1	Revision 2
2	Raman modes of carbonate minerals as pressure and temperature gauges up to 6 GPa and
3	500°C
4	Stefan Farsang ^{1*} , Sébastien Facq ¹ and Simon A. T. Redfern ^{1,2‡}
5	¹ Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge, CB2
6	3EQ, UK (*sf571@cam.ac.uk, [‡] satr@cam.ac.uk)
7	² Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai,
8	201203, China
9	
10	Abstract
11	Diamond anvil cell (DAC) experiments focusing on the solubility of carbonates and aqueous
12	carbon speciation at subduction zones require pressure monitoring with sensitive, chemically
13	inert sensors. Commonly used pressure indicators are either too insensitive or prone to
14	contaminate pressure-transmitting media due to their increased solubility at high pressure and/or
15	temperature (P/T) . Here, the <i>P</i> - and <i>T</i> -induced frequency shifts of the Raman vibrational modes
16	of natural crystalline carbonate minerals aragonite, calcite, dolomite, magnesite, rhodochrosite,
17	and siderite have been calibrated for application as Raman spectroscopic P and T sensors in
18	DACs up to 500°C and 6 GPa. The shifts of all modes are quasi-constant over the observed P
19	and T ranges and are generally less prominent for internal modes than for external modes. Our
20	method provides a sensitive and robust alternative to traditional pressure calibrants, and has three
21	principal advantages: (1) higher sensitivity (for particular Raman vibrational modes), (2)
22	monitoring P/T -induced shifts of several modes allows even more accurate P/T determination,
23	and (3) no contamination of pressure-transmitting media by foreign materials can occur.

- 24 Additionally, the isobaric and isothermal equivalent of the Grüneisen parameter and the
- anharmonic parameter for each of the traced modes have been determined.

- 26 Keywords: Aragonite, calcite, diamond anvil cell, dolomite, high pressure, high temperature,
- 27 magnesite, pressure sensor, Raman spectroscopy, rhodochrosite, siderite, temperature sensor

29

Introduction

30 Carbonate minerals are the dominant carbon-bearing phases within Earth's crust and lithospheric mantle, representing the most stable carbon-bearing phases down to depths of at least 200 km, 31 32 corresponding to pressures of up to ~6 GPa (e.g. Redfern 2000; Dasgupta et al. 2004; Dasgupta 33 and Hirschmann 2006, 2010; Rohrbach and Schmidt 2011; Oganov et al. 2013). They are the primary carriers of carbon into the deeper Earth at subduction zones and their behavior in the 34 high P/T environments of the lithosphere determines how much, and on what timescales, carbon 35 36 gets recycled to the atmosphere and hence oceans, or is retained in the mantle (e.g. Ague and 37 Nicolescu 2014; Manning 2014; Kelemen and Manning 2015). Because of the important role carbonate minerals play in the key geological processes (such as subduction, arc volcanism, and 38 dissolution in aqueous fluids) of the Earth's deep carbon cycle, the accurate determination of 39 their physical and chemical properties under high P and T conditions is of great importance. The 40 interest in the topic is reflected by a significant and increasing number of experimental studies 41 42 based on the coupling of Raman spectroscopy with DAC techniques to understand the properties 43 of carbonate minerals at conditions corresponding to planetary interiors (Liu and Mernagh 1990; Kraft et al. 1991; Williams et al. 1992; Gillet et al. 1993; Lin and Liu 1997; Minch et al. 2010a, 44 2010b, Farfan et al. 2012, 2013; Spivak et al. 2014; Facq et al. 2014, 2016; Cerantola et al. 2015; 45 46 Chaney et al. 2015; Pippinger et al. 2015; Xu et al. 2015; Liu et al. 2016; Müller et al. 2016; 47 Koch-Müller et al. 2016; Maruyama et al. 2017; Chariton et al. 2017). Monitoring, recording, and reproducing extensive thermodynamic variables such as 48 49 pressure and temperature is crucial in any high P/T study, and is a particular requirement in DAC experiments. Pressure is typically measured in such experiments based on the Raman or 50 51 fluorescence frequency shifts of a calibrant inside the compression chamber (e.g. ruby or

52	diamond). The principal limitations of traditionally used optical pressure sensors of this type are
53	discussed here. Ruby, a Cr^{3+} -doped α -Al ₂ O ₃ , is the most extensively-used pressure sensor
54	(Barnett et al. 1973; Datchi et al. 2007). Broadening the ruby R_1 and R_2 fluorescence peaks and
55	the decreasing signal-to-background ratio at high temperatures and the large uncertainty on the
56	pressure and temperature cross derivative of the frequency, all significantly reduce the accuracy
57	of pressure determination (Ragan et al. 1992; Goncharov et al. 2005; Datchi et al. 2007). A
58	further complication is the chemical dissolution of ruby into water (the pressure medium), due to
59	its increased solubility at high <i>P/T</i> conditions (Tropper and Manning 2007; Andreani et al. 2013).
60	This may become particularly significant in DAC experiments that aim to determine the
61	solubility of carbonates and aqueous carbon speciation via carbonate-water equilibria, since
62	these experiments assume no chemical interaction between the pressure-transmitting medium
63	and the pressure sensor. For this reason, it is imperative that the use of pressure sensors made of
64	materials soluble in the fluid phase in the DAC at high P/T is avoided. Other pressure sensors,
65	including SrB_4O_7 : Sm^{2+} , quartz, α -SiO ₂ , and berlinite, AlPO ₄ , also exhibit increased solubility at
66	high <i>T</i> , making them unusable in solubility and aqueous speciation experiments (Manning 1994;
67	Datchi et al. 2000; Watenphul and Schmidt 2012). The use of zircon, ZrSiO ₄ , which is only
68	soluble at the ppm level in high P/T fluids (Bernini et al. 2013), should also be avoided, as even
69	low concentrations of contaminants can affect the solubility of phases and corresponding
70	aqueous speciation. Although stable over a large P/T range, and chemically inert, ¹² C and ¹³ C
71	diamond, and cubic boron nitride show relatively low pressure-sensitivity (2.83, 2.83, and 3.27
72	cm ⁻¹ /GPa, respectively), which has a deleterious effect on the precision of pressure determination
73	(Schiferl et al. 1997; Grasset et al. 2005; Datchi et al. 2007). Furthermore, below 13 GPa the
74	Raman signal from ¹² C diamond is hidden by the strong signal produced by the diamond anvils,

while ${}^{13}C$ diamond, which could be used in this *P* range, is not readily available (Datchi et al. 2007).

Instead of introducing foreign material to the compression chamber to measure P and/or 77 78 T, here we propose the use of frequency shifts of the Raman vibrational modes of the crystalline 79 carbonates themselves (cross-calibrated against the ruby R_1 fluorescence peak) as P/T sensors. Indeed, most of the Raman vibrational modes of carbonates are particularly sensitive to subtle 80 P/T changes. The simultaneous monitoring of the behavior of multiple modes of varying 81 82 sensitivity provides an additional route for an even more accurate determination of P/T83 conditions. Moreover, by avoiding the introduction of foreign material into the DAC, the possibility of its interaction with aqueous media is ruled out. This alternative method has been 84 recently employed in carbon aqueous speciation experiments of aqueous fluids in equilibrium 85 with aragonite at subduction zone environmental conditions (Facq et al. 2014, 2016). 86 Here, we report *P*- and *T*-induced frequency shifts of the Raman vibrational modes of 87 natural aragonite (CaCO₃), calcite (CaCO₃), dolomite (CaMg(CO₃)₂), magnesite (MgCO₃), 88 89 rhodochrosite (MnCO₃), and siderite (FeCO₃) up to 6-6.5 GPa and 400-500 °C, respectively. From these data, the isobaric and isothermal equivalent of the Grüneisen parameter and the 90 anharmonic parameter for the corresponding vibrational modes were calculated to provide a 91 92 robust method for combined P/T measurement in the DAC. 93 **Experimental methods** High-purity naturally-occurring carbonate minerals were used in all experiments, including 94 95 aragonite from Landes, France; calcite from Miskolctapolca, Hungary; dolomite from Campolongo, Italy; magnesite from Hnúšťa, Slovakia; rhodochrosite from Colorado, USA; and 96 siderite from Tincroft Mine, Cornwall, UK. All carbonate minerals were characterized by X-ray 97

