1		Revision 1
2	Ch	romium-bearing phases in the Earth's mantle: Evidence from
3	experi	ments in the Mg ₂ SiO ₄ –MgCr ₂ O ₄ system at 10–24 GPa and 1600 °C
4	Ekateri	INA A. SIROTKINA ^{1,2,3,*} , ANDREY V. BOBROV ^{1,2,3} , LUCA BINDI ^{4,5} , TETSUO IRIFUNE ^{6,7}
5 6	¹ Vernadsl	ky Institute of Geochemistry and Analytical Chemistry of Russian Academy of Sciences, Moscow, Russia 119991
7 8 9 10	² Dep ³ Institut ⁴ Dij ⁵ CNR	artment of Petrology, Geological Faculty, Moscow State University, Moscow, Russia 119991 e of Experimental Mineralogy of Russian Academy of Sciences, Chernogolovka, Russia, 142432 partimento di Scienze della Terra, Università di Firenze, Via La Pira 4, 50121 Florence, Italy R - Istituto di Geoscienze e Georisorse, sezione di Firenze, Via La Pira 4, 50121 Florence, Italy
11		⁶ Geodynamics Research Center, Ehime University, Matsuyama 790-8577, Japan
12 13		⁷ Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo 152-8550, Japan
14	*Correspo	nding Author: ekaterina.a.sirotkina@gmail.com
15		
16	Abbreviat	tions
17	Ak	akimotoite (MgSiO ₃ with ilmenite-type structure)
18	anhB	anhydrous phase B ((Mg,Cr) ₁₄ (Si,Cr) ₅ O ₂₄)
19	Brd	bridgmanite (MgSiO ₃ with perovskite-type structure)
20	Ct	MgCr ₂ O ₄ with calcium-titanate structure
21	Chr	chromite
22	Esk	eskolaite (Cr ₂ O ₃)
23	Fo	forsterite
24	fPer	ferropericlase
25	Grt	garnet
26	Knr	knorringite (Mg ₃ Cr ₂ Si ₃ O ₁₂)
27	Maj	majorite (Mg ₄ Si ₄ O ₁₂)
28	MChr	magnesiochromite (MgCr ₂ O ₄)
29	mCt	Mg(Si,Mg)(Cr,Mg)O4 with modified calcium titanate-type structure
30	mLd	Mg ₂ Cr ₂ O ₅ with modified ludwigite-type structure
31	Ol	olivine
32	OPx	orthopyroxene
33	Per	periclase (MgO)
34	Prp	pyrope (Mg ₃ Al ₂ Si ₃ O ₁₂)
35	Rgw	ringwoodite

36	Wad	wadsleyite
37		Abstract
39	Phase relation	ns in the system Mg2SiO4–MgCr2O4 were studied at 10–24 GPa and 1600°C using
40	a high-pressu	re Kawai-type multi-anvil apparatus. We investigated the full range of starting
41	compositions	for the forsterite-magnesiochromite system to derive a $P-X$ phase diagram and
42	synthesize chi	romium-bearing phases, such as garnet, wadsleyite, ringwoodite, and bridgmanite
43	of a wide co	mpositional range. Samples synthesized at 10 GPa contain olivine with small
44	chromium cor	ntent and magnesiochromite. Mg2SiO4 wadsleyite is characterized by the pressure-
45	dependent hig	gher chromium solubility (up to 7.4 wt % Cr ₂ O ₃). The maximal solubility of
46	chromium in	ringwoodite in the studied system (~18.5 wt% Cr_2O_3) was detected at $P = 23$ GPa,
47	which is close	e to the upper boundary of the ringwoodite stability. Addition of chromium to the
48	system move	es the boundaries of olivine/wadsleyite and wadsleyite/ringwoodite phase
49	transformation	ns to lower pressures. Our experiments simulate Cr-rich phase assemblages found
50	as inclusions	in diamonds, mantle xenoliths, and UHP podiform chromitites.
51		
52	Keywords: M	agnesiochromite, Forsterite, Olivine, Wadsleyite, Ringwoodite, Knorringite,
53	Majorite, Brid	dgmanite, Mantle, High-P-T experiments, Phase relations
54		
55		
56		INTRODUCTION
57	The Ear	rth's upper mantle consists of olivine (~60 vol %), ortho-, clinopyroxenes, spinel,
58	and garnet (R	ingwood 1966; Harte 2010; Pushcharovsky and Pushcharovsky 2012). The phases
59	of the transitio	on zone include wadsleyite/ringwoodite and majoritic garnet. At higher pressures
60	(correspondin	ing to the lower mantle) the ringwoodite-bearing assemblage converts into a
61	bridgmanite +	- ferropericlase association with a minor amount of CaSiO ₃ perovskite (Liu 1976;

Ito and Takahashi 1989). Some of these phases are observed as inclusions in natural diamonds (Harte 2010). Mantle minerals show variable concentrations of minor elements. Although the solubility of minor elements in high-pressure phases is poorly studied, it is known that even small concentrations of these elements may significantly influence the physical properties as well as the crystal-chemical peculiarities of mantle phases and control the physicochemical parameters of the main phase equilibria (Panero et al. 2006; Andrault 2007; Sirotkina et al. 2015).

Chromium is one of such elements with the low bulk concentrations in the Earth's mantle (0.42 wt % Cr₂O₃) (Ringwood 1966), although some mantle phases (garnet, chrome spinel, etc.) are characterized by significant Cr contents (Stachel and Harris 1997; Harte et al. 1999). The studies of phase equilibria in multicomponent mantle systems (pyrolite and peridotites) (Hirose 2002; Irifune 1987; Irifune and Ringwood 1987) provide only limited information on interphase partitioning of chromium, which is mostly explained by its very low concentrations in starting compositions.

The highest Cr concentrations have been documented in such mantle phases as chrome spinel 76 77 (Meyer and Boyd, 1972; Sobolev 1974). Magnesiochromite (MgCr₂O₄) is an important end-78 member of chrome spinel in mantle peridotites (Fig. 1). Its concentration in chrome spinel from 79 inclusions in diamonds and xenoliths of Grt-peridotite reaches 95 and 85 mol % (63–68 wt % 80 and 57–63 wt % Cr₂O₃), respectively (Meyer and Boyd 1972; Sobolev 1974). The lowest chromium content (25-38 wt % Cr₂O₃) is typical of spinel from Sp-peridotite xenoliths in 81 82 kimberlite and alkali basalt. Chrome spinel from ophiolithes occupies an intermediate position between the Grt- and Sp-peridotite xenoliths. There is a clear positive correlation between 83 chromium content in Cr-spinel from peridotites and both the degree of partial melting and 84 pressure (Dick and Bullen 1984). 85

Although the concentrations of Cr in $(Mg,Fe)_2SiO_4$ polymorphs and bridgmanite are rather low, abundance of these phases in the mantle allows us to consider them as the major hosts for chromium. Mantle olivine in association with chromite contains an exceptionally high content of chromium (up to 1.10 wt. % Cr₂O₃) (Phillips et al. 2004). More Cr-rich phases (1.49 wt. % Cr₂O₃) with the composition of olivine were identified in UHP podiform chromitites of the Luobusa ophiolite, Southern Tibet (Robinson et al. 2004; Liang et al. 2014); such phases could be originally ringwoodite, then transformed to a Mg-Fe silicate with an octahedral shape.

Gudfinnsson and Wood (1998) studied the effect of minor elements, such as Ni, Cr, Al, and H, on the depth and thickness of olivine-wadsleyite transition. The authors demonstrated that the maximum concentration of Cr_2O_3 that could be dissolved in wadsleyite was ~2.0 wt% at 14 GPa and 1600°C. They suggested that effects of these minor elements on the properties of the 410 km seismic discontinuity (olivine/wadsleyite transition) was negligible.

It should be noted that experiments in this study are unbuffered so both valence states of chromium are possible. It is evident from some experimental studies (Hanson and Jones 1998; Berry and O'Neill 2004; Papike et al. 2004) that Cr²⁺ is quite abundant in melts at high temperature, but may enter olivine under very reduced conditions (IW-1 (Papike et al. 2004)). Such conditions are rare in natural processes and may be typical of central inclusions in deep diamonds (Ryabchikov et al. 1981), lunar basalts, and meteorites. Therefore, we suggest that our study is relevant to most of high-pressure assemblages of the Earth's mantle.

105 The system MgO – SiO₂ – Cr₂O₃ provides a useful simplification for phase equilibria in the 106 Earth's mantle. This system can be used as a basis for description of more complex 107 (multicomponent or natural) systems containing FeO, Al₂O₃, and CaO, which simulate more 108 closely mantle equilibria and may be used in thermobarometry of mantle assemblages. The 109 MgSiO₃–Cr₂O₃ section of the MgO–SiO₂–Cr₂O₃ system is well studied in a wide pressure and 100 temperature ranges (Irifune et al. 1982; Turkin et al. 1983; Doroshev et al. 1997; Klemme 2004;

Taran et al. 2004; Zou and Irifune 2012; Sirotkina et al. 2015). Incorporation of chromium in 111 112 mantle phases was also investigated in the simple model (with the garnet and olivine 113 compositions) (Girnis et al. 2003; Klemme et al. 2004; Turkin and Sobolev 2009) and multi-114 component (peridotite and pyrolite) (Irifune 1987; Kato et al. 1988) systems. 115 In this paper, we report phase relations in the Mg₂SiO₄–MgCr₂O₄ section of the SiO₂ – MgO – Cr₂O₃ system at 10–24 GPa and 1600°C. The synthesized chromium-bearing phases (Mg₂SiO₄ 116 polymorphs, majoritic garnet, bridgmanite, and phases with the calcium titanate-type structure) 117 118 and their solid solutions were characterized to investigate their structural peculiarities and compositional changes as a function of pressure. Some implications for the mineralogy of the 119 120 Cr-bearing phases in the deep mantle including mineral assemblages of the high-pressure podiform chromitite from the Luobusa ophiolite (Southern Tibet) are discussed in the light of 121 122 our new experimental data.

