1	Revision 1
2	
3	'Kamchatite' diamond aggregate from northern Kamchatka, Russia:
4	New find of diamond formed by gas phase condensation or chemical vapor
5	deposition
6	
7	Felix V. Kaminsky ^{a,*} , Richard Wirth ^b , Leonid P. Anikin ^c , Anya Schreiber ^b
8	
9	^a KM Diamond Exploration Ltd., West Vancouver, BC, V7S 3J1, Canada
10	^b Helmholtz Centre Potsdam, GFZ German Research Center for Geosciences, Telegrafenberg,C120, D-
11	14473 Potsdam, Germany
12	^c Institute of Volcanology and Seismology, Russian Academy of Sciences, Petropavlovsk–Kamchatskii,
13	683006, Russia
14	
15	Highlights
16	
17	• Polycrystalline diamond identified in northern Kamchatka;
18	• Diamond microcrystals are cemented with tilleyite, SiC, Fe-Ni-Mn silicides, native Si, graphite,
19	calcite, and amorphous material;
20	• The assemblage was formed via gas phase condensation or CVD.
21	
22	Absract
23	

^{*} Corresponding author. Tel +1 604 925 8755. *E-mail address*: felixvkaminsky@aol.com

24	A series of polycrystalline diamond grains were found within the Valizhgen Peninsula in Koryakia,
25	northern Kamchatka, Russia. A grain from the Aynyn River area is studied in detail with TEM. Diamond
26	crystallites, 2-40 μ m in size are twinned and have high dislocation density. They are cemented with
27	tilleyite Ca ₅ (Si ₂ O ₇)(CO ₃) ₂ , SiC, Fe-Ni-Mn-Cr silicides, native silicon, graphite, calcite, and amorphous
28	material. Among SiC grains, three polymorphs were discriminated: hexagonal 4H and 6H and cubic C3
29	(β -SiC). Silicides have variable stoichiometry with (Fe,Ni,Mn,Cr)/Si = 0.505-1.925. Native silicon is an
30	open-framework allotrope of silicon S24, which has been observed, to date, as a synthetic phase only; this
31	is a new natural mineral phase. Three types of amorphous material were distinguished: a Ca-Si-C-O
32	material, similar in composition to tilleyite; amorphous carbon in contact with diamond, which includes
33	particles of crystalline graphite; and amorphous SiO ₂ . No regularity in the distribution of the amorphous
34	material was observed. In the studied aggregate, diamond crystallites and moissanite are intensively
35	twinned, which is characteristic for these minerals formed by gas phase condensation or chemical vapor
36	deposition (CVD) processes. The synthetic analogs of all other cementing compounds (β -SiC, silicides
37	and native silicon) are typical products of CVD processes. This confirms the earlier suggested CVD
38	mechanism for the formation of Avacha diamond aggregates. Both Avacha and Aynyn diamond
39	aggregates are related not to 'classic' diamond locations within stable cratons, but to areas of active and
40	Holocene volcanic belts. The studied diamond aggregates from Aynyn and Avacha, by their
41	mineralogical features, and by their origin during the course of volcanic eruptions via a gas phase
42	condensation or CVD mechanism may be considered as a new variety of polycrystalline diamond and
43	may be called 'kamchatite'. Kamchatite extends the number of unusual diamond localities. It increases
44	the potential sources of diamond and indicates the polygenetic character of diamond.
45	
46	Keywords: diamond, kamchatite, Kamchatka, SiC, tilleyite, silicide, native silicon, CVD
47	
48	

49 **1. Introduction**

50	
51	In recent decades the number of finds of diamond in uncommon tectonic settings and of unusual
52	appearance has increased (Kaminsky, 2007; Golovko and Kaminsky, 2010). Of particular interest, in this
53	respect, is the territory of Kamchatka, Russia, where monocrystalline diamond and polycrystalline
54	diamond aggregates were identified in various volcanic and ultramafic rocks (Kutyev and Kutyeva, 1975;
55	Shilo et al., 1979; Baikov et al., 1995; Gorshkov et al., 1995; Seliverstov, 2009). A summary of these
56	finds was presented recently by Kaminsky et al. (2016) along with the results of a study of uncommon,
57	'carbonado-like' diamond aggregates from the lavas of the active Avacha volcano.
58	These finds demonstrate that diamond is a mineral, which may originate not only at static or
59	dynamic high pressure-temperature (P-T) conditions, but also during the course of near-atmospheric
60	processes of gas phase condensation or chemical vapor deposition (CVD) (Kaminsky et al., 2016). The
61	number of such finds, confirming the idea of the polygenesis of diamond, increases. In this work we
62	continue studying unusual diamond aggregates from Kamchatka and describe another find of a diamond
63	aggregate in northern Kamchatka, formed, most likely, like the Avacha diamond aggregates, during the
64	course of near-atmospheric CVD processes.
65	
66	2. Geological setting of the diamond microcrystalline aggregate
67	
68	In the 1980s a series of carbonado-like diamond grains were found within the Valizhgen Peninsula
69	in Koryakia, northern Kamchatka, Russia (Fig. 1). The area is composed of Paleozoic silicic-tuffaceous
70	rocks, slightly deformed Upper Jurassic-Lower Cretaceous terrigenous units, and ultramafic rocks, which
71	belong to the Talovo-Pekul'nei ophiolite belt comprising ophiolites of various ages, peridotites and
72	various gabbroic rocks. More than a hundred isolated ultramafic rock bodies, scattered over the Valizhgen
73	rise, are suggested to be fragments of a large, low-angle plate-shaped body composed of several sheets.
74	The ultramafic bodies always have tectonic contacts with host arkose sandstones and siltstones; at the

75	flanks of the Valizhgen rise they are overlain by terrigenous Upper Cretaceous deposits. Chromite ore
76	mineralization is associated with the dunite lenses (Osipenko et al., 2002). F.Sh. Kutyev (pers. comm.),
77	during the course of his sampling the Valizhgen area, indentified several fresh (3-7 thousand year old)
78	basaltic cones within the Aynyn River valley.
79	More than 40 grains of diamond aggregate were found in 1983-1988 in eight 20-litre panning
80	samples, collected from recent alluvium from the following rivers: Ilistaya (15 grains in two samples),
81	Gorelaya (20 grains in two samples), Dlinnaya (two grains in one sample) and Smyatii Creek (eight
82	grains in two samples). Later, one of the authors (LPA) identified a carbonado-like grain, Ayn-3, in a
83	sample from the Aynyn River, the left tributary of the Talovka River (Fig. 1).
84	
85	3. Sample characteristics and methods
86	
87	The studied microcrystalline diamond aggregate Ayn-3 is of elongated-rounded shape, ~1 mm in size.
88	Diamond crystallites occupy 52-55 vol.% of the aggregate; they are cemented with a nanocrystalline
89	aggregate of various minerals and amorphous material (Fig. 2).
90	Five electron-transparent foils (##4975, 4976, 5312, 5316B and 5317C) with typical dimensions of 15
91	\times 8 \times 0.15 μm have been prepared applying focused ion beam (FIB) sample preparation. Details of foil
92	preparation are given in Wirth (2004, 2009). Transmission electron microscopy (TEM) was performed
93	using a Tecnai F20 X-Twin microscope, operated at 200 kV with a Schottky emitter as electron source
94	(FEG). The TEM is equipped with an EDAX X-Ray analyzer with ultra-thin window, a Fishione high-
95	angle annular dark-field (HAADF) detector and a Gatan imaging filter (Tridiem) for electron energy-loss
96	spectroscopy and energy filtered imaging. HAADF images were collected with a camera length of
97	330mm displaying diffraction contrast plus Z-contrast or with a camera length of 75 mm which shows Z-
98	contrast only. Usually, nanophases were identified acquiring high-resolution lattice fringe images with a
99	very short acquisition time (0.6 seconds) to avoid decomposition during exposure to the electron beam.
100	The calculated diffraction patterns from high-resolution images were used to measure <i>d</i> -spacing and

