999; Li et al. 2015; 56 

Lecumberri-Sanchez et al. 2017). The much higher partition coefficient of W in fluid 57 

than in granitic magma (Linnen and Cuney 2005) inhibits its mineralization in magma. 58 

Instead, W is leached by fluids and deposited in hydrothermal veins. It is therefore 59 

uncertain whether this spatial association implies a direct genetic link between 60 

tungsten mineralization and silicic magmatism, and how magmatic–hydrothermal 61 

processes contribute to tungsten mineralization (Hulsbosch et al. 2016). Whereas, the 62 

similar geochemical and isotopic features (including age) of both granites and 63 

vein-like W deposits might provide indirect evidence for a genetic link (Song et al. 64 

2012; Huang and Jiang 2014; Zhang et al. 2017). The trace element and rare earth 65 

element (REE) compositions of scheelite and wolframite have been used to trace the 66 

source of W-bearing fluids (Song et al. 2014; Sun and Chen 2017; Harlaux et al. 2018; 67 

Zhang et al. 2018). However, the genetic source studies of tungsten cannot easily be 68 

constrained directly by investigation of ore veins alone. In addition, because 69 

differentiated intrusions are commonly concealed and unexposed, a direct genetic 70 

relationship with the ore deposit becomes difficult to establish. 71 



Tungsten deposits are widely distributed globally, and China contains more than 72 

60% of the world’s tungsten reserves, which are particularly abundant in South China 73 

(Mao et al. 2013). The Dahutang tungsten deposit in South China has enormous 74 

resources estimated at up to two million tons of WO3 (Huang and Jiang 2014). 75 

Quartz-vein-type wolframite associated with granite-related veinlets and disseminated 76 

scheelite are the dominant ore minerals in the Dahutang tungsten deposit (Huang and 77 

Jiang 2014; Jiang et al. 2015). Tungsten ore veins intrude Neoproterozoic biotite 78 

granodiorites and have a genetic link with buried late Mesozoic granites (Huang and 79 

Jiang 2014). Previous studies on the Dahutang tungsten deposit proposed that highly 80 

evolved granites in the late Mesozoic provided further enrichment of W in the 81 

magmatic intrusions (Mao et al. 2013, 2014; Huang and Jiang 2014). However, little 82 

is known about the mechanisms of W enrichment and its relationship to the magmatic 83 

and/or hydrothermal evolution. Indicator minerals in highly evolved granites may 84 

provide answers to these questions, in that they record the processes of both 85 

enrichment and transportation of tungsten. The chemical evolution and textural 86 

variation of micas have been suggested to trace the degree of differentiation and the 87 

magmatic–hydrothermal transition in highly evolved granite (Roda et al. 2007; Li et al. 88 

2015; Breiter et al. 2017; Stepanov et al. 2014). Thus, micas may provide constraints 89 

on the mechanisms of W mineralization (Neiva 1987; Johan et al. 2012; Legros et al. 90 

2016, 2018). In this paper, we present comprehensive in situ analyses of micas and 91 

whole-rock major and trace element compositions from drill cores through a granite in 92 

the Dalingshang ore block of Dahutang tungsten deposit. These data, together with the 93 



previously determined compositions of apatite and rutile (Han et al. 2015), offer an 94 

insight into the magmatic and hydrothermal evolution of the granitic pluton and the 95 

mechanisms of W mineralization, which can also provide the direct evidence of 96 

genetical link of tungsten deposit with the highly evolved granite. 97 

GEOLOGICAL BACKGROUND, SAMPLES, AND PETROGRAPHY 98 

The South China Block consists of the Yangtze Block in the northwest and the 99 

Cathaysia Block in the southeast (Fig. 1a). After amalgamation during the early 100 

Neoproterozoic, the two blocks experienced Caledonian, Indosinian, and Yanshanian 101 

tectono–magmatic activities (Li et al. 2002, 2008, 2009; Zhao et al. 2011). The 102 

extensive developments of rare metal mineralization are closely related to Mesozoic 103 

granitic magmatism (Mao et al. 2013). Mesozoic granitoid and volcanic rocks are 104 

widespread in the South China Block, and the large tungsten deposits (e.g., the 105 

Dajishan W deposit, the Xihuashan W deposit, and the Piaotang W–Sn deposit) are 106 

distributed mainly in the Nanling W–Sn polymetallic mineralization region (NLR; Fig. 107 

1a), which is an area of significant economic rare metal mineralization in the 108 

Cathaysia Block (Zhao et al. 2017). Recently, large and super-large W deposits, such 109 

as Dahutang and Zhuxi deposits, have been discovered in the Yangtze Block (Huang 110 

and Jiang 2014; Song et al. 2018). 111 

The Dahutang tungsten deposit is located near the southeastern margin of the 112 

Yangtze Block and the northern part of Jiuling Mountain in the center of the Jiangnan 113 

massif, part of the Qinhang belt (Mao et al. 2011) (Fig. 1a). Jiuling Mountain is a 114 



Neoproterozoic granodiorite batholith intruding in the Shuangqiaoshan Group, which 115 

consists mainly of pelitic and psammitic metasedimentary rocks with metavolcanic 116 

horizons (Huang et al. 2003). The late Mesozoic granitic rocks, consisting of biotite 117 

granite, two-mica granite, muscovite granite, and granite porphyry, intruded mostly as 118 

stocks and veins into the Neoproterozoic granodiorite batholith and low-grade 119 

metamorphic rocks of the Shuangqiaoshan Group over multiple stages (Fig. 1b) (Lin 120 

et al. 2006; Huang and Jiang 2014; Mao et al. 2014). Late Mesozoic granitic stocks 121 

and veins are considered genetically related to the tungsten mineralization. 122 

The Dahutang tungsten deposit includes the Shimensi ore block in the north 123 

segment, the Dalingshang ore block in the central segment, and the Shiweidong ore 124 

block in the south segment (Song et al. 2018a; Fig. 1b). The deposit is composed 125 

mainly of veinlets and disseminated orebodies, wolframite- and scheelite-bearing 126 

quartz veins, and W–Sn greisen (Jiang et al. 2015; Zhang et al. 2018). Jiang et al. 127 

(2015) and Song et al. (2018a) have summarized the published geochronological data 128 

of the Mesozoic granites from the Dahutang tungsten deposit and recognized two 129 

episodes of Mesozoic granitic magmatism (i.e., late Jurassic Period and early 130 