123

124

EXPERIMENTAL AND ANALYTICAL PROCEDURES

Powdered mixtures of chemically pure oxides (MgO, Cr_2O_3 , and SiO_2) taken in stoichiometric 125 126 proportions, homogenized at room temperature using ethanol, and then dried in an oven at 100 127 $^{\circ}$ C were used as starting materials. The use of fine-grained (<1 μ m) oxides helps to enhance chemical reactions in HP-HT runs, as was demonstrated by Zou and Irifune (2012). Five 128 compositions falling between the forsterite Mg₂SiO₄ and magnesiochromite MgCr₂O₄ end 129 members were prepared. The experiments were performed at 10-24 GPa and at a fixed 130 131 temperature of 1600 °C using a 2,000-t Kawai-type multi-anvil high-pressure apparatus at the Geodynamics Research Center, Ehime University. The cell assembly used in the present 132 experiments is described in Sirotkina et al. (2015). Tungsten carbide cubic anvils with 4.0- and 133 3.0-mm truncation edge length were applied as the second-stage anvils of the high-pressure 134 apparatus. The pressure medium was a semi-sintered (MgO+17 wt % CoO) octahedron of 10.0 135

and 8.0 mm in edge length. A tubular LaCrO₃ heater was inserted into the pressure medium. 136 137 The starting material was loaded into a capsule of 1.1 mm in height (0.9 mm for 8/3 cell 138 assembly) and 1.2 mm in diameter made of a platinum foil. The capsule was insulated from the 139 heater by a MgO sleeve. The temperature was measured using a W₉₇Re₃ - W₇₅Re₂₅ thermocouple with a hot junction positioned in the central part of the heater. The temperature 140 measurement accuracy was ± 10 °C. Pressure values at room temperature were calibrated 141 against the load (oil pressure) of the press based on the pressure fixed points: Bi I-II transition 142 143 at 2.55 GPa, Bi III-V transition at 7.7 GPa, and semiconductor-metal transitions of ZnS at 15.5 GPa and GaAs at 18.3 GPa (Irifune et al. 2004; Zou and Irifune 2012). The effect of temperature 144 145 on pressure was further corrected using the α - β and β - γ phase transitions of Mg₂SiO₄ (Katsura and Ito 1989; Yamada et al. 2004). As a result, run pressure was controlled within ± 0.5 GPa 146 (Irifune et al. 1991). The experiments started with pressurization at ambient temperature to the 147 target pressure, and then the charge was heated to 1600 °C. The heating duration of each run 148 149 was 3–5 h. After the heating, the samples were quenched by switching off the power supply, subsequently depressurized, and recovered at ambient conditions. As there was some 150 151 temperature gradient within the sample, only the high-temperature portions near the 152 thermocouple junction were examined in the following analyses.

To exclude the version of metastability in the studied system and confirm the attainment of 153 equilibrium, each run sample was divided into several pieces for microprobe analysis and XRD 154 measurements. To analyze composition of the phases, the samples were embedded into epoxy 155 156 and polished. Compositions of synthesized phases were studied at the Geological Faculty, Moscow State University, by using a Jeol JSM-6480LV electron microscope equipped with an 157 energy-dispersive X-ray detector INCA Energy. The following standards were used: synthetic 158 SiO₂, MgO, and Cr₂O₃ for Si, Mg, and Cr, respectively. Phase compositions in each run were 159 determined from the average of 3-6 analyses performed at 20 kV accelerating voltage, 10 nA 160

161	beam current. The samples were homogeneous, without significant differences in textures and
162	mineral composition and without zoning of individual grains, thus confirming that the chemical
163	equilibrium was achieved in the runs. We applied the SkyScan software (CT-An) for precise
164	determination of the bulk concentration of garnet in the sample by using BSE images. Small
165	crystals of chromium-rich phases, including olivine, wadsleyite, ringwoodite, anhydrous phase
166	B and Mg[(Cr,Mg)(Si,Mg)]O4 with distorted calcium titanate-type structure, handpicked under
167	a reflected light microscope from the experimental products, were preliminarily examined at
168	the CRIST Center of the University of Florence, Italy, with a Bruker-Enraf MACH3 single-
169	crystal diffractometer using graphite-monochromatized Mo $K\alpha$ radiation. The data collections
170	were then done with an Oxford Diffraction Xcalibur 3 diffractometer (X-ray MoK α radiation,
171	$\lambda = 0.71073$ Å) fitted with a Sapphire 2 CCD detector at the CRIST Center of the University of
172	Florence, Italy. Intensity integration and standard Lorentz-polarization corrections were done
173	with the CrysAlis RED (Oxford Diffraction 2006) software package. The program ABSPACK
174	of the CrysAlis RED package (Oxford Diffraction 2006) was used for the absorption correction.
175	

- 175
- 176

RESULTS

P-X diagram for the system Mg₂SiO₄-MgCr₂O₄ at 1600°C and textural relationships in the run
products

At 10–24 GPa and 1600°C we studied the full range of the starting materials in the Mg₂SiO₄ (Fo)–MgCr₂O₄ (MChr) system in increments of 20–30 mol % MChr and 1–3 GPa, which allowed us to synthesize chromium-bearing phases with a wide compositional range. The main phases obtained in experiments were olivine (Ol), wadsleyite (Wad), ringwoodite (Rgw), MgCr₂O₄ (Ct) and Mg(Si,Mg)(Cr,Mg)O₄ with modified calcium titanate-type structure (mCt) (Bindi et al. 2015a), garnet (Grt) of the majorite (Maj)–knorringite (Knr) composition, chromium-bearing bridgmanite (Brd) and periclase (Per), eskolaite (Esk), Mg₂Cr₂O₅ with

modified ludwigite-type structure (mLd), MgCr₂O₄ with spinel-type structure (MChr), and 186 anhydrous phase B (Mg,Cr)₁₄(Si,Cr)₅O₂₄ (anhB) (Bindi et al. 2016). Run conditions and phase 187 188 compositions of the samples are reported in Table 1. Phase relations in the Mg2SiO4-MgCr2O4 189 system can be described in terms of the three-component system SiO₂–MgO–Cr₂O₃ (Fig. 2). 190 Textural relationships in experimental samples are evident from BSE photomicrographs (Fig. 3); Figure 4 shows the P-X diagram for the system Mg₂SiO₄-MgCr₂O₄ at 1600°C. This diagram 191 192 illustrates the phase relations, as well as the compositions of associated phases. Such approach 193 was successfully applied in some previous studies (e.g., Sirotkina et al. 2015).

An association of chromium-bearing olivine and magnesiochromite (Ol + MChr) is stable at a pressure of 10 GPa over a wide range of the starting compositions. The texture of the experimental sample shown in Fig. 3a is composed of relatively large olivine crystals with a size of >50 μ m and uniformly distributed MChr grains, often interstitial with a size of <30 μ m. The fraction of spinel in the sample increases with increasing chromium content in the starting composition from ~27 vol % in run 2632-30 (30 mol % MChr in the starting composition) to 80 vol % in run 2632-80 (80 mol % MChr in the starting composition).

Increase of pressure for Cr-poor bulk compositions (0–8 mol % MChr in the starting composition) results in the formation of a single-phase field of wadsleyite (Fig. 4). At a pressure of > 12 GPa, an association of Grt, mLd, and anhB is stabilized in the range of starting compositions from 8 to 60 mol % MChr by the following reactions (*a* and *b* in Figs. 2a and 2b): 205

$$8Mg_2SiO_4 (Ol/Wad/mCt) + MgCr_2O_4 (MChr/mCt) =$$

$$= Mg_{14}Si_5O_{24}(anh B) + Mg_3Cr_2Si_3O_{12}(Knr)$$
(a)

209
$$5MgCr_2O_4 (MChr/mCt) + 3Mg_2SiO_4 (Ol/Wad/mCt) =$$

210 $= Mg_3Cr_2Si_3O_{12} (Knr) + 4Mg_2Cr_2O_5 (mLd)$ (*b*₁)

211

212
$$MgCr_2O_4 (MChr/mCt) + Mg_2SiO_4 (Ol/Wad/mCt) =$$

213 $= MgSiO_3 (Maj) + Mg_2Cr_2O_5 (mLd)$ (b₂)

214

As Knr-Maj garnet and anhB plot outside the Fo-MChr section on the SiO₂-MgO-Cr₂O₃

216 diagram (Fig. 2a), the studied system should be considered as pseudo-binary. Further increase 217 in pressure results in the formation of an association of Wad and mCt (reaction *a* in Fig. 2a 218 proceeds to the left). Wad associated with mCt is represented by relatively large euhedral 219 crystals with a size of $<70 \,\mu$ m. mCt forms small subhedral grains (Fig. 3b).

220 Increase in chromium content in the starting composition (from 35 to 60 mol % MChr) results

in the formation of an association of Grt and mCt. Reactions b_1 and b_2 in Fig. 2b illustrate the

formation of the Knr and Maj end-members of garnet, respectively. Mass balance in the system

requires the formation of mLd as well. The texture of the samples is formed by relatively large

crystals of mCt with a size up to 60 μ m, smaller elongated mLd grains (<25 μ m), and relatively

small ($<15 \mu m$) euhedral Grt crystals (Fig. 3c).

At a pressure of ~12 GPa, an association of Ol and Ct is replaced by the paragenesis of Grt,

Esk, and mLd in the chromium-rich part of the system. The first appearance of an association

228 mLd + Esk is controlled by the reaction (line c in Fig. 2b):

229

230
$$2MgCr_2O_4 (MChr/Ct) = Mg_2Cr_2O_5 (mLd) + Cr_2O_3 (Esk).$$
 (c)

231

Appearance of an association Esk + mLd provides additional evidence for the pseudo-binary
 character of the studied Fo–MChr system.