101	angles between the adjacent planes. A comparison of the observed data with calculated data from known
102	structures (literature data) allows for the identification of phases present. The chemical composition of the
103	phases was always measured in the scanning transmission mode (STEM) thus avoiding significant mass
104	loss during data acquisition. Acquisition time was 60 or 120 seconds. Data evaluation occurred using the
105	TIA software package of the microscope.
106	
107	4. Results
108	
109	All foils show diamond crystallites, cemented with tilleyite, SiC, Fe-Ni-Mn silicides, native silicon,
110	graphite, calcite, and amorphous material. The peculiar features of this sample, compared with other
111	known diamond aggregates (boart, framesite, carbonado) is that diamond crystallites are not sintered
112	together but are cemented by other phases and/or amorphous material, and that they comprise only a half
113	of the volume of the aggregate (52-55 vol.%).
114	
115	4.1. Diamond crystallites
116	
117	Crystallites of diamond are octahedral and, sometimes, irregular grains 2-40 μ m in size (Fig. 2b). They
118	are usually intensively twinned after (111) as twin planes (Fig. 3a). Some crystallites show a very high
119	dislocation density so that individual lines cannot be distinguished (Fig. 3b); the others show low or very
120	low dislocation density.
121	
122	4.2. Cementing matrix
123	
124	The matrix, cementing the diamond aggregate, comprises almost a half of its volume. It consists of
125	crystalline and amorphous tilleyite, SiC, Fe-Ni-Mn silicides, native silicon, graphite, calcite, and
126	amorphous material (Fig. 4).

127	<i>Tilleyite</i> $Ca_5(Si_2O_7)(CO_3)_2$ is the major component of the matrix (Fig. 4). In addition to
128	nanocrystals, 40-50 nm in size, amorphous material with a similar composition to tilleyite, occupies the
129	significant part of the matrix (Supplementary Fig. 1). Tilleyite was confirmed by diffraction data from
130	high-resolution images (Supplementary Table 1).
131	SiC is the second major phase in the groundmass cementing diamond crystallites. It forms small
132	irregular grains, 5-50 nm in size, intergrown with tilleyite (Fig. 4). Three polymorphs were discriminated
133	among them: hexagonal 4H and 6H (usually intensively twinned) and cubic (not twinned in the studied
134	grain). These have been identified from diffraction patterns (FFT) calculated from high-resolution images.
135	The structural data of hexagonal SiC are presented in Supplementary Table 2, and the cubic crystal
136	symmetry of SiC, determined on the base of three diffraction patterns, calculated from high-resolution
137	images (FFT) with three different zone axis orientations, is shown in Supplementary Fig. 2.
138	Silicides. Irregular and hexagonal crystals of Fe-Ni-Mn-Cr silicides, approximately 100-400 nm in
139	size, are commonly embedded in the tilleyite-SiC matrix or located between diamond crystallites (Fig. 5).
140	Chemical compositions of Fe-Ni-Mn-Cr silicide grains from different foils show great variability with
141	(Fe+Mn+Ni+Cr)/Si atomic ratios from 0.505 to 1.925 (Table 1). Minor admixtures of Ti and Cr also
142	exist. The variations occur not only among different grains but also within a single grain (Table 1 and
143	Supplementary Fig. 3). The compositional variations of the silicides are summarized in Fig. 6.
144	Several compositional and structural groups of silicides may be distinguished (Fig. 6a). Group 1
145	comprises the grains with $(Fe,Ni,Mn,Cr)/(Si+Ti) = 1.888-1.925$, which includes grain #HREM02. This
146	grain, according to its structural characteristics (Supplementary Table 3), has a hexagonal structure with
147	an average stoichiometry of (Fe,Ni,Mn) ₅ Si ₃ (Bińczyska et al., 1973) or orthorhombic structure with a
148	stoichiometry, FeNiSi (Landrum et al., 1998); the same structure may be suggested for another grain with
149	similar chemical composition. Group 2 includes the grains with $(Fe,Ni,Mn,Cr)/(Si+Ti) = 0.961-1.085$,
150	including grain #HREM04. This grain, most likely, has a cubic structure with an average stoichiometry of
151	(Fe,Mn)Si (Aronsson 1958); the same structure is suggested for other grains from the same chemical
152	group. Group 3 includes grains with $(Fe,Ni,Mn,Cr)/(Si+Ti) = 0.505-0.605$; their supposed stoichiometry

153 is (Fe,Ni,Mn,Cr)(Si,Ti)₂, which may be orthorhombic (Kojima et al., 1990) (Supplementary Table 3). 154 There are also silicides with chemical compositions intermediate between the three groups, such as 155 (Fe,Ni,Mn,Cr)/(Si+Ti) = 1.2 (sample #4976-5), (Fe,Ni,Mn,Cr)/(Si+Ti) = 1.5 (sample #4976-6) and 156 (Fe,Ni,Mn,Cr)/(Si+Ti) = 0.66 (samples ##5317-31, 32). Variable stoichiometries and other structures may 157 be suggested to exist in such silicides. The variations in major cation compositions are more random, 158 occupying almost the entire field in the Fe-Ni-Mn plot (Fig. 6b). This confirms the variable stoichiometry 159 of the investigated, Aynyn Fe-Ni-Mn-Cr silicides. *Native silicon* Si_{24} . Several grains of pure native Si⁰, 300-600 nm in size, were identified in foil 160

161 #5312. They occur in a touching association with diamond and silicide (Fig. 7a). The grains are

162 polycrystalline, representing a mosaic of almost equally-oriented nanocrystals, 5-20 nm in size (Fig. 7b).

163 Some crystallites are twinned. The slight misorientation between the individual nanocrystals is

164 documented in smeared-out diffraction spots in the diffraction pattern that cover a larger volume of the

165 crystal including many individual nanocrystals, while singular nanocrystals show sharp diffraction spots

166 (Fig. 7c). The dark-field image, acquired using a (141) reflection of Si⁰, shows the entire crystal in a

167 brighter contrast, demonstrating very bright nanocrystals with perfect orientation along the identified zone

168 axis (Fig. 7d). High-resolution HAADF images show individual crystals with a grain size range of only

169 5-20 nm and with nanoporosity in between (Fig. 7b). The identification of native silicon as Si₂₄ is based

170 on diffraction data from high-resolution imaging (FFT) comparing the observed *d*-spacings and angles

between adjacent planes with the values calculated based on the structural data given by Kim et al.,

172 (2015) (Supplementary Table 4).

Graphite. At a contact of tilleyite-composed Ca-Si-C-O amorphous mass with diamond grains, thin
 (less than 25 nm) rims of amorphous carbon material with graphite flakes occur (Fig. 4b). High-resolution
 imagery demonstrates the gradual transformation of amorphous carbon into graphite (Fig. 8).

Calcite associates with amorphous carbon and *amorphous SiO*₂ within the matrix. It forms angular
grains, which are strongly porous (Fig. 9).

