1	REVISION 1
2	American Mineralogist Manuscript 6268
3	
4	A Mössbauer-based XANES calibration for hydrous basalt glasses reveals
5	radiation-induced oxidation of Fe
6	ELIZABETH COTTRELL ^{1,*} , ANTONIO LANZIROTTI ² , BJORN MYSEN ³ , SUZANNE BIRNER ^{1,4} ,
7	KATHERINE A. KELLEY ⁵ , ROMAN BOTCHARNIKOV ^{6,7} , FREDRICK A. DAVIS ^{1,8} , MATTHEW
8	NEWVILLE ²
9	¹ NMNH, Smithsonian Inst., Washington, DC 20560 USA
10	(*correspondence: cottrelle@si.edu)
11	² University of Chicago, Chicago, IL 60637 USA
12	³ Geophys. Lab., Carnegie Inst. Washington, DC 20015 USA
13	⁴ Dept. Geol. Sci., Stanford Univ., Stanford, CA 94305 USA
14	⁵ GSO, Univ. of Rhode Island, Narragansett, RI 20882 USA
15	⁶ Inst. Mineralogie, Leibniz Univ. Hannover, D-30167 GE
16	⁷ Inst. Geowiss., Gutenberg Univ. Mainz, D-55128 GE
17 18 19	⁸ DEES, Univ. of Minnesota Duluth, Duluth, MN 55812 USA
20	ABSTRACT
21	Oxygen fugacity (fO_2) exerts first-order control on the geochemical evolution of
22	planetary interiors, crusts, and hydrospheres, and the Fe ³⁺ / Σ Fe ratios of silicate glasses
23	provide a useful proxy for fO2. Fe K-edge micro X-ray Absorption Near-Edge Structure
24	(XANES) spectroscopy allows researchers to micro-analytically determine the Fe ³⁺ / Σ Fe

25	ratios of silicate glasses with high precision. In this study we characterize hydrous and
26	anhydrous basalt glass standards with Mössbauer and XANES spectroscopy and show
27	that synchrotron radiation causes progressive changes to the XANES spectra of hydrous
28	glasses as a function of radiation dose (here defined as total photons delivered per square
29	micron), water concentration, and initial Fe ³⁺ / Σ Fe ratio.
30	
31	We report experiments from 8 different radiation dose conditions and show that Fe in
32	hydrous silicate glasses can undergo rapid oxidation upon exposure to radiation. The rate
33	and degree of oxidation correlates with radiation dose and the product of water
34	concentration and ferrous/ferric iron oxide ratio on a molar basis
35	(Φ =XHO _{1.5} *XFeO/XFeO _{1.5}). For example, a basalt glass with 4.9 wt.% dissolved H ₂ O
36	and Fe ³⁺ / Σ Fe = 0.19 from its Mössbauer spectrum may appear to have a Fe ³⁺ / Σ Fe \ge 0.35
37	when analysed over several minutes at a nominal flux density of $\sim 2x10^9$ photons/sec/ μ m ² .
38	This radiation-induced increase in Fe ³⁺ / Σ Fe ratio would lead to an overestimation of fO_2
39	by ~ 2 orders of magnitude, with dramatic consequences for the interpretation of
40	geological processes.
41	

The sample area exposed to radiation shows measureable hydrogen loss, consistent with radiation-induced breaking of O—H bonds, associated H migration and loss, and oxidation of Fe²⁺. This mechanism is consistent with the observation that anhydrous glasses show no damage under any beam conditions. Cryogenic cooling does not mitigate, but rather accelerates, iron oxidation. The effects of beam damage appear to persist indefinitely.

49	We detect beam damage at the lowest photon flux densities tested $(3x10^6)$
50	photons/sec/ μ m ²); however, at flux densities $\leq 6x10^7$ photons/sec/ μ m ² , the hydrous glass
51	calibration curve defined by the centroid (derived from XANES spectra) and ${\rm Fe}^{3+}\!/\!\Sigma{\rm Fe}$
52	ratios (derived from Mössbauer spectra), is indistinguishable from the anhydrous
53	calibration curve within the accuracy achievable with Mössbauer spectroscopy. Thus,
54	published $\text{Fe}^{3+}/\Sigma\text{Fe}$ ratios from hydrous glasses measured at low photon flux densities are
55	likely to be accurate within measurement uncertainty with respect to what would have
56	been measured by Mössbauer spectroscopy.
57	
58	These new results demonstrate that to obtain accurate $Fe^{3+}/\Sigma Fe$ ratios from hydrous,
59	mafic, silicate glasses, it is first necessary to carefully monitor changes in the XANES
60	spectra as a function of incident dose (e.g., fixed-energy scan). Defocusing and
61	attenuating the beam may prevent significant oxidation of Fe in mafic water-bearing
62	glasses.
63	
64	INTRODUCTION
65	The Fe ³⁺ / Σ Fe ratio of silicate glass may serve as a direct proxy for the oxygen fugacity
66	(fO_2) of an igneous system and exerts control on phase equilibria, physical properties, and
67	the valence state of other heterovalent elements in solution (e.g. Carmichael, 1991; Kress
68	and Carmichael, 1991; Sack et al., 1980). The use of Fe-K-edge XANES to obtain
69	$Fe^{3+}/\Sigma Fe$ ratios of hydrous silicate glasses has proliferated in recent years owing to the
70	outstanding precision achievable and micron-scale spatial resolution afforded (e.g.

71	Botcharnikov et al., 2005; Brounce et al., 2014a; Cottrell and Kelley, 2011; Gaetani et al.,
72	2012; Helz et al., 2017; Kelley and Cottrell, 2009; Kelley and Cottrell, 2012; Le Voyer et
73	al., 2015; Matjuschkin et al., 2015; Moor et al., 2013; Moussallam et al., 2014; Shorttle et
74	al., 2015; Stamper et al., 2014; Wilke et al., 2006). Most Fe-XANES calibration studies
75	have focused on anhydrous glasses, in large part because fO_2 can be easily controlled in
76	1-atmopshere gas-mixing furnaces (Berry et al., 2003; Cottrell et al., 2009; Dyar et al.,
77	2016; Fiege et al., 2017; Wilke et al., 2001; Wilke et al., 2005; Zhang et al., submitted;
78	Zhang et al., 2016). Given the recent surge in Fe-XANES-based research, however, it is
79	important to understand and quantify how dissolved water and radiation-induced
80	chemical reactions may modify the spectral features used to determine Fe ³⁺ / Σ Fe ratios.
81	
82	Fe-XANES pre-edge features are sensitive to the coordination environment and oxidation
83	state of Fe (e.g. Henderson et al., 2014 and references therein). The potential effects of
84	water dissolved in silicate glass on the structural environment of Fe are therefore of great
85	interest to practitioners of XANES. In their Mössbauer studies on glasses, Wilke et al.
86	(2002, 2006) observed differences in the hyperfine fields and coordination environments
87	between hydrous and anhydrous glasses, but postulated that the differences emerged
88	during quench. Wilke and co-workers concluded that there is no detectable influence of
89	water on the local structural environment of Fe in melts. The effect of dissolved water on
90	the oxidation state of Fe in melts has been the subject of more study and debate, but
91	XANES and wet-chemical studies of mafic glasses synthesized at fixed fO_2 have shown
92	water to have no effect on $Fe^{3+}/\Sigma Fe$ ratios (Botcharnikov et al., 2005; Gaillard et al.,
93	2001; Moore et al., 1995). Given that Fe coordination affects pre-edge intensities, but not

94	the pre-edge centroids most commonly employed to extract $Fe^{3+}/\Sigma Fe$ ratios (Bajt et al.,
95	1994; Cottrell et al., 2009; Wilke et al., 2005), and the difficulty of independently varying
96	fO_2 and fH_2O in experimental systems, relatively little effort has been applied to
97	calibrating hydrous glasses for XANES determinations of $Fe^{3+}/\Sigma Fe$ ratios.
98	
99	Electron and X-ray beam interactions with materials can shift the oxidation state of
100	various elements in biological, amorphous, and crystalline materials (e.g. Corbett et al.,
101	2007; Eeckhout et al., 2005; Shimizugawa et al., 2001; Gonçalves Ferreira et al., 2013).
102	For example, sulfur dissolved in silicate glass may become oxidized or reduced upon
103	exposure to electron and X-ray beams (Klimm et al., 2012; Rowe et al., 2007; Wilke et
104	al., 2008). Relatively little work has been done to investigate the potential effects of
105	radiation on Fe speciation in silicate glasses. Wilke et al. (2005) and Cottrell et al. (2009)
106	assessed, but saw no evidence for, radiation-induced beam damage in XANES spectra of
107	anhydrous basalt glasses collected at bending magnet sources. Shorttle et al. (2015)
108	assessed beam damage in glasses with <1 wt.% water, and observed an increase in the
109	intensity of the second pre-edge multiplet with time (radiation dose) using an
110	unattenuated undulator-source that was "barely above instrument stability" (i.e. was
111	within the noise). The study of Moussallam et al. (2016) was not able to detect beam
112	damage by analyzing successive XANES spectra collected at a single spot on glasses
113	with <1 wt.% water at an attenuated undulator-source. However, as new radiation sources
114	come online that can deliver higher flux densities to a sample, and studies of hydrous
115	silicate glass proliferate, we find it prudent to examine the potential for radiation to
116	induce beam damage.

117

118 SAMPLES AND METHODS

119	Samples. We examine 27 glasses of basaltic composition in this study: 13 anhydrous
120	basalt glasses from the study of (Cottrell et al., 2009), which are available to the
121	community upon request to Smithsonian's National Rock Collection, and 14 hydrous
122	glasses (0.72 to 4.82 wt.% dissolved total H_2O) from the study of (Botcharnikov et al.,
123	2005). For this study, all analyses were performed on double-side polished glass wafers
124	of approximately 50-100 μ m in thickness. Details of the experimental methods and
125	complete sample characterizations can be found in Cottrell et al. (2009), Cottrell and
126	Kelley (2011) (including wet-chemical analyses), and Botcharnikov et al. (2005).
127	
128	Analytical Methods.
129	Mössbauer Spectroscopy. Cottrell et al. (2009) and Botcharnikov et al. (2005) report

130 $Fe^{3+}/\Sigma Fe$ ratios for each glass based on room temperature Mössbauer spectroscopy,

131 without correction for recoilless fraction. We re-report their results in Table 1, along with

new fits to the hydrous B glasses discussed below. Method details for previously reported

133 fits can be found in Cottrell et al. (2009) and Botcharnikov et al. (2005). Cottrell et al.

134 (2009) applied the distribution fitting method of Alberto et al. (1996), which adopts a

two-dimensional (2D) Gaussian probability distribution function for the isomer shift and

136 quadrupole splitting. This routine minimizes the error (reduced χ^2 values) between the

- 137 data and the absorption envelope that arises from the contribution of paramagnetic
- 138 quadrupole doublets. The area of the fitted ferric doublet relative to the entire absorption
- envelope provides the Fe³⁺/ Σ Fe ratio. Using the software package RECOIL (Lagarec and

.

.. .

.