The formation of Ct in association with Maj-rich Grt (or Cr-bearing Brd) and mLd at a pressure

of >18 GPa is controlled by the reaction d in Fig. 2c:

236

237
$$Mg_3Cr_2Si_3O_{12} (Knr) + Mg_2Cr_2O_5 (mLd) = 2MgCr_2O_4 (Ct) + 3MgSiO_3 (Maj/Brd).$$
 (d)

238

Ct forms relatively large grains with a size up to 50 µm. With increasing pressure, the field of
Ct expands to the lower Cr concentrations in the system due to increasing Mg₂SiO₄ solubility
in this phase.
At a pressure of >18 GPa, two garnet-bearing associations (Grt + Wad + mLd (Fig. 3d) and Grt
+ Ct + mLd) are stable within a wide range of starting compositions (10–90 mol % MChr). The

- first of them is observed in Samples 2651-50 and 2645-10 at 19 GPa. At a pressure of ~20 GPa,
- 245 Wad is replaced by ringwoodite (both phases associate with Cr-rich Grt and mLd). The single-
- 246 phase field of Rgw is typical of the low-chromium starting compositions at ~21 GPa.
- 247 The transition from garnet-bearing associations (Grt + Rgw + mLd and Grt + Ct + mLd) to the
- 248 paragenesis of MgSiO₃ bridgmanite (Brd + Rgw + mLd and Brd + Ct + mLd) (Fig. 3e) is
- observed in a wide range of starting compositions (\sim 15–85 mol % MChr) at *P* >20 GPa. Brd
- 250 forms small fractured euhedral crystals with a grain size up to $20 \ \mu m$.
- Further increase in pressure (> 23 GPa) results in decomposition of Rgw and formation of an association of Per and Brd (Fig. 3f) for the Cr-poor bulk compositions (0–20 mol % MChr),
- according to the following reaction (line *e* in Fig. 2c):
- 254

255
$$Mg_2SiO_4 (Rgw) = MgSiO_3 (Brd) + MgO (Per).$$
 (e)

256

Cr-bearing Brd and Per are accompanied by mLd for the starting composition with a chromiumcontent from 20 to 45 mol % MChr.

259

260 *Compositions of the phases*

Most phases synthesized in the *system* Mg_2SiO_4 – $MgCr_2O_4$ at 10–24 GPa and 1600°C show wide compositional variations. Compositions of the phases produced in our experiments are reported in Table 2.

Olivine and its high-pressure polymorphs (wadsleyite and ringwoodite) in the Mg₂SiO₄– MgCr₂O₄ system contain chromium. The maximal solubility of chromium in *olivine* synthesized at 10 GPa reaches ~3.2 wt % Cr₂O₃ (0.060 Cr pfu). Mg₂SiO₄ *wadsleyite* is characterized by the higher chromium solubility increasing with pressure (Fig. 5) up to 7.4 wt % Cr₂O₃ (~0.140 Cr pfu) at 19 GPa. The concentration of chromium in Mg₂SiO₄ *ringwoodite* increases with pressure as well (Fig. 5). The maximal solubility of chromium in Rgw in the Fo– MChr system (~18.5 wt % Cr₂O₃; 0.363 Cr pfu) was detected at a pressure of 23 GPa, which is

- close to the upper boundary of the Rgw stability.
- 272 Spinel (magnesiochromite) associated with Ol has the composition close to MgCr₂O₄ with a
- small silicon admixture (< 1.9 wt % SiO₂, 0.059 Si pfu).
- 274 In all runs $Mg(Mg,Si)(Si,Cr)O_4$ with modified calcium titanate-type structure (mCt) is
- characterized by significant amounts of Si (>23 wt % SiO₂, 58-63 mol % Fo) and narrow
- compositional range. Cr in this phase shows the negative correlation with both Mg and Si (Fig.
- 6). The concentration of Cr in mCt decreases with increasing pressure, whereas the content of
- 278 Si and Mg in the octahedral site increases.

279 $MgCr_2O_4$ with calcium titanate-type structure (Ct) is characterized by a relatively wide 280 compositional range. Mg and Si in this phase are substituted for Cr in the octahedral sites. 281 MgCr₂O₄ (Ct) in run products has significant silicon admixture. In the pressure range from 18 282 to 21 GPa, the concentration of SiO₂ in Ct does not exceed 2.5 wt%. With increasing pressure, 283 the concentration of Si in Ct increases. The maximal solubility of silicon in Ct in the Fo–MChr 284 system (~8 wt % SiO₂; 23 mol % Fo) is observed at a pressure of 24 GPa. However, as is evident 285 from Fig. 6, there is a significant compositional gap between the Ct and mCt phases. MgCr₂O₄

(Ct) synthesized in the Maj–Knr system (Sirotkina et al. 2015) contains significantly lower
concentrations of silicon in comparison with Ct from the Fo–MChr system (Fig. 6). The
dependence of the silicon content on pressure is not evident, since there is no Si in Ct,
synthesized at 24 GPa (Bindi et al. 2014a; Sirotkina et al. 2015). This finding is likely explained
by association with stishovite at pressures above 20 GPa in the majorite–knorringite system
(Sirotkina et al. 2015).

Garnets in all experimental samples have a relatively narrow compositional range and are 292 characterized by a silicon surplus over 3.0 pfu indicating incorporation of the majorite end-293 member. The concentration of majorite component in garnet increases with pressure that is 294 295 consistent with the data on the Maj-Knr system (Sirotkina et al. 2015). Thus, the content of Si in the octahedral site is 3.23 pfu (~ 23 mol % Maj in run 2653-80) at 13 GPa, whereas the 296 content of Si in garnet synthesized at 20 GPa is 3.47 pfu (~47 mol % Maj; run 2635-40). Garnets 297 synthesized in the Maj-Knr system with the higher bulk silica concentration are characterized 298 299 by the higher concentrations of chromium (up to 90 mol % Knr, 30.78 wt % Cr₂O₃) registered at a pressure of 10 GPa (Fig. 7) (Sirotkina et al. 2015). 300

301 $Mg_2Cr_2O_5$ with modified ludwigite-type structure (mLd) was synthesized in a wide range of

pressure and starting compositions. At relatively low pressures, mLd is characterized by a low

structure. It is evident that the composition of this phase depends on pressure: the concentration

303 Si content, deficiency in Mg, and enrichment in Cr. Mg is substituted for Cr and Si in the mLd

of Si and Mg increases with pressure, whereas the content of Cr decreases (Table 2). Thus, the

maximal solubility of Si in mLd synthesized in the Fo–MChr system (\sim 3.9 wt % SiO₂; 0.15

307 pfu) was registered at a pressure of 24 GPa (Table 2).

302

304

308 *Bridgmanite* is characterized by a relatively narrow compositional range (2.8–6.9 wt % Cr₂O₃).

The maximal solubility of chromium (~6.9 wt % Cr₂O₃, 0.093 Cr pfu) in Brd was registered at

- 310 24 GPa. Cr shows negative correlation with both Mg and Si, which is consistent with a coupled
- 311 substitution of $Mg^{2+}+Si^{4+}=2Cr^{3+}$.
- 312 *Periclase* synthesized at a pressure of >23 GPa in association with Brd is characterized by a
- significant amount of silicon (3.8 wt% SiO₂, 0.027 Si pfu) and chromium (22.4 wt% Cr₂O₃,
- 314 0.125 pfu Cr). This fact makes Per one of promising Cr concentrators in the Earth's lower
- 315 mantle.
- 316 Anhydrous phase B (anhB) contains the high concentrations of Mg, Si and admixture of Cr
- matching to the formula $(Mg_{14-x}Cr_x)(Si_{5-x}Cr_x)O_{24}$ ($x \approx 0.30$) (Table 2).
- 318
- 319 The influence of Cr on cell parameters of mantle phases
- 320 As it was mentioned above, all phases with the composition of Mg_2SiO_4 (Ol/Wad/Rgw)
- 321 synthesized in the Fo–MChr system, contain chromium.
- 322 Chromium-bearing olivine with 3.2 wt % Cr_2O_3 (10 GPa, run 2632-30) was found to be 323 orthorhombic, with a space group *Pbnm* and lattice parameters a = 4.752(1), b = 10.195(4), c =
- 5.979(2) Å, V = 289.68(3) Å³. Increase in pressure results in the formation of Wad with a higher
- 325 chromium content (Table 2). As follows from the data on pure Mg₂SiO₄ Wd (Finger et al. 1993),
- 326 incorporation of chromium in Wad results in a slight decrease in the unit-cell volume. The
- studied Cr-Wad crystals are orthorhombic with a space group Imma and lattice parameters a =
- 328 5.690(1), b = 11.456(4), c = 8.250(2) Å, V = 537.81(4) Å³ (18 GPa, run 2639-10) for the
- composition Mg_{1.95}Cr_{0.10}Si_{0.95}O₄; a = 5.686(2) Å, b = 11.452(6), c = 8.246(4), V = 537.02(1)
- 330 Å³ (19 GPa, run 2645-10) for the composition $Mg_{1.93}Cr_{0.14}Si_{0.93}O_4$. Cr-bearing Rgw studied by
- 331 single crystal X-ray diffraction is characterized by the cubic symmetry with a space group *Fd*-
- 332 3*m* and lattice parameters a = 8.063(2), V = 524.23(1) Å³ (21 GPa, run 2649-10) for the
- composition $Mg_{1.98}Cr_{0.04}Si_{0.98}O_4$. This value is slightly lower than the *a* parameter observed for
- 334 pure Mg_2SiO_4 Rgw (Hazen et al. 1993).

The mechanisms of Cr incorporation in Wad and Rgw are different. The negative correlation 335 between Cr and Si (Fig. 8) with an angular trend line coefficient of -0.5 is observed for Wad. 336 337 This fact was previously reported in the experimental study by Gudfinnsson and Wood (1998), where the mechanism (1) $2^{VI}Cr^{3+}+^{IV}Mg^{2+}=2^{VI}Mg^{2+}+^{IV}Si^{4+}$ for Cr incorporation in Wad was 338 suggested. Judging from the compositions of Wad obtained in our runs, the same correlation 339 (with an angular coefficient of -0.5) is observed between Mg and Cr (Fig. 8). Hence, we may 340 341 suggest an alternative mechanism for Cr incorporation in Wad: (2)^{VI}Cr³⁺+^{IV}Cr³⁺=^{VI}Mg²⁺+^{IV}Si⁴⁺ (Cr substitutes for Mg in the octahedra and for Si in the 342 tetrahedra). Both mechanisms are supported by the negative correlation of Cr with Si and Mg 343 344 with a slope of -0.5. Thus, we have structures with cation substitutions in both tetrahedral and octahedral sites. In the mechanism (1), Mg replaces Si in the tetrahedral site (inducing an 345 346 enlargement) and Cr substitutes for Mg in the octahedral sites (inducing a decrease). In the second case (2), there is the similar effect, which is expressed in Cr substitution for both Si in 347 348 the tetrahedral site (inducing an enlargement) and Mg in the octahedral sites (inducing a decrease). It seems that the lengthening of the T–O bond distances is perfectly counterbalanced 349 350 by the shortening of the M-O bond distances, thus provoking an almost unchanged unit-cell 351 volume (Fig. 9).