178	Amorphous matrix. In addition to mineral phases in the matrix, which cements diamond
179	crystallites, such as tilleyite, SiC, silicides, native silicon, graphite and calcite, the bulk of the matrix is
180	composed of amorphous material. This amorphous material is of variable composition. Three types of
181	amorphous materials were distinguished: a Ca-Si-C-O material, similar in composition to tilleyite
182	Ca ₅ (Si ₂ O ₇)(CO ₃) ₂ (Fig. 4a); amorphous carbon at a contact with diamond, including particles of
183	crystalline graphite (Figs. 4b and 8); and amorphous SiO ₂ (Fig. 9). No regularity in the distribution of the
184	amorphous materials was observed.
185	
186	5. Discussion
187	
188	In our previous publication we described carbonado-like polycrystalline diamond aggregates from
189	the active Avacha volcano in Kamchatka, that were formed via low-PT gas phase condensation (chemical
190	vapor deposition, or CVD mechanisms) during the course or shortly after one of the volcanic eruption
191	pulses of the volcano (Kaminsky et al., 2016). Evidence for that conclusion was the intensive twinning in
192	diamond crystallites, the unique set of mineral inclusions in the diamond, and the cementing of diamond
193	crystallites by interstitial amorphous silica with tridymite or β -SiC together with native Si ⁰ , rather than
194	sintering characteristic for carbonado. Similar features were observed for the studied diamond aggregate.
195	Like in the Avacha diamond aggregate and unlike in carbonado, diamond crystallites in the studied
196	Aynyn diamond aggregate are not sintered but cemented with the polymineral aggregate, which includes
197	various amorphous materials. This implies a non-traditional, specific kind of origin for this aggregate.
198	The <i>diamond</i> crystallites in the studied aggregate, like in the Avacha aggregate, along with high
199	dislocation density, demonstrate intense twinning by {111} twins (Fig. 3a). The twinning mechanism in
200	diamond is characteristic of diamonds grown via the mechanism of CVD (Shechtman et al., 1993;
201	Dischler and Wild, 1998; Butler and Oleynik, 2008).
202	The other mineral phases, cementing diamond, are also low-pressure compounds. <i>Tilleyite</i>

203 $Ca_5(Si_2O_7)(CO_3)_2$, since its discovery in a contact zone of limestones with granodiorite and quartz

204	monzonite in California (Larsen and Dunham, 1933), was also identified in other calcitic skarns
205	worldwide (e.g., Nockolds and Vincent, 1947; Rubenach and Cuff, 1985; Beard and Drake, 2016) and in
206	Oldoinyo Lengai (Tanzania) natrocarbonatites (Mitchell, 1997). The stability of tillevite was
207	experimentally determined between 930-970 °C at ~35 MPa of CO_2 and between 870-930 °C at ~20
208	MPa of CO ₂ . In the P_{CO2} – T diagram its stability field forms a narrow band lying between the more
209	carbonated calcite + wollastonite assemblage and the less carbonated spurrite (Harker 1959).
210	Natural <i>cubic</i> β -SiC was also identified first in shales of the Green River formation, Wyoming,
211	USA, where it was formed as the product of hot volcanic fluids (Regis and Sand, 1958). Later, β -SiC was
212	found in suevites from the Ries meteorite crater, where it is intergrown with diamond and hexagonal H4
213	moissanite, formed via the CVD mechanism from vaporized carbon-bearing rocks (Hough et al., 1995),
214	and recently (in situ, and also in association with 4H moissanite) in recycled aposedimentary carbonatite
215	xenoliths from Neogene basalts in the Dalihu area, Inner Mongolia, China (He et al., 2017). In the
216	diamond aggregate from Avacha, β -SiC is twinned and has a CVD origin (Kaminsky et al., 2016). This
217	allows us to suggest also a relatively low-pressure, CVD mechanism for the β -SiC formation in the
218	studied Aynyn sample.
219	Hexagonal SiC (moissanite) was considered usually to be a high-pressure mineral (e.g., Kaminsky
220	et al., 1968; Di Pierro et al., 2003). However, Shiryaev and Gaillard (2014) created a thermodynamic
221	model, according to which moissanite may originate not necessarily at high pressures. The association of
222	moissanite with highly reduced phases, such as native Si, various carbides and silicides, may be formed
223	under low pressures at low oxygen fugitivity ($fO_2 \le IW-6$). Later Golubkova et al. (2016), analyzing the
224	stability of SiC, demonstrated that it forms, in association with silicides, alloys and native metals, under
225	variable (including low) pressures and low to moderate temperatures from ultra-reduced fluids ($fO_2 = IW$ -
226	6.5 to -7.5). Recently, this hypothesis was confirmed by finds of <i>in situ</i> moissanite in low-pressure
227	formations of Neogene and Miocene basalts in China and Israel (Dobrzhinetskaya et al., 2018). In Inner
228	Mongolia, China, hexagonal moissanite associate with cubic β-SiC (He et al., 2017); in Miocene alkali-

229 basaltic tuffs in Israel moissanite has inclusions of native silicon and metal silicides, where these minerals 230 were supposedly formed from highly reduced fluids ($H_2O-CH_4-H_2-C_2H_6$) within a shallow magma 231 reservoir (Dobrzhinetskaya et al., 2018). The moissanite grains studied in this work are strongly twinned, 232 implying their low-pressure origin, most likely via the CVD mechanism. SiC was recently described as a 233 vapor condensation product after a lightning strike (Ballhaus et al., 2017) 234 *Metal (Fe-Ni-Mn-Cr) silicides* identified in this work are similar in their compositions to Group 2 235 Mn-Ni-Si-Fe alloys from inclusions in diamond aggregate from the Avacha active volcano, reported in 236 our previous work (Kaminsky et al., 2016); both are silicides. Silicides are very rare natural minerals. 237 Among them, various iron (as well as Fe-Ni and Fe-Ti) silicides predominate, such as gupeiite Fe₃Si, 238 suessite (Fe,Ni)₃Si, hapkeite Fe₂Si, naquite FeSi, linzhiite FeSi₂, luobusaite Fe₃Si₇, zangboite TiFeSi₂ and 239 xifengite Fe₅Si₃ (Mindat: http://www.mindat.org). Their stoichiometry varies widely, from Me/Si = 3 to 240 0.42. Most of them are identified in meteorites and cosmic dust, such as suessite and hapkeite (Anand et 241 al., 2004; Rietmeijer et al., 2008), as well as the manganese silicide, brownleeite MnSi (Nakamura-242 Messenger et al., 2010); some are known from terrestrial formations, frequently as inclusions in moissanite along with native Si⁰ (Shiryaev et al., 2011). 243 244 Most finds of terrestrial Fe-silicides are made in chromitites from the Luobusa ultramafic massif, 245 Tibet, China. These are luobusaite Fe₃Si₇, zangboite TiFeSi₂, naquite FeSi and linzhiite FeSi₂ (Hu, 1999; 246 Bai et al., 2000, 2006; Li et al., 2009, 2012; Shi et al., 2012). Prior to the latter two Fe-silicides being 247 identified in the Luobusa chromitites, they were initially discovered in the 1960s in Miocene sandstones 248 of the Poltavskaya series and placer deposits in the northern Azov area, Donetsk Republic, and named 249 'fersilicite' and 'ferdisilicite', respectively (Gevorkyan, 1969; Gevorkyan et al., 1969; Fleishner, 1969); 250 and zangboite was met in glassy fulgurites from Michigan, USA (Essene and Fisher 1986). In the 1980s, 251 the Mn-Fe silicides, maylyanovite Mn₅Si₃ and unnamed (Mn,Fe)₇Si₂ were found in association with 252 moissanite and graphite as inclusions in volcanic glass near Volnovakha, Priazovye, Donetsk Republic 253 (Tatarintsev et al., 1990). Such volcanic material may be the source of the silicides found in that area 254 earlier. Silicides were also reported from carbonate rocks (Novoselova and Bagdasarov, 1979; Tishchenko

et al., 2016) and as inclusions in moissanite from Yakutian kimberlites (Marshintsev et al., 1967; Pankov and
Spetsius, 1989) and other rocks (Di Pierro et al., 2003). Recently, gupeiite, FeTiSi and FeTi(Si,P), in
association with khamrabaevite TiC, FeTi and other highly reduced mineral phases, were identified in
Cretaceous basaltic pyroclastic rocks exposed on Mount Carmel near Haifa, northern Israel (Griffin et al.,
2016).