140	Rancourt, 1998), Botcharnikov et al. (2005) applied an extended Voigt-based fitting
141	(xVBF) method that also assumes a two-dimensional Gaussian distribution of hyperfine
142	parameters for ferric and ferrous iron (Lagarec and Rancourt, 1997). The relative area
143	ratios provide the $Fe^{3+}/\Sigma Fe$ ratios, and the uncertainties estimated by Botcharnikov et al.
144	(2005) that we re-report in Table 1 reflect counting statistics, variation in the results from
145	the application of multiple fitting models, and the possible effect of neglecting the
146	recoilless fraction.

147

To isolate the effects of beam damage, deconvolution of the Mössbauer spectra for 148 hydrous and anhydrous glasses must be consistent. Both xVBF and Alberto et al. (1996) 149 methods fit multiple distributions (based on a Gaussian distribution of Lorentzian line 150 151 shapes). The site distributions derive from maxima in the probability functions that describe the ferrous and ferric hyperfine field distributions (Mysen et al., 2006, and 152 references therein). Zhang et al. (submitted) show that both approaches yield consistent 153 $Fe^{3+}/\Sigma Fe$ ratios for the AII and LW glasses. To test for systematic bias between the 154 Cottrell et al. (2009) and Botcharnikov et al. (2005) approaches, we obtained the raw 155 spectra of Botcharnikov et al. (2005), collected at Bayerisches Geoinstitute, University of 156 Bayreuth, and refit 14 of them using the same methods used by Cottrell et al. (2009). This 157 ensures that our analysis of oxidative beam damage from synchrotron radiation will not 158 159 be affected by inter-laboratory bias in the Mössbauer fitting protocols. 160

X-ray Absorption Near Edge Structure (XANES) Spectroscopy. Cottrell et al. (2009) and
Botcharnikov et al. (2005) report on Fe K-edge XANES spectra collected previously for

163	the glasses used in this study. The former collected spectra at the bending magnet station
164	X26A at the National Synchrotron Light Source (NSLS), Brookhaven National
165	Laboratory, New York, USA, and the latter at the Hamburger
166	Synchrotronstrahulungslabor (HASYLAB), Hamburg, GE. Details about those facilities,
167	collection procedures, and fitting routines can be found in Cottrell et al. (2009) and
168	Botcharnikov et al. (2005).
169	
170	For this study, we collected new Fe K-edge XANES spectra on the AII, LW, and B series
171	glasses in fluorescence mode in six synchrotron beam sessions: two on bending magnet
172	station X26A at NSLS in 2015, and four at station 13-ID-E (GSECARS) at the Advanced
173	Photon Source (APS), Argonne National Laboratory, IL, USA, in 2014 - 2016. We
174	applied 8 radiation dose conditions that we detail in Table 2. We cast our results in terms
175	of radiation dose so that the results can be easily generalized to other facilities and
176	beamline configurations. For these experiments it is more convenient and descriptive to
177	represent the mean energy imparted to the sample in terms of flux density, rather than in
178	the more standard SI units of Gray. However, the absorbed dose in Gray (absorption of
179	one joule of radiation energy per kilogram of sample) can be calculated by assuming an
180	average basaltic glass composition and density and the depth at which the incident
181	radiation falls to 1/e within the glass (Henke et al. 1993). For basaltic glass, the flux
182	density is equivalent to \sim 75-80 times the dose in Grays/sec (Table 2). As we describe
183	below, in all sessions, and at all facilities, we set the area-weighted average energy of the
184	pre-edge peaks (the centroid) equal to 7112.3 for anhydrous glass standard LW_0

185 (Cottrell et al., 2009). LW_0 is analysed frequently throughout all analytical sessions.

186	Normalization of all centroids to the energy drift-corrected centroid of LW_0 accounts
187	for within-session instrumental drift in the monochromator energy calibration and for
188	differences in monochromator calibration between facilities and between sessions (Bajt et
189	al., 1994; Cottrell et al., 2009). The empirical drift-corrected precision (1 σ) of the area-
190	weighted centroid positions collected over a ten-year period on the AII and LW glasses is
191	0.004 ± 0.009 eV (n for each glass = 30-50) (Zhang et al., submitted).

192

193 We did not correct for over-absorption effects (Manceau et al., 2002). In fluorescence

194 mode XANES, over-absorption can result in a decrease in the amplitude of the absorption

195 peaks in samples where the absorber mass is high. This can result in a relative increase in

the pre-edge peak intensities relative to the main absorption edge, but it does not impact

197 the relative intensities of the two pre-edge peak multiplets or their energy positions

198 (Botcharnikov et al., 2005; Cottrell et al., 2009; Zhang et al., 2016). Moreover, while

199 over-absorption can affect pre-edge peak intensities, all glass compositions examined

- here have sufficiently high total FeO contents (7-12 wt.%) and thicknesses (> 50μ m) to
- 201 be in the infinite thickness regime.
- 202

X26A, NSLS, Brookhaven National Laboratory, USA. NSLS (decommissioned in
October, 2014) operated at 2.8 GeV and 300 mA. We collected fluorescence spectra on
the B series glasses at bending magnet beamline X26A using summed energy dispersive
spectra from a 4-element Vortex ME-4 silicon drift diode detector and two single element

- 207 Vortex-EX detectors (Hitachi) with pulse processing provided by an XMap digital
- spectrometer system (XIA). The first derivative of Fe K-edge spectra (E_0) collected on

209	zero-valent Fe E_0 is 7112.0 eV. All other methods details are as reported by Cottrell et al.
210	(2009). The incident beam flux at X26A was consistently $\sim 3x10^9$ photons/sec and the
211	spot size was 9 x 5 microns such that the photon flux density was $\sim 6.7 \times 10^7$
212	photons/sec/um ² (Table 2); after a 15.5 minute collection the absorbed dose per spectrum
213	was $\sim 6 \times 10^{10}$ photons/um ² .
214	
215	13-ID-E, GSECARS, Advanced Photon Source, Argonne National Laboratory, USA.
216	Details regarding the beamline configuration for 13-ID-E can be found in Sutton et al.
217	(2017). This undulator-based beam line at APS operates at 7 GeV and 85-101 mA. We
218	collected fluorescence spectra with a Vortex ME4 silicon-drift diode detector array
219	coupled to a high-speed digital spectrometer system (Quantum Xpress3). A cryogenically
220	cooled double-crystal Si (311) monochromator provided the monochromatic radiation.
221	The first derivative of Fe K-edge spectra (E_0) collected on zero-valent Fe E_0 is 7110.75
222	eV. We collected spectra from 7012 to 7102 eV in 2.5 eV steps with 1 sec dwell; from
223	7102 to 7132 eV (pre-edge region) in 0.1 eV steps with 1 sec dwell and from 7132 to
224	7492 eV (XAFS region) in 2.3 angstrom steps with 1 sec dwell. We edge-step normalized
225	the spectra collected at 13-ID-E by the average intensity between 7315 and 7320eV
226	where the spectra were flat.
227	
228	The 13-ID-E beamline is capable of delivering and detecting in excess of 1×10^{12}
229	photons/sec within a focused spot size of 2 x 2 microns at the Fe K-edge, so that focused

- 230 flux densities of $\sim 5 \times 10^{11}$ photons/sec/ μ m² are possible four orders of magnitude higher
- than what was possible at X26A. We collected the experimental data presented here over

232	a $\sim 10^4$ range in flux density to precisely assess the spectral response to absorbed radiation
233	dose. At 13-ID-E we collected spectra using 6 protocols where incident flux density was
234	adjusted, through uspstream aperturing of the X-ray beam; through filtering using varying
235	thicknesses of aluminium foil; and through defocusing of the incident beam on the
236	sample. These conditions are reported in Table 2.
237	
238	We also conducted one set of analyses at 13-ID-E under cryogenic conditions, using a
239	customized cryogenic stage described in Tappero et al. (2016, 2017), to investigate the
240	degree to which cryogenic cooling may mitigate the observed iron oxidation. We
241	collected a time series at an energy of 7113.3 eV at both ambient and cryogenic
242	conditions reported in Table 2.
243	
244	Fourier Transform Infrared (FTIR) Spectroscopy
245	Glass chip B10 (Table 1) was analyzed by FTIR for dissolved total H_2O using a Thermo
246	Nicolet iS50 FTIR bench spectrometer coupled with a Continuum IR microscope with
247	automated mapping capability at the Graduate School of Oceanography, University of
248	Rhode Island. We mapped an area on a chip of B10 that had been purposely exposed to
249	high photon flux at beamline 13-ID-E. The map was collected using transmission FTIR
250	with a 20 x 20 μ m square aperture and no overlap between pixels. Each spectrum was
251	collected over 1200-6000 cm ⁻¹ wavenumbers using 256 scans at 1 cm ⁻¹ resolution.
252	Individual transmission spectra were reduced for H_2O^{Total} after fitting the spectral
253	background with a spline function and calculating the net intensity of the absorbance
254	band at 3500 cm ⁻¹ . The H_2O^{Total} concentration was then calculated using the Beer-

Lambert law, a calculated density of 2.90 g/cm³, thickness of $49\pm1 \mu m$, and the molar absorption coefficient $\epsilon^{3530}=63$, which is assumed constant within the compositional range of basalts (Dixon et al., 1995).

258

259 **RESULTS**

260 Mössbauer Spectra

261 Mössbauer-derived $Fe^{3+}/\Sigma Fe$ ratios are not very sensitive to fitting philosophy or method,

but in this study we re-fit the B glass spectra acquired by Botcharnikov et al. (2005) to

eliminate any potential bias between the disparate fitting routines of Cottrell et al. (2009)

and Botcharnikov et al. (2005). In addition, our new fits allow us to report hyperfine

265 parameters for these glasses that may aid in understanding the structural environment of

Fe in hydrous and anhydrous glasses. We provide the Mössbauer spectra from

Botcharnikov et al. (2005) and our fits from this study (both raw data and plots) in the

268 Supplementary Material.

269

Two quadrupole doublets, one ferric with a low IS of 0.4 to 0.6 mm/s (relative to Fe 270 271 metal) and low QS of 0.8 to 1.1 mm/s, and one ferrous with a high isomer shift of 0.8 to 272 1.0 mm/s and quadrupole splitting of 1.9 to 2.2 mm/s, describe the Mössbauer spectra of the B glasses (Table 1, and Figures S1, S2). The Botcharnikov et al. (2005) study did not 273 report hyperfine parameters, but the hyperfine parameters derived from the glass spectra 274 275 in this study are similar to those reported previously in the literature for silicate glasses 276 (Alberto et al., 1996; Jayasuriya et al., 2004; Mysen et al., 1985a; Zhang et al., 2016). Ferrous iron IS and QS in the hydrous B glasses are within error of those for the 277