98	diffraction (XRD), electron probe microanalysis, and Raman spectroscopy prior to investigation.
99	The unit cell parameters and measured chemical formulae are reported in Table 1.
100	The high- P experiments were conducted at room T in a membrane-type diamond anvil
101	cell (Letoullec et al. 1988) equipped with IIa diamond anvils with culet diameters of 500 μ m. A
102	pressure-transmitting medium and some natural carbonate single crystals were loaded in a pre-
103	indented (initially 240 μm and after indentation 100 μm) thick steel gasket, drilled with a 200 μm
104	diameter hole. The pressure-transmitting medium comprised a 4:1 methanol-ethanol fluid
105	mixture, which is hydrostatic over the full pressure range of our experiments (Klotz et al. 2009).
106	The pressure inside the compression chamber was increased from ~ 0 to ~ 6 GPa in pressure
107	increments of ~0.5 GPa using a PDS 200 pneumatic drive system (BETSA). Pressure was
108	calculated from the calibrated shift of the ruby R_1 fluorescence line (Mao et al. 1986) after at
109	least 30 minutes of response time required for the ruby fluorescence peak to reach its equilibrium
110	value (Picard et al. 2006).
111	The high- T experiments were conducted at room P using a DSC600 heating stage
112	(Linkam Scientific Instruments) with the sample held within an aluminum sample pan. The
113	temperature was gradually increased from 25 °C to 425 °C for rhodochrosite and siderite and to
114	500 °C for the other carbonates in temperature increments of 25 °C using a TMS94 temperature
115	controller (Linkam Scientific Instruments).
116	Raman spectra were collected in the 100–1800 cm ⁻¹ spectral range using a confocal
117	LabRAM 300 (Horiba Jobin Yvon) Raman spectrometer of 300 mm focal length. A holographic
118	grating of 1800 gr.mm ⁻¹ coupled to a Peltier front illuminated CCD detector (1024×256 pixel in
119	size) enabled a spectral resolution of ~ 1 cm ⁻¹ . The excitation line at 532.05 nm was produced by

a Ventus 532 laser source (Laser Quantum) focused on the sample using an Olympus LMPLFLN
50× long working distance objective.

All Raman spectra were treated by PeakFit[™] software. For each Raman spectrum, the
baseline was subtracted and peak features were determined by least squares fitting to Voigt
profiles for the Raman bands. Peak positions were calibrated against the measured excitation of a
Ne light reference spectrum (Saloman and Sansonetti 2004).

126

Results and Discussion

127 Raman-active modes

128 Aragonite crystallizes in space group *Pmcn*. Its orthorhombic cell contains 20 atoms per lattice

point and its 57 vibrational modes can be classified as

130
$$\Gamma = 9A_g + 6A_u + 6B_{1g} + 8B_{1u} + 9B_{2g} + 5B_{2u} + 6B_{3g} + 8B_{3u}$$

131 of which the gerade A_g , B_{1g} , B_{2g} , and B_{3g} modes are Raman-active (De La Pierre et al. 2014). Of

these 30, 20 modes were observed in the Raman spectrum taken at 25 °C (Figure 1). The

vibrational modes located in the low frequency range at 115, 125, 145, 155, 164, 182, 192, 208,

134 216, 250, 263, 274, and 285 cm⁻¹ represent external or lattice modes, resulting from the

interactions between Ca^{2+} and CO_3^{2-} ions. The high frequency vibrational modes v₄ at 701, 705,

and 716 cm⁻¹, v_2 at 853 cm⁻¹, v_1 at 1085 cm⁻¹, and v_3 at 1463 and 1576 cm⁻¹ represent internal

modes of the CO_3^{2-} group (Gillet et al. 1993). Of these, 14 could be traced across the entire

pressure range of investigation and 11 could be traced up to temperatures of the aragonite-calcite

139 phase transition.

140 Calcite, magnesite, rhodochrosite, and siderite all crystallize in space group $R\overline{3}c$. Their 141 rhombohedral primitive cell contains ten atoms per lattice point and their 27 vibrational modes 142 can be classified as

143
$$\Gamma = A_{1g} + 2A_{1u} + 3A_{2g} + 3A_{2u} + 4E_g + 5E_u$$

of which the gerade A_{1g} and E_g modes are Raman-active (Rutt and Nicola 1974; Valenzano et al. 144 2007; De La Pierre et al. 2014). All of these, apart from the v_3 mode in siderite, were observed in 145 the Raman spectrum taken at 25 °C (Figure 1). The lack of the v₃ mode in siderite is in 146 147 agreement with Rutt and Nicola (1974). The low-frequency vibrational modes (158 and 284 cm⁻¹ in calcite, and 330 cm⁻¹ in magnesite, 185 and 290 cm⁻¹ in rhodochrosite, and 183 and 284 cm⁻¹ 148 in siderite) represent external modes, resulting from the interactions between M^{2+} and CO_3^{2-} ions, 149 M being Ca, Mg, Mn, and Fe, respectively. The high-frequency vibrational modes, v_4 (713 cm⁻¹ 150 in calcite, 738 cm⁻¹ in magnesite, 718 cm⁻¹ in rhodochrosite, and 731 cm⁻¹ in siderite), v₁ (1088 151 cm⁻¹ in calcite, 1094 cm⁻¹ in magnesite, 1086 cm⁻¹ in rhodochrosite, and 1085 cm⁻¹ in siderite), 152 and v_3 (1438 cm⁻¹ in calcite, 1446 cm⁻¹ in magnesite, and 1415 cm⁻¹ in rhodochrosite) represent 153 internal modes of the CO_3^{2-} group. Silent mode v_2 was absent and v_3 (corresponding to the 154 asymmetric CO₃ stretching with E_g symmetry) was not traced due to its highly asymmetric 155 nature, which results from the existence of weak satellite excitations at the lower-frequency side 156 of the main v₃ Raman-active mode (Krishnamurti 1957). The high-frequency mode at 1751 cm⁻¹ 157 in calcite, 1763 cm⁻¹ in magnesite, 1727 cm⁻¹ in rhodochrosite, and 1724 cm⁻¹ in siderite 158 represents the $2v_2$ overtone mode of the silent, IR-active v_2 mode (Couture 1947). An additional 159 broad, low-intensity feature at 507 cm⁻¹ was observed and traced in siderite, which is caused by 160 an Fe^{2+} electronic excitation (Popkov et al. 1972). 161

162 Dolomite crystallizes in space group $R\overline{3}$. It has ten atoms per lattice point and its 27 163 vibrational modes can be classified as

164
$$\Gamma = 4E_g + 4A_g + 5E_u + 5A_u$$

165	of which the gerade A_g and E_g modes are Raman-active (Valenzano et al. 2007) and were
166	observed in the Raman spectrum taken at 25 °C (Figure 1). The modes at lower frequencies (178,
167	229, 301, and 340 cm ⁻¹) represent external modes, resulting from the interactions between M^{2+}
168	and CO_3^{2-} ions, M being both Ca and Mg. The higher-frequency modes v_4 at 724 cm ⁻¹ , v_2 at 881
169	cm ⁻¹ , v_1 at 1098 cm ⁻¹ , and v_3 at 1442 cm ⁻¹ represent internal modes of the CO ₃ ²⁻ group. The 229
170	cm ⁻¹ frequency external mode and ν_3 (corresponding to the asymmetric CO3 stretching with E_g
171	symmetry) was not analyzed due to the low intensity and highly asymmetric nature of peak,
172	respectively. The high-frequency mode at 1759 cm ⁻¹ represents the $2v_2$ overtone mode of the v_2
173	mode (Couture 1947).
174	High-pressure experiments
175	The frequency-evolution of carbonate modes as a function of pressure is reported in Figure 2 and
176	the relative changes in frequency $\delta v_i / \delta P$ along with literature values in Table 2. The values of
177	$\delta v_i / \delta P$ for all modes are quasi-constant over the observed pressure range. Pressure-induced shifts
178	of internal modes are generally less prominent than those of the external modes due to the greater
179	incompressibility of the CO ₃ units (Ross and Reeder 1992; Gillet et al. 1993).
180	In aragonite, the frequencies of all traced modes, except the 145 cm ⁻¹ external mode,
181	increase monotonously with pressure. Most $\delta v_i / \delta P$ values are in good agreement with previous
182	experimental data from Gillet et al. (1993), except for the 182 and 274 cm ⁻¹ external modes. For
183	these Raman bands, Gillet et al. (1993) may have reported the evolution of multiple vibrational
184	modes, as this could explain the difference between our values and theirs. A similar trend is
185	observed for the frequencies of all traced modes in calcite, except the 1751 cm ⁻¹ overtone mode,
186	which exhibits a frequency decrease with pressure. The abrupt changes observed between ~ 1.6
187	and ~2.1 GPa are attributed to the well-known structural transitions of calcite I to calcite II,

