1		Revision 1
2	Uptake and Release o	f Arsenic and Antimony in Alunite-Jarosite and Beudantite Group
3		Minerals
4	Karen A. Hudson-Edwards	
5	Environment & Sustainabili	ty Institute and Camborne School of Mines, University of Exeter, Penryn,
6	Cornwall TR10 9DF	
7		
8	Submitted to:	American Mineralogist
9	Manuscript type:	Invited Centennial Review Manuscript
10	Date of re-submission:	1 February 2019
11	Keywords:	arsenic; antimony; alunite; jarosite; beudantite
12		

14 ABSTRACT

15	Arsenic and antimony are highly toxic to humans, animals and plants. Incorporation in alunite, jarosite
16	and beudantite group minerals can immobilize these elements and restrict their bioavailability in acidic,
17	oxidizing environments. This paper reviews research on the magnitude and mechanisms of
18	incorporation of As and Sb in, and release from, alunite, jarosite and beudantite group minerals in
19	mostly abiotic systems. Arsenate-for-sulfate substitution is observed for all three mineral groups, with
20	the magnitude of incorporation being beudantite (3-8.5 wt. % As) > alunite (3.6 wt. % As) >
21	natroalunite (2.8 wt. %) > jarosite (1.6 wt. % As) > natroalunite (1.5 wt. % As) > hydroniumalunite
22	(0.034 wt. % As). Arsenate substitution is limited by the charge differences between sulfate (-2) and
23	arsenate (-3), deficiencies in B-cations in octahedral sites and for hydroniumalunite, difficulty in
24	substituting protonated H_2O -for- OH^- groups. Substitution of arsenate causes increases in the <i>c</i> -axis for
25	alunite and natroalunite, and in the c- and a-axes for jarosite. The degree of uptake is dependent on, but
26	limited by, the AsO ₄ /TO ₄ ratio. Aerobic and abiotic As release from alunite and natroalunite is limited,
27	especially between pH 5 and 8. Release of As is also very limited in As-bearing jarosite, natrojarosite
28	and ammoniumjarosite at pH 8 due to formation of secondary maghemite, goethite, hematite and Fe
29	arsenates that resorb the liberated As. Abiotic reductive dissolution of As-bearing jarosite at pH 4, 5.5
30	and 7 is likewise restricted by the formation of secondary green rust sulfate, goethite and lepidocrocite
31	that take up the As. Similar processes have been observed for the aerobic dissolution of Pb-As-jarosite
32	(beudantite analogue), with secondary Fe oxyhydroxides resorbing the released As at pH 8. Higher
33	amounts of As are released, however, during microbial-driven jarosite dissolution. Natural jarosite has
34	been found to contain up to 5.9 wt. % Sb^{5+} substituting for Fe^{3+} in the B-site of the mineral structure.
35	Sb(V) is not released from jarosite at pH 4 during abiotic reductive dissolution, but at pH 5.5 and 7, up
36	to 75% of the mobilized Sb can be structurally incorporated into secondary green rust sulfate,
37	lepidocrocite or goethite. Further research is needed on the co-incorporation of As, Sb and other ions

- in, and the uptake and release of Sb from, alunite, jarosite and beudantite group minerals, the influence
- 39 of microbes on these processes and the long-term (>1 year) stability of these minerals.

42

INTRODUCTION

43	Arsenic (As) and antimony (Sb) are two of the most toxic elements to humans and many biota
44	(Sundar and Chakravarty 2010; Feng et al. 2013; Abdul et al. 2015). The risks posed by exposure to As
45	and Sb can be mitigated by the precipitation of minerals and especially, those that are relatively
46	insoluble and have low bioaccessibility. Alunite, jarosite and beudantite-group minerals form in
47	oxidizing, low-pH conditions in a wide variety of environments, including mine wastes (Hudson-
48	Edwards et al. 1999; Kocourková et al., 2011; Nieto et al. 2003), acid sulfate soils (Nordstrom 1982;
49	Welch et al. 2007), saline lakes (Alpers et al. 1992) and sulfuric acid caves (D'Angeli et al. 2018). A
50	significant body of work has been carried out to understand the capacity and mechanisms of uptake of
51	As and Sb in, and release from, alunite, jarosite and beudantite-group minerals formed in these
52	environments. The aim of this paper is to synthesize and review research, and to outline research gaps
53	that should be filled by future work.

54

55

MINERALS OF THE ALUNITE, JAROSITE AND BEUDANTITE GROUPS

Minerals of the alunite supergroup have a general formula of $AB_3(TO_4)_2(OH)_6$. In the formula, 56 A represents cations with a coordination number greater than or equal to 9. B represents cations in a 57 slightly distorted octahedral coordination, and T represents cations with tetrahedral coordination 58 (Kubisz 1964, 1970; Jambor 1999; Hawthorne et al. 2000; Fig. 1). Within the supergroup, the alunite 59 group minerals contain more Al^{3+} than Fe^{3+} , and jarosite group minerals contain more Fe^{3+} than Al^{3+} , 60 in the B-site (Table 1). The A-site can be filled by univalent or divalent cations such as K^+ , Na^+ , H_3O^+ , 61 Ca^{2+} , Sr^{2+} , Ba^{2+} and Pb^{2+} , but the most common substitutions are K⁺ (giving alunite and jarosite), Na⁺ 62 (giving natroalunite and natrojarosite) and H_3O^+ (giving hydroniumalunite and hydroniumjarosite). 63 When divalent cations substitute for monovalent cations, charge balance is maintained in the alunite-64 jarosite structure by creating A-site vacancies with replacement of two monovalent cations by one 65

66	divalent cation (e.g., plumbojarosite), the incorporation of divalent cations in the B-site (e.g.,
67	beaverite), or the incorporation of trivalent anions in normally divalent anion sites (e.g., beudantite).
68	The T site of alunite supergroup minerals is normally filled by S^{6+} in the sulfate anion SO_4^{2-} , but can
69	also be filled by As^{5+} in AsO_4^{3-} , P^{5+} in PO_4^{3-} and Si^{4+} in SiO_2 . The beudandite group contains both
70	SO_4^{2-} and AsO_4^{3-} in the T site, Al^{3+} , Fe^{3+} or Ga^{3+} in the B site, and Ba^{2+} , Pb^{2+} or Sr^{2+} in the B site
71	(Table 1). Solid solutions have been reported to exist between jarosite, plumbojarosite and beudantite
72	(Sànchez et al. 1996).
73	Minerals of the alunite supergroup have $R\overline{3}M$ symmetry, and are formed by (SO ₄) tetrahedral -
74	(MO_6) octahedral sheets with $[M_3(OH)_6(SO_4)_2]$ compositions, which are linked by interstitial cations
75	and hydrogen bonds (Hawthorne et al. 2000; Fig. 1). Each of the octahedra are slightly distorted, and
76	have four bridging hydroxyl groups lying in a plane with sulfate oxygens at the apices. Three of the
77	SO_4 tetrahedra are coordinated to Fe octahedra, causing lowering of the SO_4 symmetry from T_d to C_{3v}
78	(Jambor 1999; Becker and Gasharova 2001). The mineral structures often contain A- and B-site
79	vacancies (Dutrizac and Jambor 2000), and 'excess', non-OH water, which is assumed to be in the
80	form of hydronium (H_3O^+) that substitutes for K^+ on the A-site (e.g. Ripmeester et al. 1986; Gale et al.
81	2010).