278	anhydrous glasses for all but the most highly oxidized glasses, for which the quadrupole
279	splitting in the hydrous glasses is higher. The QS for ferric iron is smaller in hydrous
280	glasses than in anhydrous glasses by approximately 0.25 to 0.45 mm/s. The IS of ferric
281	iron is slightly higher in the hydrous glasses than in the anhydrous glasses, and decreases
282	with increasing $Fe^{3+}/\Sigma Fe$ ratio, as expected (Mysen and Richet, 2005; Mysen and Virgo,
283	1989; Mysen et al., 2006). While many factors influence the coordination of ferric iron in
284	silicate glasses (Mysen and Richet, 2005), the greater ferric IS observed in the hydrous
285	glasses suggests that the O—Fe ³⁺ bong length is longer, and weaker (e.g.Johnson et al.,
286	1999), and that ferric iron is in higher average coordination (greater domination of $^{VI}Fe^{3+}$)
287	in the hydrous B glasses than in the anhydrous AII and LW glasses. Higher coordination
288	of ferric iron in the hydrous glasses is consistent with results from (Wilke et al., 2002;
289	Wilke et al., 2006), and is corroborated by XANES spectra, as we discuss below.
290	
291	The Fe ³⁺ / Σ Fe ratios in the B glasses, as determined by the new fits reported here, range
292	from 0.12 to 0.56, compared to 0.10 to 0.60 for those same glasses reported in
293	Botcharnikov et al. (2005). The Fe ³⁺ / Σ Fe ratios of all B glasses with nominal Fe ³⁺ / Σ Fe
294	<0.50 agreed within 1σ (2.7% absolute) with the values reported by Botcharnikov et al.
295	(2005). The three glasses with Fe ³⁺ / Σ Fe ratios > 0.50 agreed within 2 σ of the
296	uncertainties on the fits (4.4% absolute). These fits are within the commonly accepted
297	uncertainty of the technique, which ranges from ± 1 to 6% in absolute Fe ³⁺ / Σ Fe ratio
298	(Dyar et al., 1987; Mysen et al., 1985a; Mysen et al., 1985b). Fe ³⁺ / Σ Fe ratios from the
299	Botcharnikov et al. (2005) study correlate very well with ratios obtained in this study (R^2
300	> 0.99, m = 0.9, b = 1.87). Consistent with the results of Cottrell et al. (2009), Zhang et

al. (2015), and Zhang et al. (submitted), inclusion of a second doublet in the present study did not reduce the χ^2 of the fits.

303

304 XANES

305 Bending Magnet Beamlines, X26A NSLS.

306 Full XANES spectra of hydrous B and anhydrous AII and LW glasses collected at

307 bending magnet beamline X26A are shown in Figure 1. We provide spectra for AII and

308 LW anhydrous glasses for a 2014 NSLS session for reference (there is no substantive

309 change since their initial publication in Cottrell et al., 2009). As demonstrated by

Botcharnikov et al. (2005) for previous XANES analyses of the B glasses, the energy of

the main absorption edge, the ratio of pre-edge peak intensities, and the area-weighted

average energy of the pre-edge peaks (the centroid) in the XANES spectra shift smoothly

as a function of $Fe^{3+}/\Sigma Fe$ ratio (e.g., Berry et al., 2003; Botcharnikov et al., 2005; Cottrell

et al., 2009; Wilke et al., 2005). The shift in centroid energy provides a precise proxy for

315 $Fe^{3+}/\Sigma Fe$ ratio in basaltic glasses, especially for $Fe^{3+}/\Sigma Fe$ ratios below 0.50 (Henderson et

al., 2014). We report the centroids and pre-edge peak intensities for all glasses in Table 3.

317 We provide all fitting parameters in Table S2. Consistent with the results of Cottrell et al.

318 (2009), centroids obtained from spatially independent spectra are precise to $\leq \pm 0.01$ eV.

319

320 For anhydrous LW and AII glasses and hydrous B glasses, we plot the $Fe^{3+}/\Sigma Fe$ ratios

derived from Mössbauer fits determined by Botcharnikov et al. (2005) and this study

- 322 against the Fe³⁺/ Σ Fe ratios derived from XANES at low flux using the anhydrous
- 323 calibration curve of Cottrell et al. (2009). Regardless of which set of Mössbauer values

are used, the Fe³⁺/ Σ Fe ratios of the hydrous glasses fall within 1 σ of a 1:1 relationship

325 (Figure 2a).

326

327 Undulator-based Beamlines, 13-ID-E, APS.

328 Full XANES spectra of AII, LW, and B glasses collected at insertion device beamline 13-

329 ID-E (GSECARS) are shown in Figure 1 and we provide fitting parameters in Table S2.

330

331 *Condition XANES*₁, *Anhydrous Glasses*. We report centroids (area weighted average

energy of the two pre-edge multiplets) under "nominal" operating conditions at 13-ID-E,

our condition "XANES₁," for each glass in Table 3.

334

Under normal high flux operating conditions at station 13-1D-E, we recover the Fe³⁺/ Σ Fe

ratios of anhydrous glasses when we use the calibration of Cottrell et al. (2009), which

337 was developed at low flux. Anhydrous glass $Fe^{3+}/\Sigma Fe$ ratios derived from XANES at

high flux fall within 1σ of a 1:1 relationship with the Mossbauer-derived values (Figure

2b). Supplemental Figure S3a and Table 3 show that high flux centroids are on average

340 within ± 0.008 eV (within 1σ) of low flux centroids. One might conclude from this that the

341 centroid, as a spectral feature, is a robust proxy for assessment of the $Fe^{3+}/\Sigma Fe$ ratio for

342 anhydrous glasses. We emphasize again, however, the importance of normalizing to a

343 standard. While the centroids at the two facilities are reproducible, the individual spectral

features are not. Differences in modelled spectral features (Figures S3b,c,d), and the raw

- spectra (Figure S4), reflect the smaller vertical emittance of the 13-ID-E undulator
- electron beam compared to the X26A bending magnet source, and the optical

347	configuration at each beamline. That we reproduce the centroids of anhydrous glasses
348	across facilities to approximately ± 0.01 eV is a non-trivial result. Fiege et al. (2017) state
349	that the "overall uncertainty" in the centroid is an order of magnitude higher (± 0.1 eV).
350	We attribute the high precision we achieve primarily to ensuring that we account for
351	instrumental drift within and between analytical sessions by shifting the energy of all
352	centroids such that the centroid of LW_0 = 7112.3 eV. The key result is that the
353	anhydrous glass centroids remain stable within uncertainty at all beam conditions and
354	across all facilities.
355	
356	Condition XANES ₁ , Hydrous Glasses. At a given $Fe^{3+}/\Sigma Fe$ ratio, the centroids of hydrous
357	B glasses are variably shifted to higher values at 13-ID-E under nominal operating
358	conditions (XANES ₁), in stark contrast to the highly reproducible anhydrous glasses
359	(Table 3). For some hydrous glasses (e.g., B20), we derive the same centroid within
360	0.003eV (within 1σ) between facilities, but for others (e.g., B11) we derive a centroid up
361	to 0.25eV higher (25 σ higher) under high flux conditions than low flux conditions
362	(Figure S4). This manifests as XANES-derived Fe ³⁺ / Σ Fe ratios that are up to 1.7 times
363	higher than those derived from Mössbauer spectroscopy (Figure 2b).

364

365 Intensity of 2^{nd} Multiplet with Time. To better evaluate how the Fe XANES spectra of

these glasses evolve with accumulated radiation dose, we conducted experiments to

367 monitor changes in the intensity of the second pre-edge multiplet at 7113.3 eV (attributed

- to Fe^{3+}) as a function of time and flux density (i.e. dose). Glass B11 was used for this
- 369 experiment; it is the most hydrous in the suite under study, with 4.82 wt.% total dissolved

370 water. This glass is relatively reduced relative to other hydrous glasses tested, with a 371 $Fe^{3+}/\Sigma Fe = 0.19$.

372

373	Figure 3 plots the peak amplitude of the second pre-edge multiplet peak of hydrous glass
374	B11 with time, measured at high flux density and low flux density under both ambient
375	and cryogenically cooled conditions. We first consider data collected at ambient
376	temperature. Peak amplitude increases with time under high and low flux conditions, with
377	a rapid increase observed within the first 100 seconds of high flux irradiation. The higher
378	photon flux density generated by the focused beam causes a greater increase in the
379	amplitude of the second pre-edge multiplet at all time points. However, when the change
380	in amplitude is measured relative to the dose delivered, the amplitude of the second
381	multiplet (extent of damage) increases at approximately the same rate in high and low
382	flux density conditions. This evidences the dose-dependence of the spectral change.
383	While low flux beam damage does not affect the centroid of these hydrous glasses within
384	the measurement error of our calibration (Figures 2, S5), these data show that damage
385	occurs in hydrous glasses even at low flux density.
386	
387	We then explored the degree to which cryogenic cooling impacts spectral evolution with
388	time. Studies over a broad range of incident beam energies show that cryo-cooling of
389	biological samples significantly reduces damage due to mass (water) loss during
390	exposure to ionizing radiation (e.g. Dubochet et al., 1988; Steinbrecht and Zierold, 2012).
391	Cryo-cooling may also potentially reduce the rate of beam-induced changes in metal

valence state in some materials (Corbett et al., 2007; Grabolle et al., 2006), although the

393	degree to which this mitigates the effects is debated (Beetz and Jacobsen, 2003; Meents
394	et al., 2010). We repeated the time series experiments described previously on sample
395	B11, with the glass held at -195°C. The measurements show the surprising result that at
396	cryogenic temperatures, under both high and low flux density conditions, the relative rate
397	of Fe oxidation increases. Beam damage is worse at cryogenic temperatures.
398	
399	It is also instructive to see that spectral changes plateau under all conditions studied
399 400	It is also instructive to see that spectral changes plateau under all conditions studied within 3-16 minutes. It takes anywhere from approximately 4 to 30 minutes to collect an
399 400 401	It is also instructive to see that spectral changes plateau under all conditions studied within 3-16 minutes. It takes anywhere from approximately 4 to 30 minutes to collect an entire quality XANES spectrum on glass with FeO concentrations between 5 and 10 wt.%
399400401402	It is also instructive to see that spectral changes plateau under all conditions studied within 3-16 minutes. It takes anywhere from approximately 4 to 30 minutes to collect an entire quality XANES spectrum on glass with FeO concentrations between 5 and 10 wt.% (e.g. Cottrell and Kelley, 2011; Shorttle et al., 2015). Therefore, successive XANES
399400401402403	It is also instructive to see that spectral changes plateau under all conditions studied within 3-16 minutes. It takes anywhere from approximately 4 to 30 minutes to collect an entire quality XANES spectrum on glass with FeO concentrations between 5 and 10 wt.% (e.g. Cottrell and Kelley, 2011; Shorttle et al., 2015). Therefore, successive XANES spectra, collected at a single sample position, may not show any measurable change if

405

406 Conditions XANES_{3,4}. Successive Analysis at one position. Using glass B11 again, we show in Figure 4a and Table S3 how the centroids of successive analyses on the same 407 spot in glass B11 increase if we employ condition XANES₄, a very low flux achieved by 408 409 attenuating and defocusing the beam to $50 \times 50 \mu m$. The centroid increases approximately 410 logarithmically in energy for each successive spectrum. Contrast this with successive spots at the same incident flux, but with the beam focused to 2x2µm (XANES₃), in which 411 case the total number of photons delivered to a given area (photons/ μ m²) is higher after 412 413 one spectral acquisition than after successive analyses under condition XANES₄. The 414 centroid is commensurately higher, and plateaus after one acquisition. Consistent with Cottrell et al., 2009, we observe no change in the centroid or pre-edge peak intensities 415

416	with successive analyses on anhydrous glass AII_0. Figure 4b reveals how the integrated
417	intensity (area) of the Gaussian extracted for the first multiplet (I_{Fe2^+}) decreases while the
418	integrated intensity of the second multiplet (I_{Fe3+}) increases. Evolution of the spectra in
419	this manner is consistent with oxidation of Fe^{2+} to Fe^{3+} .
420	
421	Observations of the raw spectra (Figure 5) confirm the spectral evolution seen in the
422	modelled parameters. Raw spectra collected sequentially at a given position on sample
423	B11, under condition XANES ₄ , show decreases in the intensity of the first pre-edge

424 multiplet and increases in intensity of the second pre-edge multiplet. In addition, we see

the main absorption edge move to higher energy as radiation dose accumulates. Spectral

426 changes are consistent with an increase in the average oxidation state of Fe with

427 increasing radiation dose.