188	which is a reversible first-order ferroelastic transition (Archer et al. 2003), and calcite II to
189	calcite III, which occur at 1.4 and 1.7 GPa, respectively (Bridgman 1938). Above these transition
190	pressures, due to the large number of low intensity low frequency peaks (Pippinger et al. 2015),
191	only data for the most intense peaks resulting from the splitting of the 1088 cm ⁻¹ peak are
192	presented. These four peaks observed at 1079, 1086, 1098, and 1102 cm ⁻¹ (at 2.3 GPa) change
193	frequency with a $\delta v_i / \delta P$ of 3.15(6), 3.21(6), 3.5(2), and 3.0(1) cm ⁻¹ /GPa, respectively. A detailed
194	account of the evolution of other calcite modes is given by Pippinger et al. (2015). In dolomite,
195	magnesite, rhodochrosite, and siderite, all traced modes increase in frequency with pressure,
196	except the 881 cm ⁻¹ internal mode and 1759 cm ⁻¹ overtone mode in dolomite, the 1727 cm ⁻¹
197	overtone mode in rhodochrosite, and the 507 cm ⁻¹ Fe^{2+} electronic excitation mode and the 1724
198	cm ⁻¹ overtone mode in siderite.

199 High-temperature experiments

The frequency evolution of carbonate modes as a function of temperature is reported in Figure 3 and the relative changes in frequency $\delta v_i / \delta T$ along with literature values in Table 2. The values of $\delta v_i / \delta T$ of all modes are quasi constant over the observed temperature range. Temperature-induced shifts of internal modes are generally less prominent than those of the external modes due to the rigidity of C–O bonds in the CO₃ units (Markgraf and Reeder 1985; Reeder and Markgraf 1986; Gillet et al. 1993).

In aragonite, all traced modes except the 701 and 705 cm⁻¹ internal modes decrease in frequency with temperature. Above 250 °C these two modes merge and were treated as one and the neighboring 716 cm⁻¹ internal mode no longer appears in spectra. The 164 cm⁻¹ external mode is present as a shoulder of the 155 cm⁻¹ external mode and could only be traced up to 225 °C. The 216, 250, 263, and 274 cm⁻¹ external modes could only be traced up to 200 °C, above

211	which temperature they merge into one broad peak and become indistinguishable from one
212	another. The spectral modifications observed between 425 and 450 °C in Figure 2 are attributed
213	to the aragonite-calcite structural phase transition, which is thermally activated and has been
214	reported to occur at 385 °C (Parker et al. 2010) and 468 °C (Antao and Hassan 2010). In calcite,
215	all traced Raman bands decrease in frequency with temperature. The values of $\delta v_i / \delta T$ for all
216	modes in calcite, which has not undergone transformation are lower than those measured from
217	calcite that has formed upon the aragonite-calcite transition. These values are reported in Table 3
218	along with the corresponding isobaric equivalents of Grüneisen parameter. In dolomite,
219	magnesite, rhodochrosite, and siderite, all traced modes decrease in frequency with temperature,
220	except the 718 cm ⁻¹ internal mode in rhodochrosite, and the 183 cm ⁻¹ external mode and the 507
221	cm ⁻¹ Fe ²⁺ electronic excitation mode in siderite. Thermal decomposition of rhodochrosite was
222	observed between 400 and 425 °C, marked by the sudden disappearance of all its Raman bands.
223	This result is consistent with an XRD study carried out by Kissinger et al. (1956). The 507 cm ⁻¹
224	frequency feature in siderite is relatively weak and has the largest $\delta v_i / \delta T$ value, but could only be
225	traced up to 250 °C, at which point no longer appears clearly above the background. Popkov et
226	al. (1972) managed to trace this mode from 4.2 K, at which temperature it occurs at 438 cm ⁻¹ and
227	Langille and O'Shea (1977) from 6 K to room temperature and found that above the Néel
228	temperature its $\delta v_i / \delta T$ is linear. Thermal decomposition of siderite was observed between 375
229	and 400 °C, above which temperature its vibrational modes can no longer be detected. These
230	temperature values are in good agreement with those found in earlier XRD experiments
231	(Kissinger et al. 1956).

232 Grüneisen and anharmonic parameters

233 The mode Grüneisen parameter, γ_i , is a dimensionless quantity that links the change in frequency

of mode *i*, v_i (measured at 25 °C), to the change in volume *V* (Born and Huang 1954):

$$\gamma_i = -\frac{d \ln v_i}{d \ln V} = -\frac{V d v_i}{v_i d V}$$

236 Its isobaric equivalent, γ_{iP} (Gillet et al. 1989) can be expressed as:

237
$$\gamma_{iP} = -\frac{d\ln\nu_i}{d\ln V(T)} = -\frac{d\nu_i}{a\nu_i dT}$$

where α is the thermal expansion coefficient. Its isothermal equivalent, γ_{iT} (Gillet et al. 1989;

239 Wagner 2000) can be expressed as:

240
$$\gamma_{iT} = -\frac{d\ln\nu_i}{d\ln V(P)} = \frac{K_T d\nu_i}{\nu_i dP}$$

241 where K_T is the isothermal bulk modulus.

From γ_{iT} and γ_{iP} , the intrinsic anharmonic parameter, a_i , can be calculated for each mode (Gillet et al. 1989):

244 $a_i = \alpha(\gamma_{iT} - \gamma_{iP})$

245 The isobaric and isothermal equivalents of the Grüneisen parameter and the anharmonic

parameter have been calculated for each studied mode and are presented in Table 2.

There is noticeable variation in published v_i , $\delta v_i / \delta P$, $\delta v_i / \delta T$, and, consequently, γ_{iT} , γ_{iP} , and *a_i* values corresponding to the same Raman-active modes of any particular carbonate mineral. The primary reason for this variation is probably trace element content. Owing to the difference

in ion size $(Mg^{2+}, Mn^{2+}, and Fe^{2+}$ are significantly smaller than Ca^{2+}), substitution with a smaller

- 251 ion will decrease the average inter-atomic distances and increase the frequency of external
- modes (Krishnamurti 1956; Rutt and Nicola 1974). As CaO₆ octahedra are slightly more
- compressible than MgO₆ and FeO₆ octahedra (Ross and Reeder 1992), trace element content will
- also affect $\delta v_i / \delta P$ values. Due to the variable and more complex effects of temperature on the

- structure of carbonates with different ions (e.g. Markgraf and Reeder 1985; Reeder and Markgraf
- 1986), non-end-member compositions will exhibit a range of $\delta v_i / \delta T$ values too.

257 Development of a Pressure/Temperature Calibrant

258 The Raman data presented above allow us to develop a P/T calibrant for each of the carbonate

259 phases on the basis of the measured frequencies of each of their Raman-active modes. The

- separate impacts of pressure and temperature on each of the modes, and their subtle differences,
- 261 provide a robust route to identifying the temperature and pressure conditions within the DAC
- assembly, based on the set of measured Raman peaks for each sample.

As the pressure and temperature cross derivative of the frequency is negligible (Matas et al. 2000), the frequency v_{PTi} of mode *i* at any *P/T* condition (in the experimental range) can be expressed as

266
$$v_{PTi} = v_{0i} + P \frac{dv_i}{dP} + T \frac{dv_i}{dT}$$

where v_{0i} is the extrapolated frequency of mode *i* at ambient pressure and zero temperature.