82 83

FIGURE 1. Structure of minerals of the alunite-jarosite and beudantite groups, showing sites where As O_4^{3-} and Sb⁵⁺ substitute in the structure (see text for details).

TABLE 1. Alunite, jarosite and beudantite family minerals reported to contain As and Sb as major and
 trace constituents.

Mineral	Formula
Beudantite group minerals with A.	s as a major component
Beudantite	$PbFe_3(AsO_4)(SO_4)(OH)_6$
Gallobeudantite	$PbGa_3(AsO_4)(SO_4)(OH)_6$
Hidalgoite	$PbAl_3(AsO_4)(SO_4)(OH)_6$
Kemmlitzite	SrAl ₃ (AsO ₄)(SO ₄)(OH) ₆
A1 · · · · · · · · ·	
Alunite-jarosite group minerals w	th As as a trace component
Ammonioiorogito	$\mathbf{XAI}_{3}(\mathbf{SU}_{4})_{2}(\mathbf{UH})_{6}$
Natra alverita	$N_{14}A_{13}(50_{4})_{2}(01)_{6}$
Natroatumite	$NaAI_3(SO_4)_2(OH)_6$
Hydroniumalunite	$H_3OAI_3(SO_4)_2(OH)_6$
Jarosite	$KFe_3(SO_4)_2(OH)_6$
Natrojarosite	NaFe ₃ (SO ₄) ₂ (OH) ₆
Plumbojarosite	$K(Pb,Fe)_{3}(SO_{4})_{2}(OH)_{6}$
Jarosite and Beudantite group min	nerals with Sb as a trace component
Jarosite	$KFe_3(SO_4)_2(OH)_6$
Beudantite	$PbFe_3(AsO_4)(SO_4)(OH)_6$
Alunite minerals	
To the author's knowledge, no papers have	reported the occurrence of natural arsenical
members of the alunite family. Arsenate-for-substit	tution in alunite, natroalunite and hydroniumalunite
has been investigated experimentally (Sunyer and V	Viñals 2011a, b; Sunyer et al. 2013; Luo et al. 2015).
Hydroniumalunite takes only up 1 mole % (AsO ₄ /S	SO_4 +AsO ₄) (0.034 wt. % As), possibly due to the
difficulty in substituting protonated H ₂ O-for-OH ⁻ g	roups in the structure due to blocking by H-bridges
of the H ₃ O (Sunyer et al. 2013). Arsenate substituti	on is much higher in alunite and natroalunite (up to
3.61 and 2.80 wt. % As, respectively) formed at pH	I 1 and 2.8-2.9, respectively, and 200 °C (Sunyer et
al. 2013; Sunyer and Viñals 2011a). Luo et al. (201	5) obtained a slightly lower maximum incorporation
of arsenate in natroalunite, giving an approximate r	molar ratio of 11 (AsO ₄ /SO ₄ +AsO ₄) % at pH 3.00
and 200 °C.	

The degree of uptake of As in alunite and natroalunite is directly related to the AsO_4/TO_4 ratio 104 of the initial solution. Arsenical natroalunite precipitation is favoured at $(AsO_4/TO_4)_{ag} < 0.2$ at 200 °C. 105 At higher $(AsO_4/TO_4)_{ac}$, other arsenate phases such as alarsite $(AlAsO_4)$, mansfieldite $(AlAsO_4 \cdot 2H_2O)$ 106 and natropharmacoalumite (NaAl₄(OH)₄(AsO₄)₃.4H₂O) form (Sunyer and Viñals 2011a). At 200 °C, 107 the ratio of (AsO_4/TO_4) in the precipitated natroalunite was roughly equivalent to $0.5(AsO_4/TO_4)_{ad}$. 108 Precipitation rates also increased with increasing temperature and AsO_4^{3-} concentrations. Experiments 109 in which gypsum was introduced at the outset resulted in an (Ca/Ca+Na) molar ratio of 4-6% Ca-for-110 Na substitution and arsenate-for-sulfate substitution. 111 The degree of arsenate uptake in alunite was also dependent on (AsO₄/TO₄)_{aq}, with the degree 112 of substitution increasing as $0.5(AsO_4/TO_4)_{alunite} \sim = 0.5(AsO_4/TO_4)_{ag}$ (Sunyer et al. 2013). Arsenical 113 alunite was the only phase to precipitate at $(AsO_4/TO_4)_{aq} < 0.26$ at 200 °C; above this ratio mansfieldite 114 co-precipitated. 115 Viñals et al. (2010) precipitated a complex natroalunite (~(Na,Ca)(Al,Fe)₃((S,As,P)O₄)₂(OH)₆ at 116 $(Al/As)_{aq} = 4.5)$ by reacting H₂SO₄-leached and ozoned calcium arsenate wastes produced from copper 117 smelting at 180-200 °C with sodium and aluminum sulfate reagents. At pH 2.8-2.9, the As substitution 118 119 in the tetrahedral site was 7-8 mole % (AsO₄/SO₄+AsO₄). The degree of substitution increased to a 120 maximum molar ratio of 14% with decreasing (Al/As)_{aq}, but mansfieldite also precipitated. Prior 121 gypsum removal and As concentrations of 3.5-7.0 g/L were shown to not affect As incorporation or the 122 nature of the As-bearing phases formed. The effect of arsenate substitution on the alunite and natroalunite unit cell was investigated by 123 124 Rietveld refinement. Sunver and Viñals (2011b) showed that the *c*-parameter slightly increased with arsenate for sulfate substitution due to differences between As-O and S-O distances in the tetrahedral 125

site. In contrast, the *a*-parameter was unaffected by arsenate incorporation. The same findings for

alunite were reported by Sunyer et al. (2013).

