1	Revision 2				
2	Adrianite, Ca ₁₂ (Al ₄ Mg ₃ Si ₇)O ₃₂ Cl ₆ , a new Cl-rich silicate mineral from the				
3	Allende meteorite: An alteration phase in a Ca-Al-rich inclusion				
4	Chi Ma ^{1,*} and Alexander N. Krot ²				
5	¹ Division of Geological and Planetary Sciences, California Institute of Technology,				
6	Pasadena, California 91125, USA				
7	² Hawai'i Institute of Geophysics and Planetology, University of Hawai'i at Mānoa,				
8	Honolulu, Hawaiʻi 96822, USA				
9					
10	ABSTRACT				
11	Adrianite (IMA 2014-028), Ca ₁₂ (Al ₄ Mg ₃ Si ₇)O ₃₂ Cl ₆ , is a new Cl-rich silicate mineral				
12	and a Si, Mg analog of wadalite. It occurs with monticellite, grossular, wadalite and				
13	hutcheonite in altered areas along some veins between primary melilite, spinel and				
14	Ti,Al-diopside in a Type B1 FUN (Fractionation and Unidentified Nuclear effects)				
15	Ca-Al-rich inclusion (CAI), <i>Egg-3</i> , from the Allende CV3 carbonaceous chondrite.				
16	The mean chemical composition of type adrianite by electron probe microanalysis is				
17	(wt%) CaO 41.5, SiO ₂ 27.5, Al ₂ O ₃ 12.4, MgO 7.3, Na ₂ O 0.41, Cl 13.0, O=Cl -2.94,				
18	total 99.2, giving rise to an empirical formula of				
19	$(Ca_{1169}Na_{021})(Al_{385}Mg_{288}Si_{723})O_{32}Cl_{580}$. The end-member formula is				
20	$Ca_{12}(Mg_5Si_9)O_{32}Cl_6$. Adrianite has the $I\overline{4} 3d$ wadalite structure with $a = 11.981$ Å, V				
21	= 1719.8 Å ³ , and Z = 2, as revealed by electron back-scatter diffraction. The				
22	calculated density using the measured composition is 3.03 g/cm ³ . Adrianite is a new				
23	secondary mineral in Allende, apparently formed by alkali-halogen metasomatic				
24	alteration of primary CAI minerals such as melilite, anorthite, perovskite, and Ti,Al-				
25	diopside on the CV chondrite parent asteroid. Formation of secondary Cl-rich				
26	minerals sodalite, adrianite, and wadalite during metasomatic alteration of the				
27	Allende CAIs suggests that the metasomatic fluids had Cl-rich compositions The				
28	mineral name is in honor of Adrian J. Brearley, mineralogist at the University of				

29	New Mexico, USA, in recognition of his many contributions to the understanding of				
30	secondary mineralization in chondritic meteorites.				
31					
32	Keywords: adrianite, Ca12(Al4Mg3Si7)O32Cl6, new mineral, wadalite group, alteration				
33	mineral, Ca-Al-rich inclusion, Allende meteorite, carbonaceous chondrite				
34					
35	*E-mail: chi@gps.caltech.edu				
36					
37	INTRODUCTION				
38	During a nanomineralogy investigation of the Allende meteorite, a new Cl-rich				
39	silicate, $Ca_{12}(Al_4Mg_3Si_7)O_{32}Cl_6$ with the $I\bar{4} 3d$ wadalite structure, named "adrianite", was				
40	identified in Ca-Al-rich inclusion (CAI) Egg-3 (Fig. 1). The Allende meteorite, which fell at				
41	Pueblito de Allende, Chihuahua, Mexico on February 8, 1969, is a CV3 (Vigarano type)				
42	carbonaceous chondrite. Much work has been done on Egg-3 (e.g., Meeker et al. 1983),				
43	which is a coarse-grained igneous Type B1 FUN (Fractionation and Unidentified Nuclear				
44	effects) CAI from Allende (Wasserburg et al. 2012).				
45	Electron probe microanalysis (EPMA), high-resolution scanning electron microscope				
46	(SEM) and electron back-scatter diffraction (EBSD) have been used to characterize				
47	composition and structure of adrianite. Synthetic $Ca_{12}(Al_4Mg_3Si_7)O_{32}Cl_6$,				
48	Ca12(Al2Mg4Si8)O32Cl6, or Ca12(Mg5Si9)O32Cl6 have not been reported to date. We describe				
49	here the first occurrence of $Ca_{12}(Al_4Mg_3Si_7)O_{32}Cl_6$ in a meteorite, as a new alteration				
50	mineral in a CAI from a carbonaceous chondrite, and discuss its origin and significance for				
51	secondary alteration processes that affected CV chondrites (e.g., Brearley and Krot 2012).				
52	Preliminary results of this work are given by Ma and Krot (2014b).				
53					
54	MINERAL NAME AND TYPE MATERIAL				
55	The new mineral and its name have been approved by the Commission on New				
56	Minerals, Nomenclature and Classification of the International Mineralogical Association				
57	(IMA 2014-028) (Ma and Krot 2014a). The mineral name is in honor of Adrian J. Brearley				
58	(born 1958), mineralogist and cosmochemist at the University of New Mexico, in				