In an experiment carried out at known temperature, T (e.g. measured by a thermocouple), 268 pressure can be determined based on a measured v_{PTi} of a single mode. If v_{PTi} of multiple modes 269 270 are measured, pressure can be most accurately determined by the simple linear regression 271 method. We have tested our method by determining pressure and temperature for a cell loaded with rhodochrosite and employing the frequencies of the 185, 290, 1086, and 1415 cm⁻¹ modes 272 of rhodochrosite. The cell was held at 300 °C as set temperature and experiments were conducted 273 274 at two separate pressures. In our experiment, this method gave 1.2(1) and 1.4(3) GPa for two determinations at pressure 1 and 4.7(1) and 4.9(1) GPa for two at pressure 2, while T was fixed 275 276 to the value determined by thermocouple, measured to be 300 °C. In an experiment carried out at 277 unknown pressure P and temperature T, these variables can be determined based on measured

278 v_{PTi} of two or more modes. If v_{PTi} of more than two modes are measured, pressure and279temperature can be determined by a multiple linear regression method. In our experiment, using280rhodochrosite as pressure and temperature sensor, this method gave 1.2(1) and 1.4(4) GPa at281pressure 1 and 4.6(1) and 4.8(2) GPa at pressure 2 with the temperature also determined by fit to282the *P/T* dependence of all modes and calculated as 293(8) °C, which is equal to the value283determined by thermocouple to within the stated error.

284 In general, the most suitable modes are those with high peak intensity, high sensitivity to 285 pressure and temperature changes, with an anharmonic parameter close to 0 and with γ_{iT} and γ_{iP} 286 similar to each other. The latter two features are indicative of quasi-harmonic behavior, where pressure and temperature affect the vibration frequencies only through the volume changes and 287 288 not by modifications of the electronic structure of the chemical bond involved (Gillet et al. 1989). As mentioned above, trace element content could affect v_i , $\delta v_i / \delta P$, and $\delta v_i / \delta T$ for 289 290 carbonate modes, particularly those of external modes. This important factor should also be taken into consideration when choosing the most suitable modes for P/T determination. To 291 292 overcome the uncertainty arising from carbonate composition, it is safest to carry out 293 independent P/T calibration against ruby or other pressure sensor, when dealing with impure samples. 294

In aragonite, the internal v_1 mode is most suitable for *P/T* determination (Facq et al. 2014, 2016), followed by the external modes, in decreasing order of priority: 155, 208, 182, 192, 216, 145, 250, 263, 274, and 285 cm⁻¹. In calcite, dolomite, magnesite, rhodochrosite, and siderite the preferred use of the internal v_1 mode is recommended, followed by the external modes and the overtone mode. The external modes, in decreasing order of priority should be used as follows. In

300	calcite: 284 and 158 cm ⁻¹ , in dolomite: 301, 178, and 340 cm ⁻¹ , in magnesite: 330 and 214 cm ⁻¹ ,
301	in rhodochrosite: 290 and 185 cm ⁻¹ , and in siderite: 284 and 183 cm ⁻¹ .
302	It is worth noting that the widths of Raman peaks have previously been proposed as a
303	proxy for temperature (Gillet et al. 1993). The reported errors in temperature for this approach
304	are generally larger than those for temperatures obtained from peak positions. Additionally,
305	instrumental peak broadening makes this method dependent (to a greater extent than peak
306	positions) on the experimental set up in the laboratory within which analyses are conducted.
307	Furthermore, the influence of combined pressure and temperature on peak widths is significantly
308	more complicated than their impact on peak positions alone. For these reasons we have chosen
309	not to make use of any additional information encoded into the peak widths of our measured
310	carbonate Raman-active modes.
311	Our P/T determination method has limited use in calcite high P/T experiments. In case of
312	calcite II and calcite III CaCO ₃ polymorphs, $\delta v_i / \delta T$ is not measurable at ambient pressure
313	because of the location of stability fields of these phases. For this reason, simultaneous P/T
314	determination is not possible based on the Raman-active modes of these phases and our method
315	is limited to pressure determination at known (measured) temperature.
316	Implications
317	From our results, it can be seen that pressure- and temperature-induced frequency shifts in
318	aragonite, calcite, dolomite, magnesite, rhodochrosite, and siderite all provide a sensitive and
319	robust alternative to traditional pressure calibrants (e.g. ruby, diamond) in DAC experiments, and
320	this is especially useful when any such external traditional calibrant might contaminate the
321	pressure transmitting media due to their increased solubility at high P/T conditions (Manning
322	1994; Datchi et al. 2000; Tropper and Manning 2007; Watenphul and Schmidt 2012; Andreani et

323	al. 2013). As they do not interfere with the primary measurement, our carbonate calibrants
324	represent an alternative for P/T measurement in a wide range of DAC experiments addressing
325	carbonate solubility and/or aqueous speciation at high P/T conditions relevant to the Earth's crust
326	and mantle in order to better constrain the Earth's deep carbon cycle. The measured pressure-
327	and temperature-induced frequency shifts have been used to calculate the isobaric and isothermal
328	equivalents of the Grüneisen parameter and the anharmonic parameter. This could be used for
329	the anharmonic correction of specific heat capacity at constant volume, which is responsible for
330	the departure from the Dulong-Petit limit at high temperature (Gillet et al. 1989). The
331	anharmonic correction also helps to refine thermodynamic properties and phase equilibriums at
332	high pressure and temperature conditions.
333	Acknowledgements
334	The Sedgwick Museum of Earth Sciences, University of Cambridge is acknowledged for
335	dolomite, rhodochrosite, and siderite samples. Giulio I. Lampronti and Iris Buisman are
336	acknowledged for their assistance with XRD and EPMA analysis, respectively. This research
337	was funded by NERC through grant NE/P019714/1 to SATR and a NERC DTP studentship to
338	SF.
339	

340) References cited				
341	Ague, J.J., and Nicolescu, S. (2014) Carbon dioxide released from subduction zones by fluid-				
342	mediated reactions. Nature Geoscience, 7, 355-360.				
343	Andreani, M., Daniel, I., and Pollet-Villard, M. (2013) Aluminum speeds up the hydrothermal				
344	alternation of olivine. American Mineralogist, 98, 1738-1744.				
345	Antao, S.M., and Hassan, I. (2010) Temperature dependence of the structural parameters in the				
346	transformation of aragonite to calcite, as determined from in situ synchrotron powder X-				
347	ray-diffraction data. The Canadian Mineralogist, 48, 1225–1236.				
348	Archer, T.D., Birse, S.E.A., Dove, M.T., Redfern, S.A.T., Gale, J.D., and Cygan, R.T. (2003) An				
349	interatomic potential model for carbonates allowing for polarization effects. Physics and				
350	Chemistry of Minerals, 30, 416–424.				
351	Barnett, J.D., Block, S., and Piermarini, G.J. (1973) An optical fluorescence system for				
352	quantitative pressure measurement in the diamond-anvil cell. Review of Scientific				
353	Instruments, 44, 1–9.				
354	Bernini, D., Audétat, A., Dolejš, D., and Keppler, H. (2013) Zircon solubility in aqueous fluids at				
355	high temperatures and pressures. Geochimica et Cosmochimica Acta, 119, 178-187.				
356	Born, M., and Huang, K. (1954) Dynamical theory of crystal lattices. Clarendon.				
357	Bridgman, P.W. (1938) The high pressure behavior of miscellaneous minerals. American Journal				
358	of Science, 237, 7–18.				
359	Cerantola, V., McCammon, C., Kupenko, I., Kantor, I., Marini, C., Wilke, M., Ismailova, L.,				

360	Solopova, N., Chumakov, A., Pascarelli, S., and others (2015) High-pressure spectroscopic
361	study of siderite (FeCO ₃) with a focus on spin crossover. American Mineralogist, 100,
362	2670–2681.
363	Chaney, J., Santillán, J.D., Knittle, E., and Williams, Q. (2015) A high-pressure infrared and
364	Raman spectroscopic study of BaCO ₃ : the aragonite, trigonal and Pmmn structures. Physics
365	and Chemistry of Minerals, 1, 83–93.
366	Chariton, S., Cerantola, V., Ismailova, L., Bykova, E., Bykov, M., Kupenko, I., McCammon, C.,
367	and Dubrovinsky, L. (2017) The high-pressure behavior of spherocobaltite (CoCO ₃): a
368	single crystal Raman spectroscopy and XRD study. Physics and Chemistry of Minerals.
369	Chen, C.C., Lin, C.C., Liu, L.G., Sinogeikin, S. V., and Bass, J.D. (2001) Elasticity of single-
370	crystal calcite and rhodochrosite by Brillouin spectroscopy. American Mineralogist, 86,
371	1525–1529.