129

130 Jarosite minerals

Naturally-occurring arsenian jarosite has been observed in mine wastes (Acero et al., 2006; 131 Hudson-Edwards et al. 1999, 2005; Kocourková et al., 2011; Savage et al. 2000; Filippi et al. 2015), 132 with concentrations of As up to 2000 pm reported (Savage et al., 2000). Most insights into As 133 incorporation mechanisms into jarosite, however, have been studied experimentally (Paktunc and 134 Jambor 2003; Savage et al. 2005; Karimian et al. 2017). This work has consistently shown that AsO_4^{3-} 135 occupies tetrahedral SO_4^{2-} sites within the jarosite structure. X-ray diffraction and XANES analysis 136 have shown that at least 9.9 wt. % AsO₄³⁻ (1.6 wt. % As) can be structurally incorporated into synthetic 137 jarosite (Paktunc and Dutrizac 2003), with others demonstrating that up to 30% replacement of SO_4^{2-} 138 by AsO₄³⁻ can occur (Savage et al. 2005; Paktunc et al. 2003; Kendall et al. 2013). The limiting factors 139 are proposed to be charge imbalances between sulfate and arsenate, and deficiencies of Fe in octahedral 140 141 sites (Savage et al., 2005). EXAFS data modelling suggests As-O interatomic distances of 1.68 Å and coordination numbers of 4.6+/-1.7 to 5.4+/-1.7, confirming the tetrahedral arrangement of O atoms 142 around central As atoms (Paktunc and Dutrizac, 2003). Incorporation of arsenate for sulfate causes 143 little change in the *a*-axis, but lengthening of the *c*-axisup to 0.174 Å (Paktunc and Dutrizac 2003; 144 Savage et al. 2005). Jarosite morphology also becomes more anhedral with increasing incorporation of 145 As (Savage et al. 2005). 146 Co-incorporation of Pb²⁺ results in a larger proportion of As⁵⁺ being incorporated in the jarosite 147 structure (33% of the tetrahedral sites) compared to when Pb^{2+} is not incorporated (21%; Aguilar-148 Carrillo et al. 2018). This was proposed to be due to changes in unit cell dimensions to balance the 149

distortion caused by the substitution of arsenate for sulfate in jarosite. The concentrations of As and Pb

in the initial experimental solutions limited As and Pb incorporation. At As/Pb < 1, Pb-As jarosites

(beudantite analogues) formed, but at As/Pb > 1, anglesite and poorly crystalline ferric arsenate phases

153 formed along with the As-Pb jarosite.

Pure synthetic natrojarosites have been shown to have very low amounts of arsenate for sulfate substitution (1.5 wt. %; Dutrizac and Jambor 1987). By contrast, synthetic ammoniumjarosite has been shown to take up to 4.1 wt. % arsenate at a pH of 1.2-1.8 (Flores et al. 2016). The mineral, with a formula of (NH₄)Fe_{2.45}[(SO₄)_{1.80}(AsO₄)_{0.20}][(OH)_{4.15}(H₂0)_{1.85}], was shown to remain in residual solids above 700 °C.

Using extended X-ray absorption fine structure (EXAFS) analysis, Gräfe et al. (2008) showed 159 that As⁵⁺ sorbed to the jarosite surface by forming bidentate-binuclear surface complexes, as it did with 160 161 goethite. The edge-sharing coordination number was larger for jarosite than for goethite (0.9 Fe atoms at 2.87 Å and 0.3 Fe neighbours at 2.87 Å, respectively). By contrast, the radial distance to the next 162 nearest Fe atom was lower in jarosite (3.22 Å) than in goethite (3.28 Å). These results were attributed 163 to the replacement of SO₄ tetrahedra by AsO₄ tetrahedra. In the presence of Cu^{2+} , As⁵⁺ was shown to be 164 165 coordinated by multiple Cu atoms over multiple radial distances, which was modelled to be due to the formation of a euchroite-like $[Cu_2(AsO_4)(OH) \cdot 3H_2O]$ complex on the jarosite surface. 166 Several studies have considered the role of microbes in the formation of arsenical jarosite. Egal 167 et al. (2009), for example, demonstrated that As-bearing jarosite formed in both biotic and abiotic 168 169 experiments, suggesting that bacterial iron oxidation was not involved in the process. However, aging and of As-rich schwertmannite produced by microbial oxidation of Fe^{2+} in sulfate solutions vielded As-170 bearing jarosite at lower pH values, and this might be considered to be indirectly biotically-formed. 171 The jarosite does not take up the As^{3+} released by the schwertmannite. 172

- 174
- 175

Beudantite minerals

177	Most of the research on arsenic incorporation in beudantite group minerals (Table 1) has been
178	done on beudantite itself. Beudantite has been shown to host significant amounts (3-8.5 wt. %) of As in
179	supergene zones (Szymanski, 1988), oxidized massive sulfides and related mine wastes (Foster et al.
180	1998; Roca et al. 1999; Nieto et al. 2003; Roussel et al. 2000; Gieré et al., 2003; Courtin-Nomade et al.
181	2016) and metallurgical products (Bigham and Nordstrom 2000). Thus, it has been suggested to
182	immobilize these elements and limit their uptake by plants (e.g., Zheng et al. 2003). In high-sulfide
183	waste at the Berikul Au mine, Kemerovo region, Russia, for example, jarosite-beudantite solid solution
184	minerals have been reported to contain up to 8.5 wt. % As (Gieré et al. 2003). A beudantite from the
185	Tsumeb deposit, Namibia (Natural History Museum collection, London, UK, number BM.1987),
186	containing between 3.4 and 6.4 wt. % As, exhibits zoning in As and S, with molar proportions of these
187	elements exactly mirroring each other (r=-1.0; Fig. 2).

188

189

FIGURE 2. Electron microprobe X-ray chemical maps showing zoning of As and S. Black arrow
 indicates position of line scan of analytical points, for which data are shown in the X-Y plot. Data from
 K. Hudson-Edwards for sample number BM.1987 from the collections of the Natural History Museum,
 London, UK. The sample was collected from the 36th level, west 12, of the Tsumeb mine, Grootfontein,
 Nambia.