260 Three Fe-silicides, possibly corresponding in composition to suessite, hapkeite and xifengite, were 261 found within Co-Mn crust dredged at the depth of 2486 m from a guyot in the central Pacific, at 19N and 262 175W (Mindat: http://www.mindat.org). A new, palladium silicide (palladosilicide) Pd₂Si was identified 263 in chromitites of the Bushveld complex in the North West Province, South Africa and of the Kapalagulu 264 intrusion, western Tanzania (Cabri et al., 2015). Recently Dobrzhinetskaya et al. (2018) found Fe-Ni and 265 V-Ti silicides included in moissanite from Miocene tuff deposits located within Yizre'el Valley of Qishon 266 River, Israel. They have compositions: (Fe,Ni)₃Si₂ and (Fe,Ni,V,Zr)₃Ti₂Si₄ (both orthorhombic) and 267 V₂TiSi₅ (cubic).

268 The conditions of the formation of terrestrial silicides are debatable. The origin of silicides from the Luobusa chromitites was attributed to the deep mantle (Li et al., 2009, 2012). In contrast, Cabri et al. 269 270 (2015) consider palladosilicide formation as a result of magmatic crystallization. In any case, the 271 formation of silicides, particularly in association with moissanite and native metals, requires an extremely low oxygen fugacity, up to $fO_2 = IW-10$ to -12 (Griffin et al., 2016). The silicides from the studied 272 273 diamond aggregate have very variable compositions even within a single grain (Table 1 and 274 Supplementary Fig. 3). This implies unstable, disequilibrium conditions during the course of their origin 275 and disagrees with stable, high-PT model of their formation (Li et al., 2009, 2012). The formation of the 276 studied Fe-Ni-Mn-Cr silicides in the diamond aggregate most likely is similar to common low-PT 277 synthesis of artificial silicides via vacuum evaporation, sputtering, and chemical vapor deposition (e.g., 278 Nicolet and Lau, 1983).

Native silicon Si⁰ is also a very rare natural mineral. In the terrestrial environment, it was identified
 in serpentinites after ultramafic rocks (Bird and Weathers, 1975; Novgorodova et al., 1989) and chromitites

281 of Tibet, China (Hu, 1999; Bai et al., 2000; Trumbull et al., 2009; Zhang et al., 2016) and the Polar Urals, 282 Russia (Yang et al., 2015), in kimberlites of Siberia and China (Marshintsev et al., 1967; Pankov and 283 Spetsius, 1989; Leung et al., 1990), in fulgirites (Essene and Fisher, 1986) and fumaroles of Kamchatka and 284 Kuril Islands, Russia (Korzhinskii et al., 1996), and in other rocks (Di Pierro et al., 2003). In all cases, native 285 silicon is associated with silicides, moissanite, native iron, graphite, i.e., in highly reduced conditions. In the 286 Avacha active volcano rocks it is cementing diamond aggregate in association with cubic β -SiC, amorphous 287 SiO₂ and tridymite, formed as a result of CVD processes during the course or shortly after the volcanic eruption (Kaminsky et al., 2016). Earlier we identified natural silicon Si⁰ within the matrix of the carbonado-like 288 289 polycrystalline diamond from the Avacha volcano, Kamchatka (Kaminsky et al., 2016). Here, we identified this phase as an open-framework allotrope of silicon S24, which has been observed, to date, as a 290 291 synthetic phase only (Kim et al., 2015), suggested to be a superconductor (Sung et al., 2018). According 292 to Kim et al. (2015), low-pressure methods such as chemical vapor deposition (CVD) are the most 293 efficient ways for its industrial production. 294 Amorphous masses comprise a significant part of the diamond aggregate matrix. In different parts

of the sample they have various compositions: 'tilleyite—like' Ca-Si-C-O material (Fig. 4a), SiO₂ (Fig. 9) and amorphous carbon (Figs. 4b and 8), forming a transition to graphite. Silicides are heterogeneous in composition even within nanocrystals. Such heterogeneity is caused by very unstable, varying conditions during the course of the formation of the studied diamond aggregate.

Such features suggest the formation of the studied diamond aggregate, like the earlier studied Avacha aggregates (Kaminsky et al., 2016), at unstable near-atmospheric pressure conditions via gas phase condensation (chemical vapor deposition, CVD) during the course or shortly after the volcanic eruption, in a very reduced environment. The CVD mechanism of diamond formation is well known and is being widely used in the manufacturing of man-made diamonds (Dischler and Wild, 1998; Eaton-Magana and Shigley, 2016). In this mechanism, a material containing methane (CH₄) and hydrogen (H₂) is deposited from a gas onto a substrate. The following reactions take place:

 $306 \qquad 2CH_4 + O_2 \rightarrow 4H_2 + 2CO;$

307 $4H_2 + 2CO \rightarrow C \text{ (diamond)} + H_2O.$

308 The main requirements of diamond-producing CVD are: to deposit carbon onto the substrate and 309 simultaneously suppress the formation of graphitic sp²-bonds. This is realized by establishing high 310 concentrations of non-diamond carbon etchants, such as atomic hydrogen (H_2) to the sourcing gas, and by 311 activating the gas either thermally or by plasma (http://www.cvd-diamond.com/geninfo en.htm). The 312 typical growth temperatures are 700-900 °C, - similar to those established for the formation of the studied 313 aggregates. The most characteristic feature of CVD-grown diamonds is micro-twinning, observed in both 314 plasma (Shechtman et al., 1993; Dischler and Wild, 1998; Butler and Oleynik, 2008) and thermally 315 (Huang et al., 2011) activated products. Such a mechanism in diamond originates from the formation of a 316 hydrogen-terminated four-carbon atom cluster on a local {111} surface morphology, which also serves as 317 a nucleus for the next layer of growth. Subsequent growth proceeds by a reaction at the step edges with 318 one- and two-carbon-atom-containing species. The CVD mechanism of diamond formation with small 319 amounts of nitrogen added to the plasma assisted the growth environments, stimulating the dramatic 320 enhancement in polycrystalline diamond growth rates at temperatures in the range of 700-850 °C (Butler 321 and Oleynik, 2008). 322 No active volcanos exist now in the Valizhgen Peninsula, but Holocene (3-7 ka) volcanic cones are 323 known in the Aynyn River valley. They may be supposed as the sources of the studied diamond aggregate 324 sample. 325 The studied aggregates, both from Avacha and from Koryakia cannot be grown in the laboratory because none of the identified mineral inclusions in diamond crystallites have been synthesized in CVD 326 327 diamonds, with the exception of tungsten carbide used as a substrate (Schwandler and Partes, 2011). 328 Moreover, some of newly found mineral species, such as an open-framework allotrope of silicon S₂₄ was

329 synthesized only a few years ago (Kim et al., 2015), while the natural specimen Ayn-3 with S_{24} described

in this paper was found in the 1980s, when the CVD mechanism for the production of diamond only

331 started being developed.

333 6. Implications

334

335	The studied diamond aggregate from the Aynyn area in northern Kamchatka is similar, by its
336	structure, composition and geological setting, to the earlier studied aggregates from the active Avacha
337	volcano in southern Kamchatka (Kaminsky et al., 2016). In addition to earlier found unusual inclusions in
338	diamond from the Avacha volcano, such as Mn–Ni–Si–Fe alloys (silicides), native Si^0 , β -Mn, β -SiC,
339	tungsten carbide W ₂ C, and boron carbide B ₄ C, which are uncommon for both carbonado and
340	monocrystalline diamond, the Aynyn aggregate has in its composition tillevite, three polymorphs of SiC
341	(including cubic β -SiC), Fe-Ni-Mn-Cr silicides, graphite, calcite, native silicon and – for the first time in
342	the natural environment – an open-framework allotrope of silicon Si_{24} , which has never been observed in
343	nature before. Both the Avacha and Aynyn diamond aggregates are similar to carbonado, but have some
344	differences. (1) They are related not to 'classic' diamond locations carbonado and of monocrystalline
345	diamond within stable cratons, but to areas of active and Holocene volcanic belts. (2) Diamond
346	crystallites in the studied aggregates are well-formed, sometimes idiomorphic, in contrast to usually
347	irregular crystallites in carbonado. (3) Pores in the aggregates comprise 20-50 % of the volume, while in
348	carbonado they do not exceed 20 vol.%. (4) Syngenetic mineral inclusions in the studied aggregates (Fe-
349	Ni-Mn-Cr silicides, native β -Mn, tungsten carbide W_2C , and boron carbide B_4C) were never observed in
350	carbonado and monocrystalline diamond. (5) Diamond crystallites are not sintered, like in carbonado, but
351	cemented with amorphous SiO ₂ , tridymite, α - and β -SiC, native Si ⁰ , calcite, tilleyite and graphite, which
352	are not characteristic for carbonado. These features allow for the suggestion that diamond aggregates
353	found in two areas within Kamchatka, in the Avacha volcano and in Koryakia, are a new diamond variety
354	and may be called 'kamchatite'.
255	The most important feature of diamond emotallites is their misses and negativing shows staristic