428

429 Beam Damage Persists Indefinitely

To assess the longevity of beam damage, we mapped glass B11 approximately one year 430 after a session in which we investigated beam damage. In figure 6, image brightness 431 scales with the ratio between the Fe K α fluorescence peak amplitude at 7113.2 eV, the 432 energy maximum for the Fe^{3+} pre-edge multiplet peak, and at 7111.6 eV, the energy 433 maximum for the Fe^{2+} pre-edge multiplet peak. In the false-color inset, the bright white 434 areas correspond to previously analysed spots. From this map it is evident that areas 435 exposed to high radiation dose retain higher Fe^{3+}/Fe^{2+} ratios than adjacent areas that were 436 not exposed to the X-ray beam at least one year after exposure. Beam damage persists 437 indefinitely. 438

439

440 Coordination of Fe in Hydrous and Anhydrous Glasses

441	Figure 7 compares the summed integrated pre-edge intensities $(I_{Fe2^+} + I_{Fe3^+})$ of hydrous
442	and anhydrous glasses as a function of their centroids – what Wilke et al. (2001) coined a
443	"variogram." A negative non-linear correlation between coordination and oxidation state
444	is inferred for glasses as well as minerals with mixed geometries (e.g. Jackson et al.,
445	2005; Wilke et al., 2001). Because I_{Fe2+} and I_{Fe3+} are extremely sensitive to detector dead
446	time, edge-step normalization procedure, self-absorption etc., they are generally not
447	comparable between facilities and are even difficult to compare between analytical
448	sessions at the same facility (Cottrell et al., 2009). We only compare spectra acquired at
449	APS in Figure 7; these have been collected and processed under conditions as uniform as
450	can be practically achieved.
451	

452 All glasses display typical pre-edge intensities indicative of 5-fold or mixed 4-fold and 6fold coordination (Wilke et al., 2001; Wilke et al., 2005). We see that hydrous glasses fall 453 along the same trend of increasing integrated pre-edge intensity with centroid energy 454 under both the high flux density condition XANES₃ and the low flux density condition 455 XANES₄. Covariation in the oxidation state and coordination of Fe in these glasses is 456 consistent with a shift in Fe coordination upon exposure to radiation only in proportion to 457 the shift in Fe oxidation state. This analysis therefore also points to actual oxidation of 458 Fe^{2+} to Fe^{3+} in the hydrous glasses. 459

460

461 The variogram also corroborates the site geometry analysis of the Mössbauer spectra,

462	which revealed higher Fe^{3+} isomer shift (and smaller quadrupole splitting) in hydrous B
463	glasses relative to anhydrous glasses (Figure S1), consistent with longer, weaker, O-
464	Fe^{3+} bonds, and Fe^{3+} in higher coordination in the hydrous glasses than the anhydrous AII
465	and LW glasses. In Figure 7, anhydrous glasses display higher integrated intensities
466	(lower average coordination) than hydrous glasses at any given centroid energy,
467	consistent with longer and weaker O—Fe ³⁺ bonds in the hydrous glasses. Correcting for
468	over-absorption does not change this relationship.

469

470 **DISCUSSION**

471 Beam Damage Mechanism

472 The *Is* absorption edge and pre-edge peaks in *3d* transition metals, like Fe, are due to electron transitions from 1s to 3d states (e.g. Henderson et al., 2014). Quadrupole (1s3d) 473 and dipole (1s to the 4p character of the 3d band) transitions are possible in silicate 474 glasses, owing to iron's mixed coordination. In XANES spectra, Fe²⁺ exhibits 2 or 3 pre-475 edge peaks, and Fe^{3+} exhibits 1 or 2 pre-edge peaks, depending on coordination (Westre 476 et al., 1997). I_{Fe2+} and I_{Fe3+} increase as coordination number decreases (i.e. with higher 477 extents of 3d + 4p mixing) because of the added dipole contribution (Penner-Hahn, 2005; 478 Roe et al., 1984; Westre et al., 1997). The relative integrated intensities and energies of 479 the pre-edge peaks therefore depend on the metal site geometry: the relative proportions 480 of Fe^{2+} and Fe^{3+} and their coordination as tetrahedral (4-fold) or octahedral (6-fold) 481 (Henderson et al., 2014; Wilke et al., 2001). Thus, it is necessary to evaluate the degree 482 to which the observed beam-induced changes in the XANES spectra reflect changes in 483 effective Fe valence as compared to coordination, particularly since in glasses these 484

485 effects are coupled.

486

487 We considered the possibility that exposure to radiation in hydrous glasses, but not anhydrous glasses, might increase 3d-4p hybridization of Fe³⁺ centers. For example, 488 Fe^{3+} —OH⁻ bonds could respond differently to radiation than Fe^{3+} —O bonds. Augmented 489 hybridization of Fe³⁺ centers in hydrous glasses would increase the dipole contribution to 490 the second multiplet, increase its integrated intensity, and increase the centroid, without 491 492 any change in the actual average oxidation state of Fe. Yet, several lines of evidence argue against this possibility. First, upon exposure to a high photon flux density, the 493 XANES spectra of the hydrous glasses show that the Fe^{3+} multiplet integrated intensity 494 increases and the Fe²⁺ multiplet intensity concomitantly decreases (Figure 4). Moreover, 495 the white line shifts to progressively higher energy as well (Figure 5). These three 496 spectral changes together are much more consistent with oxidation of Fe^{2+} to Fe^{3+} than an 497 498 increase in 3d-4p hybridization, as the latter would result in neither a decrease in the intensity of the first multiplet, nor a shift in the main edge. 499 500 501 Because no measurable change in the XANES spectra is observed as a function of dose in spectra collected from anhydrous glasses (e.g. Figures 2, 4), we hypothesize that the 502 changes we observe in the spectra of hydrous B glasses with exposure to ionizing 503 radiation relates to their dissolved water contents. Here we use $Fe^{3+}/\Sigma Fe_{Möss}$ – 504 $Fe^{3+}/\Sigma Fe_{XANES}$ as a proxy for beam-induced Fe oxidation, where Mössbauer spectra 505 establish the "true" $Fe^{3+}/\Sigma Fe$ ratio, and the XANES centroid the "apparent" $Fe^{3+}/\Sigma Fe$ 506 ratio (Table 3). Indeed, when we compare glass B8 to B16, glasses of similar $Fe^{3+}/\Sigma Fe$ 507

508	ratio, we see that the centroid of glass B16, with $>$ 3.6 times more dissolved water, is
509	overestimated by ~70%, whereas the centroid of glass B8 is overestimated by ~27%
510	when exposed to the same radiation dose. Figure 8a shows, however, that total dissolved
511	H ₂ O in the glasses does not correlate with beam-induced Fe oxidation. For example, the
512	anhydrous XANES calibration of Cottrell et al. (2009) predicts the Fe ³⁺ / Σ Fe ratio of
513	hydrous glass B17, with 4.67 wt.% total water, within error of its "true" value, while the
514	centroid of B11, with nearly indistinguishable dissolved water content, is overestimated
515	by >70% (Figure 4, 11). The latter overestimation of $Fe^{3+}/\Sigma Fe$ ratio leads to
516	overestimation of f_{O2} by two orders of magnitude.
517	
518	Following this, it is also clear that when the initial oxidation state of Fe is high, the
519	spectral response to radiation (beam damage) is lessened (Figure 8b). Upon exposure to
520	the same high photon dose (condition XANES ₁), the $Fe^{3+}/\Sigma Fe$ ratios of hydrous glasses
521	with lower $Fe^{3+}/\Sigma Fe$ ratios are greatly overestimated in comparison to glasses with higher
522	$Fe^{3+}/\Sigma Fe$ ratios, which appear to be well predicted by the Mössbauer calibration (R^2
523	linear correlation = 0.53; R^2 exponential correlation = 0.72, Figure 8b).

524

523

All the evidence suggests to us that the mechanism of Fe oxidation involves breaking of 525 O-H bonds by incident ionizing radiation, loss of hydrogen, and concomitant oxidation 526 of Fe²⁺ to Fe³⁺. One possible reaction, analogous to that proposed for radiation-induced 527 528 oxidation of S dissolved in hydrous silicate glasses by Klimm et al. (2012) is:

$$H_20 + 2Fe^{2+}O \rightarrow H_2^{\uparrow}(gas?) + Fe_2^{3+}O_3$$

The loss of hydrogen gas is consistent with the longevity of the beam damage, as 529

530	discussed above and shown in Figure 6. This mechanism is also consistent with the
531	observed dependence on both the initial $Fe^{3+}/\Sigma Fe$ ratio and the dissolved water content of
532	the hydrous glass.

533

534 The hypothesized mechanism suggests that a fruitful metric for predicting the

susceptibility of hydrous glass to beam damage is the molar ratio of dissolved total water

to the ferric/ferrous ratio as determined by Mössbauer spectroscopy

537 (Φ =XHO_{1.5}*XFeO/XFeO_{1.5} ratio) (Table 1). We find that beam damage susceptibility,

538 Φ , correlates strongly with the extent to which high photon flux XANES₁ overestimates

the Fe³⁺/ Σ Fe ratio (R² = 0.92, n=14, b = 0 because anhydrous glasses show no damage)

540 (Figure 8c).

541

Inspection of the raw spectra of the B glasses under conditions XANES₃ and XANES₄ confirms that spectral changes increase as a function of dose and increasing Φ , with anhydrous glasses showing no spectral change (Figure 9). Visual inspection also verifies that the spectral features all evolve in a manner consistent with oxidation of ferrous iron to ferric iron: I_{Fe2+} falls; I_{Fe3+} grows; and the K edge shifts to higher energy. Spectral changes increase in proportion to Φ . We provide the raw spectra for Figure 9 in Table S4.