59 recognition of his many contributions to meteorite mineralogy. He is one of the leading

60 authorities on alteration mineralogy studies of chondritic meteorites. The holotype specimen

61 is in section MQM803 in G. J. Wasserburg's Meteorite Collection of Division of Geological

and Planetary Sciences, California Institute of Technology, Pasadena, California 91125,

63 USA. This section also hosts holotype hutcheonite (IMA 2013-029; Ma and Krot 2014c).

- 64
- 65

OCCURRENCE AND ASSOCIATED MINERALS

66 *Egg-3* is a coarse-grained igneous Type B1 CAI with a core composed of normally-zoned 67 melilite (Å k_{46-76}) and Ti,Al-diopside (in wt.%: 1.9–11.5 TiO₂, 17.2–21.7 Al₂O₃), nearly pure 68 anorthite and Mg-spinel, and a mantle composed of gehlenitic melilite ($Åk_{14-34}$) poikilitically 69 enclosing rounded inclusions of Ti,Al-diopside (in wt.%: 10.3-16.4 TiO₂, 17.8-20.3 Al₂O₃) and 70 spinel (Fig. 1). The coarser spinel grains form a nearly continuous layer in the middle of the 71 melilite mantle. The CAI is surrounded by several rims (from inside outward) (1) a multilayered 72 Wark-Lovering rim (Wark and Lovering 1976) made of melilite+perovskite, Ti,Al-diopside, and 73 forsterite layers, (2) a forsterite-rich accretionary rim (Krot et al. 2001) composed of forsterite 74 overgrown by secondary ferroan olivine, (3) a fine-grained matrix-like rim largely composed of 75 ferroan olivine and nepheline, and (4) a discontinuous layer of salite-hedenbergite pyroxenes 76 and andradite.

77 The CAI experienced ion-alkali-halogen metasomatic alteration that largely affected its 78 primary melilite and resulted in formation of diverse secondary minerals depending on the 79 melilite composition (Brearley and Krot 2012). Gehlenite-rich melilite of the Wark-Lovering rim 80 is almost completely replaced by sodalite, nepheline, and Na-bearing (up to 1 wt% Na₂O) 81 plagioclase; grossular is minor (Figs. 2a, b). Spinel in the Wark-Lovering rim is enriched in FeO 82 (up to 10 wt.%). Gehlenite-rich melilite in the mantle is crosscut by grossular – Na-bearing 83 plagioclase veins (Figs. 2b, c). The plagioclase/grossular ratio in veins decreases towards the 84 CAI core. Åkermanite-rich melilite in the core is largely replaced by grossular, monticellite, Ti-85 free Al-diopside, and wollastonite; secondary forsterite, kushiroite, wadalite, hutcheonite, and 86 adrianite are minor (Figs. 2d, e). The core anorthite experienced relatively minor alteration; it is 87 crosscut by veins of grossular, Na-rich melilite (up to 4.7 wt% Na₂O), kushiroite, and celsian 88 (BaAl₂Si₂O₈) (Figs. 2e, f). A trace amount of Ni-Fe-rich metal is present in the CAI core.