The most important feature of diamond crystallites is their micro- and nanotwinning, characteristic for a chemical vapor deposition (CVD) process. The synthetic analogs of all other, cementing minerals

- 357 (β-SiC, silicides and native silicon) formed by the CVD mechanism as well. This likely confirms the
 358 mechanism of CVD for the origin of 'kamchatite'.
- 359 Kamchatite extends the number of diamond varieties. In addition to monocrystalline diamond from kimberlites, lamproites and other magmatic rocks, formed at static high pressure-temperature conditions 360 361 within the mantle; impact diamonds from meteoritic craters and meteorites, containing an admixture of 362 lonsdaleite (yakutite) and formed as the result of solid-phase graphite transformation; diamonds from 363 chromitites and metamorphic rocks, the genesis of which is still debatable; enigmatic carbonado; 364 kamchatite represents diamond formed by gas phase condensation or chemical vapor deposition. 365 Such variety of diamond, formed under various physic-chemical conditions, increases the potential 366 sources of diamond and indicates the polygenetic character of diamond. 367 368 Acknowledgements 369 370 We thank Dr. A. Shiryaev for fruitful discussions of the described finds, Prof. A. Sobolev for his 371 suggestion on the name 'kamchatite' for a new diamond variety, and Prof. D.Zedgenizov and an 372 anonymous reviewer for their interesting, constructive reviews. 373 374 375 Appendix A. Supplementary data 376 377 Supplementary data to this article can be found online at ... 378 379 380 References 381

- 382 Anand, M., Taylor, L.A., Nazarov, M.A., Shu, J., Mao, H.-K., Hemley, R.J. (2004) Space weathering on
- 383 airless planetary bodies: Clues from the lunar mineral hapkeite. Proceedings of the National
- Academy of Sciences of the U.S.A. 101 (18), 6847-6851. DOI: 10.1073_pnas.0401565101.
- Aronsson, B. (1958) An investigation of the Me₅Si₃ MeSi region of the Mn-Fe-Si and related systems.
- Acta Chemica Scandinavica 12(2), 308-313. DOI: 10.3891/acta.chem.scand.12-0308.
- 387 Bai, W., Robinson, P.T., Fang, Q., Yang, J., Yan, B., Zhang, Z., Hu, X., Zhou, M., Malpas, J. (2000) The
- 388 PGE and base-metal alloys in the podiform chromitites of the Luobusa ophiolite, southern Tibet.
- 389 Canadian Mineralogist 38(3), 585-598. DOI: 10.2113/gscanmin.38.3.585.
- Bai, W., Shi, N., Fang, Q., Li, G., Xiong, M., Yang, J., Rong, H. (2006) Luobusaite: a new mineral. Acta
 Geologica Sinica 80(5), 656–659.
- Baikov, A.I., Anikin, L.P., Dunin-Barkovsky, R.L. (1995) Find of carbonado in volcanic rocks of
 Kamchatka. Doklady AN SSSR 343(1), 72-74 (in Russian).
- Ballhaus, C., Wirth, R., Fonseca, R.O.C., Blanchard, H., Pröll, W., Bragagni, A., Nagel, T., Schreiber, A.,
- 395 Dittrich, S., Thome, V., Hezel, D.C., Below, R., Cieszynski, H. (2017) Ultra-high pressure and
- 396 ultra-reduced minerals in ophiolites may form by lightning strikes. Geochemical Perspectives
- 397 Letters, 5, 42-46. Doi:10.7185/geochemlet.1744.
- Bauer, J., Fiala, J., Hřichová, R. (1963) Natural α-Silicon carbide. American Mineralogist 48(5-6), 620634.
- Beard, D., Drake, S.M. (2016) A melilite-bearing high-temperature calcic skarn, Camasunary Bay, Isle of
 Skye. Scottish Journal of Geology 43, 57-67. DOI: 10.1144/sjg43010057.
- 402 Bińczyska, H., Dimitrijević, Z., Gajić, B., Szytuła, A. (1973) Atomic and magnetic structure of Mn₅.
- 403 "Fe_xSi₃. Physica Status Solidi (A) Applications and Materials Science 19(1), K13-K17.
- 404 DOI: 10.1002/pssa.2210190145.
- 405 Bird, J.M., Weathers, M.S. (1975) Josephinite: Specimens from the Earth's core? Earth and Planetary
- 406 Science Letters 28(1), 51-64. DOI: 10.1016/0012-821X(75)90073-4.

- 407 Butler, J.E., Oleynik, I. (2008) A mechanism for crystal twinning in the growth of diamond by chemical
- 408 vapour deposition. Philosophical Transactions of the Royal Society A 366, 295–311. DOI:

409 10.1098/rsta.2007.2152.

- 410 Cabri, L.J., McDonald, A.M., Stanley, C.J., Rudashevsky, N.S., Poirier, G., Wilhelmij, H.R., Zhe, W.,
- 411 Rudashevsky, V.N. (2015) Palladosilicide, Pd₂Si, a new mineral from the Kapalagulu Intrusion,
- 412 Western Tanzania and the Bushveld Complex, South Africa. Mineralogical Magazine 79, 295–307.
- 413 DOI: 10.1180/minmag.2015.079.2.08.
- 414 Di Pierro, S., Gnos, E., Grobety, B. H., Armbruster, T., Bernasconi, S. M., Ulmer, P. (2003) Rock-
- forming moissanite (natural α -silicon carbide). American Mineralogist 88(11-12), 1817-1821.
- 416 Dischler, B., Wild, C. (1998) Low-pressure synthetic diamond. Manufacturing and applications. Springer
- 417 Series in Materials Processing. Springer Verlag Berlin, Heidelberg.
- 418 Dobrzhinetskaya, L., Mukhin, P., Wang, Q., Wirth, R., O'Bannon, E., Zhao, W., Eppelbaum, L.,
- 419 Sokhonchuk, T. (2018) Moissanite (SiC) with metal-silicide and silicon inclusions from tuff of
- 420 Israel: Raman spectroscopy and electron microscope studies. Lithos (in press). DOI:
- 421 10.1016/j.lithos.2017.04.001.
- Eaton-Magana, S., Shigley, J.E. (2016) Observations on CVD grown synthetic diamonds: a review. Gems
 and Gemology 52(3), 222-245.
- Essene, E.J., Fisher, D.C. (1986) Lightning strike fusion: extreme reduction and metal-silicate liquid
 immiscibility. Science 234(4773), 189–193. DOI: 10.1126/science.234.4773.189.
- 426 Fleishner, M. (1969) New mineral names. American Mineralogist 54(12), 1737.
- 427 Gevorkyan, V.Kh. (1969) The occurrence of natural ferrosilicon in the northern Azov region. Doklady
- 428 Akademii Nauk SSSR 185, 416-418 (in Russian).
- Gevorkyan, V.Kh., Litvin, A.L., Povarennykh, A.S. (1969) Occurrence of the new minerals fersilicite and
 ferdisilicate. Geologicheskii Zhurnal (Ukraine) 29(2), 62-71 (in Russian).
- 431 Golovko, A.V., Kaminsky, F.V. (2010) The shoshonite-absarokite-picrite Karashoho pipe, Uzbekistan:
- 432 An unusual diamond deposit in atypical tectonic environment. Economic Geology 105(4), 825-840.

