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Abstract 14 

The rapidly growing use of rare earth elements and yttrium (REE) in modern-day technologies, 15 

not least within the fields of green and carbon-free energy applications, requires exploitation of 16 

new REE deposits and deposit types. In this perspective, it is vital to develop fundamental 17 

understanding of the behavior of REE in natural hydrothermal systems and the formation of 18 

hydrothermal REE deposits. In this study, we establish a mineralogical, textural, and mineral-19 

chemical framework for a new type of deposit, the hydrothermal Olserum-Djupedal REE-20 

phosphate mineralization in SE Sweden. An early, high-temperature REE stage is characterized 21 

by abundant monazite-(Ce) and xenotime-(Y) coexisting with fluorapatite and subordinate 22 

amounts of (Y,REE,U,Fe)-(Nb,Ta) oxides. During a subsequent stage, allanite-(Ce) and 23 

ferriallanite-(Ce) formed locally, partly resulting from the breakdown of primary monazite-(Ce). 24 

Alteration of allanite-(Ce) or ferriallanite-(Ce) to bastnäsite-(Ce) and minor synchysite-(Ce) at 25 

lower temperatures represents the latest stage of REE mineral formation. The paragenetic 26 

sequence and mineral chemistry of the allanites record an increase in Ca content in the fluid. We 27 

suggest that this local increase in Ca, in conjunction with changes in oxidation state, were the key 28 

factors controlling the stability of monazite-(Ce) in the assemblages of the Olserum-Djupedal 29 

deposit. We interpret the alteration and replacement of primary monazite-(Ce), xenotime-(Y), 30 

fluorapatite, and minor (Y,REE,U,Fe)-(Nb,Ta) oxide phase(s), to be the consequence of coupled 31 

dissolution-reprecipitation processes. These processes mobilized REE, Th, U, and Nb-Ta, which 32 

caused the formation of secondary monazite-(Ce), xenotime-(Y), fluorapatite, and minor amounts 33 

of allanite-(Ce) and ferriallanite-(Ce). In addition, these alteration processes produced uraninite, 34 

thorite, columbite-(Fe), and uncharacterized (Th,U,Y,Ca)-silicates. Textural relations show that 35 

the dissolution-reprecipitation processes affecting fluorapatite preceded those affecting monazite-36 

(Ce), xenotime-(Y), and the (Y,REE,U,Fe)-(Nb,Ta) oxide phase(s). The mineralogy of the 37 
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primary ore mineralization and the subsequently formed alteration assemblages demonstrate the 38 

combined mobility of REE and HFSE in a natural F-bearing high-temperature hydrothermal 39 

system. The observed coprecipitation of monazite-(Ce), xenotime-(Y), and fluorapatite during the 40 

primary REE mineralization stage highlights the need for further research on the potentially 41 

important role of phosphate in hydrothermal REE transporting systems. 42 

Keywords: Rare earth elements, hydrothermal, monazite, xenotime, allanite, apatite, Olserum, 43 

Sweden 44 

45 
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Introduction 46 

In recent years, the global demand for the rare earth elements and yttrium (REE) for 47 

the rapidly growing green and carbon-free energy and information technologies has prompted 48 

extensive re-evaluation of REE deposits, and new research on the geochemical transport behavior 49 

and enrichment processes of these elements. Primary enrichment of REE to form mineral 50 

deposits can result from magmatic processes, such as in peralkaline silica-undersaturated rocks, 51 

peralkaline granites, pegmatites, and in carbonatites (e.g., Chakhmouradian and Zaitzsev 2012, 52 

and references therein). Importantly, carbonatite-associated REE mineralizations are in most 53 

cases further enriched in the REE through late-stage hydrothermal fluid mobilization. Prominent 54 

examples include the mineralization in Lofdal, Namibia (Wall et al. 2008) or the mineralization 55 

at the Fen complex, Norway (e.g., Andersen 1984). In addition, ample evidence supporting a 56 

combined magmatic-hydrothermal origin is also present for other deposit types, such as the 57 

Strange Lake REE-Zr-Nb deposit, Canada (e.g., Salvi and Williams-Jones 1990; Gysi et al. 58 

2016), and several REE enriched magmatic iron-oxide apatite deposits (e.g., Harlov et al. 2002, 59 

2016; Jonsson et al. 2016). There are also a number of recognized deposits that primarily formed 60 

by hydrothermal processes. These include for instance the Bayan Obo REE-Nb-Fe deposit, China 61 

(e.g., Chao et al. 1992; Smith and Henderson 2000; Smith et al. 2015) and the REE deposit in the 62 

Gallinas Mountains, USA (Williams-Jones et al. 2000). The importance of hydrothermal REE 63 

transport and deposition is also highlighted by new experimental evidence for the high solubility 64 

of REE and high field strength elements (HFSE), such as Zr, Nb, and Ta, in certain hydrothermal 65 

fluids (e.g., Migdisov et al. 2009, 2011; Loges et al. 2013; Timofeev et al. 2015, 2017). 66 

The principal host of REE in many phosphate-rich hydrothermal REE deposits is 67 

the light rare earth element (LREE) dominated monazite, for instance in Kangankunde, Malawi 68 

(Wall and Mariano 1996), Kutessay II, Kyrgyzstan (Djenchuraeva et al. 2008, and references 69 
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therein) and in the Fen complex, Norway (Andersen 1986). In contrast, a fewer number of 70 

recognized deposits also contain or are dominated by the heavy rare earth element (HREE) rich 71 

xenotime, such as the Lofdal deposit in Namibia (Wall et al. 2008), the Songwe Hill carbonatite 72 

in Malawi (e.g., Broom-Fendley et al. 2017), the xenotime-florencite deposit in Browns Ranges, 73 