Cretaceous Period). The late Jurassic magmatism includes muscovite granite and 131 

biotite granite in the Shiweidong and Shimensi ore blocks, corresponding to 132 

LA-ICP-MS zircon U-Pb ages of 148–144 Ma (Jiang et al., 2015; Song et al. 2018b). 133 

The early Cretaceous intrusions consist of medium- to fine-grained two-mica granite, 134 

muscovite granite or granitic porphyry that occur in the Shiweidong and Dalingshang 135 

ore blocks, which have younger ages of 135–130 Ma (Jiang et al., 2015; Song et al. 136 



2018b). The granitic porphyry, cutting through the granites and the orebodies, is 137 

considered as the latest intrusion (Lin et al. 2006; Song et al., 2018a). 138 

The samples described in this study were all collected from core ZK15-1 that 139 

was drilled in the Dalingshang ore block, where Neoproterozoic biotite granodiorite is 140 

the host rock and was intruded by the late Mesozoic granites (Fig. 2) that are 141 

composed of biotite granite, muscovite granite and granite porphyry. The studied 142 

samples are predominantly biotite granite and muscovite granite with minor Li-mica 143 

granite (Fig. 3), and the detailed petrographic features of these rocks are provided 144 

below. 145 

(i) Biotite granite 146 

The biotite granite is porphyritic and consists predominantly of quartz 147 

(35%−40%), K-feldspar (34%−36%), plagioclase (18%−20%) and biotite (7%−10%) 148 

with minor muscovite (2%−4%). The phenocrysts include quartz (1−8 mm), 149 

K-feldspar (2−5 mm), and biotite (1−3 mm) in a groundmass of fine-grained 150 

plagioclase, quartz, biotite, and muscovite. Biotite grains contain abundant inclusions 151 

of zircon, apatite, ilmenite, and monazite (Figs. 3a, 3b and 3c), and some have been 152 

partially altered to chlorite. Muscovite always occurs at the margin of biotite or at the 153 

interfaces between other major rock-forming minerals (Fig. 3d). 154 

(ii) Muscovite granite 155 

The muscovite granite is medium- to fine-grained and contains quartz 156 

(20%−30%), K-feldspar (20%−30%), plagioclase (35%−45%) and muscovite 157 

(5%−15%). The muscovite occurs in two forms: coarse grains with irregular crystal 158 



boundaries that are euhedral to subhedral and 1–3 mm across, and fine grains that are 159 

several tens to hundreds of microns across and occur within feldspar as a result of 160 

sericitization (Fig. 3e). Accessory minerals include niobian rutile, cassiterite, pyrite, 161 

fergusonite-(Y), and apatite. 162 

(iii) Li-mica granite 163 

The Li-mica granite is porphyritic and represented by of quartz (25%−35%), 164 

K-feldspar (35%−45%), plagioclase (20%−25%) and Li-mica (5%−10%). The 165 

phenocrysts are represented by quartz (2−4 mm), K-feldspar (4−5 mm), plagioclase 166 

(1−3 mm), and Li-mica (1−2 mm). The larger Li-mica grains show irregular crystal 167 

boundaries (Fig. 3f). Fine-grained micas (300−800 µm) also occur in the interstices 168 

between other main minerals. Apatite, zircon, fluorite, and columbite-group minerals 169 

are common accessory minerals. 170 

ANALYTICAL METHODS 171 

Only fresh samples were selected for bulk-rock analysis. The rocks were crushed 172 

to <0.5 cm diameter, cleaned with deionized water in an ultrasonic bath, then dried 173 

and powdered in an agate mortar. The samples were prepared as glass disks using a 174 

Rigaku desktop fusion machine. Bulk-rock major element oxides were analyzed using 175 

a Rigaku RIX 2000 X-ray fluorescence spectrometer (XRF) at the State Key 176 

Laboratory of Isotope Geochemistry (SKLABIG), Guangzhou Institute of 177 

Geochemistry, Chinese Academy of Sciences (GIG-CAS). Calibration lines used in 178 

quantification were produced by bivariate regression of data from 36 reference 179 



materials encompassing a wide range of silicate compositions (Li et al. 2006). 180 

Calibrations incorporated matrix corrections based on the empirical Traill–Lachance 181 

procedure, and analytical uncertainties are mostly between 1% and 5% (Li et al. 2006). 182 

Additional determinations of F were performed by ALS Chemex (Guangzhou) Co Ltd, 183 

China, using the methods of KOH fusion and ion selective electrode, or Na2O2 fusion, 184 

citric acid leaching, and ion selective electrode transduction. F concentrations have 185 

<10% deviation from certified values. Trace elements were analyzed using 186 

inductively coupled plasma–mass spectrometry (ICP–MS) following acid digestion of 187 

samples (using a mixture of HF and HNO3) in high-pressure Teflon vessels; details of 188 

the procedures are provided by Li et al. (2006). The USGS and Chinese National 189 

standards SARM-4, W-2, BHVO-2, AGV-2, GSR-1, GSR-2 and GSR-3 were chosen 190 

for calibrating the elemental concentrations of measured samples. Analytical precision 191 

for rare earth element (REE) and other incompatible element analyses is typically 192 

1%–5%. 193 

Polished thin sections were observed using a polarizing optical microscope and 194 

by scanning electron microscopy. The back-scattered-electron (BSE) images of micas 195 

and qualitative analysis of accessory minerals were obtained using field emission 196 

scanning electron microscopy (FESEM; Zeiss Supra55) or electron probe 197 

microanalysis (EPMA) using a JEOL JXA-8100 equipped with an Oxford Inca-X20 198 

energy dispersive spectroscope (EDS) at the SKLABIG-GIG-CAS. 199 

The major element compositions of micas were obtained by EPMA under the 200 

following conditions: 15 kV accelerating voltage, 20 nA beam current, 5 μm beam 201 



diameter, and a ZAF correction procedure for data reduction. The crystals used for the 202 

wavelength dispersive X-ray spectrometer (WDS) were TAP (for Si, Mg, Rb, Al, Na), 203 

LIF (for Fe, Mn, Ti), LDE1 (for F), and PETH (for K, Cs, Ca, P). A variable peak 204 

counting time of 7–60 s was used, depending on the intensity of the characteristic 205 