549	We tested this hypothesis by subjecting glass B10 to a 25 μ m beam of high photon flux
550	of $\sim 1 \times 10^{12}$ photons/sec for ~ 12 minutes (Figure 10). We subsequently mapped the area
551	surrounding this spot on the sample via Fourier Transform Infrared spectroscopy (FTIR).
552	The FTIR data show that the area of the glass adjacent to the exposed spot (e.g., pixel 1,

553	Figure 10) also has significantly lower dissolved H ₂ O than areas of the glass distant from
554	exposure (e.g., pixel 2, Figure 10). We reduced individual FTIR spectra from pixels 1 and
555	2 by fitting the background of the total H_2O absorption band at 3500 cm ⁻¹ with a spline
556	function that was then subtracted from the spectra before measuring the band height. This
557	analysis shows that pixel 2, away from the potential damage zone, has a total dissolved
558	H_2O content of 2.43 wt.%, which is identical to the reported H_2O content for this glass by
559	Botcharnikov et al. (2005). The dissolved H_2O content of pixel 1, however, is 900 ppm
560	lower (2.34 wt.%). Pixel 1 is not coincident with the location of the XANES beam at the
561	sample surface. Rather, the incident X-ray beam intersects the sample surface at a 45°
562	angle relative to the FTIR incident beam, which is normal to the sample surface. The high
563	flux X-ray beam travelled through the sample, from right to left in Figure 10, at 45°
564	angle, and thus interacted with the glass chip to the left of the beam cross-hair location.
565	We conclude from this assessment that exposure of this sample to a high-flux XANES
566	beam caused both oxidation of Fe and loss of H ₂ O from the glass, which supports the
567	proposed mechanism of Fe oxidation via hydrogen loss. We note that only a few percent
568	of the Fe fluorescence we measure comes from the sample surface. The geometrical
569	considerations we present above and the magnitude of the spectral changes and water loss
570	we observe require chemical changes to the bulk affected volume. Damage cannot be
571	limited to the sample surface.

572

573 Cryo-cooling has been shown to mitigate beam damage (e.g. Steinbrecht and Zierold,
574 2012; Corbett et al., 2007). Our finding that cryo-cooling exacerbated Fe²⁺ oxidation in
575 hydrous glass is an important and counterintuitive observation. We have shown that

576	hydrogen concentrations in the glass are lower in areas that have experienced oxidizing
577	beam damage, consistent with radiation-induced breaking of O-H bonds, and
578	preferential diffusion of hydrogen, relative to oxygen, away from the area. Because it is
579	the relative diffusivity of hydrogen and oxygen that matters, and diffusivity depends
580	strongly on temperature, we speculate that oxygen is able to diffuse farther from the
581	analysed spot in the room temperature case than the cryo-cooled case (whereas hydrogen
582	is always able to diffuse away). This may be why cryo-cooling is counterproductive
583	when attempting to mitigate radiation-induced oxidation of Fe in hydrous silicate glass.
584	Indeed, Gonçalves Ferreira et al. (2013) found that heating soda-lime glasses to 500°C
585	actually mitigated radiation-induced reduction of iron, emphasizing that the effect of
586	temperature on beam damage will depend on the nature and mechanism of beam damage
587	and is difficult to predict a priori.

588

589 IMPLICATIONS

590 Prior XANES studies of hydrous glasses

We have shown that synchrotron radiation causes progressive changes to the XANES 591 592 spectra of hydrous glasses, but not anhydrous glasses, as a function of radiation dose. Spectral changes are consistent with preferential migration of hydrogen relative to 593 oxygen, and oxidation of iron, in the analysis spot. Our study reveals that oxidative beam 594 damage occurs in hydrous glasses even at the lowest flux densities achieved, but that 595 damage is not detectable outside of the error of anhydrous calibrations with exposure to 596 597 radiation doses typically found at bending magnet sources. Conversely, it would be prudent to re-evaluate results from studies carried out on hydrous glasses at undulator 598

599 beam lines using a focused spot.

600

601	Mafic glasses may be synthesized experimentally with a wide range of Φ
602	$(XHO_{1.5}*XFeO/XFeO_{1.5})$ that may readily exceed those investigated in this study. Most
603	naturally occurring basaltic glasses, however, will have $0 \le \Phi \le 1$. For example, basaltic
604	glass inclusions in volcanic rocks from subduction zones have Φ ranging from ~0.34 to
605	\sim 1; natural basaltic glasses from sea floor volcanoes erupting in back arc basins have
606	ratios ranging from ~0.2 to ~0.6; and mid-ocean ridge basalts have ratios between ~0.05
607	to ~0.28 (ranges estimated from data in Brounce et al. 2014b; Cottrell and Kelley, 2011;
608	Kelley and Cottrell, 2012; Zhang et al., submitted). Based on the work presented here, all
609	submarine basalts and undegassed melt inclusions would suffer significant beam damage
610	under nominal acquisition conditions (i.e. a focused beam) at unattenuated undulator
611	beam lines. We have also shown, however, that a radiation dose of $\le 6 \times 10^7$
612	photons/sec/ μ m ² mitigates (but does not prevent) beam damage on hydrous glasses with
613	Φ up to ~1.
614	
615	We hypothesize that previous studies conducted at undulator beam lines have not
616	detected beam damage in hydrous glasses because, under nominal operating conditions,
617	radiation damage is maximum or "complete" after acquisition of a single spectrum (~600

618 seconds for spectra acquired under condition XANES₁). Collection of multiple spectra at

a single position on the glass under condition $XANES_1$ will therefore return the same

620 centroid because damage is complete ("saturated") before the pre-edge is scanned the

first time (e.g. Moussallam et al., 2016; Moussallam et al., 2014). For materials with

622	relatively low Φ , it may be sufficient at an undulator source to attenuate the beam to
623	prevent beam damage from exceeding detection limits (e.g. Shorttle et al., 2015). We
624	have shown here, however, that even at the lowest fluxes achievable at 13-ID-E,
625	attenuation is insufficient to prevent beam damage; the beam must also be defocused.
626	
627	Recommended analytical protocols for acquisition of Fe-XANES spectra on hydrous
628	glasses
629	Synchrotron radiation causes progressive changes to the XANES spectra of hydrous
630	glasses as a function of radiation dose and Φ . Dose is a function of photon flux, beam
631	diameter, and exposure time, and can/should be calculated and reported for any
632	synchrotron experiment. Attenuating the beam, defocusing the spot, or both, may
633	mitigate beam damage. Using a cryostat is unlikely to mitigate beam damage; it may
634	even exacerbate damage. This study suggests that a radiation dose of $\leq 6 \ge 10^7$
635	$photons/sec/\mu m^2$ will allow the centroids of most terrestrial basalts to lie within analytical
636	error of anhydrous calibration curves. We emphasize that beam damage must be assessed
637	at each beamline and for the specific materials under analysis in a given study.
638	
639	ACKNOWLEDGEMENTS
640	With admiration, we thank Catherine McCammon, who graciously provided her raw

641 Mössbauer spectra and laboratory notes to EC. We thank Tim Gooding and Tim Rose for

laboratory support at Smithsonian. EC gratefully acknowledges support from NSF EAR

⁶⁴³ 1347248, NSF EAR 1426717 and NSF OCE 1433212. KK gratefully acknowledges

support from NSF EAR 1347330 and NSF OCE 1433182. We are grateful for support

645	from Smithsonian's Scholarly Studies program. FD also acknowledges support from a
646	National Museum of Natural History Peter Buck Fellowship. We are grateful for support
647	for X26A from Department of Energy (DOE) GeoSciences DE-FG02-92ER14244. The
648	DOE Office of Science supported use of the NSLS under Contract No. DE-AC02-
649	98CH10886. We acknowledge the support of GeoSoilEnviroCARS (Sector 13), which is
650	supported by the National Science Foundation - Earth Sciences (EAR-1128799), and the
651	Department of Energy, Geosciences (DE-FG02-94ER14466). This research used
652	resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of
653	Science User Facility operated for the DOE Office of Science by Argonne National
654	Laboratory under Contract No. DE-AC02-06CH11357. We thank editorial handling by
655	Sasa Bajt and Keith Putirka as well as two anonymous reviewers for constructive
656	comments that improved the submission.

657

659 **REFERENCES**

660 661	Alberto, H.V., Pinto da Cunha, J.L., Mysen, B.O., Gil, J.M., and Ayres de Campos, N. (1996) Analysis of Mossbauer spectra of silicate glasses using a two-dimensional Gaussian distribution of hyperfine
662	parameters. Journal of Non-Crystalline Solids, 194, 48-57.
663	Arlot, S. and Celisse, A. (2010) A survey of cross-validation procedures for model 655 selection. Statist.
664	Surv. 4, 40-79.
665	Bajt, S., Sutton, S.R., and Delaney, J.S. (1994) X-Ray Microprobe Analysis of Iron Oxidation-States in
666	Silicates and Oxides Using X-Ray-Absorption near-Edge Structure (Xanes). Geochimica Et
667	Cosmochimica Acta, 58(23), 5209-5214.
668 669	Beetz, T., and Jacobsen, C. (2003) Soft X-ray radiation-damage studies in PMMA using a cryo-STXM. Journal of Synchrotron Radiation, 10(3), 280-283.
670	Berry, A.J., O'Neill, H.S.C., Jayasuriya, K.D., Campbell, S.J., and Foran, G.J. (2003) XANES
671 672	calibrations for the oxidation state of iron in a silicate glass. American Mineralogist, 88(7), 967- 977
673	Botcharnikov R E. Koenke I. Holtz F. McCammon C. and Wilke M. (2005) The effect of water
674	activity on the oxidation and structural state of Fe in a ferro-basaltic melt. Geochimica Ft
675	Cosmochimica Acta (9(21), 5071-5085
676	Brounce M Kelley K and Cottrell F (2014a) Variations in Fe3+/ Σ Fe of Mariana arc basalts and
677	mantle wedge f Ω ? Journal of Petrology 55(12) 2513-2536
678	Brounce M Kelley K A and Cottrell F (2014b) The Fe3+/SFe variations in Mariana Arc basalts and
679	primary fO2 of the mantle wedge Journal of Petrology $55(12)$ $2513-2536$
680	Carmichael ISE (1991) The Redox States of Basic and Silicic Magmas - a Reflection of Their Source
681	Regions Contributions to Mineralogy and Petrology 106(2) 129-141
682	Corbett M.C. Latimer M.L. Poulos T.L. Sevrioukova LF. Hodgson K.O. and Hedman B. (2007)
683	Photoreduction of the active site of the metalloprotein putidared oxin by synchrotron radiation
684	Acta Crystallographica Section D: Biological Crystallography 63(9) 951-960
685	Cottrell E and Kelley K A (2011) The oxidation state of Fe in MORB glasses and the oxygen fugacity of
686	the upper mantle. Earth and Planetary Science Letters. 305(3-4), 270-282.
687	Cottrell, E., Kellev, K.A., Lanzirotti, A., and Fischer, R.A. (2009) High-precision determination of iron
688	oxidation state in silicate glasses using XANES. Chemical Geology. 268(3-4), 167-179.
689	Dixon LE Stolper EM and Holloway LR (1995) An experimental study of water and carbon
600	diovido solubilitios in mid ocean ridgo basaltic liquide 1. Calibration and solubility models
090	dioxide solubilities in find ocean fluge basarde riquids .1. Cambration and solubility models.
691	Journal of Petrology, 36(6), 160/-1631.
692	Dubochet, J., Adrian, M., Chang, JJ., Homo, JC., Lepault, J., McDowall, A.W., and Schultz, P. (1988)
693	Cryo-electron microscopy of vitrified specimens. Quarterly reviews of biophysics, 21(2), 129-228.
694	Dyar, M.D., Breves, E.A., Gunter, M.E., Lanzirotti, A., Tucker, J.M., Carey, C., Peel, S.E., Brown, E.B.,
695	Oberti, R., and Lerotic, M. (2016) Use of multivariate analysis for synchrotron micro-XANES
696	analysis of iron valence state in amphiboles. American Mineralogist, 101(5), 11/1-1189.
69/	Dyar, M.D., Naney, M.I., and Swanson, S.E. (1987) Effects of Quench Methods on Fe3+/Fe2+ Ratios - a
698	Mossbauer and wel-Chemical Study. American Mineralogist, 72(7-8), 792-800.
099 700	Eccknoul, S.G., Neislus, L., and Castaneda, C. (2005) Oxidation effects in beryl induced by synchrotron
700	radiation. Nuclear instruments and Methods in Physics Research Section B: Beam interactions
701	With Materials and Atoms, 229(1), 75-77.
702	Flege, A., Ruprecht, P., Simon, A.C., Bell, A.S., Goulicher, J., Newville, M., Lanzirout, T., and Moore, G.
703	(2017) Califoration of Fe XAINES for high-precision determination of Fe oxidation state in glasses.
704	Comparison of new and existing results obtained at different synchrotron radiation sources.
705	American Mineralogist, 102(2), 309-380.
700	FIOSI, D.K. (1991) Introduction to oxygen fugacity and its petrologic importance. In D.H. Lindsley, Ed.
707	Chateni G A O'Leary LA Shimizu N Bucholz C E and Nouville M (2012) Danid recevilibration
708	of H2O and oxygen fugacity in olivine-hosted melt inclusions. Geology, 40(10), 915-918.