Australia (Cook et al. 2013) or the monazite-xenotime mineralization in Music Valley, USA 74 

(McKinney et al. 2015). Thus, studies that improve our fundamental understanding of the 75 

behavior of REE-phosphates, especially those that are HREE-enriched, in natural hydrothermal 76 

systems are essential. Of particular importance are studies that elucidate factors controlling REE 77 

transport and precipitation such as fluid chemistry, ligand activity, temperature, and pressure. 78 

Key questions include the role of magmatic-hydrothermal fluids in REE mineralizing systems, 79 

the role of F complexing for hydrothermal REE transport, and the role of phosphate as a 80 

transporting agent or precipitant for REE-phosphate mineralization. 81 

This study addresses the formation of REE-phosphate deposits, focusing on the 82 

metasediment- and granite-hosted Olserum-Djupedal REE mineralization in southeastern 83 

Sweden, which includes one of very few REE deposits in Europe with an internationally 84 

recognized resource classification (NI 43-101; Reed 2013). Notably, the Proterozoic bedrock of 85 

the Fennoscandian shield is one of the most important areas today in Europe for the exploration 86 

and mining of both base and rare or critical metals, including the REE (e.g., Goodenough et al. 87 

2016). As a first step to characterize and understand the mineralization of the Olserum area, we 88 

have established a mineralogical, textural, and mineral-chemical framework of the REE bearing 89 

minerals by combining field geology, mineralogical, and petrographical/textural analysis, and 90 

major and trace element analysis of REE phases by electron-microprobe and laser-ablation 91 

inductively coupled plasma mass spectrometry (LA-ICP-MS). This makes it possible to at least 92 

partly infer the conditions and chemistry of the fluids that caused the formation and subsequent 93 
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post-depositional modification of the mineral assemblages and textures of this new type of REE 94 

mineralization. 95 

Geological background 96 

The Olserum-Djupedal REE mineralization (Fig. 1) is located at the boundary between the 97 

Paleoproterozoic Västervik formation and the Transscandinavian Igneous Belt (TIB) south of the 98 

Svecofennian domain proper, in the Fennoscandian shield (Gavelin 1984; Gaál and Gorbatschev 99 

1987; Högdahl et al. 2004). The Svecofennian domain evolved from an Archean nucleus in the 100 

northwest, via several accretional stages during the time interval 1.92-1.77 Ga, and generally 101 

shows younging towards the present-day southwest (e.g., Nironen 1997; Korja et al. 2006; 102 

Lahtinen et al. 2009). The Svecofennian domain is bounded to the west and south by the large, N-103 

S trending TIB batholithic structure that developed during a long-lived active continental margin 104 

from c. 1.85 to c. 1.65 Ga (Högdahl et al. 2004). 105 

The approximately 1.8 Ga old Loftahammar-Linköping deformation zone (LLDZ; 106 

Beunk and Page 2001) separates the Svecofennian domain from the Västervik formation. The 107 

Västervik formation consists predominantly of metasedimentary rocks, mainly quartzites and 108 

metarenites, with subordinate metavolcanic rocks (Gavelin 1984), which were deposited between 109 

c. 1.88 and 1.85 Ga (Sultan et al. 2005) in an extensional regime (Beunk and Page 2001). The 110 

metavolcanosedimentary succession was subsequently intruded by various granitoids, 111 

traditionally referred to as consisting of an older, c. 1.85 Ga old, deformed Loftahammar type and 112 

a geologically younger, c. 1.81-1.77 Ga suite of so-called TIB-1 granitoids (Gavelin 1984; 113 

Kresten 1986; Åhäll and Larsson 2000; Andersson and Wikström 2004; Högdahl et al. 2004). 114 

Nolte et al. (2011) recently proposed a new classification of the Västervik granitoids, followed by 115 

new zircon U-Pb age determinations (Kleinhanns et al. 2015). These authors suggest a tectonic 116 

evolution that commenced with a back-arc extensional regime around 1.88-1.85 Ga with related 117 
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ferroan (or A-type) magmatism, followed by a compressional regime around 1.85-1.81 Ga, 118 

featuring the intrusion of magnesian-type (or Cordilleran-type) granitoids. Subsequently, crustal 119 

relaxation occurred around 1.8 Ga and was accompanied by shallow ferroan (or A-type) anatectic 120 

granites, likely coeval with low pressure/high temperature metamorphism and migmatization 121 

(Kresten 1971; Gavelin 1984; Kleinhanns et al. 2012). 122 

In contrast to the extensively mineralized Paleoproterozoic Bergslagen province 123 

further north and northwest (e.g., Stephens et al. 2009), the Västervik area only hosts a limited 124 

number of Fe ± U ± REE mineralizations (Uytenbogaardt 1960; Welin and Uytenbogaardt 1963; 125 

Welin 1966a, 1966b; Hoeve 1974), as well as some Fe ± Cu ± Co ± Mo mineralizations 126 

(Uytenbogaardt 1960; Sundblad 2003, and references therein; Billström et al. 2004). Published 127 

genetic interpretations of the Fe ± U ± REE mineralizations include: (1) a placer origin with some 128 

remobilization during the intrusion of the youngest granites (Welin 1966a, 1966b), (2) a 129 

magmatic origin related to the younger granites (Uytenbogaardt 1960), or (3) a hydrothermal 130 

origin concomitant with regional Na ± Ca metasomatism during the intrusion of the younger 131 

granites (Hoeve 1974, 1978; Fig. 1). Previous studies of the Olserum-Djupedal mineralization 132 

mainly focused on identifying the principal REE minerals (Reed 2013; Fullerton 2014) and 133 

obtaining major element mineral chemistry data for xenotime, monazite, and fluorapatite as well 134 

as other minerals (Fullerton 2014). Yet, these studies only covered a small part of the known 135 

mineralization. The Olserum deposit was at the same time targeted for exploration, yielding an 136 

indicated resource estimate of 4.5 Mt at 0.6% total rare earth oxides (TREO) with 33.9% heavy 137 

rare earth oxides (HREO) (Reed 2013). This, however, only represents a part of the known 138 

mineralized area, and the resource is open at depth. The mineralization is hosted partly by quartz 139 