- Couture, L. (1947) Etude des spectres de vibration de monocristaux ioniques. In Annales de
 physique. Vol. 12. No. 2, pp. 5–94. EDP Sciences.
- Dasgupta, R., and Hirschmann, M.M. (2006) Melting in the Earth's deep upper mantle caused by
 carbon dioxide. Nature, 440, 659–662.
- 376 Dasgupta, R., and Hirschmann, M.M. (2010) The deep carbon cycle and melting in Earth's
- interior. Earth and Planetary Science Letters, 298, 1–13.
- Dasgupta, R., Hirschmann, M.M., and Withers, A.C. (2004) Deep global cycling of carbon
- constrained by the solidus of anhydrous, carbonated eclogite under upper mantle conditions.
- Earth and Planetary Science Letters, 227, 73–85.

381	Datchi, F., Loubeyre, P., and LeToullec, R. (2000) Extended and accurate determination of the
382	melting curves of argon, helium, ice (H ₂ O), and hydrogen (H ₂). Physical Review B, 61,
383	6535–6546.

Datchi, F., Dewaele, A., Loubeyre, P., Letoullec, R., Le Godec, Y., and Canny, B. (2007) Optical

pressure sensors for high-pressure–high-temperature studies in a diamond anvil cell. High

386 Pressure Research, 27, 447–463.

387 De La Pierre, M., Carteret, C., Maschio, L., André, E., Orlando, R., and Dovesi, R. (2014) The

Raman spectrum of CaCO₃ polymorphs calcite and aragonite: A combined experimental

and computational study. The Journal of Chemical Physics, 140, 164509.

Facq, S., Daniel, I., Montagnac, G., Cardon, H., and Sverjensky, D.A. (2014) In situ Raman

391 study and thermodynamic model of aqueous carbonate speciation in equilibrium with

aragonite under subduction zone conditions. Geochimica et Cosmochimica Acta, 132, 375–
390.

- (2016) Carbon speciation in saline solutions in equilibrium with aragonite at high
 pressure. Chemical Geology, 431, 44–53.
- 396 Farfan, G., Wang, S., Ma, H., Caracas, R., and Mao, W.L. (2012) Bonding and structural

changes in siderite at high pressure. American Mineralogist, 97, 1421–1426.

- Farfan, G.A., Boulard, E., Wang, S., and Mao, W.L. (2013) Bonding and electronic changes in
- rhodochrosite at high pressure. American Mineralogist, 98, 1817–1823.
- 400 Gillet, P., Guyot, F., and Malezieux, J.M. (1989) High-pressure, high-temperature Raman
- 401 spectroscopy of Ca₂GeO₄ (olivine form): some insights on anharmonicity. Physics of the

Earth and Planetary Interiors, 58, 141–154.

403	Gillet, P., Biellmann,	C., Reynard, B.	, and McMillan, I	P. (1993)	Raman spectroscopic studies of
-----	------------------------	-----------------	-------------------	-----------	--------------------------------

404 carbonates Part I: High-pressure and high-temperature behaviour of calcite, magnesite,

dolomite and aragonite. Physics and Chemistry of Minerals, 20, 1–18.

406 Goncharov, A.F., Zaug, J.M., Crowhurst, J.C., and Gregoryanz, E. (2005) Optical calibration of

407 pressure sensors for high pressures and temperatures. Journal of Applied Physics, 97.

408 Grasset, O., Amiguet, E., and Choukroun, M. (2005) Pressure measurements within optical cells

409 using diamond sensors: accuracy of the method below 1 GPa. High Pressure Research, 25,

410 255–265.

- Kelemen, P.B., and Manning, C.E. (2015) Reevaluating carbon fluxes in subduction zones, what
 goes down, mostly comes up. Proceedings of the National Academy of Sciences, 112,
 E3997–E4006.
- 414 Kissinger, H.E., McMurdie, H.F., and Simpson, B.S. (1956) Thermal decomposition of

415 manganous and ferrous carbonates. Journal of the American Ceramic Society, 39, 168–172.

416 Klotz, S., Chervin, J.C., Munsch, P., and Le Marchand, G. (2009) Hydrostatic limits of 11

417 pressure transmitting media. Journal of Physics D: Applied Physics, 42, 75413.

418 Koch-Müller, M., Jahn, S., Birkholz, N., Ritter, E., and Schade, U. (2016) Phase transitions in

the system CaCO₃ at high P and T determined by in situ vibrational spectroscopy in

diamond anvil cells and first-principles simulations. Physics and Chemistry of Minerals, 43,
545–561.

422 Kraft, S., Knittle, E., and Williams, Q. (1991) Carbonate stability in the Earth's mantle: A

- 423 vibrational spectroscopic study of aragonite and dolomite at high pressures and
- 424 temperatures. Journal of Geophysical Research, 96, 17997–18009.
- 425 Krishna Rao, K. V., and Satyanaryana Murthy, K. (1970) Thermal expansion of manganese
- 426 carbonate. Journal of Materials Science, 5, 82–83.
- 427 Krishnamurti, D. (1956) Raman spectrum of magnesite. Proceedings of the Indian Academy of
- 428 Sciences Section A, 43, 210–212.
- 429 Krishnamurti, D. (1957) The Raman spectrum of calcite and its interpretation. Proceedings of the
- 430 Indian Academy of Sciences Section A, 46, 183–202.
- 431 Langille, D.B., and O'Shea, D.C. (1977) Raman spectroscopy studies of antiferromagnetic
- 432 FeCO₃ and related carbonates. Journal of Physics and Chemistry of Solids, 38, 1161–1171.
- 433 Letoullec, R., Pinceaux, J.P., and Loubeyre, P. (1988) The membrane diamodn anvil cell: A new
- device for generating continuous pressure and temperature variations. High Pressure
- 435 Research, 1, 77–90.
- Lin, C.C., and Liu, L.G. (1997) High pressure phase transformations in aragonite-type
- 437 carbonates. Physics and Chemistry of Minerals, 24, 149–157.
- Liu, J., Caracas, R., Fan, D., Bobocioiu, E., Zhang, D., and Mao, W.L. (2016) High-pressure
- compressibility and vibrational properties of (Ca,Mn)CO₃. American Mineralogist, 101,
 2723–2730.
- Liu, L.G., and Mernagh, T.P. (1990) Phase transitions and Raman spectra of calcite at high
 pressures and room temperature. American Mineralogist, 75, 801–806.

- Liu, L.G., Chen, C.C., Lin, C.C., and Yang, Y.J. (2005) Elasticity of single-crystal aragonite by
- Brillouin spectroscopy. Physics and Chemistry of Minerals, 32, 97–102.
- 445 Manning, C.E. (1994) The solubility of quartz in H₂O in the lower crust and upper mantle.
- 446 Geochimica et Cosmochimica Acta, 58, 4831–4839.
- 447 (2014) A piece of the deep carbon puzzle. Nature Geoscience, 7, 333–334.
- 448 Mao, H.K., Xu, J., and Bell, P.M. (1986) Calibration of the ruby pressure gauge to 800 kbar
- under quasi-hydrostatic conditions. Journal of Geophysical Research, 91, 4673–4676.
- 450 Markgraf, S.A., and Reeder, R.J. (1985) High-temperature structure refinements of calcite and
- 451 magnesite. American Mineralogist, 70, 590–600.
- 452 Maruyama, K., Kagi, H., Komatsu, K., Yoshino, T., and Nakano, S. (2017) Pressure-induced
- 453 phase transitions of vaterite, a metastable phase of CaCO₃. Journal of Raman Spectroscopy.
- 454 Matas, J., Gillet, P., Ricard, Y., and Martinez, I. (2000) Thermodynamic properties of carbonates
- at high pressures from vibrational modelling. European Journal of Mineralogy, 12, 703–
 720.
- Mellor, J.W. (1935) A comprehensive treatise on inorganic and theoretical chemistry. Volume
 XIV: Fe (Part III), Co, 892 p. Longmans, Green & Co., London.
- 459 Minch, R., Seoung, D.H., Ehm, L., Winkler, B., Knorr, K., Peters, L., Borkowski, L.A., Parise,
- 460 J.B., Lee, Y., Dubrovinsky, L., and others (2010a) High-pressure behavior of otavite
- 461 (CdCO₃). Journal of Alloys and Compounds, 508, 251–257.
- 462 Minch, R., Dubrovinsky, L., Kurnosov, A., Ehm, L., Knorr, K., and Depmeier, W. (2010b)

463	Raman spectroscopic study of PbCO ₃ at high pressures and temperatures. Physics and
464	Chemistry of Minerals, 37, 45–56.