Rgw is characterized by the negative correlation between Cr and Si with an angular coefficient of -0.5 (Fig. 10). Rgw has the spinel-type structure and, therefore, we suggest a different (from that of Wad) mechanism for Cr incorporation in this phase: Mg substitutes for Si in the tetrahedral site, whereas Cr fully enters Mg-octahedra by the following scheme: $2^{VI}Cr^{3+}+^{IV}Mg^{2+}=2^{VI}Mg^{2+}+^{IV}Si^{4+}$. This substitution would be analogous to that observed in spinel MgAl₂O₄ with addition of the MgCr₂O₄ component. The unit-cell volume of Rgw remains almost unaffected by the Mg-for-Cr and Si-for-Cr substitutions.

360

IMPLICATIONS

361 Implication for the high-Cr mantle mineral assemblages

The main chromium-bearing phases in the Earth's upper mantle are chrome spinel and garnet. The chromium-bearing phases of the transition zone include knorringite-majorite garnet. At higher pressures (corresponding to the lower mantle) the main chromium-rich phases are bridgmanite (up to 1.33 wt % Cr_2O_3) (Zedgenizov et al. 2015) and ferropericlase (up to 2.65 wt % Cr_2O_3) (Harte et al. 1999).

367 Other chromium-bearing phases in the Earth's mantle are ortho- and clinopyroxenes (with up 368 to 1 wt % and 7.3 wt % Cr_2O_3 , respectively), high-pressure post-spinel phases (Mg(Cr,Fe³⁺)₂O₄,

369 $Ca(Cr,Fe^{3+})_2O_4)$ with the calcium titanate- (CaTi₂O₄) and calcium ferrite-type structure

 $(CaFe_2O_4)$ (Kaminsky et al. 2015), and eskolaite (Logvinova et al. 2008).

Structure refinements and P-X diagrams of Cr-bearing phases are important for understanding of the influence of Cr on the phase equilibria in the Earth's mantle. It was found that, despite its small content in the mantle, Cr exerts a significant effect on spinel to garnet peridotite transition (MacGregor 1970; O'Neill 1981). Doroshev et al. (1997) established the negative slope of the P–T boundary for the reaction Knr = Esk + En, which was later supported by the detailed thermodynamic analysis of Girnis with co-workers (2003).

377 The stability field of knorringite has been investigated in several studies (Irifune et al. 1982; Turkin et al. 1983; Klemme 2004; Taran et al. 2004; Zou and Irifune 2012). The pressure- and 378 temperature-dependent compositional variations of garnets have been studied on the pyrope-379 380 knorringite (Malinovskii and Doroshev 1974; Klemme 2004; Turkin and Sobolev 2009), majorite-knorringite (Zou and Irifune 2012; Sirotkina et al. 2015), and pyrope-majorite-381 knorringite (Sirotkina et al. 2016) joins. In these systems, Cr-rich garnets are characterized by 382 the wide compositional range (up to 90 mol % Knr in the Maj-Knr system) and stability field 383 (from 3 GPa in Al-bearing systems to 20 GPa). Our new data show that in the olivine-rich 384

system (Fo–MChr), Cr-Grt is stable in a quite wide pressure range of 12–20 GPa, whereas the 385 compositional range of Grt is narrower (from 50 to 75 mol % Knr), which is explained by 386 387 appearance of other Cr-rich phases (anh-B and mCt) (Bindi et al. 2016). 388 The results of our runs show that even low concentrations of Cr may affect significantly on the 389 bridgmanite stability in the Earth's mantle. In contrast to the Brd stability field in Cr-free and Al-bearing systems (Kubo and Akaogi, 2000; Akaogi et al. 2002), Cr-bearing Brd may be 390 formed at least at 20 GPa (Fig. 4). As the chromium concentration in (Mg,Fe)SiO₃ "enstatite" 391 392 (a retrograde phase inheriting an initial Brd chemical composition) in association with ferropericlase, which were identified as the lower mantle inclusions in diamonds (Harte and 393 394 Harris, 1994; Hutchison 1997; Stachel et al. 2000, 2002; Davies et al. 2004), reaches 1.33 wt % Cr_2O_3 (Zedgenizov et al. 2015), the formation of such diamonds under the lower mantle 395 conditions may be impugned.

397

396

398 Implication to UHP podiform chromitite

The most Cr-rich mantle assemblages include podiform chromitites in ophiolitic complexes, 399 400 formed through reaction between mantle peridotite and melt with subsequent magma/melt 401 mixing at an uppermost mantle level (Arai and Yurimoto 1994). Some of them (UHP chromitites), however, contain ultrahigh-pressure (UHP) minerals. For example, high-pressure 402 403 nature of podiform chromitite in the Luobusa ophiolite (Southern Tibet) is discussed in some works on the basis of finds of diamond (Robinson et al. 2004; Yang et al. 2007), coesite (Yang 404 405 et al. 2007; Yamamoto et al. 2009), stishovite (Yang et al. 2007), and ringwoodite (Robinson 406 et al. 2004). Recently the data on the composition and relationships of Cr-bearing phases were involved for substantiation of high-pressure origin of the Luobusa chromitite in the processes 407 of deep recycling and upwelling mantle flow (Arai 2013). 408

409	In addition to Chr, Ol is the most abundant Cr-bearing phase in Luobusa chromitite and contains
410	up to 1.5 wt % Cr ₂ O ₃ (~1.6 mol % MgCr ₂ O ₄) (Liang et al. 2014). Such high concentrations of
411	Cr are not typical of mantle olivine, but according to our experimental data (Fig. 4), Ol may
412	accommodate much more chromium (up to $3.2 \text{ wt } \% \text{ Cr}_2\text{O}_3$). As is evident from the data of this
413	study the highest concentrations of Cr_2O_3 in Wad and Rgw are 7.4 and 18.5 wt %, respectively.
414	Ishii et al. (2015) studied the simple systems of MgCr ₂ O ₄ and FeCr ₂ O ₄ and estimated the highest
415	pressure of the formation of Luobusa chromitite. The authors of the cited paper suggest that
416	absence of the phase assemblage $(Mg,Fe)_2Cr_2O_5 + Cr_2O_3$ stable at 12–18 GPa provides evidence
417	for the lower (<12 GPa) pressures of the origin.

418 Synthesis of the new phase $Mg(Mg,Cr,Si)_2O_4$ with a distorted calcium titanate-type structure (Bindi et al. 2015; this study) in the model system Fo-MChr (Fig. 4) is of crucial importance 419 420 in discussion of the origin of Luobusa chromitite. This phase is stable in a wide pressure range (12–18 GPa) and covers a wide range of the starting compositions. As is evident from Fig. 2, 421 422 this phase occupies an intermediate position between Mg₂SiO₄ and MgCr₂O₄ having a narrow compositional range (58–63 mol % Fo). The discovery of this phase impugns the conclusion of 423 424 (Yamamoto et al. 2009) and limits the highest pressure of the Luobusa chromitite formation by 425 the level of ~ 12 GPa, above which mCt is stable.

426 Dobrzhinetskaya et al. (1996) reported that Ol from the Alpe Arami Massif, Switzerland contained numerous oriented ilmenite and chromite intergrowths, which were presumably 427 formed due to the decomposition chromium-rich Wad (Yufeng et al. 2008). Such chromium-428 429 wadsleyite was formed at a pressure over 10-15 GPa (300-450 km). The formation of 430 exsolution textures of chromium-bearing phases in Ol (Dobrzhinetskaya et al. 1996; Yufeng et al. 2008) and silicates in Chr (Yamamoto et al. 2009) may be explained by the P-X phase 431 diagram of the Fo-MChr pseudobinary system (Fig. 4). An association of low-Cr olivine and 432 low-Si chromite is stable at a pressure of up to 12 GPa. With increasing pressure, we expect 433

434	increase in both concentrations of Si in Chr and Cr in olivine. Decompression will result in
435	exsolution of these phases with exsolution of chromium-bearing phases in olivine and silicates
436	in chromite
437	
438	ACKNOWLEDGEMENTS
439	We are grateful to Anton Shatskiy for constructive review and Keith Putirka for help and
440	valuable comments. This study was supported by the Russian Foundation for Basic Research
441	(project no. 16-05-00419). E.A. Sirotkina thanks Geodynamics Research Center, Ehime
442	University, Matsuyama, Japan, for support of her visits in 2016.
443	
444	

446	References
447	Akaogi, M., Tanaka, A., and Ito, E. (2002) Garnet-ilmenite-perovskite transitions in the system
448	Mg4Si4O12-Mg3Al2Si3O12 at high pressures and high temperatures: phase equilibria,
449	calorimetry and implications for mantle structure. Physics of the Earth and Planetary
450	Interiors, 132, 303–324.
451	Andrault, D. (2007) Properties of lower-mantle Al-(Mg,Fe)SiO3 perovskite. Geological Society
452	of America Special Papers, 421, 15–36.
453	Arai, S. (2013) Conversion of low-pressure chromitites to ultrahigh-pressure chromitites by
454	deep recycling: a good inference. Earth and Planetary Science Letters, 379, 81-87.
455	Arai, S., and Yurimoto, H. (1994) Podiform chromitites of the Tari-Misaka ultramafic complex,
456	southwestern Japan, as mantle-melt interaction products. Economic Geology, 89, 1279-
457	1288.
458	Aulbach, S., Griffin, W.L., Pearson, N.J., O'Reilly, S.Y., Kivi, K., and Doyle, B.J. (2004)
459	Mantle formation and evolution, Slave Craton: constraints from HSE abundances and
460	Re-Os isotope systematics of sulfide inclusions in mantle xenocrysts. Chemical geology,
461	208, 61–88.
462	Berry, A.J., and O'Neill, H.St.C. (2004) A XANES determination of the oxidation state of
463	chromium in silicate glasses. American Mineralogist, 89, 790-798.
464	Bindi, L., Sirotkina, E.A., Bobrov, A.V., Nestola, F., and Irifune, T. (2016) Chromium
465	solubility in anhydrous Phase B. Physics and Chemistry of Minerals, 43, 103–110.
466	Bindi, L., Sirotkina, E.A., Bobrov, A.V., and Irifune, T. (2015) Structural and chemical
467	characterization of Mg[(Cr,Mg)(Si,Mg)]O4, a new post-spinel phase with six-fold

468 coordinated silicon. American Mineralogist, 100, 1633–1636.