196	Other beudantite-group minerals have also been shown to contain significant amounts of As. A
197	sample of hidalgoite from the Tsumeb mine, Namibia, was shown to contain between 7.4 and 10.0 wt.
198	% As (Cooper and Hawthorne 2012). Arsenic-rich kemmlitzite with a T-site formula of
199	$[(AsO_4)_{0.98}(PO_4)_{0.42}(SO_4)_{0.39}(SiO_4)_{0.18}]$ has also been analysed (Jambor 1999). Similarly high amounts
200	of As were found in gallobeudantite from Tsumeb, Namibia, with a formula of
201	$Pb_{1.04}(Ga_{1.39}Fe_{0.82}Al_{0.62}Zn_{0.10})_{3.03}[(AsO_4)_{1.14})(SO_4)_{0.86}]_{2.00}(OH)_{5.94}$ (Jambor et al. 1996).
202	Symanski (1988) showed that the T-site in beudantite, which was filled by arsenate and sulfate
203	was disordered, and suggested this was due to that the excess negative charge in arsenate compared to
204	sulfate. He further proposed that this disorder was balanced by substitution of hydronium for Pb or by
205	protonation of hydroxyl groups to water.
206	Forray et al. (2014) derived thermochemical data (ΔH°_{f} = -3691.2 ± 8.6 kJ/mol; ΔG°_{f} = -
207	3164.78 \pm 9.1 kJ/mol) and a log K _{sp} value of -13.94 \pm 13.94 for the Pb-As jarosite synthesized by
208	Smith et al. (2006). The Pb-As-jarosite had a structure matching that of beudantite (XRD file PDF 19-
209	0689), and composition of $(H_3O)_{0.68}Pb_{0.32}Fe_{2.86}(SO_4)_{1.69}(AsO_4)_{0.31}(OH)_{5.59}(H_2O)_{0.41}$; thus, it did not
210	contain enough Pb or As to be considered true beudantite) The data were used to show that the
211	formation of Pb-As jarosite can decrease aqueous As and Pb concentrations to meet WHO drinking
212	water standards of 10 µg/L (WHO, 1996, 1998; Fig. 3).

213

FIGURE 3. Stability of Pb–As jarosite as function of pH and lead activity. Point (a) shows the stability boundary for Pb-As jarosite at $a(Fe^{3+}) = 322 \times 10^{-3} \text{ mol/L}$, $a(As^{5+}) = 1.33 \times 10^{-7} \text{ mol/L}$ and $a(SO_4^{2-}) =$ 1.56 × 10⁻² mol/L. Point (b) shows the stability boundary for Pb-As jarosite at very low Fe, SO₄ and As activity (10 µg/L each). Reprinted (adapted) from Geochimica et Cosmochimica Acta, 127, Forray et al., Synthesis, characterization and thermochemistry of Pb-As-, Pb-Cu- and Pb-Zn-jarosite compounds, 107-119, Copyright (2014), with permission from Elsevier.

- 220
- 221

222 RELEASE OF ARSENIC FROM ALUNITE-JAROSITE AND BEUDANTITE GROUP

223

MINERALS

224 Alunite minerals

225 The suitability of alunite, natroalunite and hydronium alunite as short- and long-term stable stores of

arsenic has been explored by Viñals et al. (2010), Sunyer and Viñals (2011a, b), Sunyer et al. (2013)

and Luo et al. (2015). Sunyer et al. (2013) and Sunyer and Viñals (2011b) showed that after 24 h,

arsenical alunite and natroalunite, respectively, released only 0.01-0.05 mg/L As between pH 5 and 8.

(Fig. 4). Within 2.5 weeks, arsenical alunite dissolved to release 0.3 mg/L As between pH 4 and 5

230 (Sunyer et al. 2013). Longer-term stability tests carried out over 6 months by Viñals et al. (2010)

showed that natroalunite only released 0.01 mg/L As between pH 4 and 5. These As releases are

similar to, or lower than those of natural scorodite (FeAsO₄.2H₂O; 0.4 mg/L As) and synthetic

scorodite (1.3 mg/L As) (Sunyer and Viñals 2011b). Thus, both arsenical alunite and especially,

natroalunite, could be considered as good long-term stores of As-bearing wastes with large SO_4^{2-}

235 $/AsO_4^{3-}$ ratios.

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. DOI: https://doi.org/10.2138/am-2019-6591

262	substitution of arsenate, which is larger and higher charged than sulfate. This process would make these
263	bonds more susceptible to dissolution. Preferential leaching of K^+ and SO_4^{2-} compared to Fe^{3+} (cf.,
264	Smith et al. 2006) causes enrichment of arsenate-iron complex sites on the surface. Dissolution is then
265	inhibited due to the fact that arsenate-iron complexes are more strongly bonded than sulfate-iron
266	complexes within the structure.
267	The alkaline decomposition of As-bearing jarosite minerals results in the formation of
268	secondary Fe hydroxides that take up the released As. For example, Patiño et al. (2013) showed that the
269	reaction of a synthetic sodium arsenojarosite (Na _{0.87} (H ₃ O) _{0.13}]Fe _{2.50} [(SO ₄) _{1.95} (AsO ₄) _{0.05}]
270	[(OH) _{4.45} (H ₂ O) _{1.55}]) with CaOH and NaOH at pH 12.33-12.87 caused an Fe(OH) ₃ with adsorbed AsO ₄
271	coating to form on the original reactant. The decomposition of arsenic-bearing ammoniumjarosite using
272	NaOH at pH 12.90 and 30°C also resulted in the formation of a secondary Fe arsenate with a
273	composition of 2.45 Fe(OH) ₃ · 0.20 AsO ₄ ³⁻ (Flores et al., 2016).
274	Karimian et al. (2017) determined the mechanisms and magnitude of As release during the
275	reductive dissolution of jarosite by Fe^{2+} at pH 4.0, 5.5 and 7. At pH 4, the jarosite did not change or
276	release As ⁵⁺ (Fig. 5). At pH 5.5, the jarosite transformed first to green rust (after 60 min) and then to
277	goethite (after 24 th), and the As released was taken up on the jarosite surface mostly by labile (c. 10%)
278	and poorly crystalline Fe^{3+} -associated phases (10-30 %). At pH 7, the jarosite transformed rapidly (<10
279	min) to green rust and then to goethite at high Fe^{2+} concentrations (10 and 20 mM), and to
280	lepidocrocite (< 60 min) at low Fe^{2+} concentrations (1 and 5 mM) (Fig. 5). Some of the original As^{5+} in
281	the jarosite was reduced to As^{3+} in the high Fe^{2+} experiments but not in the low Fe^{2+} experiments. As in
282	the pH 5.5 experiments, the low concentrations of $As_{(aq)}$ suggested that the As released during
283	dissolution was taken up by the secondary Fe ³⁺ phases either by surface sorption or incorporation in
284	structural defects.

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. DOI: https://doi.org/10.2138/am-2019-6591

FIGURE 5. Schematic diagram showing results of reductive dissolution of As- and Sb-bearing jarosite
 by Fe²⁺ at pH 4, 5.5 and 7. See text for discussion. (a) Reprinted (adapted) from Antimony and arsenic
 partitioning during Fe²⁺-induced transformation of jarosite under acidic conditions
 Chemosphere, 195, Karimian et al., 515-523, Copyright (2018) with permission from Elsevier. (b)
 Adapted with permission from Karimian et al. (2017). Copyright 2017 American Chemical Society.