+ biotite + plagioclase ± cordierite metasedimentary rocks (Olserum area) of the Västervik 140 
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formation and by 1.8 Ga TIB granites (Olserum and Djupedal areas), most likely granites that 141 

belong to the anatectic A-type granites (AG group; Nolte et al. 2011). 142 

Analytical methods 143 

Electron-probe microanalysis (EPMA) 144 

Mineral chemical analyses were conducted on monazite, xenotime, allanite, and 145 

REE-fluorocarbonates. This was done by wavelength-dispersive electron probe microanalysis 146 

(EPMA) using a JEOL JXA-8600 Superprobe at the University of Helsinki, upgraded with 147 

SAMx hardware and the XMAs/IDFix/Diss5 analytical and imaging software package. The 148 

accelerating voltage was 20 kV and the beam current 25 nA. A defocused beam of about 7 µm 149 

diameter was used for monazite and xenotime, and a focused beam for allanite and REE-150 

fluorocarbonates. As described by Pyle et al. (2002), X-ray lines for REE analysis in monazite 151 

and xenotime were chosen to minimize the interferences between the different REE. A full list of 152 

the selected lines and other settings used for EPMA analysis are presented in the Electronic 153 

Supplementary Material (Tables EA1 and EA2). Detection limits for REE, Y, Th and U, varied 154 

between about 500 and 2000 ppm, and were lower than 800 ppm for the other elements. 155 

Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) 156 

LA-ICP-MS analysis of monazite, xenotime, allanite, clinozoisite, and bastnäsite 157 

were performed with a Coherent GeoLas MV 193 nm laser-ablation system coupled to an Agilent 158 

7900s ICP mass spectrometer at the University of Helsinki. Flow rates were set to 15 L/min for 159 

Ar plasma gas, 1.0 L/min for He carrier gas, and 0.85 L/min for Ar auxiliary gas for all 160 

measurements. A laser fluence of 5 J/cm2 and a repetition rate of 5 Hz with 300 pulses were used 161 

for monazite and xenotime. The following isotopes were measured: 27Al, 29Si, 31P, 34S, 44Ca, 45Sc, 162 

51V, 57Fe, 89Y, 90Zr, 93Nb, 139La, 140Ce, 141Pr, 146Nd, 147Sm, 151Eu, 157Gd, 159Tb, 163Dy, 165Ho, 166Er, 163 

169Tm, 172Yb, 175Lu, 178Hf, 181Ta, 182W, 208Pb, 232Th, and 238U. 75As was omitted because of the 164 
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strong interference by doubly-charged 150Nd and 150Sm. Potential interferences on 178Hf, 181Ta 165 

and, 182W are discussed in the Electronic Supplementary Material. A laser fluence of 4 J/cm2 and 166 

a repetition rate of 8 Hz with 400 pulses were used for allanite, clinozoisite, and bastnäsite. The 167 

program included the following isotopes: 23Na, 24Mg, 27Al, 29Si, 31P, 42Ca, 45Sc, 49Ti, 51V, 55Mn, 168 

57Fe, 66Zn, 88Sr, 89Y, 118Sn, 137Ba, 39La, 140Ce, 141Pr, 146Nd, 147Sm, 151Eu, 157Gd, 159Tb, 163Dy, 169 

165Ho, 166Er, 169Tm, 172Yb, 175Lu, 208Pb, 232Th, and 238U. Spot sizes for all measurements were 170 

typically 44 µm or 66 µm, but sometimes 32 µm and 24 µm for smaller or zoned grains. 171 

Sample analyses for monazite, xenotime, and bastnäsite were bracketed with 172 

replicate analysis of reference material NIST SRM 610, and standard data were used to correct 173 

for instrumental drift. In addition, USGS reference glass GSE-1G was also repeatedly measured 174 

as a reference material for allanite, and was preferred as an external standard after careful data 175 

evaluation. Individually measured Ce, Y, and Al concentrations, determined by EPMA, were 176 

used as internal standard elements for quantification of element concentrations from LA-ICP-MS 177 

signals in monazite, xenotime, and allanite, respectively. The only exception was sample KJA01 178 

(allanite from the biotite-magnetite schlieren), where average Al concentrations were used for 179 

quantification of the allanite data. The data treatment of LA-ICP-MS signals was done with the 180 

SILLS software package (Guillong et al. 2008). Each LA-ICP-MS signal was carefully checked 181 

for the presence of inclusions or heterogeneities, and integration windows were defined for 182 

homogeneous segments of the signals. The accuracy of the LA-ICP-MS data was verified and 183 

monitored daily by measuring the reference material NIST SRM 612 as an unknown sample. The 184 

long-term accuracy for the elemental concentration in SRM NIST 612 is well within the reported 185 

range of values and their associated uncertainties (Spandler et al. 2011). The complete analytical 186 

data set for both EPMA and LA-ICP-MS analyses is available as Electronic Supplementary 187 

Material. 188 
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Results 189 

Paragenetic and textural evolution 190 

The mineralization at Olserum-Djupedal is dominated by monazite-(Ce), xenotime-191 