X-ray line and the desired precision. The detection limits for all elements were lower 206 

than 300 ppm. The following natural and synthetic standards were used: K-feldspar 207 

(for Si, K), pollucite (for Rb, Cs), apatite (for F, P), olivine (for Fe), Albite (for Na, 208 

Al), MnO (for Mn), kaersutite (for Ti), pyrope garnet (for Mg, Ca), and tugtupite (for 209 

Cl). Chemical formulae of micas were calculated based on 24 anions (O, F, OH), and 210 

Fe3+ was calculated following Lin and Peng (1994). The Li2O content of micas was 211 

calculated following Tischendorf et al. (1997, 1999), and H2O was calculated 212 

following Tindle and Webb (1990). 213 

In situ trace element analyses of micas were obtained through laser ablation–214 

inductively coupled plasma–mass spectrometry (LA–ICP–MS) using an Agilent 215 

7500a ICP–MS coupled with a RESOlution M-50 laser ablation system at the 216 

SKLABIG-GIG-CAS. A spot size of 42 μm, a repetition rate of 5 Hz, and a maximum 217 

energy of 90 mJ were applied during analysis. External calibration used the National 218 

Institute of Standards NIST samples SRM 612 and T1-G with Al as the internal 219 

standards to correct for instrumental drift. Data reduction was performed using the 220 

commercial software ICPMSDataCal 6.7 (Liu et al. 2008). The detection limits of 221 

LA–ICP–MS range from 0.002 ppm for REE to 1 ppm for Ni. Repeat analyses of 222 

USGS rock standards SRM 612 and T1-G indicate that both precision and accuracy 223 



are better than 5% for most of the elements analyzed. For mica, the relative standard 224 

deviations (RSDs) of Rb, Cs, Nb, Ta, W and Sn are better than 1%; those of REE, Th, 225 

U and Pb range from 20% to 30%. 226 

BULK-ROCK COMPOSITIONS 227 

Nine granite samples (including three biotite granite, five muscovite granite and 228 

one lepidolite granite) from the Dalingshang ore block of the Dahutang tungsten 229 

deposit were analyzed for major and trace element compositions (Appendix 1). For 230 

comparison, we also collected data of two-mica granite from the Shiweidong ore 231 

block, as published by Huang and Jiang (2014). 232 

Major elements 233 

The analyzed rocks are strongly peraluminous (A/CNK = 1.25−1.42; Fig. 4a) 234 

with high SiO2 (68.79−76.00 wt%), Al2O3 (12.8−17.2 wt%; Fig. 4b) and alkali (K2O + 235 

Na2O = 4.53−8.67 wt%) contents (Appendix 1). There is a general trend of decreasing 236 

TiO2, MgO and Fe2O3 and from biotite granite to muscovite granite to Li-mica granite 237 

(Figs. 4c and 4d), and TiO2 contents are positively correlated with MgO contents (Fig. 238 

4c). The rocks are P- and F-rich granites with F contents of 0.28–1.65 wt% and P2O5 239 

contents of 0.12–1.54 wt% (Appendix 1). 240 

Trace elements 241 

The studied samples contain relatively low REE contents (∑REE = 12−224 ppm). 242 

In chondrite-normalized REE patterns (Fig. 5a), they show strongly negative Eu 243 

anomalies (Eu/Eu* = 0.02−0.47). The muscovite granite and Li-mica granite samples 244 



show the convex M-type lanthanide tetrad effect (Fig. 5a) with TE1,3 values of 245 

1.15−1.21 (Appendix 1). In addition, the ∑REE contents and Eu/Eu* and (La/Yb)N 246 

values decrease gradually from biotite granite to muscovite granite to Li-mica granite 247 

(Appendix 1). In the mean upper crust normalized multi-elements diagram, the rocks 248 

are depleted in Ba, Sr, Ti, and REE, and enriched in Cs, Rb, W, Nb, Ta, P, Sn, and Li 249 

(Fig. 5b). Overall, the muscovite granite and Li-mica granite samples have much 250 

higher Li, Rb, Cs, P, W, Sn, Nb and Ta contents, and are depleted in Ba, Sr, Ti and 251 

REE relative to the biotite granite samples (Fig. 5b). 252 

MICA CHEMISTRY 253 

Micas in the biotite granite are compositionally homogeneous with abundant 254 

zircon, monazite, ilmenite and apatite inclusions (Figs. 3c and 3d). In contrast, micas 255 

in the muscovite granite and Li-mica granite exhibit compositional zoning that 256 

consists of core, mantle and rim domains (Fig. 6). The mantle domain is brighter than 257 

the core and rim domains in BSE images with a sharp compositional boundary 258 

between mantle and rim (Figs. 6b and 6d). The irregular rim is usually thin and may 259 

show a ‘clinker’-like or porous morphology (Figs. 6b and 6d). 260 

Major elements 261 

Micas in studied samples show systematic chemical variability between different 262 

granite types. The micas in biotite granite samples consist of biotite and muscovite, 263 

which all have low Li2O (0.17–1.10 wt%) and F (0.36–2.68 wt%) contents. The 264 

biotite has much higher FeOT (18.7–25.0 wt%) and TiO2 (1.53–3.18 wt%) contents 265 



and Fe/(Fe+Mg) and Fe2+/Fe3+ ratios (0.58−0.78 and 9.17–13.51, respectively) than 266 

the muscovite (FeOT = 1.40–4.35 wt%; TiO2 = 0.23–1.02 wt%). Micas in muscovite 267 

granite and Li-mica granite samples show relatively high and variable Li2O (0.21–268 

2.59 wt% and 1.99–5.34 wt%, respectively) and F (0.07–7.87 wt% and 0.60–7.30 269 

wt%, respectively) than the micas in biotite granite samples. They have low FeOT 270 

(1.43–6.08 wt% and 0.02–5.43 wt%, respectively) and TiO2 (≤0.72 wt% and ≤0.21 271 

wt%, respectively) contents. 272 

The micas in biotite granite samples are classified as lithian biotite (plotting 273 

between annite–phlogopite and zinnwaldite) and muscovite (Fig. 7). With increasing 274 

evolution from biotite granite to muscovite granite to Li-Mica granite, the micas show 275 

a trend of increasing Li content and decreasing Al and R2+ (where R2+ = Fe2+ + Mn2+ + 276 