- 469 Bindi, L., Sirotkina, E.A., Bobrov, A.V., and Irifune, T. (2014a) X-ray single-crystal structural
- 470 characterization of MgCr₂O₄, a post-spinel phase synthesized at 23 GPa and 1600°C.
- Journal of Physics and Chemistry of Solids, 75, 638–641.
- 472 Davies, R.M., Griffin, W.L., O'Reilly, S.Y., and McCandless, T.E. (2004) Inclusions in
- diamond from the K14 and K10 kimberlites, Buffalo Hills, Alberta, Canada: diamond
 growth in a plume. Lithos, 77, 99–111.
- 475 Dick, H.J.B., and Bullen, T.B. (1984) Chromian spinel as a petrogenetic indicator in abyssal
- and alpine-type peridotites. In Kimberlites II: The mantle and crust-mantle relationships
- 477 (ed. J. Komprobst), 295–308.
- Dobrzhinetskaya, L., Green, H.W., and Wang, S. (1996) Alpe Arami: A peridotite massif from
 depths of more than 300 kilometers. Science, 271, 1841–1845.
- 480 Doroshev, A.M., Brey, G.P., Girnis, A.V., Turkin, A.I., and Kogarko L.N. (1997) Pyrope –
- 481 knorringite garnets in the Earth's mantle: Experiments in the MgO-Al₂O₃-SiO₂-Cr₂O₃
 482 system. Russian Geology and Geophysics, 38, 559–586.
- 483 Finger, L.W., Hazen, R.M., Zhang, J., Ko, J., and Navrotsky, A. (1993) The effect of Fe on the
- 484 crystal structure of wadsleyite β -(Mg_{1-x}Fe_x)₂SiO₄, 0.00 < x < 0.40. Physics and Chemistry 485 of Minerals, 19, 361–368.
- 486 Girnis, A.V., Brey, G.P., Doroshev, A.M., Turkin, A.I., and Simon, N. (2003) The system MgO-

Al₂O₃-SiO₂-Cr₂O₃ revisited: reanalysis of Doroshev et al.'s (1997) experiments and new
 experiments. European Journal of Mineralogy,15, 953–964.

- Gregoire, M., Bell, D.R., and Le Roex, A.P. (2006) Garnet lherzolithes from the Kaapraval
 Craton (South Africa): Trace element evidence for a metasomatic history. Journal of
 Petrology, 44, 629–657.
- Gudfinnsson, G.H., and Wood, B.J. (1998) The effect of trace elements on the olivine–
 wadsleyite transformation. American Mineralogist, 83, 1037–1044.

- 494 Hanson, B., and Jones, J.H. (1998) The systematics of Cr^{3+} and Cr^{2+} partitioning between
- d95 olivine and liquid in the presence of spinel. American Mineralogist, 83, 669–684.
- 496 Harte, B., and Harris, J.W. (1994) Lower mantle mineral association preserved in diamonds.
- 497 Mineralogical Magazine, 58, 384–385.
- 498 Harte, B., Harris, J.W., Hutchison, M.T., Watt, G.R., and Wilding, M.C. (1999) Lower mantle
- mineral associations in diamonds from Sao Luiz, Brazil. Mantle Petrology: Field
 Observations and High Pressure Experimentation: A tribute to Francis R. (Joe) Boyd (The
 Geochemical Society, Houston), 125–153.
- Harte, B. (2010) Diamond formation in the deep mantle: the record of mineral inclusions and
 their distribution in relation to mantle dehydration zones. Mineralogical Magazine, 74,
 189–215.
- Hazen, R.M., Downs, R.T., and Finger, L.W. (1993) Crystal chemistry of ferromagnesian
 silicate spinels:Evidence for Mg-Si disorder. American Minerlaogist, 78, 1320–1323.
- 507 Hirose, K. (2002) Phase transitions in pyrolitic mantle around 670-km depth: Implications for
- upwelling of plumes from the lower mantle. Journal of Geophysical research, 107,
 10.1029/2001JB000597.
- Hutchison, M.T. (1997) Constitution of the deep transition zone and lower mantle shown by
 diamonds and their inclusions. Ph.D. thesis, University of Edinburgh, UK.
- 512 Irifune, T. (1987) An experimental investigation of the pyroxene–garnet transformation in a
- pyrolite composition and its bearing on the constitution of the mantle. Physics of the Earth
 and Planetary Interiors, 45, 324–336.
- 515 Irifune, T., Fujino, K., and Ohtani, E. (1991) A new high- pressure form of MgAl₂O₄. Nature,
 516 349, 409–411.

517	Irifune, T.	., Kurio, A.,	Sakamoto, S	., Inoue,	T., Sumiy	ya, H.,	and Funa	koshi, K.	(2004)) Formation
-----	-------------	---------------	-------------	-----------	-----------	---------	----------	-----------	--------	-------------

- of pure polycrystalline diamond by direct conversion of graphite at high pressure and high
 temperature. Physics of the Earth and Planetary Interiors, 143, 593–600.
- 520 Irifune, T., Ohtani, E., and Kumazawa, M. (1982) Stability field of knorringite Mg₃Cr₂Si₃O₁₂
- at high pressure and its implication to the occurrence of Cr-rich pyrope in the upper
 mantle. Physics of the Earth and Planetary Interiors, 27, 263–272.
- 523 Irifune, T., and Ringwood, A.E. (1987) Phase transformations in a harzburgite composition to
- 524 26 GPa: implications for dynamical behaviour of the subducting slab. Earth and Planetary
 525 Science Letters, 86, 365–376.
- 526 Ishii, T., Kojitani, H., Fujino, K., Yusa, H., Mori, D., Inaguma, Y., Matsushita, Y., Yamamura,
- 527 K., and Akaogi, M. (2015) High-pressure high-temperature transitions in $MgCr_2O_4$ and 528 crystal structures of new $Mg_2Cr_2O_5$ and post-spinel $MgCr_2O_4$ phases with implications 529 for ultra-high pressure chromitites in ophiolites. American Mineralogist, 100, 59–65.
- Ito, E., and Takahashi, E. (1989) Postspinel transformations in the system Mg₂SiO₄-Fe₂SiO₄
 and some geophysical implications. Journal of Geophysical Research, 94(B8), 10637–
 10646.
- Kaminsky, F.V., Wirth, R., and Schreiber, A. (2015) A microinclusion of lower-mantle rock
 and other minerals and nitrogen lower-mantle inclusions in a diamond. Canadian
 Mineralogist, 53, 83–104.
- Kato, T., Ringwood, A.E., and Irifune, T. (1988) Experimental determination of element
 partitioning between silicate perovskites, garnets and liquids: constraints on early
 differentiation of the mantle. Earth and Planetary Science Letters, 89, 123–145.
- 539 Katsura, T., and Ito, E. (1989) The system Mg₂SiO₄–Fe₂SiO₄ at high pressure and temperatures:
- precise determination of stabilities of olivine, modified spinel and spinel. Journal of
 Geophysical Research, 94, 15663–15670.

- Klemme, S. (2004) The influence of Cr on the garnet–spinel transition in the Earth's mantle:
 experiments in the system MgO–Cr₂O₃–SiO₂ and thermodynamic modeling. Lithos, 77,
 639–646.
- Kubo, A., and Akaogi, M. (2000) Post-garnet transitions in the system Mg₄Si₄O₁₂–
 Mg₃Al₂Si₃O₁₂ up to 28 GPa: phase relations of garnet, ilmenite and perovskite. Physics
 of the Earth and Planetary Interiors, 121, 85–102.
- 549 Luobusa mantle peridotite and chromitite, Tibet: Deep mantle origin implication. Journal

Liang, F., Yang, J., Xu, Z., and Zhao, J. (2014) Moissanite and chromium-rich olivine in the

of Himalayan Earth Sciences (Special Volume), 103.

- 551 Liu, L. (1976a) Orthorhombic perovskite phases observed in olivine, pyroxene and garnet at
- high pressures and temperatures. Physics of the Earth and Planetary Interiors, 11, 289–
 298.
- Liu, L. (1976b) The high-pressure phases of MgSiO₃. Earth and Planetary Science Letters, 31,
 200–208.
- Logvinova, A., Wirth, R., Sobolev, N.V., Seryotkin, Y.V., Yefimova, E.S., Floss, C., and
 Taylor, L.A. (2008) Eskolaite associated with diamond from the Udachnaya kimberlite
 pipe, Yakutia, Russia. American Mineralogist, 93, 685–690.
- 559 MacGregor, I.D. (1970) The effect of CaO, Cr₂O₃, Fe₂O₃ and Al₂O₃ on the stability of spinel
- and garnet peridotites. Physics of the Earth and Planetary Interiors, 3, 372–377.
- Malinovskii, I.Yu., Doroshev, A.M., and Ran, E.N. (1975) The stability of chro- mium-bearing
 garnets pyrope: knorringite series. Experimental studies on the mineralogy (1974–1976).
 Institute of Geology and Geophysics of the Siberian Branch of AS USSR. Novosibirsk,
 110–115.
- Menzies, A., Westerlund, K., Grütter, H., Gurney, J., Carlson, J., Fung, A., and Nowicki, T.
- 566 (2004) Peridotitic mantle xenoliths from kimberlites on the Ekati Diamond Mine