Adrianite occurs in contact with monticellite and grossular, plus nearby wadalite and hutcheonite in alteration areas along some cracks between primary melilite, spinel and Ti,Al91 diopside in the core area of the CAI (Figs. 3–5). Hutcheonite $(Ca_3Ti_2(SiAl_2)O_{12})$ is a newly-92 found garnet mineral (Ma and Krot 2014c).

X-ray elemental mapping reveals a zoned distribution of Na- and/or Cl-rich secondary
minerals: nepheline and sodalite occur largely in the peripheral part of the CAI, whereas wadalite
and adrianite are found exclusive in its core; the melilite mantle virtually lack Na- and Cl-rich
secondary minerals (Fig. 1).

- 97
- 98

APPEARANCE, PHYSICAL, AND OPTICAL PROPERTIES

Adrianite occurs as small, irregular, single crystals, $2-6 \mu m$ in size (Figs. 3–5), which are the holotype material. Color, luster, streak, hardness, tenacity, cleavage, fracture, density, and optical properties could not be determined because of the small grain size. Adrianite is noncathodoluminescent under the electron beam in an SEM. The calculated density is 3.03 g/cm^3 using the empirical formula.

- 104
- 105

CHEMICAL COMPOSITION

106 Backscattered electron (BSE) images were obtained using a ZEISS 1550VP field 107 emission SEM and a JEOL 8200 electron microprobe with AsB (angle selective backscatter) and 108 solid-state BSE detectors, respectively. Quantitative elemental microanalyses (3) were carried 109 out using the JEOL 8200 electron microprobe operated at 10 kV (for smaller interaction volume) 110 and 5 nA in focused beam mode. Analyses were processed with the CITZAF correction procedure (Armstrong 1995) using the Probe for EPMA program from Probe Software, Inc. 111 112 Analytical results are given in Table 1. No other elements with atomic number greater than 4 113 were detected by WDS scans. The empirical formula (based on 32 oxygen atoms pfu) of type adrianite is (Ca_{11.69}Na_{0.21})(Al_{3.85}Mg_{2.88}Si_{7.23})O₃₂Cl_{5.80}. This Cl-rich silicate is a new wadalite 114 group mineral with $Si^{4+} > Al^{3+}$ at tetrahedral sites in the structure. The general formula is 115 116 $Ca_{12}(Si,Al,Mg)_{14}O_{32}Cl_6$. The ideal formula of the holotype material is $Ca_{12}(Al_4Mg_3Si_7)O_{32}Cl_6$. The end-member formula is likely Ca₁₂(Mg₅Si₉)O₃₂Cl₆, which requires SiO₂ 34.23, MgO 12.76, 117 118 CaO 42.59, Cl 13.46, O = Cl -3.04, total 100.0 wt%. Associated wadalite has an empirical 119 formula of (Ca_{11.58}Na_{0.09})(Al_{7.42}Mg_{1.29}Si_{5.39})O₃₂Cl_{5.66}. Nearby primary melilite has an empirical 120 formula of Ca_{2.00}(Mg_{0.51}Al_{0.45})(Si_{1.55}Al_{0.45})O₇, and Ti,Al-diopside shows an empirical formula of 121 $Ca_{1.00}(Mg_{0.52}Al_{0.25}Ti_{0.18})(Si_{1.45}Al_{0.55})O_6$ with ~18 wt% Al_2O_3 and ~7 wt% TiO₂.