Mg2+) contents in the octahedral site (Fig. 7b). In the muscovite granite, the micas 277 

belong to muscovite with compositional changes toward zinnwaldite as increasing Li 278 

and Fe contents (Fig. 7). The micas in the Li-mica granite sample have higher Li but 279 

lower Fe contents than those in muscovite granite samples, which also show the 280 

compositional trend to trilithionite and polylithionite and are classified as 281 

Li-muscovite (0.5 trilithionite) or lepidolite (Fig. 7). 282 

Overall, the Rb2O contents of micas increase from biotite granite (≤0.46 wt%) 283 

through muscovite granite (0.11–1.43 wt%) to Li-mica granite (0.48–3.00 wt%). The 284 

micas also show a positive correlation between F and Rb2O, and exhibit a trend of 285 

decreasing K/Rb ratio from biotite granite through muscovite granite to Li-mica 286 

granite (Figs. 8 and 9). Cesium is most enriched within trilithionite grains in the 287 



Li-mica granite (up to 1.39 wt% Cs2O) (Fig. 8). The Li, Rb and F contents of micas 288 

increase with decreasing K/Rb ratio from biotite granite through muscovite granite to 289 

Li-mica granite (Fig. 8). 290 

Rare metal and other trace elements 291 

Micas in studied samples have high and variable W, Sn, Nb and Ta contents (Fig. 292 

9; Appendix 2), but contain extremely low REE contents, with most analyses being 293 

below the detection limits (bdl; Appendix 2). High K/Rb micas in biotite granite 294 

samples have relatively low W (1–99 ppm), Sn (15–273 ppm), Nb (21–151 ppm) and 295 

Ta (3–43 ppm) contents with variable Nb/Ta ratios (3.24−20.5) (Figs. 10a and 12; 296 

Appendix 2). Compared with the biotite granite, micas in the muscovite and Li-mica 297 

granites have higher Ta contents (10–182 ppm) and large variable Nb contents (9–261 298 

ppm), which show overall lower Nb/Ta ratios (0.21–10.5) (Figs. 10a and 12; 299 

Appendix 2). Tungsten contents in micas increase from muscovite granite (7–140 ppm) 300 

to Li-mica granite (98–339 ppm), while Sn contents display a decreasing trend (89–301 

737 ppm and 183–464 ppm, respectively). There is also an apparent decreasing trend 302 

in Sc contents from biotite granite (5.8–38.1 ppm) to muscovite granite (0.4–109 ppm) 303 

to Li-mica granite (0.3–0.8 ppm) (Appendix 2). 304 

Compositional zoning 305 

The zoned micas in muscovite granite samples have almost constant Si and Na 306 

contents and slightly decreasing Mg contents from core to mantle to rim (Fig. 11a). In 307 

contrast, the Fe, Rb and F contents increase gradually from core to mantle and then 308 

decrease in the rim. Aluminum contents decrease from core to mantle and increase in 309 



rim (Fig. 11a). The mantle has higher Nb, Ta, W, Sn, Li and F contents than the core 310 

and rim (Fig. 12). The mean Nb/Ta ratio decreases gradually from core to mantle to 311 

rim (Fig. 12). 312 

In zoned micas from Li-mica granite samples, the Si, Fe, Mn, Rb, Cs and F 313 

contents increase from core to mantle and show a notable decrease in rim, whereas Al 314 

contents decrease from core to mantle and then increase in rim (Fig. 11b). The core to 315 

mantle domains are characterized by compositions that change from Li-muscovite to 316 

lepidolite (Fig. 7); the rim domains are muscovite with relatively low Li and high Al 317 

contents (Fig. 7). The mantle domains have higher W, Ta, Li, Cs and F contents than 318 

the core and rim domains (Fig. 12). The Nb and Sn contents are higher in the core 319 

domains than in the mantle domains (Fig. 12). The Nb/Ta ratio also decreases from 320 

core (mean 7.68) to mantle (mean 0.54) to rim (mean 0.21) (Fig. 12). 321 

DISCUSSION 322 

Magmatic–hydrothermal evolution of the Dalingshang granite 323 

Rare metal granites are considered to be highly fractionated bodies that record 324 

the transition between magmatic and hydrothermal processes (Cuney et al. 1992; Yin 325 

et al. 1995; Ballouard et al. 2016; Wu et al. 2017). The studied samples collected from 326 

ZK15-1 in the Dalingshang ore block of the Dahutang tungsten deposit are the late 327 

Mesozoic granites that intruded into the Neoproterozoic biotite granodiorite, and show 328 

a gradational variation in bulk-rock compositions from biotite granite through 329 

muscovite granite to Li-mica granite, which might reflect different degree of 330 



differentiation. The markedly negative Eu anomalies in bulk-rock composition (Fig. 331 

5a) indicate extensive fractional crystallization of feldspars (plagioclase and 332 

K-feldspar). In addition, the gradual decrease in the (La/Yb)N ratio and ∑REE 333 

contents from biotite granite to muscovite granite and Li-mica granite (Appendix 1) 334 

are consistent with fractional crystallization of plagioclase, as the REEs are 335 

compatible in plagioclase in phosphorus-rich peraluminous felsic magmas with DLa > 336 

DYb (Bea et al. 1994). The fractionation of K-feldspar and plagioclase in highly 337 

evolved granites also depletes the melt in Ba and Sr, respectively (Nash and Crecraft 338 

1985; Bea et al. 1994), corresponding to negative Ba and Sr anomalies in studied 339 

samples (Fig. 5b). The depletion in Ti is likely caused by the fractional crystallization 340 

of Fe–Ti oxides, in particular rutile and ilmenite. 341 

Plagioclase feldspar preferentially incorporates Sr over Rb (Nash and Crecraft 342 

1985; Bea et al. 1994), zircon partitions Zr over Hf (Linnen and Keppler 2002; Yin et 343 

al. 2013), and micas and columbite-group minerals preferentially incorporate Nb over 344 

Ta (Linnen and Keppler 1997; Stepanov et al. 2014). In addition, Rb would be 345 

enriched in the residual melt, whereas K is almost invariable. Therefore, K/Rb, Zr/Hf, 346 

Nb/Ta and Rb/Sr ratios are useful indicators of the degree of differentiation of 347 

magmas (Bau 1996; Dostal and Chatterjee 2000; Deering and Bachmann 2010; 348 

Ballouard et al. 2016). The studied samples show increasing Rb/Sr ratio and 349 

decreasing Zr/Hf, Nb/Ta and K/Rb ratios from biotite granite to muscovite granite and 350 