- 567 property, NWT, Canada: major element compositions and implications for the lithosphere
- beneath the central Slave craton. Lithos, 77, 395–412.
- 569 Meyer, H.O.A., and Boyd, F.R. (1972) Composition and origin of crystalline inclusions in
- 570 natural diamonds. Geochimica et Cosmochimica Acta, 59, 110–119.
- 571 O'Neill, H.S.C. (1981) The transition between spinel lherzolite and garnet lherzolite, and its
- use as a geobarometer. Contributions to Mineralogy and petrology, 77, 185–194.
- 573 Oxford Diffraction (2006) Crysalis RED (Version 1.171.31.2) and ABSPACK in CrysAlis
- 574 RED. Oxford diffraction Ltd. Abingdon. Oxfordshire. England.
- Panero, W.R., Akber-Knutson, S., and Stixrude, L. (2006) Al₂O₃ incorporation in MgSiO₃
 perovskite and ilmenite. Earth and Planetary Science Letters, 252, 152–161.
- 577 Papike, J.J., Karner, J.M., and Shearer, C.K. (2004) Comparative planetary mineralogy:
- 578 V/(Cr+Al) systematics in chromite as an indicator of relative oxygen fugacity. American
 579 Mineralogist. 89, 1557–1560.
- 580 Phillips, D., Harris, J.W., and Viljoen, K.S. (2004) Mineral chemistry and thermobarometry of
- inclusions from De Beers Pool diamonds, Kimberley, South Africa. Lithos, 77, 155–179.
- 582 Pushcharovsky, D.Yu., and Pushcharovsky, Yu.M. (2012) The mineralogy and the origin of
- deep geospheres: A review. Earth Science Reviews, 113, 94–109.
- Ringwood, A.E. (1977) Synthesis of pyrope-knorringite solid solution series. Earth and
 Planetary Science Letters, 36, 443–448.
- Ringwood, A.E. (1966) The chemical composition and origin of the Earth. In: Advances in
 Earth science. Hurley, P.M. (Editors), M.I.T. Press, Cambridge. 287–356.
- 588 Robinson, P.T., Bai, W.-J., Malpas, J., Yang, J.-S., Zhou, M.-F., Fang, Q.-S., Hu, X.-F.,
- 589 Cameron, S., and Standigel, H. (2004) Ultra-high pressure minerals in the Luobusa
- 590 Ophiolite, Tibet, and their tectonic implications. In: Malpas, J., Fletcher, C.J.N., Ali, J.R.,

591	Aitchison, J.C. (Eds.), Aspects of the Tectonic Evolution of China. Geological Society of
592	London, 247–271.
593	Ryabchikov, I.D., Green, D.H., Wall, V.J., and Brey, G.P. (1981) The oxidation state of carbon
594	in the reduced-velocity zone. Geochemistry International, 18, 148–158.
595	Sirotkina, E.A., Bobrov, A.V., Bindi, L., and Irifune, T. (2015) Phase relations and formation
596	of chromium-rich phases in the system $Mg_4Si_4O_{12}-Mg_3Cr_2Si_3O_{12}$ at 10–24 GPa and
597	1,600 °C. Contributions to Mineralogy and Petrology, 169:2, DOI: 10.1007/s00410-014-
598	1097-0.
599	Sobolev, N.V. (1974) Deep-seated inclusions in kimberlites and the problem of upper mantle
600	composition. In: Brown DA, Boyd FR (eds) English translation. American Geophysics
601	Union, Washington, 279.
602	Stachel, T., and Harris, J.W. (1997) Diamond precipitation and mantle metasomatism-evidence
603	from the trace element chemistry of silicate inclusions in diamonds from Akwatia, Ghana.
604	Contributions to Mineralogy and Petrology, 129, 143–154.
605	Stachel, T., Harris, J.W., Brey, G.P., and Joswig, W. (2000) Kankan diamonds (Guinea) II: lower
606	mantle inclusion parageneses. Contributions to Mineralogy and Petrology, 140, 16-27.
607	Stachel, T., Harris, J.W., Aulbach, S., and Deines, P. (2002) Kankan diamonds (Guinea) III:
608	$\delta^{13}C$ and nitrogen characteristics of deep diamonds. Contributions to Mineralogy and
609	Petrology, 142, 465–475.
610	Taran, M.N., Langer, K., Abs-Wurmbach, I., Frost, D.J., and Platonov A.N. (2004) Local
611	relaxation around $[6]Cr^{3+}$ in synthetic pyrope– knorringite garnets,
612	$[8]Mg_3[6](Al_{1-x}Cr_x^{3+})_2[4]Si_3O_{12}$, from electronic absorption spectra. Physics and
613	Chemistry of Minerals, 31, 650–657.
614	Turkin, A.I., and Sobolev, N.V. (2009) Pyrope-knorringite garnets: overview of experimental
615	data and natural parageneses. Russian Geology and Geophysics, 50, 1169–1182.

616	Turkin, A.I., Doroshev, A.M., and Malinovsky, I.Y. (1983) High-pressure and high-
617	temperature investigation of the phases from garnet- bearing associations in the system
618	MgO-Al2O3-Cr2O3-SiO2. In: "Silicate systems under high pressures", Institute of
619	Geology and Geophysics, Novosibirsk, 5–24 (in Russian).
620	Yamada, A., Inoue, T., and Irifune, T. (2004) Melting of enstatite from 13 to 18 GPa under
621	hydrous conditions. Physics of the Earth and Planetary Interiors, 147, 45–56.
622	Yamamoto, S., Komiya, T., Hirose, K., and Maruyama, S. (2009) Coesite and clinopyroxene
623	exsolution lamellae in chromites: In-situ ultrahigh-pressure evidence from podiform
624	chromitites in the Luobusa ophiolite, southern Tibet. Lithos, 109, 314-322.
625	Yang, JS., Dobrzhinetskaya, L., Bai, WJ., Fang, QS., Robinson, P.T., Zhang, J., and Green,
626	H.W. (2007) Diamond- and coesite-bearing chromitites from the Luobusa ophiolite,
627	Tibet. Geology, 35, 875–878.
628	Yufeng, R., Fangyuan, C., Jingsui, Y., and Yuanhong, G. (2008) Exsolutions of diopside and
629	magnetite in olivine from mantle dunite, Luobusa ophiolite, Tibet, China. Acta Geologica
630	Sinica (English Edition), 82, 377–384.
631	Zhou, M.F., Robinson, P.T., Malpas, J., and Li, Z. (1996) Podiform chromitites from the
632	Luobusa ophiolite (Southern Tibet): implications for melt/rock interaction and chromite
633	segregation in the upper mantle. Journal of Petrology, 37, 3-21.
634	Zou, Y., and Irifune, T. (2012) Phase relations in Mg ₃ Cr ₂ Si ₃ O ₁₂ and formation of majoritic
635	knorringite garnet at high pressure and high temperature. Journal of Mineralogical and
636	Petrological Sciences, 107, 197–205.

637

Table I Ru	n conditions and p	roducts of experim	tents in the join Mg_2S	104-MgCr ₂ 04
<i>P</i> (GPa)	Run number	N MChr	Time (hours)	Run products
10	2632-80	80	4	Ol+MChr
	2632-30	30	4	Ol+MChr
12	2627-40	40	3.5	anhB+mLd*+Grt
	2627-10	10	3.5	anhB*+mLd+Grt
13	2653-80	80	5	Grt+mLd+Esk
	2653-30	30	5	Wad+mCt
14	2646-50	50	4	mCt+mLd+Grt
	2646-10	10	4	Wad+mCt
16	2629-80	80	5	Grt+mLd+Esk
	2629-40	40	5	mCt+mLd+Grt
18	2639-30	30	5	Wad+Ct
	2639-10	10	5	Wad+Ct
19	2651-80	80	5	Grt+Ct+mLd*
	2651-50	50	5	Wad+Grt+mLd
	2645-10	10	4	Wad+Grt+mLd*
20	2635-80	80	4	Grt+Ct+mLd
	2635-40	40	4	Rgw+Grt+mLd
21	2634-40	40	5	Rgw+Brd+mLd
	2649-30	30	5	Rgw+Brd+mLd*
	2649-10	10	4	Rgw (with minor Ct*)
23	2647-80	80	4	Brd+Ct+mLd
	2647-30	30	4	Rgw+Brd+mLd*
24	2631-50	50	5	Brd+Ct+mLd
	2631-10	10	5	Brd+Per

638	Table 1 Run	conditions and	products of ex	operiments in	the i	ioin Mg2SiO4-MgCr2O)4
		••••••••••••••••				10111 111 <u>6</u> 2010 - 111 <u>6</u> 0120	

Note. * Because of the small grain sizes, compositions of the phases were not analyzed 639