293	Sulfide-promoted reductive dissolution of As ⁵⁺ -bearing jarosite resulted in its replacement by
294	mackinawite and mobilization of the As (Johnson et al., 2012). Increasing S ²⁻ :Fe ratios and decreasing
295	pH resulted in increased As mobility, except at high S ²⁻ :Fe and pH 4.0 when an orpiment-like phase
296	(detected using transmission electron microscopy, TEM) formed. EXAFS analysis was used to show
297	the transition from O-coordinated As ⁵⁺ to S-co-ordinated As ⁻ in the orpiment phase.
298	Т
299	Beudantite minerals
300	Batch dissolution experiments using a synthetic Pb-As-jarosite (beudantite analogue, see above)
301	were conducted at 20 °C and pH 2 and 8, to mimic environments affected by acid rock/acid mine

drainage, and those remediated with slaked lime (Ca(OH)₂), respectively (Smith et al. 2006). The dissolutions were both incongruent. Dissolution at pH 2 yielded poorly crystalline solid PbSO₄ (Fig. 6) and aqueous Fe, SO_4^{2-} and AsO_4^{3-} . Dissolution at pH 8, by contrast, produced Fe(OH)₃ that resorbed aqueous AsO_4^{3-} and solid PbSO₄.

306These results were explained by the preferential dissolution of the A- and T-sites, containing Pb and

 SO_4^{2-} - AsO₄³⁻, respectively, relative to the sterically remote and Fe octahedra within the T-O-T Pb-As-

308 jarosite structure. By contrast, Roca et al. (1999) suggested that the alkaline decomposition of

309 beudantite in Ca(OH)₂ was very slow between 80 and 100 °C. They proposed a slightly different

mechanism for beudantite decomposition than Smith et al. (2006), involving the reacton of the

beudantite with OH- and water, and production of Fe(OH)₃, Pb(OH)₂, an As₂O₅ gel and sulfate ions.

Few studies have investigated the role of microbial processes on As- or Sb- bearing alunite-

group minerals. One example is that of Smeaton et al. (2012), who used the Pb-As-jarosite phase

314 synthesized by Smith et al. (2006) to conduct reductive dissolution experiments using Shewanella

315 *putrefaciens* at circumneutral pH. The experiments resulted in immediate Fe^{3+} reduction and As^{5+}

reduction within 72 h. After 336 h, 20.2% and 3.0% of the total As occurred as solid and aqueous As^{3+} .

At this time, secondary Fe-O precipitates containing minor As and Pb formed, leaving c. 0.05 mM As^{3+}

and 2 mM As^{5+} in solution. Based on these results, the authors suggested that Pb-As-jarosite would not

be a good candidate for long-term As storage under reductive conditions. The reduction of Fe^{3+} was

proposed to be thermodynamically driven, while that of aqueous As^{5+} was proposed to be due to

- 321 microbial detoxification.
- 322

FIGURE 6. Scanning electron microscope (SEM) image of residual solids from the pH 2 dissolution of
 Pb-As-jarosite, showing (a) extensive pitting of the surface and (b) poorly crystalline secondary PbSO₄
 on the mineral surface. Reprinted (adapted) from Chemical Geology, 229, Smith et al., Dissolution of
 lead- and lead-arsenic jarosites at pH 2 and 8: insights from batch experiments, 344-361, Copyright
 (2006), with permission from Elsevier.

330

329

323

331 UPTAKE AND RELEASE OF ANTIMONY IN JAROSITE GROUP MINERALS

332 The mechanisms and magnitudes of incorporation and release of Sb from alunite, jarosite or beudantite

family minerals have received much less attention than those of As. The few studies available have

focused on the uptake of Sb in, and release of Sb from, jarosite; none, to the author's knowledge, have

determined whether alunite or beudantite minerals can take up and release Sb.

Jamieson et al. (2005) reported minor uptake of Sb in jarosite (176 ± 159 ppm, n= 18) forming

337 from waste waters of the Richmond Mine, Iron Mountain, California. By contrast, Courtin-Nomade et

al. (2012) found very high concentrations of Sb (59000 ± 21000 ppm) in secondary cryptocrystalline

jarosite in historic mill tailings from the French Massif Central. They attributed this to substitution of

340 Sb⁵⁺ for Fe³⁺ in the jarosite structure, analogous to that occurring in dussertite

341 (Ba(FeSb)₃(AsO₄)(OH,H₂O)₆; Kolitsch et al. 1999). Karimian et al. (2017) synthesized an Fe-deficient

jarosite (K:Fe:S = 1:2.5:1.9, compared to 1:3:2 for ideal jarosite) that incorporated 1.43 ppm Sb⁵⁺. They

- also proposed that Sb^{5+} substituted for Fe^{3+} in the jarosite structure due to similar ionic sizes (Sb^{5+} , 0.60
- Å; Fe³⁺ 0.65 Å) and similar bond lengths in the Sb_VO₆ and Fe_{III}O₆ octahedra (Sb-O, 1.91 Å; Fe-O,
- 1.97-2 Å; Mitsunobu et al. 2013). Such Sb⁵⁺ substitution for Fe³⁺ has been observed for other Fe³⁺

oxides such as ferrihydrite and goethite (Leuz et al. 2006; Mitsunobu et al. 2010). Courtin-Nomade et 346 al. (2012) reported low concentrations of Sb in streams draining the mine waste dumps, and suggested 347 348 that this was due to the insolubility of this jarosite under the prevailing conditions (circum-neutral pH) or to the formation of secondary Sb-bearing products from the dissolution of the Sb-bearing jarosite. 349 The reductive dissolution of Sb^{5+} -bearing jarosite by Fe^{2+} under acidic pH (4.0 and 5.5) and 350 neutral pH (7) conditions has been examined (Karimian et al. 2018). No transformation of the jarosite, 351 nor release of Sb⁵⁺ was observed at pH 4.0 (Fig. 5). This was attributed to the surface of jarosite being 352 positively charged at pH 4.0, thus decreasing the possibility of Fe^{2+} to sorb, and hindering electron 353 transfer and dissolution. In contrast, at pH 5.5, the jarosite transformed to metastable green rust sulfate 354 within c. 60 min. and then to goethite within 24 h (Fig. 5). The pH used in these experiments was very 355 close to point of zero charge (5.6; Xu et al., 2013), and therefore the jarosite surface is near-neutrally 356 charged, allowing greater interaction of Fe^{2+} with the surface and formation of the green rust sulfate 357 and goethite. In these experiments, almost all of the released Sb⁵⁺ was structurally incorporated within 358 these secondary phases. At pH 7, the Sb was rapidly mobilized into the aqueous phase as Sb⁵⁺, but 75% 359 of this Sb^{5+} was structurally incorporated into secondary lepidocrocite (at $Fe^{2+} = 1 \text{ mM}$), green rust and 360 goethite (at $Fe^{2+} = 20 \text{ mM}$) (Fig. 5). 361

362

363

IMPLICATIONS

The incorporation of As in alunite, jarosite and beudantite group minerals (by replacement of SO₄²⁻ by AsO₄³⁻ in the T-site of the mineral structure), and of Sb in jarosite group minerals (by replacement of Fe³⁺ by Sb⁵⁺ in the B-site; Fig. 1) has important implications for storage of these metalloid contaminants in acidic environments. Since incorporation of Pb²⁺ in the jarosite structure has been shown to cause a higher degree of As take up than with no Pb²⁺ (Aguilar-Carrillo et al. 2018), further research should be carried out to evaluate the effectiveness of this and other ions for

incorporation of greater amounts of As and Sb in alunite, jarosite and beudantite group minerals.