Li-mica granite (Appendix 1), indicating the elevated degree of differentiation. 351 

Whole-rock Nb/Ta ratios of <5 has been regarded as geochemical marker of 352 



highly evolved melt with hydrothermal interaction (Ballouard et al. 2016). Both the 353 

muscovite granite and Li-mica granite samples have very low Nb/Ta ratios (0.94–3.19; 354 

Appendix 1), suggesting a magmatic-hydrothermal evolution. In their REE patterns, 355 

the muscovite granite and Li-mica granite samples show convex M-type lanthanide 356 

tetrad effect (TE1,3 > 1.1; Fig. 5a, Appendix 1) similar to many highly evolved 357 

granites related to W-Sn deposit (e.g., Zhao et al. 1992; Monecke et al. 2007). In 358 

general, the lanthanide tetrad effect is due to different partition coefficients of REE–F 359 

and REE–Cl complexes in the fluid phase (Bau 1996; Irber 1999; Monecke et al. 360 

2011). The F-rich hydrosaline magmatic fluid-melt interaction might enhance the 361 

M-type lanthanide tetrad effect in the silicate melt (Wu et al. 2011; Peretyazhko and 362 

Savina 2010). In addition, fluid-melt interaction in an open system may produce 363 

M-type lanthanide tetrad effect because of the remove of coexisting or exsolved fluids 364 

that show complementary W-type REE pattern (Irber 1999). As a result, both the 365 

rock-forming minerals and accessory minerals can also show M-type lanthanide tetrad 366 

effect (Monecke et al. 2002; Wu et al. 2011). Therefore, we proposed that the M-type 367 

lanthanide tetrad effect recorded in studied samples reflects interaction with 368 

hydrothermal fluids during the post-magmatic stage. However, crystallization of 369 

niobian rutile, cassiterite, and fergusonite-(Y) in the muscovite granite and 370 

columbite-group minerals in the Li-mica granite represent the saturation of rare metal 371 

elements in the melt. 372 

The evolutionary trend of the magma and the degree of fractionation inferred 373 

from mica compositions are comparable to those deduced from zircon and 374 



columbite-group minerals in rare metal granites (van Lichtervelde et al. 2008; 375 

Stepanov et al. 2014; Li et al. 2015; Breiter et al. 2017). In rare metal granites, volatile 376 

elements (e.g., F and P) and incompatible elements (e.g., Li, Rb, Cs) are gradually 377 

enriched as the magma evolves and fractionates to become saturated during the 378 

post-magmatic stage (Huang et al. 2002; Wu et al. 2017). In the granites of the 379 

Dalingshang ore block, the differentiation of the granitic plutons means that the Li, Rb 380 

and F contents in the micas increase in proportion to their concentrations in the 381 

magma (Fig. 8). The crystallization of Li-mica in the muscovite and Li-mica granite is 382 

an important mineralogical marker of the saturation of volatile elements during the 383 

post-magmatic stage. A trend of increasing fractionation is also indicated by the 384 

decreasing Nb/Ta ratios recorded in the micas, according to the higher compatibility 385 

of Nb over Ta in micas in granite magmas (Stepanov et al. 2014). The FeOT, MgO and 386 

TiO2 contents and Nb/Ta and K/Rb ratios in micas all decrease from biotite granite to 387 

muscovite granite to Li-mica granite (Figs. 9, 10), consistent with a fractional 388 

crystallization trend. The K/Rb and Nb/Ta ratios in micas from studied samples (3.1–389 

73 and 0.21–21, respectively) are higher than those within the Yashan granite (1.67–390 

41 and 0.26–7, respectively; Li et al. 2015) that hosts a Ta deposit in South China, 391 

thereby indicating a lower degree of fractionation than the Yashan granite. 392 

The micas in the muscovite granite and the Li-mica granite show distinctive 393 

patterns of zoning (Fig. 6), suggesting a change in the composition of the melt, which 394 

may record differentiation, magma mixing, or fluid metasomatism (e.g., Vernon et al. 395 

1988; Clarke et al. 2003; Roda et al. 2007; Li et al. 2013). For compositional zoned 396 



mica, the core would crystallize from original magma. The F, Li, Fe, Rb and Cs 397 

contents in zoned muscovite-lepidolite of studied samples increase gradually from 398 

core to mantle, which lead to different brightness of zoning texture in BSE (Fig. 6), 399 

consistent with the trend of magmatic evolution (e.g., Roda et al. 2007). Given the 400 

high partition coefficient of Cs in fluids (Webster et al. 1989), the distinct enrichment 401 

of Cs in the mantle domains of zoned micas suggests interaction with hydrothermal 402 

fluids that may have exsolved from the granitic magma as it differentiated (Černý et al. 403 

1985; Wang et al. 2004). The irregular rims, which are characterized by a porous 404 

‘clinker-like’ structure, possibly indicate later metasomatism of relict mantles (Fig. 405 

6d). As the rim domains contain very low Li, F, Rb and Cs contents relative to the 406 

core and mantle domains (Fig. 11), we propose that an exotic aqueous fluid was 407 

involved in the magmatic–hydrothermal evolution (see in following section). 408 

Tungsten enrichment during magmatic evolution 409 

Rare metal granites are an important host of W–Sn–Nb–Ta polymetallic deposits 410 

(Černý et al. 2005). These rare metals have a similar ionic radius and electronegativity, 411 

and show similar geochemical characteristics (Linnen and Cuney 2005). However, 412 

they exhibit different geochemical behaviors during mineralization according to slight 413 

differences in solubility and fluid–melt partition coefficients (Linnen 1998; Linnen 414 

and Cuney 2005). Columbite-group minerals, ixiolite and microlite are 415 

homogeneously disseminated within the granites, consistent with a magmatic origin 416 

for Nb and Ta mineralization. The volatile elements, especially Li and F, promote Ta 417 

crystallization and Nb–Ta differentiation (Linnen 1998; van Lichtervelde et al. 2008). 418 



Sn is disseminated in granites or closely related to hydrothermal processes, including 419 

the formation of greisen, skarns, and felsic veins (Lehmann 1987; Pollard et al. 1987; 420 