640

P, GPa	10				12		13		
Run no.	2632-80		2632-30		2627-40		2653-80		
Phase	Ol	MChr	Ol	MChr	anhB*	Grt	Grt	mLd	Esk
Number of points	5	4	7	4	1	4	5	3	6
MgO	58.19(0.85)	22.14(0.69)	55.14(0.95)	21.94(0.39)	62.6	29.65 (0.22)	29.89 (0.25)	33.31 (0.73)	0.41 (0.08)
SiO ₂	40.97(0.57)	1.64(0.40)	41.2(0.47)	1.85(0.19)	32.1	43.59 (0.34)	43.87 (0.57)	0.52 (0.03)	
Cr ₂ O ₃	2.5 (0.46)	74.27(0.43)	3.21(0.57)	74.62(0.70)	5.37	26.38 (0.37)	25.98 (0.85)	65.17 (0.86)	98.63 (0.18)
Total	101.66	98.05	99.55	98.41	100.07	99.62	99.74	99.00	99.04
Formula units per g	given O								
0	4	4	4	4	24	12	12	5	3
Mg	2.021	1.061	1.952	1.047	13.662	3.259	3.277	1.939	0.016
Si	0.955	0.053	0.979	0.059	4.703	3.217	3.228	0.020	0.000
Cr	0.046	1.889	0.060	1.890	0.622	1.538	1.511	2.013	1.990
Total	3.022	3.003	2.991	2.996	18.986	8.014	8.016	3.973	2.005
P, GPa	12		13		14				
<i>P</i> , GPa Run no.	12 2627-10		13 2653-30		14 2646-10		2646-50		
P, GPa Run no. Phase	12 2627-10 mLd	Grt	13 2653-30 Wad	mCt	14 2646-10 Wad	mCt	2646-50 Grt	mLd	mCt
P, GPa Run no. Phase Number of points	12 2627-10 mLd 4	Girt	13 2653-30 Wad 4	mCt 3	14 2646-10 Wad 4	mCt	2646-50 Grt 4	mLd 3	mCt 3
P, GPa Run no. Phase Number of points MgO	12 2627-10 mLd (4 33.87 (0.21)	Grt 5 29.77 (0.54)	13 2653-30 Wad 4 54.28 (0.41)	mCt 3 39.62 (0.16)	14 2646-10 Wad 4 53.75 (0.46)	mCt 3 40.57 (0.61)	2646-50 Grt 4 29.96 (0.35)	mLd 3 32.96(0.13)	mCt 3 40.16 (0.57)
P, GPa Run no. Phase Number of points MgO SiO ₂	12 2627-10 mLd (4 33.87 (0.21) 0.45 (0.09)	Grt 5 29.77 (0.54) 43.91 (0.61)	13 2653-30 Wad 4 54.28 (0.41) 39.18 (0.96)	mCt 3 39.62 (0.16) 21.22 (0.17)	14 2646-10 Wad 4 53.75 (0.46) 39.39 (0.12)	mCt 3 40.57 (0.61) 22.51 (0.20)	2646-50 Grt 4 29.96 (0.35) 44.85 (0.59)	mLd 3 32.96(0.13) 0.74(0.04)	mCt 3 40.16 (0.57) 21.81 (0.54)
P, GPa Run no. Phase Number of points MgO SiO ₂ Cr ₂ O ₃	12 2627-10 mLd (0 4 33.87 (0.21) 0.45 (0.09) 65.59 (0.58)	Grt 5 29.77 (0.54) 43.91 (0.61) 26.51 (0.33)	13 2653-30 Wad 4 54.28 (0.41) 39.18 (0.96) 6.31 (0.08)	mCt 3 39.62 (0.16) 21.22 (0.17) 39.7 (0.18)	14 2646-10 Wad 4 53.75 (0.46) 39.39 (0.12) 6.1 (0.08)	mCt 3 40.57 (0.61) 22.51 (0.20) 38.69 (0.51)	2646-50 Grt 4 29.96 (0.35) 44.85 (0.59) 24.91 (0.21)	mLd 3 32.96(0.13) 0.74(0.04) 63.68(0.4)	mCt 3 40.16 (0.57) 21.81 (0.54) 38.33 (0.60)
P, GPa Run no. Phase Number of points MgO SiO ₂ Cr ₂ O ₃ Total	12 2627-10 mLd 4 33.87 (0.21) 0.45 (0.09) 65.59 (0.58) 99.91	Grt 5 29.77 (0.54) 43.91 (0.61) 26.51 (0.33) 100.19	13 2653-30 Wad 4 54.28 (0.41) 39.18 (0.96) 6.31 (0.08) 99.77	mCt 3 39.62 (0.16) 21.22 (0.17) 39.7 (0.18) 100.54	14 2646-10 Wad 4 53.75 (0.46) 39.39 (0.12) 6.1 (0.08) 99.24	mCt 3 40.57 (0.61) 22.51 (0.20) 38.69 (0.51) 101.77	2646-50 Grt 4 29.96 (0.35) 44.85 (0.59) 24.91 (0.21) 99.72	mLd 3 32.96(0.13) 0.74(0.04) 63.68(0.4) 97.38	mCt 3 40.16 (0.57) 21.81 (0.54) 38.33 (0.60) 100.30
P, GPa Run no. Phase Number of points MgO SiO ₂ Cr ₂ O ₃ Total Formula units per g	12 2627-10 mLd C 4 33.87 (0.21) 0.45 (0.09) 65.59 (0.58) 99.91 given O	5 29.77 (0.54) 43.91 (0.61) 26.51 (0.33) 100.19	13 2653-30 Wad 4 54.28 (0.41) 39.18 (0.96) 6.31 (0.08) 99.77	mCt 3 39.62 (0.16) 21.22 (0.17) 39.7 (0.18) 100.54	14 2646-10 Wad 4 53.75 (0.46) 39.39 (0.12) 6.1 (0.08) 99.24	mCt 3 40.57 (0.61) 22.51 (0.20) 38.69 (0.51) 101.77	2646-50 Grt 4 29.96 (0.35) 44.85 (0.59) 24.91 (0.21) 99.72	mLd 3 32.96(0.13) 0.74(0.04) 63.68(0.4) 97.38	mCt 3 40.16 (0.57) 21.81 (0.54) 38.33 (0.60) 100.30
P, GPa Run no. Phase Number of points MgO SiO ₂ Cr ₂ O ₃ Total Formula units per g O	12 2627-10 mLd C 4 33.87 (0.21) 0.45 (0.09) 65.59 (0.58) 99.91 given O 5	Grt 5 29.77 (0.54) 43.91 (0.61) 26.51 (0.33) 100.19 12	13 2653-30 Wad 4 54.28 (0.41) 39.18 (0.96) 6.31 (0.08) 99.77 4	mCt 3 39.62 (0.16) 21.22 (0.17) 39.7 (0.18) 100.54 4	14 2646-10 Wad 4 53.75 (0.46) 39.39 (0.12) 6.1 (0.08) 99.24 4	mCt 3 40.57 (0.61) 22.51 (0.20) 38.69 (0.51) 101.77 4	2646-50 Grt 4 29.96 (0.35) 44.85 (0.59) 24.91 (0.21) 99.72 12	mLd 3 32.96(0.13) 0.74(0.04) 63.68(0.4) 97.38 5	mCt 3 40.16 (0.57) 21.81 (0.54) 38.33 (0.60) 100.30 4
P, GPa Run no. Phase Number of points MgO SiO ₂ Cr ₂ O ₃ Total Formula units per g O Mg	12 2627-10 mLd C 4 33.87 (0.21) 0.45 (0.09) 65.59 (0.58) 99.91 given O 5 1.954	Grt 5 29.77 (0.54) 43.91 (0.61) 26.51 (0.33) 100.19 12 3.253	13 2653-30 Wad 4 54.28 (0.41) 39.18 (0.96) 6.31 (0.08) 99.77 4 1.940	mCt 3 39.62 (0.16) 21.22 (0.17) 39.7 (0.18) 100.54 4 1.589	14 2646-10 Wad 4 53.75 (0.46) 39.39 (0.12) 6.1 (0.08) 99.24 4 1.928	mCt 3 40.57 (0.61) 22.51 (0.20) 38.69 (0.51) 101.77 4 1.597	2646-50 Grt 4 29.96 (0.35) 44.85 (0.59) 24.91 (0.21) 99.72 12 3.268	mLd 3 32.96(0.13) 0.74(0.04) 63.68(0.4) 97.38 5 1.947	mCt 3 40.16 (0.57) 21.81 (0.54) 38.33 (0.60) 100.30 4 1.607
P, GPa Run no. Phase Number of points MgO SiO ₂ Cr ₂ O ₃ Total Formula units per g O Mg Si	12 2627-10 mLd (4 33.87 (0.21) 0.45 (0.09) 65.59 (0.58) 99.91 given O 5 1.954 0.017	Grt 5 29.77 (0.54) 43.91 (0.61) 26.51 (0.33) 100.19 12 3.253 3.221	13 2653-30 Wad 4 54.28 (0.41) 39.18 (0.96) 6.31 (0.08) 99.77 4 1.940 0.940	mCt 3 39.62 (0.16) 21.22 (0.17) 39.7 (0.18) 100.54 4 1.589 0.572	14 2646-10 Wad 4 53.75 (0.46) 39.39 (0.12) 6.1 (0.08) 99.24 4 1.928 0.949	mCt 3 40.57 (0.61) 22.51 (0.20) 38.69 (0.51) 101.77 4 1.597 0.595	2646-50 Grt 4 29.96 (0.35) 44.85 (0.59) 24.91 (0.21) 99.72 12 3.268 3.285	mLd 3 32.96(0.13) 0.74(0.04) 63.68(0.4) 97.38 5 1.947 0.029	mCt 3 40.16 (0.57) 21.81 (0.54) 38.33 (0.60) 100.30 4 1.607 0.586
P, GPa Run no. Phase Number of points MgO SiO ₂ Cr ₂ O ₃ Total Formula units per g O Mg Si Cr	12 2627-10 mLd (0 4 33.87 (0.21) 0.45 (0.09) 65.59 (0.58) 99.91 given O 5 1.954 0.017 2.008	Grt 5 29.77 (0.54) 43.91 (0.61) 26.51 (0.33) 100.19 12 3.253 3.221 1.537	13 2653-30 Wad 4 54.28 (0.41) 39.18 (0.96) 6.31 (0.08) 99.77 4 1.940 0.940 0.120	mCt 3 39.62 (0.16) 21.22 (0.17) 39.7 (0.18) 100.54 4 1.589 0.572 0.845	14 2646-10 Wad 4 53.75 (0.46) 39.39 (0.12) 6.1 (0.08) 99.24 4 1.928 0.949 0.116	mCt 3 40.57 (0.61) 22.51 (0.20) 38.69 (0.51) 101.77 4 1.597 0.595 0.808	2646-50 Grt 4 29.96 (0.35) 44.85 (0.59) 24.91 (0.21) 99.72 12 3.268 3.285 1.442	mLd 3 32.96(0.13) 0.74(0.04) 63.68(0.4) 97.38 5 1.947 0.029 1.996	mCt 3 40.16 (0.57) 21.81 (0.54) 38.33 (0.60) 100.30 4 1.607 0.586 0.814

Table 2 Mean composition of phases produced in the join $MgSiO_3-Mg_3Cr_2Si_3O_{12}$ at 10-24 GPa and 1600°C

Table 2 (Contd.)