- 465 Müller, J., Speziale, S., Efthimiopoulos, I., Jahn, S., and Koch-Müller, M. (2016) Raman
- 466 spectroscopy of siderite at high pressure: Evidence for a sharp spin transition. American
- 467 Mineralogist, 101, 2638–2644.
- Oganov, A.R., Hemley, R.J., Hazen, R.M., and Jones, A.P. (2013) Structure, bonding, and
 mineralogy of carbon at extreme conditions. Reviews in Mineralogy and Geochemistry, 75,
 470 47–77.
- 471 Parker, J.E., Thompson, S.P., Lennie, A.R., Potter, J., and Tang, C.C. (2010) A study of the
- 472 aragonite-calcite transformation using Raman spectroscopy, synchrotron powder diffraction
 473 and scanning electron microscopy. CrystEngComm, 12, 1590–1599.
- 474 Picard, A., Oger, P.M., Daniel, I., Cardon, H., Montagnac, G., and Chervin, J.C. (2006) A
- sensitive pressure sensor for diamond anvil cell experiments up to 2 GPa: FluoSpheres®.
- 476 Journal of Applied Physics, 100, 34915.
- 477 Pippinger, T., Miletich, R., Merlini, M., Lotti, P., Schouwink, P., Yagi, T., Crichton, W.A., and
- 478 Hanfland, M. (2015) Puzzling calcite-III dimorphism: crystallography, high-pressure
- behavior, and pathway of single-crystal transitions. Physics and Chemistry of Minerals, 42,
 29–43.
- 481 Popkov, Y.A., Eremenko, V. V., Fomin, V.I., and Mokhir, A.P. (1972) Kombinacionnoe
- 482 rasseyanie sveta v antiferromagnitnom siderite (Raman light scattering in antiferromagnetic
- 483 siderite). Fizika Tverdogo Tela (Solid State Pysics), 14, 2294–2299.

- 484 Ragan, D.D., Gustavsen, R., and Schiferl, D. (1992) Calibration of the ruby R₁ and R₂
- fluorescence shifts as a function of temperature from 0 to 600 K. Journal of Applied
 Physics, 72, 5539–5544.
- 487 Redfern, S.A.T. (2000) Structural variations in carbonates. Reviews in Mineralogy and
- 488 Geochemistry, 41, 289–308.
- 489 Reeder, R.J., and Markgraf, S.A. (1986) High-temperature crystal chemistry of dolomite.
- American Mineralogist, 7, 795–804.
- 491 Rohrbach, A., and Schmidt, M.W. (2011) Redox freezing and melting in the Earth's deep mantle

492 resulting from carbon-iron redox coupling. Nature, 472, 209–212.

- Ross, N.L., and Reeder, R.J. (1992) High-pressure structural study of dolomite and ankerite.
 American Mineralogist, 77, 412–421.
- Rutt, H.N., and Nicola, J.H. (1974) Raman spectra of carbonates of calcite structure. Journal of
 Physics C: Solid State Physics, 7, 4522–4528.
- 497 Saloman, E.B., and Sansonetti, C.J. (2004) Wavelengths, energy level classifications, and energy
 498 levels for the spectrum of neutral neon. Journal of Physical and Chemical Reference Data,
 499 33, 1113–1158.
- 500 Schiferl, D., Nicol, M., Zaug, J.M., Sharma, S.K., Cooney, T.F., Wang, S.-Y., Anthony, T.R.,
- and Fleischer, J.F. (1997) The diamond ${}^{13}C/{}^{12}C$ isotope Raman pressure sensor system for
- 502 high-temperature/pressure diamond-anvil cells with reactive samples. Journal of Applied
- 503 Physics, 82, 3256–3265.
- 504 Spivak, A., Solopova, N., Cerantola, V., Bykova, E., Zakharchenko, E., Dubrovinsky, L., and

505	Litvin, Y. (2014) Raman study of MgCO ₃ -FeCO ₃ carbonate solid solution at high pressures
506	up to 55 GPa. Physics and Chemistry of Minerals, 41, 633–638.

- 507 Tropper, P., and Manning, C.E. (2007) The solubility of corundum in H₂O at high pressure and
- temperature and its implications for Al mobility in the deep crust and upper mantle.
- 509 Chemical Geology, 240, 54–60.
- 510 Valenzano, L., Noël, Y., Orlando, R., Zicovich-Wilson, C.M., Ferrero, M., and Dovesi, R.
- 511 (2007) Ab initio vibrational spectra and dielectric properties of carbonates: magnesite,
- calcite and dolomite. Theoretical Chemistry Accounts, 117, 991–1000.
- 513 Wagner, J.M. (2000) On the inadequacy of linear pressure dependence of vibrational frequency.
- 514 Solid State Communications, 116, 355–356.
- 515 Watenphul, A., and Schmidt, C. (2012) Calibration of berlinite (AlPO₄) as Raman spectroscopic
- 516 pressure sensor for diamond-anvil cell experiments at elevated temperatures. Journal of
- 517 Raman Spectroscopy, 43, 564–570.
- 518 Williams, Q., Collerson, B., and Knittle, E. (1992) Vibrational spectra of magnesite (MgCO₃)

and calcite-III at high pressures. American Mineralogist, 77, 1158–1165.

- 520 Xu, J., Kuang, Y., Zhang, B., Liu, Y., Fan, D., Zhou, W., and Xie, H. (2015) High-pressure study
- 521 of azurite $Cu_3(CO_3)_2(OH)_2$ by synchrotron radiation X-ray diffraction and Raman
- 522 spectroscopy. Physics and Chemistry of Minerals, 42, 805–816.
- 523 Ye, Y., Smyth, J.R., and Boni, P. (2012) Crystal structure and thermal expansion of aragonite-
- 524 group carbonates by single-crystal X-ray diffraction. American Mineralogist, 97, 707–712.
- 525 Zhang, J., and Reeder, R.J. (1999) Comparative compressibilities of calcite-structure carbonates:

526 Deviations from empirical relations. American Mineralogist, 84, 861–870.

- Figure 1. Raman spectra of carbonate minerals collected at ambient pressure (1 bar) and
 temperature (25 °C).
- 530 Figure 2. Frequency evolution of the traced vibrational modes of carbonates as a function of
- 531 pressure. The experimental uncertainty lies within the size of the symbol. In the calcite
- experiment, no data points in the calcite II stability field (situated between calcite I and calcite III
- 533 stability fields) have been collected.
- 534 Figure 3. Frequency evolution of the traced vibrational modes of carbonates as a function of
- temperature. The experimental uncertainty lies within the size of the symbol.

Sample	Ideal formula	Calculated formula	Space Group		Unit cell parameters (Å)	
				а	b	С
Aragonite	CaCO ₃	Ca1.00CO3	Pmcn	4.9612(5)	7.9701(9)	5.7420(4)
Calcite	CaCO ₃	Ca1.00CO3	R3c	4.9864(2)		17.0491(8)
Dolomite	CaMg(CO ₃) ₂	Ca0.50Mg0.50CO3	R3	4.8069(4)		16.012(2)
Magnesite	MgCO ₃	Mg0.96Ca0.01Fe0.03CO3	R3c	4.6371(2)		15.0365(5)
Rhodochrosite	MnCO ₃	Mn _{0.99} Fe _{0.01} CO ₃	R3c	4.7756(7)		15.669(2)
Siderite	FeCO ₃	Fe0.98Mg0.01Mn0.01CO3	R3c	4.6910(4)		15.379(2)