- 433 Golubkova, A., Schmidt, M.W., Connolly, J.A.D. (2016) Ultra-reducing conditions in average mantle
- 434 peridotites and in podiform chromitites: a thermodynamic model for moissanite (SiC) formation.
- 435 Contributions to Mineralogy and Petrology 171, 41. DOI 10.1007/s00410-016-1253-9.
- 436 Gorshkov, A.I., Seliverstov, V.A., Baikov, A.I., Anikin, L.P., Sivtsov, A.V., Dunin-Barkovsky, R.L.
- 437 (1995) Crystallochemistry and genesis of carbonado from the melanocratic basaltoids of the
- 438 Avacha volcano, Kamchatka Peninsula. Geology of Ore Deposits 37(1), 54-66 (in Russian).
- 439 Grice, J.D. (2005) The structure of spurrite, tillevite and scawitte, and relations to other silicate-carbonate
- 440 minerals. Canadian Mineralogist 43, 1489-1500. DOI: 10.2113/gscanmin.43.5.1489.
- 441 Griffin, W.L., Gain, S.E.M., Adams, D.T., Huang, J.-X., Saunders, M., Toledo, V., Pearson, N.J.,
- 442 O'Reilly, S.Y. (2016) First terrestrial occurrence of tistarite (Ti2O3): Ultralow oxygen fugacity in
- the upper mantle beneath Mt Carmel, Israel. Geology 44, 815-818. DOI: 10.1130/G37910.1.
- 444 Harker, R.I. (1959) The synthesis and stability of tilleyite, Ca₅Si₂O₇(CO₃)₂. American Journal of Science
- 445 257(9), 656-667. DOI: 10.2475/ajs.257.9.656.
- He, D., Liu, Y., Gao, C., Chen, C., Hu, Z., Gao, S. (2017) SiC dominated ultrareduced mineral
- 447 assemblage in carbonatitic xenoliths from the Dalihu basalt, Inner Mongolia, China. American
 448 Mineralogist 102, 312-320. DOI: 10.2138/am-2017-5721.
- Hough, R.M., Gilmour, I., Pillinger, C.T., Arden, J.W., Gilkess, K.W.R., Yuan, J., Milledge, H.J.
- 450 (1995) Diamond and silicon carbide in impact melt rock from the Ries impact crater. Nature
 451 378, 41–44. DOI: 10.1038/378041a0.
- 452 Hu, X.-F. (1999) Origin of diamonds in chromitites of the Luobusa ophiolite, southern Tibet, China.
- 453 M.Sc. Thesis, Dalhousie University, Halifax, Nova Scotia, Canada, 151 pp.
- Huang, Y.-S., Luo, C.-P., Qiu, W.-Q., Liu, H.-W. (2011) Fivefold Twin Center in CVD Diamond Film.
 Materials Science Forum 663-665, 1004-1007.
- 456 Kaminsky, F.V. (2007) Non-kimberlitic diamondiferous igneous rocks: 25 years after. In: Fareeduddin
- 457 and Rao, M.S. (Editors), Kimberlite and Related Rocks of India. Special Issue of Journal
- 458 Geological Society of India 69 (3), 557-575.

- 459 Kaminskiy, F.V., Bukin, V.I., Potapov, S.V., Arkus, N.G., Ivanova, V. G. (1969) Discoveries of silicon
- 460 carbide under natural conditions and their genetic importance. International Geology Review 11(5),

461 561-569. DOI: 10.1080/00206816909475090.

- 462 Kaminsky, F.V., Wirth, R., Anikin, L.P., Morales, L., Schreiber, A. (2016) Carbonado-like diamond from
- the Avacha active volcano in Kamchatka, Russia. Lithos 265, 222-236. DOI:
- 464 10.1016/j.lithos.2016.02.021.
- Kim, D.Y., Stefanoski, S., Kurakevych, O.O., Strobel, T.A. (2015) Synthesis of an open-framework
 allotrope of silicon. Nature Materials 14, 169 173. DOI: 10.1038/nmat4140.
- 467 Kojima, T., Sakata, M., Nishida, I. (1990) Study on the formation of Fe_{1-x}Mn_xSi₂ fom the sintered FeSi -
- 468 Fe₂Si₅ eutectic alloy doped with manganese. Journal of the Less-Common Metals 162, 39-49.
- 469 Korzhinskii, M.A., Tkachenko, S.I., Bulgakov, R.F., Shmulovich, K.I. (1996) Condensate compositions
- 470 and native metals in sublimates of high-temperature gas streams of Kudrryavyi volcano, Iturup
- 471 island, Kuril islands. Geochemistry international 34(12), 1057-1064.
- Kutyev, F.Sh., Kutyeva, G.V. (1975) Diamonds in basaltoids of Kamchatka. Doklady Akademii Nauk
 SSSR 221(1), 183-186 (in Russian).
- 474 Landrum, G.A., Hoffmann, R., Evers, J., Boysen, H. (1998) The TiNiSi family of compounds: structure
 475 and bonding. Inorganic Chemistry 37(22), 5754 5763. DOI: 10.1021/ic980223e.
- 476 Larsen, E.S., Dunham, K. (1933) Tilleyite, a new mineral from the contact zone at Crestmore, California.
 477 American Mineralogist 18(11), 469-473.
- 478 Leung, I., Guo, W., Friedman, I., Gleason, J. (1990) Natural occurrence of silicon carbide in a
 479 diamondiferous kimberlite from Fuxian. Nature 346, 352-354.
- 480 Li, G., Fang, Q., Shi, N., Bai, W., Yang, J., Xiong, M., Ma, Z., Rong, H. (2009) Zangboite, TiFeSi₂, a
- 481 new mineral species from Luobusha, Tibet, China, and its crystal structure. Canadian Mineralogist
- 482 47(5), 1265-1274. DOI: 10.3749/canmin.47.5.1265.

- 483 Li, G., Bai, W., Shi, N., Fang, Q., Xiong, M., Yang, J., Ma, Z., Rong, H. (2012) Linzhiite, FeSi₂, a
- 484 redefined and revalidated new mineral species from Luobusha, Tibet, China. European Journal of

485 Mineralogy 24(6), 1047-1052. DOI: 10.1127/0935-1221/2012/0024-2237.

- 486 Marshintsev, V.K. (1990) Natural silicon carbide in kimberlitic rocks of Yakutiya. Mineralogicheskii
- 487 Zhurnal 12(3), 17- 26 (in Russian).
- 488 Marshintsev, V.K., Tshelchkova, S.G., Zolnikov, G.V., Voskresenskaya, V.B. (1967) New data on
- moissanite from kimberlites of Yakutia. Russian Geology and Geophysics, no. 12, 22-31 (in
 Russian).
- Mitchell, R. H. (1997) Carbonate-carbonate immiscibility, neighborite and potassium iron sulphide in
 Oldoinyo Lengai natrocarbonatite. Mineralogical Magazine, 61(6), 779-789.
- 493 Nakamura-Messenger, K., Keller, L.P., Clemett, S.J., Messenger, S., Jones, J.H., Palma, R.L., Pepin,
- R.O., Klöč, W., Zolensky, M.E., Tatsuoka, H. (2010) Brownleeite: A new manganese silicide
 mineral in an interplanetary dust particle. American Mineralogist 95(2-3), 221-228. DOI:
- 496 10.2138/am.2010.3263.
- 497 Nazarov, M.A., Demidova, S.I., Anosova, M.O., Kostitsyn, Y.A., Ntaflos, T., Brandstaetter, F. (2012)
- 498 Native silicon and iron silicides in the Dhofar 280 lunar meteorite. Petrology 20(6), 506-519.
- 499 Nicolet, M.A., Lau, S.S. (1983) Formation and characterization of transition-metal silicides. VLSI
- 500 Electronics Microstructure Science 6, 329-464. DOI: 10.1016/B978-0-12-234106-9.50011-8.
- Nockolds, S.R., Vincent, H.G.C. (1947) On tillevite and its associated minerals from Carlingford, Ireland.
 Mineralogical Magazine 28(198), 151-158.
- 503 Novgorodova, M.I., Boronikhin, V.A., Generalov, M.E., Kramer, K. (1989) On native silicon in
- association with native gold and other metals. Doklady Akademii Nauk SSSR 309(5), 1182-1185
 (in Russian).
- Novoselova, L.N., Bagdasarov, E.A. (1979) New data on iron silicides. Zapiski VMO 106(3), 326-333 (in
 Russian).