P, GPa	16	16				19			
Run no. 2629-80				2639-30 2639-10		2639-10		2651-80	
Phase	Grt	mLd	Esk	Wad	mCt	Wad	mCt	Grt	Ct
Number of points	4	1	3	4	1	5	3	3	3
MgO	29.97 (0.71)	34.28	0.77 (0.58)	54.86 (0.57)	41.25	54.7 (0.88)	40.76 (0.49)	30.78 (0.73)	22.52 (0.16)
SiO ₂	44.74 (0.52)	0.92	0.43 (0.87)	40.57 (0.64)	23.23	39.71 (0.56)	22.92 (0.47)	46.17 (0.56)	1.82 (0.05)
Cr ₂ O ₃	24.68 (0.83)	65.27	98.33 (0.93)	4.78 (0.11)	35.85	5.29 (0.05)	34.94 (0.57)	21.41 (0.61)	75.35 (0.53)
Total	99.39	100.47	99.54	100.21	100.33	99.70	98.62	98.36	99.69
Formula units p	ber given O								
0	12	5	3	4	4	4	4	12	4
Mg	3.279	1.960	0.029	1.940	1.634	1.950	1.641	3.364	1.061
Si	3.286	0.035	0.011	0.963	0.618	0.950	0.620	3.387	0.058
Cr	1.433	1.980	1.966	0.090	0.754	0.100	0.746	1.241	1.883
Total	7.998	3.975	2.006	2.992	3.005	3.000	3.007	7.992	3.001

P, GPa	16 2629-40			19 2651-50			20 2635-80		
Run no.									
Phase	Grt	mLd	mCt*	Wad	Grt	mLd	Grt	Ct	mLd
Number of points	4	3	5	3	3	4	4	3	4
MgO	29.92 (0.92)	33.95 (0.25)	40.06 (0.39)	53.29 (0.37)	32.81 (0.23)	34.87 (0.10)	33.36 (0.34)	23.87 (0.23)	34.55 (0.87)
SiO ₂	44.69 (0.38)	0.81 (0.20)	22.43(0.18)	40.11 (0.54)	48.5 (0.30)	0.92 (0.05)	49.24 (0.23)	2.39 (0.11)	1.23 (0.09)
Cr ₂ O ₃	24.72 (0.52)	64.25 (0.21)	37.27(0.27)	7.29 (0.84)	19.59 (0.12)	65.25 (0.45)	18.29 (0.19)	74.71 (0.30)	63.36 (0.56)
Total	99.33	99.01	99.76	100.69	100.90	101.04	100.89	100.98	98.59
Formula units per	given O								
0	12	5	4	4	12	5	12	4	5
Mg	3.276	1.970	1.606	1.887	3.468	1.980	3.511	1.103	1.994
Si	3.285	0.032	0.603	0.954	3.442	0.035	3.479	0.074	0.048
Cr	1.436	1.978	0.792	0.137	1.099	1.966	1.021	1.832	1.940
Total	7.997	3.979	3.001	2.978	8.009	3.982	8.011	3.010	3.982

Table 2 (Contd.)

P, GPa	19		20			21		23	
Run no.	2645-10		2635-40			2649-30		2647-30	
Phase	Wad	Grt	Rgw	Grt	mLd	Rgw	Brd	Rgw	Brd
Number of points	3	3	5	7	6	4	2	5	3
MgO	53.81 (0.11)	32.11 (0.17)	52.12 (0.85)	32.28 (0.85)	34.85 (0.46)	51.04 (0.26)	39.99 (0.68)	49.85 (0.35)	38.31 (0.38)
SiO ₂	38.65 (0.72)	47.34(0.61)	35.88 (0.27)	47.92 (0.24)	1.21 (0.07)	33.86 (0.35)	59.15 (0.10)	32.89 (0.28)	57.14 (0.91)
Cr ₂ O ₃	7.36 (0.19)	20.65 (0.21)	11.87 (0.18)	18.41 (0.77)	64.12(0.18)	15.26 (0.12)	2.82 (0.13)	18.54 (0.5)	4.81 (0.12)
Total	99.82	100.10	99.87	98.61	100.18	100.16	101.96	101.28	100.26
Formula units per gi	iven O								
0	4	12	4	12	5	4	3	4	3
Mg	1.929	3.437	1.900	3.481	1.991	1.857	0.986	1.851	0.967
Si	0.930	3.402	0.878	3.469	0.046	0.849	0.979	0.802	0.968
Cr	0.140	1.173	0.230	1.053	1.944	0.297	0.037	0.363	0.064
Total	3.000	8.012	3.007	8.004	3.982	3.003	2.002	3.016	2.000
P, GPa	21				23			24	
Run no.	2634-40			2649-10	2647-80			2631-10	
Phase	Rgw	Brd	mLd	Rgw	Brd	Ct	mLd	Brd	Per
Number of points	1	3	4	1	3	5	3	1	5
MgO	50.89	39.02 (0.58)	34.66 (0.64)	56.35	39.33 (0.41)	23.87 (0.47)	34.69 (0.14)	39.49	71.99 (0.60)
SiO ₂	32.98	58.33 (0.40)	2.04 (0.06)	41.58	58.92 (0.55)	3.22 (0.10)	2.13 (0.08)	54.08	3.77 (0.30)
Cr ₂ O ₃	17.07	3.42 (0.42)	62.36 (0.59)	2.15	3.71 (0.08)	72.08 (0.55)	62.08 (0.53)	6.77	22.37 (0.12)
Total	100.94	100.77	99.06	100.08	101.96	99.77	98.90	100.34	98.13
Formula units per gi	iven O								
0	4	3	5	4	3	4	5	3	1
Mg	1 872	0.975	1.991	1.979	0.972	1.116	1.995	1.008	0.759
-	1.0/2	0.975							
Si	0.814	0.978	0.079	0.980	0.978	0.101	0.082	0.927	0.027
Si Cr	0.814 0.333	0.978 0.045	0.079 1.901	0.980 0.040	0.978 0.049	0.101 1.788	0.082 1.894	0.927 0.092	0.027 0.125

Table 2 (Contd.)

P, GPa	24							
Run no.	2631-50							
Phase	Brd	Ct	mLd					
Number of points	4	3	3					
MgO	37.48 (0.23)	29.98 (0.33)	37.86 (0.06)					
SiO ₂	55.63 (0.43)	7.9 (0.17)	3.94 (0.01)					
Cr ₂ O ₃	6.85 (0.83)	62.38 (0.16)	55.67 (0.04)					
Total	99.96	100.26	97.47					
Formula units per giv	ven O							
0	3	4	5					
Mg	0.956	1.329	2.165					
Si	0.953	0.235	0.151					
Cr	0.093	1.467	1.689					
Total	2.001	3.031	4.004					

Note. * Crystals studied by X-ray diffraction.

FIGURE CAPTIONS

- Fig. 1. Composition of chrome spinels from inclusions in diamonds (Davies et al. 2004; Pokhilenko et al. 2004; Deines and Harris 2004), xenoliths in kimberlites and ophiolites (Menzies et al. 2004; Aulbach et al. 2004; Gregoire et al. 2005; Zhou et al. 1996, and references therein).
- Fig. 2 Relative position of phases and the studied Mg₂SiO₄ MgCr₂O₄ system within the triangle SiO₂–MgO–Cr₂O₃. Numbers (1–4, 9–11) indicate the maximum of MgCr₂O₄/Cr₂O₃ concentrations in olivine (1), wadsleyite (2), Knr-Maj garnet (3), Mg(Mg,Cr)(Si,Cr)O₄ with distorted calcium titanate-type structure (4), ringwoodite (9), bridgmanite (10), anhydrous phase B (11). Numbers (5–8) indicate the maximum of Mg₂SiO₄ concentrations in Mg₂Cr₂O₅ with mogified ludwigite-type structure (5), MgCr₂O₄ with calcium titanate-type structure (6), magnesiochromite (7), escolaite (8). (12) corresponds to the maximum of SiO₂ and Cr₂O₃ in periclase. Letters in circles (a– e) correspond to the sequence of chemical reactions with increasing pressure and chromium content.
- Fig. 3 BSE images of textural relationships in some run products in the system Mg₂SiO₄– MgCr₂O₄ at 10–24 GPa and 1600 °C. a – Aggregate of olivine and uniformly distributed spinel grains. b – Association of wadsleyite and Mg(Mg,Cr)(Si,Cr)O₄ with distorted calcium titanate-type structure. c – relatively large crystals of mCt, smaller elongated mLd grains and relatively small euhedral garnet crystals. d – Aggregate of Knr-Maj garnet, wadsleyite and Mg₂Cr₂O₅ with modified ludwigite-type structure. e –Aggregate of MgSiO₃ bridgmanite, MgCr₂O₄ with a calcium titanate-type structure, and Mg₂Cr₂O₅ with modified ludwigite-type structure. f – Aggregate of bridgmanite grains with a dense system of fractures and periclase.

- **Fig. 4.** P–X subsection Mg₂SiO₄–MgCr₂O₄ of the SiO₂–MgO–Cr₂O₃ phase diagram (Fig. 2). Small open circles denote the composition ("MChr", mol %) of the phases.
- Fig. 5. Influence of pressure on Cr concentrations in wadsleyite and ringwoodite synthesized at 13–23 GPa in Mg₂SiO₄–MgCr₂O₄ system.
- Fig. 6. Variations of Si, Mg, and Cr concentrations in Ct and mCt synthesized in the system Mg₂SiO₄-MgCr₂O₄ in comparison with Ct synthesized in the system Mg₄Si₄O₁₂-Mg₃Cr₂Si₃O₁₂
- Fig. 7. Variations of Si, Mg, and Cr concentrations in garnet synthesized at 13–20 GPa and 1600°C in the system Mg₂SiO₄–MgCr₂O₄ in comparison with garnet synthesized in the system Mg₄Si₄O₁₂–Mg₃Cr₂Si₃O₁₂
- **Fig. 8.** Correlation between Cr and Si (*a*) and Cr and Mg (*b*) in wadsleyite synthesized in the system Mg₂SiO₄–MgCr₂O₄ at 12–19 GPa and 1600°C.
- Fig. 9. Influence of Cr on cell volumes of wadsleyite and ringwoodite. The data for Mg₂SiO₄ Wad/Rgw are taken from (Finger et al. 1993; Hazen et al. 1993).
- Fig. 10. Correlation between Cr and Si in ringwoodite synthesized in the system Mg₂SiO₄--MgCr₂O₄ at 20-23 GPa and 1600°C.

Run 2645-10: MChr₁₀Fo₉₀ ; 19 GPa; 1600°C

Figure 4

Figure 8