537 Table 1. Compositions and unit cell parameters of carbonate minerals used.

Observed mode,	v_i (cm ⁻¹)	$\delta v_i / \delta P (cm^{-1}/GPa)$	$\delta v_i / \delta T (cm^{-1}/K)$	γ_{iT}^{**}	γ_{iP}^{***}	$a_i(10^{-5} \text{ K}^{-1})$	Reference
Symmetry*							-
Esternal D	115	0	Aragonite	0	4.10	0	This and all
External, B _{1g}	115	?	-3.1(1)×10 ⁻	2	4.10	<u> </u>	This work
External A	125	(0.40(2)	$(2) \times 10^{-3}$	/ 0.10	<u> </u>	7.20	This work
External B	145	-0.40(3)	$-9(2) \times 10^{-2}$	-0.19	1.03	-7.30	This work
External, Dig	152	2.23(3)	-1.9(1)~10	1.44	1.95	-3.21	Kraft et al 1991
	155	2.7(2) 3.0(3)-5(2)×10 ⁻⁴	$-2.7(3) \times 10^{-2}$	1.2	27	-7.2	Gillet et al. 1991
External A _a	164	2	-3 9(3)×10 ⁻²	2	3.65	?	This work
External B ₂	182	4 04(7)	$-1.9(2) \times 10^{-2}$	1 53	1.58	-0.29	This work
External, D _{2g}	180	3 4(6)	1.9(2)*10	1.00	1.50	0.29	Kraft et al 1991
	180	$7.2(3)-4.7(4)\times10^{-3}$	$-2.4(3) \times 10^{-2}$	2.6	2.1	3.4	Gillet et al. 1993
External, B _{3g}	192	6.47(5)	-1.5(1)×10 ⁻²	2.32	1.23	7.11	This work
External, B _{2g}	208	5.30(3)	-3.49(6)×10 ⁻²	1.75	2.58	-5.35	This work
	206	3.3(5)					Kraft et al. 1991
	209	4.0(4)	-4.1(4)×10 ⁻²	1.2	3.0	-11.6	Gillet et al. 1993
External, Ag	216	6.94(9)	-2.5(2)×10 ⁻²	2.21	1.77	2.88	This work
	217	6.6(4)-3.3(3)×10 ⁻³					Gillet et al. 1993
External, B2g	250	4.03(6)	-2.7(2)×10 ⁻²	1.11	1.66	-3.57	This work
	254	?	-2.0(3)×10 ⁻²				Gillet et al. 1993
External, B2g	263	4.79(6)	-4.5(2)×10 ⁻²	1.27	2.64	-8.90	This work
External, B _{3g}	274	6.02(5)	-3.40(6)×10 ⁻²	1.51	1.91	-2.56	This work
	275	3.4(3)					Gillet et al. 1993
External, Ag	285	7.0(1)	-2.9(1)×10 ⁻²	1.68	1.57	0.76	This work
Internal v4, B3g	701	1.69(3)	5.3(6)×10 ⁻³	0.17	-0.12	1.84	This work
	704	1.5(1)					Kraft et al. 1991
	702	1.6(3)	0	0.14	0.0	0.9	Gillet et al. 1993
Internal v4, Ag	705	2.25(3)	2.6(6)×10 ⁻³	0.22	-0.06	1.80	This work
	710	2.0(3)	-1.5(3)×10 ⁻²	0.20	0.3	-0.9	Gillet et al. 1993
Internal, v ₄ B _{2g}	716	2.85(5)	-4(2)×10 ⁻³	0.27	0.09	1.17	This work
Internal v ₂ , A _g	853	?	-2.4(7)×10 ⁻³	?	0.04	?	This work
Internal v ₁ , A _g	1085	3.07(2)	-1.32(7)×10 ⁻²	0.20	0.19	0.06	This work
	1086	2.3(1)					Kraft et al. 1991
	1084	2.7(3)	$-1.5(2) \times 10^{-2}$	0.16	0.21	-0.2	Gillet et al. 1993
Internal v ₃ , B _{1g}	1463	?	$-2.6(1) \times 10^{-2}$?	0.27	?	This work
L I D	1463	?	$-2.2(3) \times 10^{-2}$	0	0.22	2	Gillet et al. 1993
Internal v ₃ , B _{2g}	1576	?	$-3.3(3) \times 10^{-2}$?	0.32	?	This work
	1575	?	-3.1(3)×10 ⁻²				Gillet et al. 1993
F (1 F	150	2.42(4)		1.1.6	10 (1	15 71	TT1 ' 1
External, Eg	158	2.42(4)	-2.65(2)×10 ⁻²	1.10	18.61	-15./1	
	156	2.47	$2.8(2) \times 10^{-2}$	1.18(6)	10.0	16.0	Cillet et al. 1002
	156	2.3(3)	-2.8(3)×10-	1.2	19.9	-10.9	Gillet et al. 1993
External E	284	2.32(8)	4 20(4)×10-2	1.14(4)	16.95	12.69	This work
External, Eg	204	5.2(1)	-4.30(4)^10	1.03	10.85	-13.08	Liu and Marnagh 1000
	285	5.27	$4.0(2) \times 10^{-2}$	1.30(0)	15.9	12.0	Cillet et al. 1003
	281	6.0(3)	-4.0(3)×10	1.4	13.8	-15.0	Lin et al. 2016
Internal w. F	713	3.19(17)	$5.0(2) \times 10^{-3}$	0.23	0.77	0.48	This work
Internal V4, Lg	713	2.2(1)	-5.0(2)~10	0.23	0.77	-0.48	Liu and Mernagh 1990
	713	1.7(3)	$4(1) \times 10^{-3}$	0.24	0.62	0.3	Gillet et al. 1003
	713	235(7)	-4(1)^10	0.23	0.02	-0.5	Lin et al. 2016
Internal vi Air	1088	4 1(2)	-9 7(3)×10 ⁻³	0.29	0.99	-0.63	This work
momun vi, Alg	1085	5.87	2.7(3).10	0.41(1)	0.77	0.05	Liu and Mernagh 1990
	1085	3.0(3)	$-4.0(2) \times 10^{-3} - 1.40(5) \times 10^{-5}$	0.40	0.51	-0.1	Gillet et al. 1993
	1086	5.96(15)	1.0(2)~10 -1.40(3)~10	0.39(2)	0.51	0.1	Lin et al 2016
Internal v ₂ E ₂	1438	2.20(13)	2	?	?	2	This work
internur v.s., Lg	1434	9.0	•	. 0.47(3)	•	•	Liu and Mernagh 1990
	1434	7.5(5)	$-2.5(3) \times 10^{-2} + 2.9(3) \times 10^{-5}$	0.46	1 94	-13	Gillet et al 1993
Overtone	1751	-0.7(5)	-1 36(6)×10 ⁻²	-0.03	0.86	-0.80	This work
	1748	-1 0(4)	-5 3(5)×10 ⁻³ -2 3(2)×10 ⁻⁵	-0.04	0.34	-0.34	Gillet et al 1993
L	1,10	***(*/	2.2(2) 10 2.2(2).10	0.0 T	0.01	v I	J