(Y), and fluorapatite hosted by veins that contain biotite + quartz + magnetite as the main gangue 192 

minerals, either occurring within quartz + biotite + plagioclase ± cordierite metasedimentary 193 

rocks (Figs. 2A and 2B), or within a K-feldspar- and biotite-rich granite (Fig. 2C). A broader ore 194 

zone or vein with biotite + amphibole (gedrite to ferrigedrite) + quartz + magnetite generally 195 

hosts larger crystals of monazite-(Ce), xenotime-(Y), and fluorapatite. Xenotime-(Y) crystals up 196 

to c. 8 cm in length are readily identified in Djupedal. Locally in Djupedal, paragenetically later 197 

allanite-(Ce) occurs (Fig. 2D). 198 

The identified paragenetic sequence consists of four stages (A-D; Figs. 3 and 4). 199 

Stage A is the oldest stage and represents primary phosphate formation. Stage B is the first 200 

modification stage. It comprises the formation of secondary monazite-(Ce) and xenotime-(Y), 201 

local formation of allanite-group minerals, and REE minerals in granite-hosted schlieren. The 202 

alteration stage C comprises the alteration of previously formed minerals and the youngest stage 203 

D, represents the formation of REE-fluorocarbonates. 204 

Stage A. The oldest recognized REE minerals are coarse-grained, tectonized, 205 

primary, subhedral to euhedral monazite-(Ce) and xenotime-(Y), and coeval fluorapatite. Both 206 

monazite-(Ce) and xenotime-(Y) occasionally display distinct zoning features, which vary from 207 

slightly concentric to sector-like (Figs. 5A and 5B). Not fully characterized (Y,REE,U,Fe)-208 

(Nb,Ta) oxide phase(s) also formed during this stage. The fractures within primary monazite-209 

(Ce), xenotime-(Y), and fluorapatite are filled with gangue minerals, mainly biotite, gedrite-210 

ferrogedrite, quartz, magnetite, ilmenite, albite, muscovite, and cordierite. In addition, apparently 211 

later monazite-(Ce) and xenotime-(Y) frequently occur intergrown with magnetite and other 212 
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gangue minerals (Fig. 5C). Similarly, granite-hosted veins consist of intergrown monazite-(Ce), 213 

xenotime-(Y), and magnetite with coexisting fluorapatite. These veins are often surrounded by a 214 

weak alteration envelope in the granite with albitized K-feldspar together with quartz, biotite, and 215 

muscovite. 216 

Stage B. Stage B consists of the formation of secondary monazite-(Ce), xenotime-217 

(Y) and, locally, massive allanite-(Ce). Secondary monazite-(Ce) and xenotime-(Y) are mostly 218 

manifested as inclusions within primary fluorapatite (Fig. 5D). These inclusions and other 219 

textural types of monazite-(Ce) and xenotime-(Y) that formed in relation to primary fluorapatite 220 

are hereafter referred to as fluorapatite-associated monazite-(Ce) or xenotime-(Y). The inclusions 221 

in fluorapatite are typically subhedral, and are often randomly oriented but are sometimes aligned 222 

parallel to the fluorapatite c-axis. By contrast, the rims and recrystallized grains of fluorapatite 223 

often lack both monazite-(Ce) and xenotime-(Y) inclusions. Similarly, such inclusions are 224 

frequently absent in zones parallel to adjacent fractures in fluorapatite. Within these zones, or in 225 

between recrystallized grains, slightly coarser grains of xenotime-(Y), and to a lesser extent 226 

monazite-(Ce), is present (Fig. 5D). In contrast, monazite-(Ce) occurs more frequently with 227 

minor xenotime-(Y) in the fractures of fluorapatite, or in the surrounding mineral matrix between 228 

the primary fluorapatite crystals (Fig. 5E). Within the matrix or in the fractures, both monazite-229 

(Ce) and xenotime-(Y) are intergrown with magnetite (Fig. 5D and 5E), together with biotite, 230 

quartz, albite, andalusite, sulfides (pyrite and chalcopyrite), and muscovite.  231 

Other secondary types of monazite-(Ce) and xenotime-(Y) occur as inclusions or 232 

along crystallographically aligned planes in primary monazite-(Ce), monazite-(Ce) replacing 233 

primary xenotime-(Y) (Fig. 5F), and monazite-(Ce) within fractures of primary xenotime-(Y). 234 

These later types of monazite-(Ce) and xenotime-(Y) are hereafter referred to as late-type 235 

monazite-(Ce) or xenotime-(Y). Furthermore, the fracture-fillings also comprise massive allanite-236 
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(Ce) (Fig. 6A), quartz, biotite, amphibole (anthophyllite), magnetite, cordierite, and sometimes 237 

tourmaline and muscovite. Massive allanite-(Ce) also replaces an earlier magnetite. 238 

The granite contains abundant biotite-magnetite schlieren (BMS) with somewhat 239 

variable primary mineral assemblages, which generally consist of coexisting xenotime-(Y) and 240 

monazite-(Ce) or solely allanite-(Ce). Other minor minerals in these schlieren are quartz, 241 

ilmenite, rutile, niobian rutile, fluorapatite, zircon, and sulfides. Since BMS-hosted monazite-242 

(Ce), and, in part, xenotime-(Y) exhibit similar alteration features as other monazite-(Ce) or 243 

xenotime-(Y) formed during stage A or B, these schlieren are included in stage B. Another, yet 244 

similar, type of schlieren have more quartz-rich compositions, and are primarily composed of  245 

magnetite intergrown with monazite-(Ce) hosting small xenotime-(Y) inclusions. 246 