Overall, there is a paucity of information on the uptake of Sb in these minerals, despite the fact that it has been shown to be incorporated in jarosite, and that As and Sb are often co-located in contaminated environments (e.g., Craw et al. 2004). This research gap needs to be filled, as does further work on the longer term (>1 year) stability, and abiotic and, especially, microbial dissolution, of As- and Sb-bearing alunite, jarosite and beudantite group minerals.

376

377 ACKNOWLEDGEMENTS

378 I would like to sincerely thank colleagues with whom I have worked with, and had discussions about,

arsenic, antimony and minerals of the alunite supergroup. There are many of you but I would like to

380 especially thank Pat Acero, Bill Dubbin, Dave Craw, Ference Forray, Julian Gale, Heather Jamieson,

381 David Kossoff, Peter Cogram, Pam Murphy, Christina Smeaton, Adrian Smith, Mark Welch and Kate

Wright. Bill Dubbin provided the beudantite sample BM.1987, and Andy Beard assisted with the

383 electron microprobe chemical mapping. My own work on these minerals has been supported by grants

from the UK Natural Environment Research Council (GR9/04094), the UK Engineering and Physical

385 Sciences Research Council (PhD studentship to Adrian Smith), the European Union (IEF 327194), the

Royal Society and synchrotron beamtime from CCLRC Daresbury Laboratory (46-068 and 39-310).

The manuscript was improved by comments from an anonymous reviewer and associate editor AndrewElwood Madden.

389

390 REFERENCES

Abdul, K.S.M., Jayasinghe, S.S., Chandana, E.P.S., Jayasumana, C., De Silva, P.M.C.S. (2015) Arsenic and
human health effects: A review. Environmental Toxicology and Pharmacology, 40, 828-846.

- 393 Acero, P., Ayora, C., Torrentó, C., and Nieto, J.-M. (2006) The behavior of trace elements during
- 394 schwertmannite precipitation and subsequent transformation into goethite and jarosite. Geochimica et
- **395** Cosmochimica Acta, 70, 4130-4139.
- 396 Aguilar-Carrillo, J., Villalobos, M., Pi-Puig, T., Escobar-Quiroz, I.N., and Romero, F.M. (2018) Synergistic
- 397 arsenic(V) and lead(II) retention on synthetic jarosite. I. Simultaneous structural incorporation behaviour and
- 398 mechanism. Environmental Science: Processes & Impacts, 20, 354-369.
- 399 Alpers, C.N., Rye, R.O., Nordstrom, D.K., White, L.D., and King, B. (1992) Chemical, crystallographic and
- stable isotopic properties of alunite and jarosite from acid-hypersaline Australian lakes. Chemical Geology,
 96, 203-226.
- 402 Becker U., and Gasharova B. (2001) AFM observations and simulations of jarosite growth at the molecular
- 403 scale: probing the basis for incorporation of foreign ions into jarosite as a storage mineral. Physics and
- 404 Chemistry of Minerals, 28, 545–556.
- 405 Bigham, J.M., and Nordstrom, D.K. (2000) Iron and aluminium hydroxysulfates from acid sulfate waters. In
- 406 Alpers, C.N., Jambor, J.L. & Nordstrom, D.K. (eds.) Sulfate Minerals. Crystallography, Geochemistry and
- 407 Environmental Significance. Reviews in Mineralogy and Geochemistry, 40, pp. 351-403.
- 408 Cooper, M.A., and Hawthorne, F.C. (2012) Refinement of the crystal structure of zoned philipsbornite-hidalgoite
- from the Tsumeb mine, Namibia, and hydrogen bonding in the $D^{2+}G_3^{3+}(T^{5+}O_4)(TO_3OH)(OH)_6$ alunite
- 410 structures. Mineralogical Magazine, 76, 839-849.
- 411 Courtin-Nomade, A., Rakotoarisoa, O., Bril, H., Brybos, M., Forestier, L., Foucher, F., and Kunz, M. (2012)
- 412 Weathering of Sb-rich mining and smelting residues: Insight in solid speciation and soil bacteria toxicity.
- 413 Chemie der Erde, 72, 29-39.
- 414 Courtin-Nomade, A., Waltzing, T., Evrard, C., Soubrand, M., Lenain, J.-F., Ducloux, E., Ghorbel, S., Grosbois,
- 415 C., and Bril, H. (2016) Arsenic and lead mobility: From tailings materials to the aqueous compartment.
- 416 Applied Geochemistry, 64, 10-21.
- 417 Craw, D., Wilson, N., and Ashley, P.M. (2004) Geochemical controls on the environmental mobility of Sb and
- 418 As at mesothermal antimony and gold deposits. Applied Earth Science, 113, 3-10.