- 508 Osipenko, A.B., Sidorov, E., Kostoyanov, A.I., Tolstykh, N.D. (2002) Chromitites of ultramafic
- 509 complexes of the Valizhgen Peninsula, Koryak Highland. Geology of Ore Deposits 44(1), 69-83.
- 510 Pankov, V.Yu., Spetsius, Z.V. (1989) Inclusions of iron silicides and native silicon in moissanite from
- 511 the Sytykan kimberlite pipe. Doklady Akademii Nauk SSSR 305(3), 704–708 (in Russian).
- 512 Regis, A.I., Sand, L.B. (1958) Natural cubic (β) silicon carbide. Geological Society of America Bulletin 513 69(12), 1633-1643.
- Rietmeijer, F.J.M., Nakamura, T., Tsuchiyama, A., Uesugi, K., Nakano, T., Leroux, H. (2008) Origin and
 formation of iron silicide phases in the aerogel of the Stardust mission. Meteoritics and Planetary
- 516 Science 43(1/2), 121–134.
- 517 Rubenach, M.J., Cuff, C. (1985) The occurrence of coarse-grained massive tillevite in the Redcap Creek
- 518 magmatic skarn, North Queensland. Mineralogical Magazine 49(350), 71-75.
- 519 DOI: 10.1180/minmag.1985.049.350.09.
- 520 Sazonov, A.M., Zvyagina, E.A., Leontyev, S.L., Vulf, M.V., Poleva, T.V., Checkushin, V.S., Oleynikova,
- 521 N.V. (2008) Associations of micro- and nanosize isolations of the precious metals complex in ores.
- 522 Journal of Siberian Federal University. Engineering and Technologies 1(1), 17-32 (in Russian).
- 523 Schwander, M., Partes, K. (2011) A review of diamond synthesis by CVD processes. Diamond and
- 524 Related Materials 20(9), 1287-1301. DOI: 10.1016/j.diamond.2011.08.005.
- Seliverstov, V.A. (2009) Thermobarophyllic mineral paragenesrs of diamondiferous alkaline ultramafic
 volcanic complex in Eastern Kamchatka. Vestnik KRAUNZ Earth Sciences № 1(13), 10-30 (in
- 527 Russian).
- Shechtman, D., Hutchison, J.L., Robins, L.H., Farabaugh, E.N., Feldman, A. (1993) Growth defects in
 diamond films. Journal of Materials Research 8(3), 473-479.
- 530 Shi, N., Bai, W., Li, G., Xiong, M., Yang, J., Ma, Z., Rong, H. (2012) Naquite, FeSi, a new mineral
- 531 species from Luobusha, Tibet, Western China. Acta Geologica Sinica 86(3), 533–538.

- 532 Shilo, N.A., Kaminskiy, F.V., Lavrova, L.D., Dolmatov, B.K., Pleshakov, A.P., Tkachenko, L.A.,
- 533 Shepeleva, K.A. (1979) First diamond find in ultrabasic rocks of Kamchatka. Doklady, Earth

534 Science Sections 248, 176-179.

- 535 Shiryaev, A.A., Gaillard, F. (2014) Local redox buffering by carbon at low pressures and the formation of
- 536 moissanite natural SiC. European Journal of Mineralogy 26, 53–59. DOI: 10.1127/0935-
- 537 1221/2013/0025-2339.
- Shiryaev, A.A., Griffin, W.L., Stoyanov, E. (2011) Moissanite (SiC) from kimberlites: Polytypes, trace
 elements, inclusions and speculations on origin. Lithos 122(3-4), 152-164. DOI:
- 540 10.1016/j.lithos.2010.12.011.
- 541 Spicuzza, M.J., Valley, J.W., Fournelle, J., Huberty, J.M., Treiman, A. (2011) Native silicon and Fe-
- silicides from the Apollo 16 lunar regolith: extreme reduction, metal-silicate immiscibility, and
 shock melting. 42nd Lunar and Planetary Science Conference Abstract #2231.
- 544 Sung, H.-J., Han, W.H., Lee, I.-H., Chang, K.J. (2018) A new superconducting open-framework allotrope

of silicon at ambient pressure. Physical Review Letters 120, 157001. DOI:

- 546 10.1103/PhysRevLett.120.157001.
- 547 Tatarintsev, V.I., Tsymbal, S.N., Sandomirskaya, S.M., Egorova, L.N., Vashtchenko, A.N., Khnyazkov,
- 548 A.P. (1990) Iron-bearing manganese silicides from the Priazovye (USSR). Mineralogicheskii
- 549 Zhurnal 12(6), 35-43 (in Russian).
- 550 Tishchenko, A.I., Kasatkin, A.V., Shkoda, R. (2016) Silicides (naquite, linzhiite, luobusaite and
- 551 zangboite) in Sarmatian limestones of Crimea. Noviye Danniye o Mineralakh (New Data on
- 552 Minerals) 51, 30-37 (in Russian).
- 553 Trumbull, R. B., Yang, J. S., Robinson, P. T., Di Pierro, S., Vennemann, T., Wiedenbeck, M. (2009) The
- carbon isotope composition of natural SiC (moissanite) from the Earth's mantle: New discoveries
- from ophiolites. Lithos 113, 612-620. DOI: 10.1016/j.lithos.2009.06.033.

556	Wirth, R. (2004) Focused ion beam (FIB): A novel technology for advanced application of micro- and
557	nanoanalysis in geosciences and applied mineralogy. European Journal of Mineralogy 16(6), 863-
558	877. DOI: 10.1127/0935-1221/2004/0016-0863.
559	Wirth, R. (2009) Focused Ion Beam (FIB) combined with SEM and TEM: Advanced analytical tools for
560	studies of chemical composition, microstructure and crystal structure in geomaterials on a
561	nanometre scale. Chemical Geology 261, 217-229. DOI: 10.1016/j.chemgeo.2008.05.019.
562	Yang, J., Meng, F., Xu, X., Robinson, P. T., Dilek, Y., Makeyev, A. B., Wirth, R., Wiedenbeck, M.,
563	Griffin, W. L., Cliff, J. (2015) Diamonds, native elements and metal alloys from chromitites of the
564	Ray-Iz ophiolite of the Polar Urals. Gondwana Research 27, 459–485. DOI:
565	10.1016/j.gr.2014.07.004.
566	Zhang, R. Y., Yang, JS., Ernst, W.G., Jahn, BM., Iizuka, Y., Guo, GL. (2016) Discovery of in situ
567	super-reducing, ultrahigh-pressure phases in the Luobusa ophiolitic chromitites, Tibet: New
568	insights into the deep upper mantle and mantle transition zone. American Mineralogist 101, 1285-
569	1294. DOI: 10.2138/am-2016-5436.
570	
571	
572	Table title
573	
574	Table 1. The chemical compositions of Fe-Ni-Mn silicide grains (at.%)
575	
576	
577	Captions to Figures
578	
579	Fig. 1. Scheme of the finds of carbonado-like diamond aggregate grains within the Valizhgen Peninsula,
580	northern Kamchatka, Russia, shown in stars. Blue – ultramafic massifs.
581	