Stage C. Slightly later or overlapping with stage B, extensive alteration of large 247 

primary monazite-(Ce) (Figs. 6B and 6C) occurred in Djupedal. Monazite-(Ce) is almost 248 

pervasively replaced by a second generation of fluorapatite, accompanied by the direct 249 

replacement of adjacent biotite by allanite-(Ce) and ferriallanite-(Ce). The formation of unzoned 250 

xenotime-(Y) is probably also related directly to this alteration (Fig. 6C); hereafter included with 251 

the late-type xenotime-(Y). It has also affected the late-type monazite-(Ce) (Figs. 5F and 6D), but 252 

exhibits a slightly different texture. Here, allanite-(Ce) occurs along the rims of monazite-(Ce) 253 

crystals together with minor fluorapatite and clinozoisite. Associated with these assemblages, 254 

ferberite, scheelite, quartz-muscovite symplectites, and staurolite occur as minor constituents. 255 

Staurolite is observed elsewhere as a breakdown product of cordierite, together with andalusite-256 

quartz symplectites, gedrite or anthophyllite, and biotite. As previously mentioned, BMS-hosted 257 

monazite-(Ce) exhibits similar alteration features, which resulted in the formation of secondary 258 

fluorapatite, allanite-(Ce), a Th-U-Pb-Y-Ca silicate phase, and galena. In addition, minor 259 
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replacement of primary monazite-(Ce) by fluorapatite occurred in the granite-hosted veins and in 260 

primary monazite-(Ce) in Olserum adjacent to these veins. 261 

Stage C also includes Th+U alteration of xenotime-(Y) and, in part, monazite-(Ce). 262 

This alteration is manifested by different zoning patterns in xenotime-(Y) and monazite-(Ce) 263 

associated with various Th and U mineral inclusions. In monazite-(Ce), bright phases in back-264 

scattered electron (BSE) images (mostly inclusions of various Th-U-Y-Ca silicates) are locally 265 

hosted within BSE-darker zones (low in Th, U, Si). In primary xenotime-(Y), thorite, uraninite, 266 

and minor monazite-(Ce) are present as inclusions in certain BSE-dark domains (e.g., Fig. 5B). 267 

Furthermore, BSE-bright Th-U-Y-Pb silicate phases are directly associated with BSE-dark zones, 268 

which are low in U ± Th ± REE ± Si and higher in Y. They occur adjacent to BSE-brighter zones, 269 

which are high in U ± Th ± REE ± Si and low in Y (Fig. 7A). 270 

The primary (Fe,U,Y,REE,Ca,Si)-(Nb,Ta) oxide phase(s) were also affected by 271 

alteration. The altered phase is often porous and metamict, and occurs within magnetite, ilmenite, 272 

or biotite. The alteration assemblage varies slightly, but mostly comprises xenotime-(Y), 273 

columbite-(Fe), uraninite, galena, and monazite-(Ce). This alteration is locally manifested as 274 

discrete rims on the Nb-Ta oxide phase(s), which consists of columbite-(Fe) and xenotime-(Y) 275 

with minor galena and monazite-(Ce) (Fig. 7B). 276 

Stage D. The youngest stage recognized is a widespread chloritization and 277 

martitization affecting all earlier assemblages. Magnetite is martitized most intensely in the BMS, 278 

in granite-hosted veins, and in assemblages in Djupedal, but also to a variable degree in Olserum. 279 

Moreover, magnetite is intermittently replaced by calcite and chlorite in Olserum, whereas in 280 

Djupedal, magnetite is mostly altered to chlorite only (e.g., Fig. 6D). Rutile replaces ilmenite, 281 

which invariably occurs within magnetite, whereas in Djupedal, in addition to rutile, minor 282 

titanite replaces ilmenite as well. Chloritization affected biotite from all assemblages, but to a 283 
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greater extent in BMS and in Djupedal. REE mineral formation during this stage resulted from 284 

the alteration of allanite-(Ce) and ferriallanite-(Ce) to form chlorite and bastnäsite-(Ce) ± 285 

synchysite-(Ce) (Figs. 7C and 7D). All allanite generations experienced alteration, but only the 286 

allanite-(Ce) in BMS shows synchysite-(Ce) as one of the alteration products (Fig. 7D). Lastly, 287 

thin fracture-fillings of calcite crosscut the ore assemblages in both Olserum and Djupedal. 288 

Mineral chemistry and trace element characteristics  289 

Monazite-(Ce). All the different textural types of monazite-(Ce) occupy a rather 290 

small compositional range and only show small differences (Fig. 8A; Table EA3, Electronic 291 

Supplementary Material). Compared to primary monazite-(Ce) in Djupedal lacking alteration 292 

features, the pervasively altered monazite-(Ce) from Djupedal mostly has lower HREE+Y 293 

contents. Late-type monazite-(Ce) and BMS-related monazite-(Ce), which both exhibit incipient 294 

alteration along their grain margins, are however both still generally high in HREE+Y. BMS-295 

related monazite-(Ce) also has elevated Th+U contents, with a predominance of Th over U. 296 

Fluorapatite-associated monazite-(Ce) is high in the middle rare earth elements (MREE) and 297 

typically also in Th+U. The cheralite (Ca(Th,U,Pb)REE-2) substitution mechanism (e.g., Förster 298 

1998a) is generally important for most analyzed monazites (Fig. 8B). For some primary, 299 

distinctly zoned monazite-(Ce) in Olserum, the huttonite ((Th,U,Pb)SiREE-1P-1) substitution 300 

mechanism is also important. 301 

In normalized REE distribution diagrams (normalized to average upper continental 302 

crust; Rudnick and Gao 2003), all monazites exhibit similar patterns, characterized by high 303 

LREE, variable but low HREE contents, negative Eu anomaly, and a positive Y anomaly (Figs. 304 

9A and B). The Eu anomaly is distinctly larger in monazite-(Ce) from Olserum compared to 305 

monazite-(Ce) from Djupedal. In terms of the (La/Yb)N ratio and calculated Eu anomaly (Eu/Eu* 306 
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= EuN/0.5*(SmN+GdN)), the pervasively altered monazite-(Ce) from Djupedal strongly differ 307 

from the other textural types, displaying higher (La/Yb)N and Eu/Eu* values (Fig. 10). 308 