122					
123	CRYSTALLOGRAPHY				
124	Single-crystal electron backscatter diffraction (EBSD) analyses at a sub-micrometer scale				
125	were performed using an HKL EBSD system on a ZEISS 1550VP SEM, operated at 20 kV and				
126	nA in focused beam mode with a 70° tilted stage and in a variable pressure mode (25 Pa) (Ma				
127	and Rossman 2008, 2009). The EBSD system was calibrated using a single-crystal silicon				
128	standard. The structure was determined and cell constants were obtained by matching the				
129	experimental EBSD patterns with structures of wadalite, grossular, and mayenite.				
130	The EBSD patterns can be indexed nicely by the $I\overline{4} 3d$ wadalite structure and give a bes				
131	fit using the wadalite structure from Feng et al. (1988) (Fig. 6), with a mean angular deviation of				
132	0.31°, showing $a = 11.981$ Å, $V = 1719.8$ Å ³ , and $Z = 2$.				
133	The X-ray powder-diffraction data (in Å for CuKa1, Bragg-Brentano geometry) are				
134	calculated from the cell parameters and the atomic coordinates of Feng et al. (1988) with the				
135	empirical formula from this study, using Powder Cell version 2.4. The strongest calculated lines				
136	are [d in Å, intensity, I, scaled to 100 for the most intense peak, (h k l)] [2.679, 100, (4 2 0)],				
137	[2.446, 36, (4 2 2)], [2.995, 32, (4 0 0)], [1.661, 28, (6 4 0)], [1.601, 28, (6 4 2)], [4.891, 14, (2 1				
138	<i>I</i>)], [2.187, 14, (5 2 <i>I</i>)], and [1.729, 14, (4 4 4)].				
139					
140	ORIGIN, SIGNIFICANCE AND IMPLICATIONS				
141	Adrianite, $Ca_{12}(Al_4Mg_3Si_7)O_{32}Cl_6$, is the Si, Mg analogue of wadalite				
142	$Ca_{12}(Al_{10}Si_4)O_{32}Cl_6$. It is a new member of the wadalite group in the manyenite supergroup. Its				
143	end-member may be $Ca_{12}(Mg_5Si_9)O_{32}Cl_6$.				
144	Adrianite is found only in altered regions of the Allende CAIs, in close association with				
145	secondary monticellite, grossular, hutcheonite, and wadalite (Figs. 3-5). Mineralogical				
146	observations, thermodynamic analysis, and oxygen and ²⁶ Al- ²⁶ Mg isotope systematics of				
147	grossular, monticellite, and wollastonite in CV chondrites indicate that these minerals resulted				
148	from in situ alteration of the Allende CAIs during fluid-assisted thermal metamorphism of the				
149	CV chondrite parent asteroid below 600°C, ~3-4 Myr after CAI formation (Krot et al. 2007;				
150	Brearley and Krot 2012). Based on these observations, we infer that adrianite is also a secondary				
151	alteration product, formed by iron-alkali-halogen metasomatic alteration of the primary melilite				
152	perovskite, and Ti,Al-diopside in the CAI on the Allende parent asteroid. Egg-3 experienced				