582	Fig. 2. Secondary electron image (SEI) of microcrystalline diamond aggregate from the Valizhgen
583	Peninsula, Koryakia, Kamchatka. Diamond crystallites (dark) cemented by nanocrystalline-amorphous
584	aggregate (white). Scale bar is 20 µm.
585	
586	Fig. 3. Structure of diamond crystallites. a – Intense twinning and dislocations in foil #4975. b – High
587	dislocation density in foil #4976. HAADF overview images.
588	
589	Fig. 4. Matrix of the diamond aggregate. a – Tilleyitic amorphous matrix with embedded nanograins of
590	SiC and Fe-Ni-Mn silicide. TEM bright-field image. Foil #4975. b – Amorphous tilleyitic-graphitic mass
591	cementing diamond crystallites. Thin graphite-containing layers are located between diamond and the
592	tilleyitic amorphous material. Diamond shows local very high dislocation density areas and intensive
593	twinning. TEM bright-field image. Foil #4976.
594	
595	Fig. 5. Hexagonal crystal of Fe-Ni-Mn silicide between diamond grains. a – General view. TEM bright-
596	field image. Foil # 4976. b - Indexed diffraction pattern (FFT) of Fe-Ni-Mn silicide based on hexagonal
597	crystal structure.
598	
599	Fig. 6. Chemical composition of the Fe-Ni-Mn-Cr silicides in diamond aggregate. a – General
600	composition. b – Composition of major cations. Group 1 (red squares) – (Fe,Ni,Mn,Cr) ₅ Si ₃ hexagonal;
601	Group 2 (blue circles) - (Fe,Ni,Mn,Cr)Si cubic; Group 3 (green stars) - (Fe,Ni,Mn,Cr)Si ₂ . Comments in
602	the text.
603	
604	Fig. 7. Open-framework allotrope of silicon Si_{24} from foil #5312. a - Mosaic grain composed of
605	nanocrystals of Si_{24}. Bright-field image. b - HAADF image of the mosaic crystal of Si_{24} showing the
606	individual nanocrystals. The inset image in the upper-right corner displays a higher magnification. Some
607	of the nanocrystals show nano-twin lamellae. c - High-resolution lattice fringe image of an individual

608	nanocrystal of Si ₂₄ from the mosaic crystal. Indexed diffraction pattern is inserted in the upper right
609	corner. d - TEM dark-field image using the (141) reflection in diffraction pattern. The brighter patches in
610	the mosaic crystal are individual nanocrystals of Si_{24} with a perfect zone axis orientation with respect to
611	the electron beam. The alternating bright and dark contrasts at the crystal interfaces are thickness fringes
612	due to an inclined interface.
613	
614	Fig. 8. High-resolution lattice fringe image of graphite flake associated with amorphous carbon. The
615	inserted diffraction pattern shows the (0002) reflections of graphite. The smeared-out appearance of the
616	diffraction spots displays the distortion of the basal planes in graphite. Foil #4976.
617	
618	Fig. 9. TEM bright-field image of porous calcite together with amorphous SiO_2 and carbon plus graphite.
619	Foil #4976.
620	
621	
622	Supplementary data
623	
624	Supplementary Table 1. Structural data of tilleyite
625	
626	Supplementary Table 2. Structural data on hexagonal silicon carbides
627	
628	Supplementary Table 3. Structural data of Fe-Ni-Mn-Cr silicides
629	
630	Supplementary Table 4. Structural data of native silicon
631	
632	Supplementary Fig. 1. Structure and composition of tillevite. a - High-resolution lattice fringe image of
633	grain HREM02 from foil #4975. The inset shows the indexed diffraction pattern according to tilleyite.

634	The observed <i>d</i> -spacings are presented in Supplementary Table 1. b and c – EDX spectra of crystalline (b)
635	and amorphous (c) tilleyite, showing their similar chemical compositions. In these and other EDX spectra,
636	the Cu–K α X-ray intensity is due to the copper grid on which the sample rests, and the Ga X-ray intensity
637	represents gallium implanted during the FIB sputtering.
638	
639	Supplementary Fig. 2. High-resolution lattice fringe image of SiC indexed based on a cubic structure.
640	Indexed diffraction pattern in the upper right corner. Foil #5317C.
641	
642	Supplementary Fig. 3. Fe-Ni-Mn-Cr silicide in foil #4975 with variable chemical composition. a - TEM
643	bright-field image. Numbers 3 and 4 indicate the locations of the analyses given in Supplementary Figs.
644	3b and 3c. b and c – EDX spectra collected at locations 3 and 4, respectively. While Fe peak intensities
645	are almost similar in both spectra, the Si peak is significantly more intense and Mn and Ni peaks are
646	significantly less intense in spectrum location 4 (spectrum "c"), while the Ti peak occurs only in spectrum
647	location 3 (spectrum "b"); this reflects the variable chemical compositions observed in locations 3 and 4
648	(see Table 1).
649	
650	
651	

Foil #	Grain	Si	Ti	Fe	Mn	Ni	Cr	Total	(Fe+Mn+Ni+Cr / (Si+Ti)	Group
4975	3*	46.52	2.87	19.76	22.17	7.69	0.99	100.00	1.025	2
	4*	64.13	-	20.2	11.80	3.64	0.23	100.00	0.559	3
	HREM04 cubic	50.11	-	15.86	7.17	26.71	0.15	100.00	0.996	2
4976	HREM02 hexagonal	34.63	-	23.68	19.52	20.37	1.80	100.00	1.888	1
	1	63.87	0.04	5.56	15.94	14.01	0.58	100.00	0.565	3
	2	50.64	-	18.31	15.08	15.17	0.80	100.00	0.975	2
	3	49.03	0.49	5.11	24.22	19.13	2.02	100.00	1.019	2
	4	47.97	-	3.45	25.04	22.72	0.82	100.00	1.085	2
	5	45.19	-	16.56	20.71	17.54	-	100.00	1.213	
	6	39.78	-	24.81	20.29	14.66	0.46	100.00	1.514	
	7	34.19	-	25.95	22.16	16.74	0.96	100.00	1.925	1
	8	34.5	-	26.2	22.4	16.9	-	100.0	1.899	1
	9	51.0	-	18.4	15.2	15.4	-	100.0	0.961	2
5312	11	66.38	0.05	15.82	11.8	5.33	0.62	100.00	0.505	3
	12	66.01	-	16.52	12.52	4.72	0.23	100.00	0.511	3
5316B	21	62.32	-	9.73	26.98	0.65	0.32	100.00	0.605	3
5317C	31	60.85	-	19.76	11.23	8.11	0.05	100.00	0.643	
	32	60.60	-	23.03	8.84	7.53	-	100.00	0.650	

Table 1. The chemical compositions of Fe-Ni-Mn silicide grains (at.%)

Note: *) Analyses #4975(3) and #4975(4) are from the same crystal (see Fig. 7a).

Figure 1

Figure 2

Diamond

Diamond

а

Figure 3a

Pt-layer

Graphite-

Cc

Diamond

Diamond

Diamond

2<u>000 nm</u>

Figure 3b

diamond

Si Fe Mn Ni

Tilleyite

SiCH6

SiC

diamond

50 nm

Figure 4a

Figure 4b

Diamond

Diamond

Diamond

Fe-Mn-Silicide

200 nm

Figure 5a

Figure 5b

Figure 6a

Figure 6b

Mn-Fe -Ni silicide

Diamond

Si24

Mn-Fe -Ni silicide

Figure 7a

Figure 7b

Figure 7c

Figure 7d

Amorphous carbon

Carbon with Graphite

200 nm

Calcite

SiO2 amorphous

Figure 9