Bhalla et al. 2005). Tungsten is mainly deposited in hydrothermal veins 421 

(Lecumberri-Sanchez et al. 2017). The three types of ore-bearing granites exhibit 422 

different evolutionary trends, in which W or W–Sn mineralization is closely related to 423 

biotite granites, two-mica granites or muscovite granites, and Nb–Ta deposits mostly 424 

relate to albite granites that record a higher degree of differentiation (Chen et al. 2008; 425 

Huang et al. 2002; Li et al. 2015; Wang et al. 2017). 426 

Tungsten is incompatible in granitic melt and is consequently enriched in highly 427 

evolved granites that are aluminous and volatile-enriched. For example, the 428 

Erzgebirge granites exhibits increasing W contents from low-F biotite granite through 429 

low-F two-mica granite to high-F and high-P Li-mica granite (Förster et al. 1999). 430 

Experimental studies show that W exists mainly as the W6+ ion and constitutes WO4
2- 431 

tetrahedra within the granitic melt (Farges et al. 2006). Because of the different 432 

geometric properties and larger volume of [WO4] relative to [SiO4], [WO4] is not 433 

readily incorporated into the crystal lattice of rock-forming minerals. Therefore, 434 

tungsten becomes enriched in the residual melt during differentiation due to the 435 

fractional crystallization of plagioclase. Alkali metals such as Na and K are available 436 

to interact with WO4
2- tetrahedra to promote W solubility (Linnen and Cuney 2005). 437 

Tungsten is likely to become saturated in aluminous granites because of the lower 438 

solubility of wolframite in aluminous melt compared with alkali melt (Che et al. 439 

2013). The fluorine input may increase the abundance of NBOs (non-bridging 440 



oxygens) (Mysen 1990; Keppler 1993), which may increase the proportion of WO4
2– 441 

tetrahedral in the melt (Che et al. 2013). Therefore, tungsten will become enriched in 442 

the melt of the post-magmatic stage, when the melt is highly fractionated and 443 

depolymerized. 444 

Granites in the Dalingshang ore block are peraluminous and highly evolved. The 445 

muscovite granite and Li-mica granite have lower K/Rb ratios than the biotite granite 446 

and show lanthanide tetrad effect, consistent with the magmatic–hydrothermal stage. 447 

The muscovite granites have slightly higher W contents than the biotite granite and 448 

Li-mica granite (Fig. 10f), whereas muscovite and Li-mica (Li-muscovite and 449 

lepidolite) show much higher W contents than biotite grains (Fig. 10c). This indicates 450 

that the precipitation of W has a close affinity with mica growth, in particular 451 

muscovite and Li-mica. The ionic radius of W6+ (0.68 Å) is close to that of Ti4+ (0.69 452 

Å), and tungsten is able to enter octahedral vacancies such as occur in rutile and 453 

biotite (Shannon 1976). Thus, during the early magmatic stage of the Dalingshang 454 

granite, biotite and rutile were the major carriers of W. Because of the similar ionic 455 

radii and electronegativity of W6+ (0.68 Å, 984 kJ/mol) and Al3+ (0.61 Å, 921 kJ/mol) 456 

(Shannon 1976), W6+ can replace tetrahedral Al3+ in muscovite. The trace element 457 

contents of micas are also dependent on the partition coefficient of W between micas 458 

and melts, although few data exist. Antipin et al. (1981) reported that W is compatible 459 

within micas. Simons et al. (2017), in a study of peraluminous granites of the 460 

Cornubian Batholith in Europe, showed that micas are major rock-forming minerals 461 

containing W, in which muscovite and Li-micas have higher W contents than biotite. 462 



Muscovite has a much higher DW value than biotite with calculation (Simons et al. 463 

2017). Therefore, muscovite and Li-mica are effective carriers of tungsten, which 464 

resulted in the muscovite granite and Li-mica granite in the Dahutang tungsten deposit 465 

being enriched in W.  466 

The zoned micas in the muscovite and Li-mica granites in the Dalingshang ore 467 

block could be utilized to investigate magmatic–hydrothermal processes through 468 

variations in the concentrations of trace elements such as Li, F, Rb and Cs. 469 

Enrichment in Ta and W is greater in the mantle domain of zoned micas and shows 470 

positive correlations with Li, F, Rb and Cs contents (Fig. 12). In contrast, Nb and Sn 471 

contents decrease from core to mantle (Fig. 12), which may record the crystallization 472 

of other accessory minerals, such as columbite-group minerals, or may indicate the 473 

role of fluid-related alteration. Both W and Ta contents in micas are strongly 474 

correlated with Li, F, Rb and Cs contents, suggesting that enrichment of W and Ta is 475 

associated with magmatic evolution and has a close affinity with Li and F (Fig. 12). 476 

Effect of fluid on W mineralization 477 

The predominant occurrences of scheelite and wolframite are dip-dying 478 

veinlet-type and quartz-vein-type, respectively, rather than magmatic type, which 479 

suggests that a tungsten deposit is unlikely to form in magma although magmatic 480 

evolution may result in enrichment in W (Beus 1986; Lecumberri-Sanchez et al. 481 

2017). Tungsten is different from other rare metals that are commonly enriched in 482 

magmatic–hydrothermal ore deposits as it is transported mainly as anionic species 483 

such as NaWO4
-, HWO4

-, and WO4
2- within mineralizing fluids (Wood and Samson 484 



2000; Zajacz et al. 2008). Consequently, tungsten can be transported long distances 485 

via aqueous fluids. The selective crystallization of wolframite or scheelite from 486 

aqueous fluids is controlled by different cationic species (Fe2+, Mn2+ or Ca2+) under 487 

suitable physicochemical conditions (Wood and Samson 2000). 488 

The zoned micas in the muscovite and Li-mica granite from the Dalingshang ore 489 

block of the Dahutang tungsten deposit trace not only the enrichment but also the 490 

leaching process of rare metal elements. Most high field strength elements (i.e., W, Sn 491 

and Nb) in the rim domains have concentrations that are distinctly lower than in the 492 

core and mantle domains (Figs. 12e, 12f and 12g), which may reflect the alteration in 493 

the presence of fluids. Fluid cannot effectively transport Nb and Ta due to extremely 494 

low fluid–melt partition coefficients (Linnen and Cuney 2005). However, as the 495 