The trace elements always detected in monazite-(Ce) were V, Zr, Nb, and W, 309 

whereas S and Sc intermittently were below the limit of detection. Other trace elements such as 310 

Na, Ti, Cr, Mn, Ge, Sb, Ba, and Bi, which were included during initial LA-ICP-MS pilot testing, 311 

were below the limit of detection. Tantalum and Hf were mostly affected by interferences (see 312 

discussion in the Electronic Supplementary Material). When comparing the trace element 313 

compositions for the different types of monazite-(Ce), they are all rather similar with commonly 314 

low concentrations (Table EA4, Electronic Supplementary Material). Sulfur has the overall 315 

highest trace element concentrations measured, and is highest for primary monazite-(Ce) from 316 

Djupedal and monazite-(Ce) from the quartz-magnetite schlieren. The W content is comparably 317 

higher in late-type monazite-(Ce) than the other textural types. 318 

 Xenotime-(Y). Similar to monazite-(Ce), the major element compositional 319 

variation of xenotime-(Y) is rather limited (Fig. 11A; Table EA5, Electronic Supplementary 320 

Material). Fluorapatite-associated xenotime-(Y), and xenotime-(Y) related to the breakdown of 321 

primary (Fe,U,Y,REE,Ca,Si)-(Nb,Ta) oxide phase(s) both tend to have slightly higher LREE 322 

compared to most xenotimes. The latter type is also clearly higher in the HREE and lower in Y 323 

contents. The Th+U contents of xenotime-(Y) are also similar for most groups, except xenotime-324 

(Y) from BMS and xenotime-(Y) related to the breakdown of Nb-Ta oxide phases. These 325 

typically exhibit higher Th+U contents, with a predominance of U over Th. In contrast to 326 

monazite-(Ce), the thorite substitution mechanism ((Th,U,Pb)SiREE-1P-1) in xenotime-(Y) is 327 

more important than the cheralite (Ca(Th,U,Pb)REE-2) mechanism (Förster 1998b; Fig. 11B). 328 

However, the extent of substitution of Th and U in xenotime-(Y) is less significant than for 329 

monazite-(Ce). 330 
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 Compositional zoning is much more prominent in xenotime-(Y) than in monazite-331 

(Ce) and varies from slightly concentric or sector-like in primary xenotime-(Y) in the Djupedal 332 

mineralization (Fig. 5B), to very irregular (Fig. 7A) in both the Djupedal and Olserum 333 

mineralization. It is then often accompanied by thorite, uraninite or other U-Th-bearing phases. 334 

Generally, BSE-brighter zones are higher in Th+U or HREE or both, whereas BSE-darker zones 335 

are lower in Th+U and have high Y concentrations. In addition, BSE-darker zones intermittently 336 

contain slightly more LREE or less HREE. In rare cases, the zoning is due to differences in 337 

HREE versus LREE contents with no change in Y concentrations. 338 

 In normalized REE distribution diagrams (Figs. 12A and B), xenotime-(Y) from 339 

Olserum and Djupedal exhibit similar patterns with only minor differences. The difference is 340 

mostly manifested as contrasting Eu anomalies, where xenotime-(Y) from Olserum exhibits a 341 

larger Eu anomaly, whereas those from Djupedal invariably have a smaller Eu anomaly. 342 

Xenotime-(Y) exhibits a positive Y anomaly, except xenotime-(Y) related to the breakdown of 343 

Nb-Ta oxides, which has a small negative Y anomaly. 344 

 The trace elements V, Sc, Zr, Nb, Hf, and W were almost detected in xenotime-(Y), 345 

whereas S occasionally was below the limit of detection. The additional trace elements included 346 

during the LA-ICP-MS pilot runs were always below the limit of detection. Tantalum was mostly 347 

affected by interferences (see discussion in the Electronic Supplementary Material). Compared to 348 

monazite-(Ce), xenotime-(Y) contains higher concentrations of most of the trace elements, 349 

notably of Sc and Zr (Table EA6, Electronic Supplementary Material). The relative differences in 350 

trace element concentrations between the textural groups are minor, except for V, which is 351 

enriched in primary xenotime(Y) and monazite-(Ce) in Djupedal. The good correlation of Zr with 352 

Hf (Fig. 11C) probably indicates that both elements were incorporated into xenotime-(Y) via the 353 
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same substitution mechanism. Together, Zr and Hf show a good correlation with either Si or Ca, 354 

or both. 355 

  Allanite-(Ce) and clinozoisite. Allanite and clinozoisite belong to the allanite and 356 

the epidote groups, respectively, of the epidote-supergroup of minerals. While allanite is one of 357 

the REE-bearing members of the allanite group, clinozoisite is an end-member with Al3+ being 358 

dominant in the octahedral M(3) site as compared to Fe3+ in the epidote end-member (Gieré and 359 

Sorensen 2004; Armbruster et al. 2006). Allanite is distinguished from ferriallanite by the M(1) 360 

site occupancy, where allanite contains predominantly Al3+ and ferriallanite Fe3+ (e.g., Gieré and 361 

Sorensen 2004). Massive and BMS-hosted allanite-(Ce) are similar in terms of their total REE 362 

contents, which are in the range of 21.2 ‒ 28.5 and 21.4 ‒ 27.8 wt% REE oxide, respectively 363 

(Table EA7, Electronic Supplementary Material). The replacement-type allanite-(Ce) has lower 364 

REE, ranging from 15.9 to 22.9 wt% REE oxide. The mineral-chemical variation of the epidote-365 

group minerals is mainly governed by the following three substitutions: (1) Ca2+ + Al3+ ↔ REE3+ 
366 