153	open-system, post-crystallization alteration that resulted in addition of Si, Na, Cl, and Fe, and				
154	loss of Ca (Fig. 1); Al, Ti, and Mg were also mobile during the alteration. One possible reaction				
155	to account for adrianite formation in Egg-3, based on simplified or end-member formulas, may				
156	be expressed as:				
157 158 159 160	$ 3Ca_{2}(Mg_{0.5}Al_{0.5})(Si_{1.5}Al_{0.5})O_{7}(melilite) + Ca_{1.00}(Mg_{0.5}Al_{0.25}Ti_{0.25})(Si_{1.5}Al_{0.5})O_{6}(Al,Ti-diopside) + Cl(aq) + 6.12H_{2}O(l) = 0.17Ca_{12}(Al_{4}Mg_{3}Si_{7})O_{32}Cl_{6}(adrianite) + 0.13Ca_{3}Ti_{2}(SiAl_{2})O_{12}(hutcheonite) + 1.5CaMgSiO_{4}(monticellite) + 0.88Ca_{3}Al_{2}Si_{3}O_{12}(grossular) + 0.5CaAl_{2}SiO_{6}(kushiroite) + 1.39Ca(aq) + 0.05Al(aq) + 0.04SiO_{2}(aq) + 6.12H_{2}(g), $				
161	where grossular, monticellite and kushiroite (CaTs, Ti-free Al-rich pyroxene) are among the				
162	common secondary minerals, and melilite and Al, Ti-diopside are the major primary minerals that				
163	were altered.				
164	Secondary Cl-rich minerals identified in CAIs now include sodalite, chlormayenite				
165	(previously known as "brearleyite"; Ma et al. 2011), wadalite, and adrianite. Each and every new				
166	mineral identified in meteorites provide new information on forming conditions. Adrianite is one				
167	of six new secondary minerals discovered in Allende CAIs, helping to reveal alteration processes				
168	on the parent body.				
169					
170	ACKNOWLEDGMENTS				
171	SEM, EBSD and EPMA were carried out at the Geological and Planetary Science				
171 172	SEM, EBSD and EPMA were carried out at the Geological and Planetary Science Division Analytical Facility, Caltech, which is supported in part by NSF grants EAR-0318518				
171 172 173	SEM, EBSD and EPMA were carried out at the Geological and Planetary Science Division Analytical Facility, Caltech, which is supported in part by NSF grants EAR-0318518 and DMR-0080065. This work was also supported by NASA grant NNX12AJ01G. We thank				
171 172 173 174	SEM, EBSD and EPMA were carried out at the Geological and Planetary Science Division Analytical Facility, Caltech, which is supported in part by NSF grants EAR-0318518 and DMR-0080065. This work was also supported by NASA grant NNX12AJ01G. We thank Mike Zolensky, Makoto Kimura, and associate editor Steve Simon for constructive reviews.				
171 172 173 174 175	SEM, EBSD and EPMA were carried out at the Geological and Planetary Science Division Analytical Facility, Caltech, which is supported in part by NSF grants EAR-0318518 and DMR-0080065. This work was also supported by NASA grant NNX12AJ01G. We thank Mike Zolensky, Makoto Kimura, and associate editor Steve Simon for constructive reviews.				
 171 172 173 174 175 176 	SEM, EBSD and EPMA were carried out at the Geological and Planetary Science Division Analytical Facility, Caltech, which is supported in part by NSF grants EAR-0318518 and DMR-0080065. This work was also supported by NASA grant NNX12AJ01G. We thank Mike Zolensky, Makoto Kimura, and associate editor Steve Simon for constructive reviews. REFERENCES CITED				
 171 172 173 174 175 176 177 	SEM, EBSD and EPMA were carried out at the Geological and Planetary Science Division Analytical Facility, Caltech, which is supported in part by NSF grants EAR-0318518 and DMR-0080065. This work was also supported by NASA grant NNX12AJ01G. We thank Mike Zolensky, Makoto Kimura, and associate editor Steve Simon for constructive reviews. REFERENCES CITED Armstrong , J.T. (1995) CITZAF: A package of correction programs for the quantitative electron				
 171 172 173 174 175 176 177 178 	SEM, EBSD and EPMA were carried out at the Geological and Planetary Science Division Analytical Facility, Caltech, which is supported in part by NSF grants EAR-0318518 and DMR-0080065. This work was also supported by NASA grant NNX12AJ01G. We thank Mike Zolensky, Makoto Kimura, and associate editor Steve Simon for constructive reviews. REFERENCES CITED Armstrong , J.T. (1995) CITZAF: A package of correction programs for the quantitative electron beam X-ray analysis of thick polished materials, thin films, and particles. Microbeam				
 171 172 173 174 175 176 177 178 179 	SEM, EBSD and EPMA were carried out at the Geological and Planetary Science Division Analytical Facility, Caltech, which is supported in part by NSF grants EAR-0318518 and DMR-0080065. This work was also supported by NASA grant NNX12AJ01G. We thank Mike Zolensky, Makoto Kimura, and associate editor Steve Simon for constructive reviews. REFERENCES CITED Armstrong , J.T. (1995) CITZAF: A package of correction programs for the quantitative electron beam X-ray analysis of thick polished materials, thin films, and particles. Microbeam Analysis, 4, 177–200.				
 171 172 173 174 175 176 177 178 179 180 	 SEM, EBSD and EPMA were carried out at the Geological and Planetary Science Division Analytical Facility, Caltech, which is supported in part by NSF grants EAR-0318518 and DMR-0080065. This work was also supported by NASA grant NNX12AJ01G. We thank Mike Zolensky, Makoto Kimura, and associate editor Steve Simon for constructive reviews. REFERENCES CITED Armstrong , J.T. (1995) CITZAF: A package of correction programs for the quantitative electron beam X-ray analysis of thick polished materials, thin films, and particles. Microbeam Analysis, 4, 177–200. Brearley, A.J. and Krot, A.N. (2012) Metasomatism in the early solar system: The record from 				
 171 172 173 174 175 176 177 178 179 180 181 	 SEM, EBSD and EPMA were carried out at the Geological and Planetary Science Division Analytical Facility, Caltech, which is supported in part by NSF grants EAR-0318518 and DMR-0080065. This work was also supported by NASA grant NNX12AJ01G. We thank Mike Zolensky, Makoto Kimura, and associate editor Steve Simon for constructive reviews. REFERENCES CITED Armstrong , J.T. (1995) CITZAF: A package of correction programs for the quantitative electron beam X-ray analysis of thick polished materials, thin films, and particles. Microbeam Analysis, 4, 177–200. Brearley, A.J. and Krot, A.N. (2012) Metasomatism in the early solar system: The record from chondritic meteorites. In Metasomatism and the Chemical Transformation of Rock – 				