Nb/Ta ratios are lowest in the rim domains of zoned micas, we suggest that Nb is 496 

more easily taken away than Ta in fluid. The partition coefficient for W between melt 497 

and fluid varies greatly from 0.37 to 4.1 (Keppler and Wyllite 1991), due to the 498 

combined effect of the chlorine content of the fluid, pH value, and oxygen fugacity 499 

(Zajacz et al. 2008). The 𝐷𝑊
𝑓𝑙𝑢𝑖𝑑/𝑚𝑒𝑙𝑡 value is lower in high-HCl or high-HF aqueous 500 

solutions (Kepple and Wyllite 1991). Manning and Henderson (1984) reported a 501 

positive correlation between 𝐷𝑊
𝑓𝑙𝑢𝑖𝑑/𝑚𝑒𝑙𝑡 and the NaCl and NaF contents of the fluid, 502 

whereas Bai and van Groos (1991) noted a decrease in 𝐷𝑊
𝑓𝑙𝑢𝑖𝑑/𝑚𝑒𝑙𝑡 with the addition 503 

of NaCl. Therefore, the decrease of W in the rim of zoned Li-micas reflects the 504 

extraction of W by a fluid. In addition, bulk-rock Nb and Ta contents increase 505 

gradually from biotite granite to muscovite granite to Li-mica granite (Fig. 10), which 506 



differs from the trend in W, further demonstrating that hydrothermal fluids played an 507 

important role in W mineralization (Li et al. 2015). 508 

Based on the occurrence and compositions of apatite and rutile in granites of 509 

Dalingshang ore block, a late hydrothermal stage is inferred, in which oxygen 510 

fugacity is significantly low and corresponds to a relatively reducing environment 511 

(Han et al. 2015). Under such conditions, Mn and Fe mainly exist in a divalent state, 512 

enabling complexing with WO4
2– to form wolframite ([Fe,Mn]WO4). In addition, Ca2+ 513 

derived from hornblende and plagioclase due to fluid-mediated wall-rock alteration 514 

(Jiang et al. 2015) may combine with WO4
2- to form scheelite (CaWO4). A detailed 515 

fluid-inclusion study reported that ore-forming fluids in the Dahutang tungsten 516 

deposit were of low salinity and low to moderate temperature (Gong et al. 2013). The 517 

homogenization temperatures of the fluid inclusions in the Shimensi ore block are 518 

mainly 200–270°C and the salinity (NaCl equiv.) is in the range 0.18–9.47 wt % 519 

(Gong et al. 2013). Wang et al. (2015) studied the composition of sulfur isotopes in 520 

the Dahutang tungsten deposit and showed that 34S values of chalcopyrite and 521 

molybdenite show slight variation (–3.1‰ to 0.9‰) and have the characteristics of 522 

magmatic sulfur. In addition, hydrogen and oxygen isotopic data from ore-bearing 523 

quartz in the Dahutang tungsten deposit (DV-SMOW = -76‰ to -64‰; 18OH2O = 4.5‰ 524 

to 7.3‰) plot in the field of magmatic water in the D vs. 18OH2O diagram, with a 525 

small component of meteoric water (Wang et al. 2015). 526 



IMPLICATIONS FOR W MINERALIZATION 527 

The crystallization and differentiation of granitic magma lead to an enrichment in 528 

incompatible elements and play an important role in rare metal mineralization (Förster 529 

et al. 1999; Huang et al. 2002; Linnen and Cuney 2005). The process is also 530 

accompanied with the magmatic-hydrothermal evolution and the saturation of volatile 531 

elements. The granites of the Dalingshang ore block are highly evolved, which have 532 

been inferred to be the parent rocks of the Dahutang tungsten deposit (Huang and 533 

Jiang 2014) and may have undergone multiple stages of mineralization (Song et al. 534 

2018b). However, little is known of magmatic–hydrothermal processes that 535 

influenced the behavior of rare metal enrichment in the granites. Based on the 536 

chemical evolution and textural variation of micas in the Dalingshang granites, we 537 

proposed the ore-forming processes in the Dahutang tungsten deposit as shown in the 538 

schematic diagram (Fig. 13) and discussed below. 539 

(1) The magmatic evolution is from biotite granite to muscovite granite to 540 

Li-mica granite. The biotite granite represents the early magmatic stage. The highly 541 

evolved muscovite granite and Li-mica granite were formed from hydrous and 542 

low-viscosity magmas in a magma and hydrothermal fluid coexisting environment, 543 

which represent the post-magmatic stage. The ore-forming elements and volatiles 544 

became saturated during the post-magmatic stage. 545 

(2) Micas are effective indicator not only for the magmatic-hydrothermal 546 

evolution of the granite, but also for the tungsten mineralization process. The 547 



enrichment of W has the affinity with volatiles. When the residual melts interact with 548 

internally or externally derived fluid, this fluid can extract rare metals in the melts and 549 

micas and form a low tungsten rim in zoned muscovite. 550 

(3) Tungsten can be taken away distantly by the fluid (Lecumberri-Sanchez et al. 551 

2017). The ore-forming elements, in particular tungsten, are unlikely to be deposited 552 

directly in the granite, and reducing fluids and fluid–rock interaction play an import 553 

role in forming large ore deposits. 554 

Tungsten mineralization is always related to highly evolved S-type granites 555 

(Förster et al. 1999; Zhao et al. 2017; Zhang et al. 2017). In Dahutang tungsten 556 

deposit, the textural and componential variations of micas could be utilized as an 557 

optimal proxy to judge the parent rocks of W deposit and estimate the W metallogenic 558 

potential of the granites. In this study, enrichment in W is closely related to 559 

crystallization of muscovite and Li-mica (Li-muscovite and lepidolite) during the 560 

post-magmatic stage. The rims of zoned muscovite record the interaction by fluids, 561 

which is a universal feature of tungsten-bearing granites and veins (Li et al. 2013, 562 

2015, 2018; Legros et al. 2016, 2018). Thus, muscovite and Li-micas are indicator 563 

minerals for tungsten ore-forming potential in the granites. It is a common feature that 564 

the micas of the tungsten granites, such as the Xihuashan granites in South China (Li 565 

et al. 2013), Yashan rare-metal granite (Li et al. 2015), and the Erzgebirge granites in 566 

Germany (Breiter et al. 2017), all exhibit large extent of compositional variation or 567 

variable compositional zoning, which would be important for reconstructing tungsten 568 

ore-forming process. The textural of zoned micas and geochemical variations of micas 569 



in these tungsten granites may also record the processes of both enrichment and 570 

transportation of tungsten during the magmatic-hydrothermal evolution. 571 
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FIGURE CAPTIONS 897 