710	Gaillard, F., Scaillet, B., Pichavant, M., and Beny, J.L. (2001) The effect of water and fO(2) on the ferric-
711	ferrous ratio of silicic melts. Chemical Geology, 174(1-3), 255-273.
712	Grabolle, M., Haumann, M., Müller, C., Liebisch, P., and Dau, H. (2006) Rapid loss of structural motifs in
713	the manganese complex of oxygenic photosynthesis by X-ray irradiation at 10–300 K. Journal of
714	Biological Chemistry, 281(8), 4580-4588.
715	Gonçalves Ferreira, P., de Ligny, D., Lazzari, O., Jean, A., Cintora Gonzalez, O., and Neuville, D.R. (2013)
716	Photoreduction of iron by a synchrotron X-ray beam in low iron content soda-lime silicate glasses.
717	Chemical Geology, 346, 106-112.
718	Helz, R., Cottrell, E., Brounce, M., and Kelley, K. (2017) Olivine-melt relationships and syneruptive redox
719	variations in the 1959 eruption of Kilauea Volcano as revealed by XANES. Journal of
720	Volcanology and Geothermal Research, 333, 1-14.
721	Henderson, G.S., de Groot, F.M.F., and Moulton, B.J.A. (2014) X-ray Absorption Near-Edge Structure
722	(XANES) Spectroscopy. Reviews in Mineralogy and Geochemistry, 78(1), 75-138.
723	B.L. Henke, E.M. Gullikson, and J.C. Davis. (1993) X-ray interactions: photoabsorption, scattering,
724	transmission, and reflection at E=50-30000 eV, Z=1-92. Atomic Data and Nuclear Data Tables
725	Vol. 54 (no.2), 181-342.
726	Jackson, W.E., F., F., Yeager, M., Mabrouk, P.A., Rossano, S., Waychunas, G.A., Solomon, E.I., and
727	Brown, G.E. (2005) Multi-spectroscopic study of Fe(II) in silicate glasses: Implications for the
728	coordination environment of Fe(II) in silicate melts. Geochimica Et Cosmochimica Acta, 69,
729	4315.
730	Jayasuriya, K.D., O'Neill, H.S., Berry, A.J., and Campbell, S.J. (2004) A Mossbauer study of the oxidation
731	state of Fe in silicate melts. American Mineralogist, 89(11-12), 1597-1609.
732	Johnson, J., Johnson, C., Holland, D., Mekki, A., Appleyard, P., and Thomas, M. (1999) Transition metal
733	ions in ternary sodium silicate glasses: a Mössbauer and neutron study. Journal of non-crystalline
734	solids, 246(1), 104-114.
735	Kelley, K.A., and Cottrell, E. (2009) Water and the Oxidation State of Subduction Zone Magmas. Science,
736	325(5940), 605-607.
737	(2012) The influence of magmatic differentiation on the oxidation state of Fe in a basaltic arc magma.
738	Earth and Planetary Science Letters, 329, 109-121.
739	Klimm, K., Kohn, S.C., O'Dell, L.A., Botcharnikov, R.E., and Smith, M.E. (2012) The dissolution
/40	mechanism of sulphur in hydrous silicate melts. I: Assessment of analytical techniques in
/41 742	determining the sulphur speciation in iron-free to iron-poor glasses. Chemical Geology, 322-323,
742	23/-249. Kross V.C. and Cormished J.S.E. (1001) The communicipility of silicots liquide containing Es2O2 and the
745	Kress, V.C., and Carmichael, I.S.E. (1991) The compressibility of sincate inquids containing Fe2O5 and the
744	Contributions to Mineralogy and Petrology 108, 82, 92
745	Lagarea K and Banaourt D.C. (1008) BECOIL Möschouer spectral analysis software for windows
740	(version 1.0) Department of Physics, University of Ottowa, Canada
747	Lagarec K and Rancourt D (1997) Extended Voigt-based analytic lineshape method for determining N-
740	dimensional correlated hyperfine parameter distributions in Mössbauer spectroscopy. Nuclear
750	Instruments and Methods in Physics Research Section R: Beam Interactions with Materials and
751	Atoms 129(2) 266-280
752	Le Vover M Cottrell E Kellev K A Brounce M and Hauri E H (2015) The effect of primary versus
753	secondary processes on the volatile content of MORB glasses: An example from the equatorial
754	Mid- Atlantic Ridge (5° N–3° S). Journal of Geophysical Research: Solid Earth, 120(1), 125-144.
755	Matiuschkin, V., Brooker, R.A., Tattitch, B., Blundy, J.D., and Stamper, C.C. (2015) Control and
756	monitoring of oxygen fugacity in piston cylinder experiments. Contributions to Mineralogy and
757	Petrology, 169(1), 1-16.
758	Meents, A., Gutmann, S., Wagner, A., and Schulze-Briese, C. (2010) Origin and temperature dependence
759	of radiation damage in biological samples at cryogenic temperatures. Proceedings of the National
760	Academy of Sciences, 107(3), 1094-1099.
761	Moor, J., Fischer, T., Sharp, Z., King, P., Wilke, M., Botcharnikov, R., Cottrell, E., Zelenski, M., Marty,
762	B., and Klimm, K. (2013) Sulfur degassing at Erta Ale (Ethiopia) and Masaya (Nicaragua)

763	volcanoes: Implications for degassing processes and oxygen fugacities of basaltic systems.
764	Geochemistry, Geophysics, Geosystems, 14(10), 4076-4108.
765	Moore, G., Righter, K., and Carmichael, I.S.E. (1995) The Effect of Dissolved Water on the Oxidation-
766	State of Iron in Natural Silicate Liquids. Contributions to Mineralogy and Petrology, 120(2), 170-
767	179.
768	Moussallam, Y., Edmonds, M., Scaillet, B., Peters, N., Gennaro, E., Sides, I., and Oppenheimer, C. (2016)
769	The impact of degassing on the oxidation state of basaltic magmas: A case study of Kilauea
770	volcano. Earth and Planetary Science Letters, 450, 317-325.
771	Moussallam, Y., Oppenheimer, C., Scaillet, B., Gaillard, F., Kyle, P., Peters, N., Hartley, M., Berlo, K., and
772	Donovan, A. (2014) Tracking the changing oxidation state of Erebus magmas, from mantle to
773	surface, driven by magma ascent and degassing. Earth and Planetary Science Letters, 393, 200-
774	209.
775	Mysen, B.O., Carmichael, I.S.E., and Virgo, D. (1985a) A Comparison of Iron Redox Ratios in Silicate-
776	Glasses Determined by Wet-Chemical and Fe-57 Mossbauer Resonant Absorption Methods.
777	Contributions to Mineralogy and Petrology, 90(2-3), 101-106.
778	Mysen, B.O., and Richet, P. (2005) Silicate Glasses and Melts - Properties and Structure. 548 p. Elsevier,
779	New York.
780	Mysen, B.O., and Virgo, D. (1989) Redox equilibria, structure, and properties of Fe-bearing
781	aluminosilicate melts: Relationships between temperature, composition, and oxyen fugacity in the
782	system Na2O-Al2O3-SiO2-FeO. American Mineralogist, 74, 58-76.
783	Mysen, B.O., Virgo, D., Neumann, E.R., and Seifert, F.A. (1985b) Redox Equilibria and the Structural
784	States of Ferric and Ferrous Iron in Melts in the System Cao-Mgo-Al2o3-Sio2-Fe-O -
785	Relationships between Redox Equilibria, Melt Structure and Liquidus Phase-Equilibria. American
786	Mineralogist, 70(3-4), 317-331.
787	Penner-Hahn, J.E. (2005) X-ray Absorption Spectroscopy.
788	Roe, A., Schneider, D., Mayer, R., Pyrz, J., Widom, J., and Que Jr, L. (1984) X-ray absorption
789	spectroscopy of iron-tyrosinate proteins. Journal of the American Chemical Society, 106(6), 1676-
790	
791	Rowe, M.C., Kent, A.J.R., and Nielsen, R.L. (2007) Determination of sulfur speciation and oxidation state
792	of olivine hosted melt inclusions. Chemical Geology, $236(3-4)$, $303-322$.
/93	Sack, R.O., Carmichael, I.S.E., Rivers, M., and Ghiorso, M.S. (1980) Ferric-Ferrous Equilibria in Natural
/94 705	Silicate Liquids at Ibar. Contributions to Mineralogy and Petrology, 75(4), 369-376.
795 706	Snimizugawa, J., Umesaki, M., Hanada, M., Sakai, M., and Qiu, M. (2001) X-ray induced reduction of rare
/96	earth ion doped in Na2O-Al2O3-B2O3 glasses. Journal of synchrotron radiation, 8(2), 797-799.
709	Shorture, O., Moussanam, F., Haruey, M.E., Macreminan, J., Edmonds, M., and Murton, B.J. (2015) Fe-
790	Earth avugan avala Earth and Dianatary Solonaa Latters 427, 272, 285
799 800	Stamper C. Melekhova F. Blundy, I. Arculus P. Humphreys M. and Brooker P. (2014) Oxidised
800	stamper, C., Meteknova, E., Diundy, J., Arcurus, K., Humphreys, M., and Diooker, K. (2014) Oxidised
801	and Petrology 167(1) 054
803	Steinbrecht R A and Zierold K (2012) Cryotechniques in biological electron microscopy Springer
804	Science & Business Media
805	Sutton S.R. Lanzirotti A. Newville M. Rivers M.L. Eng. P. and Lefticariu L. (2017) Spatially
806	Resolved Elemental Analysis Spectroscopy and Diffraction at the GSECARS Sector at the
807	Advanced Photon Source Journal of Environment Quality 0(0) 0
808	Tappero, R., Smith, R.J., Acerbo, A.S., DiFabio, J., and Miller, L. (2016) Can cryo-cooling mitigate
809	chemical changes for hydrated samples? International Conference on X-ray Microscopy.
810	Tappero, R., Smith, R.J., Acerbo, A.S., Lanzirotti, A., Newville, M., Sutton, S.R., Northrup, P., O'Hara, S.,
811	and Miller, L.M. (2017) A portable cryostage system for X-ray fluorescence microprobes. 14th
812	International Conference on the Biogeochemistry of Trace Elements (ICOBTE).
813	Westre, T.A., Kennepohl, P., DeWitt, J.G., Hedman, B., Hodgson, K.O., and Solomon, E.I. (1997) A
814	Multiplet Analysis of Fe K-Edge 1s-3d Pre-Edge Features of Iron Complexes. Journal of
815	American Chemical Society, 119, 6297-6314.