- Feng, Q.L., Glasser, F.P., Howie, R.A., and Lachowski, E.E. (1988) Chlorosilicate with the
 12CaO·7Al₂O₃ structure and its relationship to garnet. Acta Crystallographica, C44, 589–
 592.
- 186 Krot, A.N., Ulyanov, A.A., Meibom, A., and Keil, K. (2001) Forsterite-rich accretionary rims
 187 around Ca, Al-rich inclusions from the reduced CV3 chondrite Efremovka. Meteoritics &
 188 Planetary Sciences, 36, 611–628.
- 189 Krot, A.N., Yurimoto, H., Hutcheon, I.D., Libourel, G., Chaussidon, M., Petaev, M.I.,
 190 MacPherson, G.J., Paque-Heather, J., and Wark., D. (2007) Anorthite-rich, igneous (Type
 191 C) Ca,Al-rich inclusions from the CV carbonaceous chondrite Allende: Evidence for
 192 multistage formation history. Geochimica et Cosmochimica Acta 71, 4342–4364.
- Ma, C. and Krot, A.N. (2014a) Adrianite, IMA 2014-028. CNMNC Newsletter No. 21, August
 2014, page 801. Mineralogical Magazine, 78, 797–804.
- Ma, C. and Krot, A.N. (2014b) Discovery of a new Cl-rich silicate mineral,
 Ca₁₂(Al₄Mg₃Si₇)O₃₂Cl₆: an alteration phase in Allende. 77th Annual Meteoritical Society
 Meeting, Abstract #5432.
- Ma, C. and Krot, A.N. (2014c) Hutcheonite, Ca₃Ti₂(SiAl₂)O₁₂, a new garnet mineral from the
 Allende meteorite: An alteration phase in a Ca-Al-rich inclusion. American Mineralogist,
 99, 667–670.
- Ma, C. and Rossman, G.R. (2008) Barioperovskite, BaTiO₃, a new mineral from the Benitoite
 Mine, California. American Mineralogist, 93, 154–157.
- Ma, C. and Rossman, G.R. (2009) Tistarite, Ti₂O₃, a new refractory mineral from the Allende
 meteorite. American Mineralogist, 94, 841–844.
- Ma, C., Connolly, H.C., Beckett, J.R., Tschauner, O., Rossman, G.R., Kampf, A.R., Zega, T.J.,
 Sweeney Smith, S.A., and Schrader, D.L. (2011) Brearleyite, Ca₁₂Al₁₄O₃₂Cl₂, a new
 alteration mineral from the NWA 1934 meteorite. American Mineralogist, 96,
 1199–1206.
- 209 Meeker, G.P., G.J Wasserburg, G.J., and Armstrong, J.T. (1983) Replacement textures in CAI
- and implications regarding planetary metamorphism. Geochimica et Cosmochimica Acta,
 47, 707–721.