 898 

FIGURE 1. (a) Distribution of Neoproterozoic granites and Mesozoic granites and 899 

volcanic rocks in South China (modified from Li et al. 2010), and locations of the 900 

Nanling W–Sn polymetallic region (NLR) and the Dahutang tungsten deposit. (b) 901 

Geological sketch map of the Dahutang tungsten deposit and surrounding areas in 902 

northwestern Jiangxi Province, South China (after Jiangxi Western Geological 903 

Brigade). Abbreviation: Jiangshan-Shaoxin fault (JSF). 904 

 905 

FIGURE 2. Geological map of the Central and North ore blocks of Dahutang tungsten 906 

deposit, and location of drilling Site ZK 15-1 (modified from Northwestern 907 

Geological Brigade, Jiangxi Bureau of Geology, Mineral Resources, Exploration and 908 

Development, 2012). 909 

 910 

FIGURE 3. Petrographic characteristics of granites in the Dalingshang ore block, 911 

Central Dahutang tungsten deposit. (a) Photomicrograph of biotite granite, mineral 912 

inclusions in biotite phenocryst form a dark rim; (b, c) back-scattered electron (BSE) 913 

images of biotite granite show mineral inclusions (e.g., zircon, rutile, ilmenite, 914 

monazite, and apatite) in biotite phenocrysts; (d) photomicrograph of biotite granite, 915 

fine-grained muscovite surrounding the biotite phenocryst; (e) photomicrograph of 916 

muscovite granite; (f) photomicrograph of Li-mica granite. Mineral abbreviations: 917 

biotite (Bt), muscovite (Ms), quartz (Qz), plagioclase (Pl), K-feldspar (Kfs), zircon 918 

(Zrn), rutile (Rt), ilmenite (Ilm), monazite (Mnz), apatite (Ap). 919 

 920 

FIGURE 4. (a) A/NK vs. A/CNK diagram indicating the peraluminous nature of 921 

granites from the Dalingshang ore block; Plots of (b) Al2O3 vs. SiO2, (c) TiO2 vs. 922 

MgO, (d) MgO vs. Fe2O3 show the variation in the major element composition of the 923 

granites from the Dalingshang ore block. The data of two-mica granites from the 924 

Shiweidong ore block (Huang and Jiang 2014) were shown for comparison. 925 

 926 

FIGURE 5. (a) Chondrite-normalized REE patterns and (b) mean 927 



upper-crust-normalized multi-element diagrams showing the trace element 928 

composition of granites from the Dalingshang ore block. Chondrite and mean upper 929 

crust values are from Taylor and McLennan (1985) and Rudnick and Gao (2003), 930 

respectively. The shaded area represents the chondrite-normalized REE patterns of 931 

two-mica granites from the Shiweidong ore block (Huang and Jiang 2014). 932 

 933 

FIGURE 6. BSE images of zoned micas in muscovite granite (a, b) and Li-mica 934 

granite (c, d). The zoned micas in both granite types consist of core, mantle, and rim 935 

domains. The mantle forms the brightest domain and has an irregular diffuse 936 

boundary where in contact with darker core domain. The rim shows the darkest 937 

contrast and exhibits an irregular boundary and clinkery relict of the mantle and 938 

sometimes the porous. Mineral abbreviations: muscovite (Ms), quartz (Qz), 939 

plagioclase (Pl), K-feldspar (Kfs). The marked numbers are corresponding to analyses 940 

of representative compositions, as provided in Appendix 2. 941 

 942 

FIGURE 7. Chemical composition of micas in granites from the Dalingshang ore block, 943 

shown on ternary diagrams with the apices Al–R2+–Si (a) and Li–R2+–Al (b) (see 944 

main text for details), R2+ = Fe2+ + Mn2+ + Mg2+. These diagrams have been 945 

constrained using an experimental calibration (Monier and Robert 1986, Foster 1960). 946 

Abbreviations: biotite granite (BTG), muscovite granite (MSG), Li-mica granite 947 

(LMG). 948 

 949 

 950 

FIGURE 8. Plots of (a) Rb2O vs. F, (b) Cs vs. K/Rb, (c) F vs. K/Rb, and (d) Li vs 951 

K/Rb for micas in granites from the Dalingshang ore block. Abbreviations: biotite 952 

granite (BTG), muscovite granite (MSG), Li-mica granite (LMG). 953 

 954 

FIGURE 9. (a–d) Plots of MgO, FeOT, F, and TiO2 versus K/Rb for micas, and (e–h) 955 

for whole-rock compositions from granites in the Dalingshang ore block. 956 

Abbreviations: biotite granite (BTG), muscovite granite (MSG), Li-mica granite 957 

(LMG). 958 



 959 

FIGURE 10. (a–c) Plots of Nb/Ta, Ta, and W versus K/Rb for micas, and (d–f) 960 

whole-rock compositions from granites in the Dalingshang ore block. Abbreviations: 961 

biotite granite (BTG), muscovite granite (MSG), Li-mica granite (LMG). 962 

 963 

FIGURE 11. Traverse EPMA analyses of micas from core to mantle to rim along (a) 964 

line A–B (muscovite) shown in Fig. 6b, and (b) line C–D (Li-mica) shown in Fig. 6d. 965 

 966 

FIGURE 12. Plots of Li, F, Rb, Cs, W, Sn, Nb, and Ta versus Nb/Ta for zoned micas in 967 

muscovite granite and Li-mica granite. Abbreviations: biotite granite (BTG), 968 

muscovite granite (MSG), Li-mica granite (LMG). 969 

 970 

FIGURE 13. Schematic representation of the processes of enrichment and migration of 971 

tungsten in the Dahutang granite and the formation of the Dahutang tungsten deposit. 972 

(a) The formation of Dahutang tungsten deposit. The sequence of intrusion is 973 

according to the sampling depth and Song et al. (2018a, b). Abbreviations: biotite 974 

granite (BTG), muscovite granite (MSG), Li-mica granite (LMG), muscovite (Ms). (b) 975 

Sketch showing the textural and compositional variations of micas in the muscovite 976 

granite. (c) Sketch showing the textural and compositional variations of micas in the 977 

Li-mica granite. 978 

 979 

 980 
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