- 419 D'Angeli, I.M., Carbone, C., Nagostinis, M., Parise, M., Vattano, M. Madonia, G., and De Waele, J. (2018) New
- 420 insights on secondary minerals from Italian sulfuric acid caves. International Journal of Speleology, 47, 271-
- 421 291.
- 422 Dutrizac, J.E., and Jambor, J.L. (1987) The behaviour of arsenic during jarosite precipitation: Arsenic
- 423 precipitation at 97°C from sulphate or chloride media. Canadian Metallurgical Quarterly, 26, 91-101.
- 424 Dutrizac, J.E., and Jambor, J.L. (2000) Jarosites and their application in hydrometallurgy. In Alpers, C.N.,
- 425 Jambor, J.L. & Nordstrom, D.K. (eds.) Sulfate Minerals. Crystallography, Geochemistry and Environmental
- 426 Significance. Reviews in Mineralogy and Geochemistry, 40, pp. 405-452.
- 427 Egal, M., Casiot, C., Morin, G., Parmentier, M., Bruneel, O., Lebrun, S., and Elbaz-Poulichet, F. (2009) Kinetic
- 428 control on the formation of tooeleite, schwertmannite and jarosite by Acidithiobacillus ferrooxidans strains in
- 429 an As(III)-rich acid mine water. Chemical Geology, 265, 432-441
- 430 Feng, R., Wei, C., Tu, S., Ding, Y., Want, R., and Guo, J. (2013) The uptake and detoxification of antimony by
- 431 plants: A review. Environmental and Experimental Botany, 96, 28-34.
- 432 Filippi, M., Drahota, P., Machvič, Böhmová, V., and Mihaljevič, M. (2015) Arsenic mineralogy and mobility in
- the arsenic-rich historical mine waste dump. Science of the Total Environment, 536, 713-728.
- 434 Flores, M., Patiño, F., Palacios, E.G., Reyes, I., Reyes, M., Flores, V.H., Juárez, J.C., and Pandiyan, T. (2016)
- 435 The behaviour of arsenic during the thermal and chemical decomposition of the ammonium-arsenic jarosite.
- 436 Preprints, doi:10.20944/preprints201610.0059.v1
- 437 Forray, F.L., Smith, A.M.L., Navrotsky, A., Wright, K., Hudson-Edwards, K.A., and Dubbin, W.E. (2014)
- 438 Synthesis, characterization and thermochemistry of Pb-As-, Pb-Cu- and Pb-Zn-jarosite compounds.
- 439 Geochimica et Cosmochimica Acta, 127, 107-119.
- 440 Foster, A.L., Brown, G.E., Tingle, T.N., and Parks, G.A. (1998) Quantitative arsenic speciation in mine tailings
- 441 using X-ray absorption spectroscopy. American Mineralogist, 83, 553-568.
- 442 Gale, J.D., Wright, K. & Hudson-Edwards, K.A. (2010) A first principles determination of the orientation of
- 443 H_3O^+ in hydronium alunite. American Mineralogist, 95, 1109-1112.

- 444 Gieré, R., Sidenko, N.V., and Lazareva, E.V. (2003) The role of secondary minerals in controlling the migration
- of arsenic and metals from high-sulfide wastes (Berikul gold mine, Siberia). Applied Geochemistry, 18,
- 446 1347-1359.
- 447 Gräfe, M., Beattie, D.A., Smith, E., Skinner, W.M., and Singh, B. (2008) Copper and arsenate co-sorption at the
- 448 mineral-water interfaces of goethite and jarosite. Journal of Colloid and Interface Science, 322, 399-413.
- 449 Hawthorne, F.C., Krivovichev, S.V., and Burns, P.C. (2000) The crystal chemistry of sulfate minerals. In Alpers,
- 450 C.N., Jambor, J.L. & Nordstrom, D.K. (eds.) Sulfate Minerals. Crystallography, Geochemistry and
- 451 Environmental Significance. Reviews in Mineralogy and Geochemistry, 40, pp. 1-112.
- 452 Henao, D.M.O., and Godoy, M.A.M. (2010) Jarosite pseudomorph formation from arsenopyrite oxidation using
- 453 Acidithiobacillus ferroxidans. Hydrometallurgy, 104, 162-168.
- 454 Hudson-Edwards, K.A., Schell, C. and Macklin, M.G. (1999) Mineralogy and geochemistry of alluvium
- 455 contaminated by metal mining in the Rio Tinto area, southwest Spain. Applied Geochemistry, 14, 1015-1030.
- 456 Hudson-Edwards, K.A., Jamieson, H.E., Charnock, J.M., and Macklin, M.G. (2005) Arsenic speciation in waters
- 457 and sediment of ephemeral floodplain pools, Ríos Agrio-Guadiamar, Aznalcóllar, Spain. Chemical Geology,
- **458** 219, 175-192.
- 459 Jambor, J.L. (1999) Nomenclature of the alunite supergroup. Canadian Mineralogist, 37, 1323-1341.
- 460 Jambor, J.L., Owens, A.R., Grice, J.D., and Feinglos, M.N. (1996) Gallobeudantite, PbGa₃[(AsO₄),(SO₄)]₂(OH)₆,
- 461 a new mineral species from Tsumbe, Namibia, and associated new gallium analogues of the alunite-jarosite
- 462 family. Canadian Mineralogist, 34, 1305-1315.
- Jamieson, H.E., Robinson, C., Alpers, C.N., Nordstrom, D.K., Poustovetov, A., and Lowers, H.A. (2005) The
- 464 composition of coexisting jarosite-group minerals and water from the Richmond mine, Iron Mountain,
- 465 California. Canadian Mineralogist 43, 1225-1242.
- 466 Johnston, S.G., Burton, E.D., Keene, A.F., Planer-Friedrich, B., Voegelin, A., Blackford, M.G., and Lumpkin,
- 467 G.R. (2012) Arsenic mobilization and iron transformations during sulfidization of As(V)-bearing jarosite.
- 468 Chemical Geology 334, 9-24.
- 469 Karimian, N., Johnston, S.G., and Burton, E.D. (2017) Antimony and arsenic behavior during Fe(II)-induced
- transformation of jarosite. Environmental Science & Technology, 51, 4259-4268.