- 212 Wark, D.A. and Lovering, J.F. (1976) Marker events in the early evolution of the solar system:
- 213 Evidence from rims on Ca-Al-rich inclusions in carbonaceous chondrites meteorites.
- 214 Proceedings of the Lunar and Planetary Science Conference, 8, 95–112.
- 215 Wasserburg G.J., Wimpenny, J., and Yin, Q.-Z. (2012) Mg isotopic heterogeneity, Al-Mg
- 216 isochrons, and canonical ²⁶Al/²⁷Al in the early solar system. Meteoritics & Planetary
- 217 Sciences, 47, 1980–1997.
- 218

- 219 Table 1. EPMA data for type adrianite and nearby wadalite in *Egg-3*.
- 220

Constituent			
$(wt\%)^a$	adrianite	wadalite	Probe Standard
	n=3 ^b	n=3	
SiO ₂	27.5(3) ^c	20.6(1)	grossular
Al_2O_3	12.4(2)	24.0(5)	grossular
MgO	7.3(2)	3.3(4)	forsterite
CaO	41.5(4)	41.2(2)	grossular
Na ₂ O	0.41(3)	0.2(1)	albite
Cl	13.0(3)	12.73(3)	sodalite
-0	2.94(7)	2.87(1)	
Total	99.2	99.2	

221

^a Detection limit at 99% confidence: 0.07 wt% Si, 0.07 wt% Al, 0.03 wt% Mg, 0.04 wt% Ca,

223 0.05 wt% Na, 0.04 wt% Cl.

^bNumber of point analyses.

^c Standard deviation in bracket.

226

228

229 Figure 1. Combined x-ray elemental maps in (a) Mg (red), Ca (green) and Al (blue), (b) Ti (red), 230 Ca (green) and Al (blue), (c) Cl (red), Na (green) and Mg (blue), and x-ray elemental maps in (d) 231 Mg, (e) Si, and (f) Ca of the Allende Type B1 CAI Egg-3. The CAI experienced open-system alteration that resulted in addition of Si, Na, Cl, and Fe, and loss of Ca. adr = adrianite; an = 232 anorthite; AR = forsterite-rich accretionary rim; CaFe-sil = layer of salite-hedenbergite 233 234 pyroxenes and andradite; FGR = fine-grained matrix-like rim; mel = melilite; nph = nepheline; 235 px = Ti,Al-diopside; sod = sodalite; sp = spinel; wad = wadalite; WLR = Wark-Lovering rim. Sodalite is vellow in (c), derived from combination of Cl (red) and Na (green). 236

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. DOI: https://doi.org/10.2138/am-2018-6505

Figure 2. SEM BSE images showing secondary mineralization in different parts of *Egg-3*. Regions outlined in "a" and "e" are shown in detail in "b, c" and "f", respectively. (a–c) Gehlenitic melilite near the Wark-Lovering (WL) rim is replaced by nepheline, sodalite, and Nabearing plagioclase. Gehlenitic melilite in the mantle is crosscut by plagioclase-grossular veins. The abundance of anorthite in veins decreases towards the CAI core. (d–f) In the CAI core, åkermanitic melilite is replaced by grossular, monticellite, wollastonite, and Ti-free Al-diopside.

Anorthite is crosscut by veins of grossular, Na-melilite, forsterite, kushiroite, and celsian.

Figure 3. SEM BSE image showing part of the Type B1 CAI *Egg-3* in MQM803. The location of adrianite is indicated by the box and shown in Fig. 4.

250 251 252 253

Figure 4. Enlarged BSE image revealing adrianite with grossular and monticellite in the altered area between primary melilite crystals.

254 255

256 Figure 5. BSE image showing adrianite with grossular between melilite and Ti,Al-diopside.

262 Figure 6. (left) EBSD pattern of the adrianite crystal in Figure 2, and (right) the pattern indexed 263 with the I-43d wadalite structure.