816	Wilke, M., Behrens, H., Burkhard, D.J.M., and Rossano, S. (2002) The oxidation state of iron in silicic
817	melt at 500 MPa water pressure. Chemical Geology, 189(1-2), 55-67.
818	Wilke, M., Farges, F., Petit, PE., Brown, G.E., Jr., and Martin, F. (2001) Oxidation state and coordination
819	of Fe in minerals: An Fe K-XANES spectroscopic study. American Mineralogist, 86(5-6), 714-
820	730.
821	Wilke, M., Jugo, P.J., Klimm, K., Susini, J., Botcharnikov, R., Kohn, S.C., and Janousch, M. (2008) The
822	origin of S4+ detected in silicate glasses by XANES. American Mineralogist, 93(1), 235-240.
823	Wilke, M., Partzsch, G.M., Bernhardt, R., and Lattard, D. (2005) Determination of the iron oxidation state
824	in basaltic glasses using XANES at the K-edge. Chemical Geology, 220(1-2), 143-161.
825	Wilke, M., Schmidt, C., Farges, F., Malavergne, V., Gautron, L., Simionovici, A., Hahn, M., and Petit, P.E.
826	(2006) Structural environment of iron in hydrous aluminosilicate glass and melt-evidence from X-
827	ray absorption spectroscopy. Chemical Geology, 229(1-3), 144-161.
828	Zhang, H.L., Cottrell, E., Hirschmann, M.M., and Kelley, K.A. (submitted) Determination of Fe3+/2Fe of
829	XANES basaltic glass standards by Mössbauer spectroscopy and its application to the oxidation
830	state of iron in MORB. Chemical Geology.
831	Zhang, H.L., Hirschmann, M.M., Cottrell, E., Newville, M., and Lanzirotti, A. (2016) Structural
832	environment of iron and accurate determination of Fe3+/ΣFe ratios in andesitic glasses by XANES
833	and Mössbauer spectroscopy. Chemical Geology, 428, 48-58.
834	Zhang, H.L., Solheid, P.A., Lange, R.A., von der Handt, A., and Hirschmann, M.M. (2015) Accurate
835	determination of Fe3+/ Σ Fe of andesitic glass by Mössbauer spectroscopy. American Mineralogist,
836	100(8-9), 1967-1977.
837	
838	
839	
840	FIGURE CAPTIONS

841

Figure 1. XANES spectra for hydrous B glasses and anhydrous LW and AII glasses 842 under three radiation dose conditions. Left hand panels show full spectra; right hand 843 panels magnify the pre-edge region. Spectra are color-coded by relative $Fe^{3+}/\Sigma Fe$ ratio as 844 determined by Mössbauer spectroscopy (black are the most reduced glasses, grading 845 through red and orange to yellow, which are the most oxidized glasses). Note the 846 smooth, monotonic, decrease in the intensity in the first pre-edge multiplet and increase 847 in intensity of the second pre-edge multiplet as a function of $Fe^{3+}/\Sigma Fe$ ratio for the 848 hydrous samples under the bending magnet and low radiation dose conditions, and the 849 anhydrous glasses under all dose conditions. Spectra of hydrous B glasses under the high 850 radiation dose condition do not evolve systematically as a function of $Fe^{3+}/\Sigma Fe$ ratio. 851 852

853	Figure 2. (A) $Fe^{3+}/\Sigma Fe$ ratios determined by Mössbauer spectroscopy versus $Fe^{3+}/\Sigma Fe$
854	ratios determined by XANES at a flux of 10^{6-7} photons/sec/ μ m ² using the anhydrous
855	basalt calibration curve of Cottrell et al. (2009). Filled circles: anhydrous basalts, Cottrell
856	et al. (2009). Open squares: hydrous basalts, Botcharnikov et al (2005). Filled squares
857	and filled triangles: hydrous basalts, this study. The anhydrous basalts, on which this
858	calibration is based, fall slightly off the 1:1 line because we have used the average
859	centroid of these glasses collected over a 10 year period (n=30-50 per glass) as reported
860	in Zhang et al. (submitted) to highlight the reproducibility of the measurement. (B) The
861	same analysis as in (A), but at a higher flux of 10^{10} photons/sec/ μ m ² . Vertical 1σ error
862	bars are smaller than the symbol sizes. Horizontal 1σ error bars are the errors on the
863	Mössbauer determinations. Dashed lines show the predictive capability of the model
864	using a leave-one-out cross validation method (Arlot and Celisse, 2010). The root mean
865	square uncertainty for the predicted $Fe^{3+}/\Sigma Fe$ ratios of unknowns determined from the
866	basaltic calibration is $\leq \pm 0.01$ (1 σ).

867

Figure 3. Time-dependence of the intensity of the second pre-edge multiplet (Δ FeK α /IO) during exposure to synchrotron radiation under four beam conditions: high flux density (filled squares) and low flux density (open circles); and at ambient temperature (red) and with the sample cryogenically cooled to -195°C (blue). The intensity of the second preedge multiplet is higher (i.e. more radiation-induced oxidative beam damage) when the sample is cryogenically cooled under both beam conditions.

874

Figure 4. Evolution of spectral features as a function of spectrum number (proxy for

876	dose) for spectra acquired in succession in the same position on the sample for hydrous
877	glass B11 and anhydrous glass AII. (A) Evolution of centroids under two beam
878	conditions, high radiation dose condition $XANES_3$ ('+' and 'x' symbols) and low
879	radiation dose condition XANES ₄ (circles and triangles). Centroids of successive spots on
880	anhydrous glass AII show no significant changes under either beam condition.
881	Application of a high radiation dose, typical of focused beams at undulator beamlines,
882	does not result in significant changes to the centroids of successive spectra on the same
883	spot of hydrous glass B11; however, centroids acquired using a high radiation dose are
884	higher than centroids collected on the same sample at low radiation dose. Significant
885	increases in the centroids of successive spots on hydrous glass B11 only become apparent
886	using a low radiation dose. Vertical 1σ error bars are smaller than the symbol sizes.
887	(B) Evolution of I_{Fe2+} and I_{Fe3+} with successive spectra taken at the same position under
888	low radiation dose condition XANES ₄ . Vertical 1σ error bars are smaller than the symbol
889	sizes.

890

Figure 5. (A) Evolution the background-subtracted pre-edge, acquired via successive
analyses in the same sample position, as a function of radiation dose, using condition
XANES₄. As the total dose increases, the intensity of the first pre-edge multiplet
decreases while the second increases. (B) The main edge moves to progressively higher
energy as dose increases.

896

Figure 6. The grey-scale image is a peak amplitude map collected at ~7113.2 eV (energy
of 2nd pre-edge multiplet) of hydrous glass B11. Image color is scaled to maximum

intensity, where white is high and black is low. The inset map is a peak amplitude map
collected at 7113.2/7111.6eV (peak amplitude of the 2nd pre-edge multiplet divided by
the peak amplitude of the 1st pre-edge multiplet). Image color is scaled to maximum peak
amplitude, where white is high and red is low. White areas show spots analysed >1 year
earlier.

904

Figure 7. A "variogram" showing the spectral characteristics of centroid versus 905 906 integrated pre-edge intensity (area) of Fe in end-member structural environments (large 907 empty circles) from Wilke et al., 2001 and glasses from this study. Anhydrous (black circles) and hydrous glass (red and blue squares) spectral characteristics from this study 908 909 are consistent with iron in five-fold coordination or a mixture of four-fold and six-fold coordination. Under the same radiation dose conditions, anhydrous glasses display higher 910 pre-edge intensities relative to hydrous glasses at a given centroid energy. Hydrous 911 912 glasses under high radiation dose conditions display higher pre-edge intensities than under low radiation dose conditions; however, increases in pre-edge intensities are 913 proportional to increases in the centroid (Fe³⁺/ Σ Fe ratio). Vertical 1 σ error bars are 914 915 smaller than the symbol sizes.

916

Figure 8. We use $\Phi = Fe^{3+}/\Sigma Fe_{Moss} - Fe^{3+}/\Sigma Fe_{XANES}$ as a proxy for beam-induced Fe oxidation (where Mössbauer spectra establish the "true" Fe³⁺/ Σ Fe ratio, and the XANES centroid the "apparent" Fe³⁺/ Σ Fe ratio). The molar concentration of **(A)** dissolved water (single cation basis), XHO_{1.5}, **(B)** ferric iron (single cation basis), XFeO_{1.5}, and **(C)** the ratio of dissolved water multipled by the ferrous/ferric ratio, XHO_{1.5}*XFeO/XFeO_{1.5},

922	versus % $Fe^{3+}/\Sigma Fe_{M\bar{o}ss} - Fe^{3+}/\Sigma Fe_{XANES}$. The correlation in (C) is forced through the
923	origin, because we observe no oxidative beam damage in anhydrous glasses. 1σ error
924	bars are smaller than the symbol sizes.
925	
926	Figure 9. Pre-edge spectra of one anhydrous and four hydrous glasses, with varying Φ
927	and under two radiation dose conditions. We display merged, successive spectra,
928	acquired under two different beam conditions: high radiation dose condition $XANES_3$
929	(red) and low radiation dose condition $XANES_4$ (blue). The black line shows the
930	difference between the spectra.
931	
932	Figure 10. (A) FTIR transmission map of glass B10 surrounding an area purposely
933	exposed with a $2x2\mu m$ synchrotron radiation beam at a photon flux of $\sim 1x10^{12}$
934	photons/sec for ~ 12 minutes. We show the location of the beam at the sample surface, but
935	the beam intersects the sample surface at a 45° angle and travels through the sample from
936	left to right. Color scale shows the intensity of the H_2O_{Total} absorbance band at 3500 cm-1
937	after subtraction of a reference intensity at 2300 cm-1. Each pixel is 20 x 20 μ m. FTIR
938	spectra for pixels designated (1) and (2) are discussed in the text.
939	