- 471 Karimian, N., Johnston, S.G., and Burton, E.D. (2018) Antimony and arsenic partitioning during Fe²⁺-induced
- transformation of jarosite under acidic conditions. Chemosphere, 195, 515-523.
- 473 Kendall, M.R., Madden, A.S., Elwood Madden, M.E., and Hu, Q. (2013) Effects of arsenic incorporation on
- 474 jarosite dissolution rates and reaction products. Geochimica et Cosmochimica Acta, 112, 192-207.
- 475 Kolitsch, U., Slade, P.G., Tiekink, E.R.T., and Pring, A. (1999) The structure of antimonian dussertite and the
- 476 role of antimony in oxysalt minerals. Mineralogical Magazine, 63, 17-26.
- 477 Kocourková, E., Sracke, O., Houzar, S., Cempírek, J., Losos, Z., Filip, J., and Hršelová (2011) Geochemical and
- 478 mineralogical control on the mobility of arsenic in a waste rock pile at Dlouhá Ves, Czech Republic. Journal
- 479 of Geochemical Exploration, 110, 61-73.
- 480 Kubisz J. (1964) A study of minerals in the alunite–jarosite group. Polska Akademia Nauk-Prace Museum
- 481 Ziemi, 22, 1–93.
- 482 Kubisz J. (1970) Studies on synthetic alkali-hydronium jarosites: I. Synthesis of jarosite and natrojarosite.
 483 Mineralobia Polonica, 1, 47–57.
- Leuz, A.-K., Mönch, H., and Johnson, C.A. (2006) Sorption of Sb(III) and Sb(V) to goethite: influence on
- 485 Sb(III) oxidation and mobilization. Environmental Science & Technology, 40, 7277-7282.
- 486 Luo, Z.Q., Zhou, X.T., Jia, Q.M., Chen, X.F., Tao, Z.CH., and Liu, S.Q. (2015) Preparation of arsenical-
- 487 natroalunite solid solutions with high crystallinity by hydrothermal method. Materials Research Innovations,
 488 19, No. Sup. 6, S6-S26.
- Mitsunobu, S., Muramatsu, C., Watanabe, K., and Sakata, M. (2013) Behavior of antimony (V) during the
 transformation of ferrihydrite and its environmental implications. Environmental Science and Technology,
- **491 47**, 9660-9667.
- 492 Mitsunobu, S., Takahashi, Y., Terada, Y., and Skata, M. (2010) Antimony(V) incorporation into synthetic
- ferrihydrite, goethite and natural iron oxyhydroxides. Environmental Science & Technology, 44, 3712-3718.
- 494 Nieto, J.M., Capitn, M.A., Sez, R., and Almodóvar, G.R. (2003) Beudantite: A natural sink for As and Pb in
- 495 sulphide oxidation processes. Applied Earth Science B, 112, 293-296.
- 496 Nordstrom, D.K. (1982) The effect of sulfate on aluminum concentrations in natural waters: some stability
- 497 relations in the system Al_2O_3 - SO_2 - H_2O at 298 K. Geochimica et Cosmochimica Acta, 46, 681-692.

- 498 Paktunc, D., and Dutrizac, J.E. (2003) Characterization of arsenate-for-sulfate substitution in synthetic jarosite
- 499 using X-ray diffraction and X-ray absorption spectroscopy. Canadian Mineralogist, 41, 905-919.
- 500 Paktunc, D., Foster, A., and Laflamme, G. (2003) Speciation and characterization of arsenic in Ketza River mine
- tailings using X-ray absorption spectroscopy. Environmental Science & Technology, 37, 2067-2074.
- 502 Patiño, F., Flores, M.U., Reyes, I.A., Reyes, M., Hernández, J., Rivera, I., and Juárez, J. (2013) Alkaline
- 503 decomposition of synthetic jarosite with arsenic. Geochemical Transactions, 14:2.
- 504 Roca, A., Viñals, J., Arranz, M., and Calero, J. (1999) Characterization and alkaline decomposition/ cyanidation
- of beudantite-jarosite materials from Rio Tinto gossan ores. Canadian Metallurgical Quarterly, 38, 93-103.
- 506 Roussel, C., Néel, C., and Bril, H. (2000) Minerals controlling arsenic and lead solubility in an abandoned gold
- 507 mine tailings. Science of the Total Environment, 263, 209-219.
- Sànchez, L., Cruells, M., Roca, A. (1996) Sulfidization-cyanidation of jarosite species: applicability to the
 ogssan ores of Rio Tinto. Hydrometallurgy, 42, 35-49.
- 510 Savage, K.S., Bird, D.K., and Ashley, R.P. (2000) Legacy of the California Gold Rush: Environmental
- geochemistry of arsenic in the southern Mother Lode Gold Disctrict. International Geology Review, 42, 385415.
- Savage, K.S., Bird, D.K., and O-Day, P.A. (2005) Arsenic speciation in synthetic jarosite. Chemical Geology,
 215, 473-498.
- 515 Smeaton, C.M., Walshe, G.E., Smith, A.M.L., Hudson-Edwards, K.A., Dubbin, W.E., Wright, K., Beale, A.M.,
- 516 Fryer, B.J., and Weisener, C.G. (2012) Simultaneous reduction of Fe and As during the reductive dissolution
- 517 of Pb-As jarosite by *Shewanella putrefaciens* CN32. Environmental Science & Technology, 46, 12823-
- 518 12831.
- 519 Smith, A.M.L., Dubbin, W.E., Wright, K., and Hudson-Edwards, K.A. (2006) Dissolution of lead- and lead-
- arsenic jarosites at pH 2 and 8: insights from batch experiments. Chemical Geology, 229, 344-361.
- Sundar, S., and Chakravarty, J. (2010) Antimony toxicity. International Journal of Environmental Research and
 Public Health, 7, 4267-4277.
- 523 Sunyer, A., and Viñals, J. (2011a) Arsenate substitution in natroalunite: A potential medium for arsenic
- 524 immobilization. Part 1: Synthesis and compositions. Hydrometallurgy, 109, 54-64.

- 525 Sunyer, A., and Viñals, J. (2011b) Arsenate substitution in natroalunite: A potential medium for arsenic
- 526 immobilization. Part 2: Cell parameters and stability tests. Hydrometallurgy 109, 106-115.
- 527 Sunyer, A., Currubí, M., and Viñals, J. (2013) Arsenic immobilization as alunite-type phases: The arsenate
- substitution in alunite and hydronium alunite. Journal of Hazardous Materials, 261, 559-569.
- 529 Szymanski, J.T. (1988) The crystal structure of beudantite, Pb(Fe,Al)₃[(As,S)O₄](OH)₆. Canadian Mineralogist,
- **530** 26, 923-932.
- Viñals, J., Sunyer, A., Molera, P., Cruells, M., and Llorca, N. (2010) Arsenic stabilization of calcium arsenate
 waste by hydrothermal precipitation of arsenical natroalunite. Hydrometallurgy, 104, 247-259.
- 533 Welch, S.A., Christy, A.G., Kirste, D., Beavis, S.G. & Beavis, F. (2007) Jarosite dissoluteion I Trace cation
- flux in acid sulfate soils. Chemical Geology, 245, 183-197.
- 535 WHO (World Health Organization) (1996) Health criteria and other supporting information. Pp. 940-949 in:
- 536 Guidelines for Drinking-water Quality, 2nd edition, Vol. 2. WHO, Geneva.
- WHO (World Health Organization) (1998) Addendum to Vol. 2. Pp. 281ÿ283 in: Guidelines for drinking- water
 guality, 2nd edition. WHO, Geneva.
- 539 Xu, Z., Lü, B., Wu, J., Zhou, L., and Lan, Y. (2013) Reduction of Cr(VI) facilitated by biogenetic jarosite and
- analysis of its influencing factors with response surface methodology. Materials Science and Engineering C,
 33, 3723-3729.
- 542 Zheng, M.X., Xu, J.M., Smith, L., and Naidu, R. (2003) Why a fern (Pteris multifida) dominantly growing on an
- arsenic/heavy metal contaminated soil does not accumulate arsenic. Journal de Physique IV, 107, 1409-1411.