Observed mode,	v_i (cm ⁻¹)	$\delta v_i / \delta P (cm^{-1}/GPa)$	$\delta v_i / \delta T (cm^{-1}/K)$	γ_{iT}^{**}	γ_{iP}^{***}	$a_i(10^{-5} \text{ K}^{-1})$	Reference
Symmetry*							
			Dolomite				
External, Eg	178	2.83(3)	-1.65(8)×10 ⁻²	1.50	3.84	-5.65	This work
	177	1.4(2)					Kraft et al. 1991
	178	1.8(2)	-1.9(2)×10 ⁻² -3.5(3)×10 ⁻⁶	0.9	4.4	-8.4	Gillet et al. 1993
External, Ag	229	?	?	?	?	?	This work
External, Eg	301	5.53(5)	-3.60(9)×10 ⁻²	1.73	4.95	-7.78	This work
	301	4.4(3)					Kraft et al. 1991
	300	4.4(3)	-3.2(3)×10 ⁻² -1.96(5)×10 ⁻⁵	1.4	4.4	-7.3	Gillet et al. 1993
External, Ag	340	6.11(7)	-4.7(3)×10 ⁻²	1.69	5.73	-9.73	This work
	335	2.9(2)	-1.9(2)×10 ⁻² -7.8(5)×10 ⁻⁵	0.8	2.3	-3.7	Gillet et al. 1993
Internal v ₄ , E _g	724	1.9(1)	-2.8(9)×10 ⁻³	0.25	0.16	0.21	This work
	725	1.1(2)	2				Kraft et al. 1991
	724	1.6(3)	-2.1(5)×10 ⁻³ -1.7(3)×10 ⁻⁵	0.2	0.12	0.2	Gillet et al. 1993
Internal v ₂ , A _g	881	-0.10(4)	-4.2(9)×10 ⁻³	-0.01	0.20	-0.50	This work
	880	?	0				Gillet et al. 1993
Internal v ₁ , A _g	1098	2.9(1)	-6(1)×10 ⁻³	0.25	0.24	0.03	This work
	1101	3.5(3)	2				Kraft et al. 1991
	1097	2.9(3)	-6.4(4)×10 ⁻³ -1.6(3)×10 ⁻⁵	0.25	0.24	0.0	Gillet et al. 1993
Internal v ₃ , E _g	1442	?	?	?	?	?	This work
	1439	3.5(3)	$-3.5(3) \times 10^{-2} + 4.1(2) \times 10^{-5}$	0.23	1.01	-1.9	Gillet et al. 1993
Overtone	1759	-0.15(6)	-1.5(1)×10 ⁻²	-0.01	0.35	-0.87	This work
	1750	-0.79(5)	$-1.3(2) \times 10^{-3} - 1.60(4) \times 10^{-5}$	-0.02	0.03	-0.1	Gillet et al. 1993
			Magnesite				
External, Eg	214	3.52(3)	-2.05(5)×10 ⁻²	1.76	4.95	-6.16	This work
	216	2.6(2)		1.4(1)			Williams et al. 1992
	213	$4.6(4)-4.4(3)\times10^{-3}$	-9(2)×10 ⁻³ -2.6(2)×10 ⁻⁵	2.6	2.4	0.3	Gillet et al. 1993
External, Eg	330	4.89(3)	-3.01(5)×10 ⁻²	1.59	4.73	-6.07	This work
	329	4.7(1)		1.67(4)			Williams et al. 1992
	329	4.5(3)	-1.9(3)×10 ⁻² -2.5×10 ⁻⁵	1.7	3.0	-2.5	Gillet et al. 1993
Internal v4, Eg	738	1.52(4)	-2.0(8)×10 ⁻³	0.22	0.14	0.16	This work
	735	1.5(2)		0.24(3)			Williams et al. 1992
	738	1.4(2)	0	0.23	0.00	0.44	Gillet et al. 1993
Internal v ₁ , A _{1g}	1094	2.87(4)	-1.4(7)×10 ⁻³	0.28	0.07	0.41	This work
	1095	2.3(1)		0.24(2)			Williams et al. 1992
	1094	2.5(3)	-3.5(3)×10 ⁻³ -3.1(2)×10 ⁻³	0.28	0.17	0.21	Gillet et al. 1993
Internal v ₃ , E _g	1446	?	?	?	?	?	This work
	1444	4.0(4)	$-3.0(3) \times 10^{-2} + 5.5(2) \times 10^{-5}$	0.34	1.08	-1.42	Gillet et al. 1993
Overtone	1763	0.21(3)	-1.63(8)×10 ⁻²	0.01	0.48	-0.90	This work
	1762	-0.42(4)	-2.6(3)×10 ⁻²	-0.03	0.76	-1.52	Gillet et al. 1993
P . 1 P	105	2.20(0)	Rhodochrosite	2.00	1.62		
External, Eg	185	3.38(6)	-1.98(6)×10 ⁻²	2.09	4.63	-5.81	This work
	201	2.685		0.05(5)			Farfan et al. 2013
	184	2.91(5)	0.00/0.102	2.37(7)	4.42		Liu et al. 2016
External, Eg	290	4.85(8)	-2.93(6)×10 ⁻²	1.90	4.43	-5./6	I his work
	302	4.14/		1.00(0)			Fartan et al. 2013
	290	3.68(9)	1 4(0)10-3	1.99(8)	0.00	0.05	Liu et al. 2016
Internal v4, Eg	718	2.03(4)	1.4(8)×10°	0.32	-0.09	0.95	I his work
	723	0.946		0.00(0)			Farfan et al. 2013
T , 1 , 4	719	1.28(6)	5.0(7) 10-3	0.33(3)	0.00	0.00	Liu et al. 2016
Internal v ₁ , A _{1g}	1086	3.34(5)	-5.8(7)×10 ⁻⁵	0.35	0.22	0.29	This work
	1100	1.906		0.20(2)			Farfan et al. 2013
	1086	2.17(7)		0.38(3)	0	0	Liu et al. 2016
Internal v ₃ , E _g	1415	({ 1 2 (1) 10-2	<i>!</i>	?	/	1 his work
Overtone	1727	-0.92(7)	-1.3 (1)×10 ⁻²	-0.06	0.31	-0.85	This work
P (1 P	102	2.09(0)	Siderite	2.54	0.17	7.00	TT1 ' 1
External, Eg	183	3.98(9)	$1(1) \times 10^{-3}$	2.54	-0.17	7.29	This work
External, Eg	284	4.52(5)	-1.0(1)×10 ⁻²	1.86	1.31	1.49	I his work
P 2+ 1	299	3.74	0.120(4)	0.71	0.5-	24.22	Fartan et al. 2012
Fe ²⁺ electronic	507	-2.2(1)	0.130(4)	-0.51	-9.55	24.32	This work
excitation		a ((a)	1.25(0) 10-2	0.00	0.62	0.01	
Internal v ₄ , E _g	731	2.4(2)	$-1.35(9) \times 10^{-2}$	0.38	0.68	-0.81	This work
Internal v ₁ , A _{1g}	1085	2.60(7)	-3(1)×10 ⁻⁵	0.28	0.10	0.48	This work
	1088	2.20		0.01	0.0-	1.1.0	Farfan et al. 2012
Overtone	1724	-0.8(1)	-1.6(1)×10 ⁻²	-0.06	0.35	-1.10	This work

- 540 Table 2. Pressure and temperature induced shifts, isobaric and isothermal equivalents of the
- 541 Grüneisen parameter and anharmonic parameters of carbonate minerals. The values of v_i were
- measured at ambient pressure and temperature (in this work, 1 bar and 25° C).
- *Symmetry of the modes are from: aragonite (De La Pierre et al. 2014), dolomite (Valenzano et
- al. 2007), calcite, magnesite, rhodochrosite, and siderite (Rutt and Nicola 1974).
- ⁵⁴⁵ **The isothermal equivalent of the Grüneisen parameter was calculated with the following bulk
- moduli: aragonite 68.9 GPa (Liu et al. 2005), calcite 76.1 GPa (Chen et al. 2001), dolomite 94
- 547 GPa (Ross and Reeder 1992), magnesite 107 GPa (Zhang and Reeder 1999), rhodochrosite 114.3
- 548 GPa (Chen et al. 2001), and siderite 117 GPa (Zhang and Reeder 1999).
- 549 ***The isobaric equivalent of the Grüneisen parameter was calculated with the following
- thermal expansion coefficients: aragonite 6.5×10^{-5} K⁻¹ (Ye et al. 2012), calcite 0.9×10^{-5} K⁻¹
- (Markgraf and Reeder 1985), dolomite 2.41×10^{-5} K⁻¹ (Reeder and Markgraf 1986), magnesite
- 552 1.93×10^{-5} K⁻¹ (Markgraf and Reeder 1985), rhodochrosite 2.28×10^{-5} K⁻¹ (Krishna Rao and
- 553 Satyanaryana Murthy 1970), and siderite 2.69×10^{-5} K⁻¹ (Pfaff cited in Mellor 1935).

Observed mode, Symmetry	v_i (cm ⁻¹)	$\delta v_i / \delta T (cm^{-1}/K)$	$\delta v_i / \delta T (cm^{-1}/K)$	$\gamma_{iP}*$	γ_{iP}^*
~	1	Calcite	Calcite after Aragonite	Calcite	Calcite after Aragonite
External, Eg	158	-2.65(2)×10 ⁻²	-3.4(2)×10 ⁻²	18.61	23.60
External, Eg	284	-4.30(4)×10 ⁻²	-6.1(7)×10 ⁻²	16.85	24.02
Internal v4, Eg	713	-5.0(2)×10 ⁻³	-1.1(4)×10 ⁻²	0.77	1.67
Internal v1, A1g	1088	-9.7(3)×10 ⁻³	-2.40(2)×10 ⁻²	0.99	2.45
Overtone	1751	-1.36(6)×10 ⁻²	-3.3(9)×10 ⁻²	0.86	2.10

- Table 3. Temperature induced shifts and isobaric equivalents of the Grüneisen parameter of
- 555 calcite and calcite after aragonite-calcite transition.
- *The isobaric equivalent of the Grüneisen parameter was calculated with a calcite thermal
- expansion coefficient of 0.9×10^{-5} K⁻¹ (Markgraf and Reeder 1985).