Table 1: F	Room Tei	mpera	ture		_												
Mossbauer hyperfine parameters, $+e3+/\Sigma$ Fe ratios, and select compositional parameters																	
		Fe³⁺/Σ	Fe * 100	1		spectral fitting parameters (this study) B et al., 2005											
Sample	B et al. 2005	1σ	this study	1σ	X ²	Bkgrd.	Fe ³⁺ CS	Fe ³⁺ δCS	Fe ^{³+} QS	Fe ^{3⁺} δQS	Fe²⁺ CS	Fe²⁺ δCS	Fe²⁺ QS	Fe²⁺ δQS	FeO Total Wt.%	H2O Total Wt.%	Φ^
B11	19	2	18.7	1.45	1.0	1024543	0.46	0.19	0.93	0.14	0.95	0.12	1.98	0.44	12.49	4.82	1.05
B16	18	2	16.8	1.23	0.8	1427668	0.53	0.09	0.92	0.39	0.95	0.14	1.97	0.41	12.93	3.02	0.81
B12	11	2	12.3	1.81	1.2	598904	0.52	0.28	1.12	0.01	0.97	0.14	2.00	0.42	12.02	1.9	0.77
B13	10	2	12	1.41	1.0	1988275	0.48	0.34	1.00	0.02	0.94	0.03	1.91	0.48	11.39	1.71	0.72
B10	40	4	36.3	1.61	1.1	680688	0.50	0.02	0.90	0.38	0.91	0.28	2.02	0.12	12.61	2.43	0.24
B6	39	3	36.9	1.72	1.2	644411	0.44	0.02	0.91	0.46	0.96	0.12	1.93	0.38	12.94	2	0.19
B9	29	3	26.7	2.14	1.4	570588	0.55	0.19	0.82	0.00	0.91	0.28	1.99	0.10	12.62	1.14	0.19
B7	23	2	21.1	0.94	0.6	1068960	0.57	0.18	0.87	0.00	0.92	0.28	1.94	0.12	12.91	0.97	0.22
B8	16	2	17.8	1.15	0.8	905216	0.59	0.02	0.92	0.34	0.93	0.28	1.92	0.14	12.67	0.82	0.23
B17	60	2	55.6	2.03	1.4	392639	0.50	0.16	0.88	0.29	0.93	0.29	2.11	0.09	12.65	4.67	0.19
B21	49	2	45.7	1.58	1.1	735417	0.50	0.05	0.90	0.38	0.89	0.31	2.04	0.15	12.34	2.9	0.19
B19	52	2	49.3	1.68	1.1	628828	0.54	0.15	0.82	0.28	0.81	0.28	2.21	0.11	12.91	1.85	0.11
B22	28	2	25.3	0.38	0.3	5545128	0.58	0.20	0.82	0.00	0.89	0.28	1.98	0.11	12.77	0.94	0.17
B20	25	2	24.8	1.00	0.7	2254268	0.58	0.20	0.83	0.00	0.90	0.28	1.98	0.11	12.80	0.72	0.13
			C et al., 2009 ^v	1σ	X²	Bkgrd.	Fe ³⁺ CS	Fe ^{³+} δCS	Fe ^{³+} QS	Fe ^{³⁺} δQS	Fe ²⁺ CS	Fe ²⁺ δCS	Fe ²⁺ QS	Fe ²⁺ δQS			
AII_0	-	-	14.7	0.38	0.55	5408375	0.44	0.09	1.31	0.47	0.95	0.15	1.88	0.44	-	-	-
AII_05	-	-	19.4	0.63	0.63	7463896	0.50	0.17	1.27	0.46	0.95	0.16	1.88	0.42	-	-	-
AII05	-	-	13.8	0.50	0.5	6400103	0.44	0.04	1.30	0.63	0.95	0.18	1.88	0.37	-	-	-
All_15	-	-	24.7	0.44	0.44	5948886	0.44	0.03	1.26	0.50	0.95	0.17	1.88	0.42	-	-	-
All15	-	-	9.3	0.60	0.6	694310	0.44	0.33	1.29	0.03	0.95	0.14	1.88	0.45	-	-	-
All_25	-	-	35.6	0.38	0.38	5951129	0.41	0.09	1.27	0.50	0.95	0.18	1.88	0.41	-	-	-
All_35	-	-	48.4	0.40	0.4	12486195	0.38	0.10	1.25	0.48	0.93	0.17	1.88	0.14	-	-	-
All_45	-	-	61.1	0.26	0.26	10318722	0.37	0.09	1.26	0.48	0.91	0.18	1.88	0.44	-	-	-
LW_0	-	-	16.2	0.55	0.38	7123408	0.44	0.14	1.23	0.55	0.95	0.16	1.90	0.42	-	-	-
LW_10	-	-	23.5	0.53	0.53	7922396	0.46	0.17	1.22	0.40	0.95	0.15	1.91	0.43	-	-	-
LW10	-	-	13.0	0.58	0.58	9201577	0.44	0.10	1.25	0.70	0.95	0.16	1.90	0.42	-	-	-
LW_20	-	-	30.3	0.14	1.4	2072205	0.30	0.12	1.22	0.48	0.86	0.10	1.91	0.47	-	-	-
LW20	-	-	8.8	0.53	0.53	6835643	0.44	0.03	1.28	0.03	0.95	0.15	1.90	0.42	-	-	-

^v Cottrell et al al., 2009. Recommended Fe³⁺/∑Fe ratios, considering recoiless fraction, can be found in Zhang et al., submitted. Room Temperature values are used in this work for comparison with Botcharnikov et al., 2005.

940

 $^{\Lambda}\Phi$ = XHO_{0.5}*XFeO/XFeO_{1.5} based on Fe3+/ Σ Fe ratios from this study and H₂O from Botcharnikov et al., 2005.

Table 2: Synchrotron radiation dose conditions										
	spot size	nhoton flux	flux density							
Flux Condition	(μm)	(photons/sec)	(photons/sec/µm ²)	Gray/sec**	notes					
XANES₁	2x2	5 x 10 ¹⁰⁻¹¹	1x10 ¹⁰⁻¹¹	9.0x10 ¹⁰⁻¹¹	nominal at 13-ID-D					
XANES₃	2x2	1.5-8.6 x 10 ⁹	4 x10 ⁸ to 2 x10 ⁹	~1.3x10 ⁷						
XANES₄	50x50	1.5-8.6 x 10 ⁹	8 x10 ⁵ to 3 x10 ⁶	~1.3x10 ⁴						
XANES₅	25x25	2 x 10 ⁹	3x10 ⁶	3.8x10 ⁴						
XANES _{CRYO-HI}	38x28	3-4 x 10 ⁷	3-4 x 10 ⁴		monochrometer = 7113.3eV					
XANES _{CRYO-LO}	38x28	2-4 x 10 ⁶	2-4 x 10 ³		monochrometer = 7113.3eV					
X26A	9x5	3 x10 ⁹	6x10 ⁷	7.7x10 ⁵						

**Dose in Gray (Joules/kg/sec) is calculated for glass of basaltic composition through 1/e absorption length

Table 3: XANES centroids and integrated pre-edge intensities															
		X26A	*			XANE	S₁		XANES₅						
	5x	10 ¹⁰ phote	ons/um ²		3x ⁻	10 ¹⁵ phot	ons/um ²		2x10 ⁹ photons/um ²						
sample	centroid	σ	l1	12	centroid	σ	11	12	centroid	σ	11	12	% Δ **		
B11	7112.402	0.012	0.06	0.037	7112.654	0.015	0.053	0.066	7112.421	0.003	0.058	0.045	71.9		
B16	7112.342	0.008	0.063	0.031	7112.578	0.007	0.057	0.057	7112.362	0.01	0.061	0.04	69.2		
B12	7112.226	0.007	0.073	0.026	7112.4	0.016	0.07	0.046	7112.228	0.002	0.074	0.032	66.4		
B13	7112.177	0.002	0.077	0.024	7112.328	0.011	0.073	0.038	7112.211	0.015	0.076	0.031	46.0		
B10	7112.784	0.01	0.047	0.062	7112.86	0.018	0.045	0.082	7112.773	0.004	0.048	0.074	18.4		
B6	7112.733	0.012	0.05	0.06	7112.793	0.017	0.049	0.076	7112.735	0.007	0.052	0.07	6.5		
B9	7112.585	0.006	0.06	0.05	7112.633	0.006	0.06	0.066	7112.568	0.011	0.06	0.058	16.5		
B7	7112.477	0.007	0.064	0.042	7112.505	0.009	0.066	0.054	7112.468	0.009	0.064	0.05	18.7		
B8	7112.413	0.007	0.07	0.04	7112.451	0.026	0.066	0.05	7112.418	0.006	0.067	0.047	27.2		
B17	7113.083	0.013	0.03	0.088	7113.108	0.016	0.029	0.106	7113.059	0.001	0.032	0.098	3.8		
B21	7112.988	0.006	0.039	0.082	7113.029	0.014	0.039	0.104	7112.957	0.008	0.04	0.088	15.5		
B19	7113.01	0.008	0.04	0.083	7112.99	0.011	0.042	0.097	7112.969	0.008	0.042	0.094	2.3		
B22	7112.587	0.01	0.062	0.051	7112.613	0.008	0.06	0.064	7112.582	0.01	0.06	0.06	19.1		
B20	7112.548	0.002	0.064	0.048	7112.551	0.009	0.064	0.058	7112.538	0.009	0.063	0.057	9.5		
	5x	10 ¹⁰ phote	ons/um ²		4x ⁻	10 ¹⁵ phot	ons/um ²								
AII0	7112.275	0.01	0.091	0.03	7112.271	0.009	0.079	0.036							
AII05	7112.361	0.011	0.086	0.038	7112.368	0.002	0.08	0.046							
All-05	7112.219	0.01	0.09	0.029	7112.22	0.004	0.084	0.034							
All15	7112.52	0.013	0.078	0.047	7112.529	0.002	0.069	0.058							
All-15	7112.147	0.026	0.093	0.02	7112.134	0.007	0.087	0.025							
All25	7112.742	0.014	0.068	0.07	7112.76	0.009	0.061	0.079							
AII35	7112.962	0.027	0.055	0.091	7112.974	0.002	0.052	0.106							
All45	7113.184	0.025	0.046	0.124	7113.186	0.003	0.042	0.14							
LW_0	7112.3	0.01	0.085	0.032	7112.302	0.01	0.079	0.04							
LW10	7112.434	0.013	0.078	0.042	7112.433	0.009	0.07	0.05							
LW-10	7112.154	0.024	0.095	0.023	7112.155	0.004	0.085	0.028							
LW20	7112.608	0.02	0.072	0.058	7112.62	0.002	0.069	0.069							
LW-20	7112.112	0.01	0.097	0.018	7112.128	0.002	0.092	0.027							

✤ centroids are 7-yr avgs (n=30-48) as reported in Zhang et al., submitted

 ${}^{**}Fe^{3+}\!/{\Sigma}Fe_{M\ddot{o}ss}-Fe^{3+}\!/{\Sigma}Fe_{XANES}$

Doses reported in this table are per spectrum (photons/sec/µm2*total collection time)

Figure 2
Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. DOI: https://doi.org/10.2138/am-2018-6268