+ Fe2+ , (2) Ca2+ + Fe3+ ↔ REE3+ + Fe2+  and (3) Fe3+ ↔ Al3+ (Petrík et al. 1995; Gieré and 367 

Sorensen 2004). These can be illustrated in a REE versus Al diagram (Fig. 13). The massive 368 

allanite-(Ce) as well as most of the replacement-type allanite-(Ce) plot along a line corresponding 369 

to substitution (1) where the data connect to the composition of the analyzed clinozoisite. The 370 

small shift relative to the ideal allanite-(Ce) composition is caused by substitutions (2) and (3). 371 

The allanite-(Ce) from BMS and a smaller population of the replacement-type allanite-(Ce) are 372 

richer in Fe3+. This smaller subset of the replacement-type allanite-(Ce) has a calculated Fe3+ 373 

greater than 0.5 apfu, implying compositions ranging from allanite-(Ce) to ferriallanite-(Ce) 374 

(Armbruster et al., 2006). Moreover, the data show that all the replacement-type allanite-(Ce) to 375 

ferriallanite-(Ce) are richer in Ca than both BMS-related and massive allanite-(Ce) as a result of 376 

lower total REE contents occupying the A-site. The internal variations in ∑REE for each group 377 
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reflect the zoning in allanite-(Ce) and ferriallanite-(Ce). Zones dark in BSE have lower LREE 378 

and higher Ca, and these zones typically host REE-fluorocarbonates. Clinozoisite has Ca contents 379 

close to the stoichiometric value of 2.0 apfu, and very low REE. The O(4) site is occupied by O, 380 

F, and other halogens. Measured F concentrations in the allanites vary from below the limit of 381 

detection (about 0.75 wt%), to about 1.0 wt% F, whereas Cl concentrations range from below the 382 

limit of detection (about 250 ppm) to a maximum of 3000 ppm Cl. 383 

The normalized (relative to average upper continental crust; Rudnick and Gao 384 

2003) REE distribution patterns of allanite-(Ce) and ferriallanite-(Ce) are similar to those of 385 

monazite-(Ce). They are characterized by higher LREE over HREE+Y, and negative Eu and Y 386 

anomalies (Fig. 14). Using the normalized ratios (La/Yb)N and (La/Sm)N and calculated Eu/Eu* 387 

and Y/Y* values (Y/Y* = YN/0.5*(DyN+HoN)), and looking at the sequence from BMS-hosted 388 

allanite-(Ce) to massive allanite-(Ce), to replacement-type allanite-(Ce) and ferriallanite-(Ce), the 389 

following trend emerges. Both the (La/Yb)N and Eu/Eu* systematically increase, while the 390 

(La/Sm)N and Y/Y* decrease (Figs. 14B to 13E). The BMS-hosted and massive allanite-(Ce) 391 

exhibit overlapping patterns with only very minor differences. 392 

The trace element composition for the analyzed textural types of allanite differ from 393 

each other in most cases (Table EA8, Electronic Supplementary Material). The BMS-hosted 394 

allanite-(Ce) is strongly enriched in Zn and Sn and has slightly elevated Sc, V, and Ti 395 

concentrations. Massive allanite-(Ce) typically has low trace element concentrations, whereas 396 

replacement-type allanite-(Ce) and ferriallanite-(Ce) show variable concentrations, with 397 

moderately higher Sc, Mn, Th, and U contents. For Na, P, Sr, Ba, and Pb, the spread of individual 398 

analyses is larger and the quality of the LA-ICP-MS signals is rather poor, especially for BMS-399 

hosted allanite-(Ce) and replacement-type allanite-(Ce) and ferriallanite-(Ce), which are subject 400 

to more extensive alteration and REE-fluorocarbonate formation. In addition to the elements 401 
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always measured, initial tests showed the presence of low but variable concentrations of Co, Cr, 402 

Cs, In, Li, Mo, Nb, Ni, Rb, and Zr, while Be, Cd, Cu, and Tl were always below the limit of 403 

detection. 404 

 REE-fluorocarbonates. The REE-fluorocarbonates comprise a suite of chemically 405 

and structurally related minerals of which the most important are: bastnäsite (REECO3F), parisite 406 

(CaREE2(CO3)3F2), röntgenite (Ca2REE3(CO3)5F3), and synchysite (CaREE(CO3)2F). Since the 407 

grains of the REE-fluorocarbonates are typically rather small, only a limited set of analyses could 408 

be obtained, mainly from altered BMS-hosted allanite-(Ce) (Table EA7, Electronic 409 

Supplementary Material). Based on the EPMA data, two distinct phases are identified, namely 410 

bastnäsite-(Ce) with low Ca contents, ranging from 3.0 to 4.3 wt% CaO, and synchysite-(Ce), 411 

with higher Ca, varying between 14.1 and 18.6 wt% CaO. Both minerals are classified as 412 

fluorocarbonates with F dominant in the F-OH-Cl site (Fig. 15). 413 

 In a normalized (relative to average upper continental crust; Rudnick and Gao 414 

2003) REE distribution diagram, bastnäsite-(Ce) and synchysite-(Ce) have slightly higher LREE 415 

and HREE compared to allanite-(Ce) (Fig. 14). The complete REE distribution pattern could only 416 

be obtained from two analyses of BMS-hosted bastnäsite-(Ce). These show similar Eu/Eu* and 417 

(La/Yb)N as their precursor BMS-hosted allanite-(Ce), but distinctly different Y/Y* and (La/Sm)N 418 

ratios. The trace element compositions of the analyzed bastnäsite-(Ce) show increased Sr, Th, 419 

and Fe contents (Table EA8, Electronic Supplementary Material). 420 

Monazite-xenotime geothermometry 421 

The temperature-dependent Y or Y+HREE partitioning between the equilibrium-pair monazite + 422 

xenotime (e.g., Heinrich et al. 1997; Pyle et al. 2001) has been utilized to provide temperature 423 

estimates for the formation of these minerals. Temperatures were calculated after the calibration 424 

of Pyle et al. (2001) on monazite-(Ce), using the combined EPMA (La-Sm) and LA-ICP-MS (Eu, 425 
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Y, and Gd-Lu) data sets. Excluding grains that are not in physical contact with xenotime-(Y), the 426 

primary monazite-(Ce) from Olserum and Djupedal yield temperatures from c. 500 to 650 °C 427 

(Table 1). Monazite-(Ce) from granite-hosted veins shows overall slightly higher temperatures, 428 

similar to those of late-type and BMS-hosted monazite-(Ce). Monazite-(Ce) inclusions in 429 

fluorapatite on average exhibit higher temperatures compared to monazite-(Ce) in fractures and 430 

in the surrounding mineral matrix. 431 

Discussion 432 

Dissolution-reprecipitation processes 433 

A mineral phase partly or completely replaced by the same phase or by another one 434 

can have formed as the result of fluid-assisted dissolution and concurrent precipitation. This 435 

process is initiated after the establishment of an interconnected pore space along the fluid-mineral 436 

interface, promoting the mass transfer of elements in the fluid (Putnis and John 2010). We 437 

suggest that such coupled dissolution-reprecipitation processes were important for the 438 

mineralogical and textural evolution of the Olserum-Djupedal mineralization (schematically 439 

illustrated in Fig. 4). 440 

Similar to apatites from other REE-bearing deposits, for example several iron-oxide 441 

apatite deposits (e.g., Harlov et al. 2002, 2016; Jonsson et al. 2016, and references therein), 442 

primary fluorapatite and granite-hosted vein fluorapatite from the Olserum-Djupedal 443 

mineralization host abundant inclusions of monazite-(Ce) and xenotime-(Y), which we interpret 444 

to have formed by coupled dissolution-reprecipitation processes. Most of the monazite-(Ce) and 445 

xenotime-(Y) from Olserum-Djupedal are rich in Th or U or both, which is in contrast to most 446 

monazite-(Ce) and xenotime-(Y) formed by dissolution-reprecipitation (e.g., Harlov 2015, and 447 

references therein). Harlov and Förster (2003) experimentally demonstrated that monazite with 448 
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high Th content could form from a fluorapatite host rich in Th, and that both Th and U are 449 

effectively liberated from fluorapatite at high P-T conditions in H2O ± KCl rich fluids. However, 450 

fluorapatite from Olserum-Djupedal is low in both Th and U (Fullerton 2014; unpublished data; 451 

up to 3 ppm Th and up to 25 ppm U). An alternative explanation is that the infiltrating fluid 452 

carried both Th and U, and caused enrichment of both elements in the monazite-(Ce) and 453 

xenotime-(Y) inclusions. 454 

The lack of inclusions along rims, in recrystallized grains and in zones parallel to 455 

fractures in the fluorapatite suggest that monazite-(Ce) and xenotime-(Y) inclusions formed 456 

early, and were affected by one or several subsequent stages of fluid-assisted remobilization. 457 

Monazite-(Ce), formed by remobilization, seems to occur further away, for instance in fractures 458 

in fluorapatite or within the surrounding matrix, whereas xenotime-(Y) tends to remain in 459 

fluorapatite as inclusions, typically as coarser grains probably grown by Ostwald ripening 460 

(Harlov et al. 2005). This contrasting behavior between monazite-(Ce) and xenotime-(Y) may be 461 

a direct consequence of the greater mobility of LREE compared to HREE, since LREE form 462 

more stable chloride complexes at hydrothermal conditions (e.g., Migdisov et al. 2009, 2016). A 463 

time-overlap is probable between monazite-(Ce) and xenotime-(Y) formed by these 464 

remobilization processes and those formed late during stage A. This is because all exhibit similar 465 

textural features, i.e., they are intergrown with magnetite (Figs. 5C and E), and they have a 466 

similar mineral chemistry. However, both monazite-(Ce) and xenotime-(Y) that formed late 467 

during stage A and those formed by processes associated with primary fluorapatite, experienced 468 

later dissolution-reprecipitation during stage C, which resulted in the formation of uraninite, 469 

thorite, and other Th-U-bearing phases. 470 

Hetherington and Harlov (2008) demonstrated that dissolution-reprecipitation 471 

processes resulted in the formation of thorite and uraninite inclusions in xenotime-(Y) and 472 
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monazite-(Ce) from granitic pegmatites in Norway. There, primary and unaltered xenotime-(Y) 473 

and monazite-(Ce) are rich in Si, Th ± U, i.e., high in huttonite/thorite components, whereas 474 

altered domains in these minerals are depleted in the same suite of elements. This implies 475 

essentially closed system conditions during the dissolution-reprecipitation process involving Th, 476 

U, and Si. In xenotime-(Y) from Olserum-Djupedal, smaller inclusions of thorite (with variable 477 

U, Y, Ca, and Pb contents) occur together with subordinate uraninite ± monazite-(Ce). These 478 

inclusions have precipitated in domains that make up the original crystal zoning (Fig. 5B), in 479 

domains exhibiting less distinct zoning patterns (Fig. 7A), or even in smaller fractures in 480 

xenotime-(Y). Comparable to the xenotime-(Y) from the granitic pegmatites in Norway 481 

(Hetherington and Harlov 2008), the altered, BSE-darker zones are depleted in Th+U, but they do 482 

also have higher Y and variable HREE and LREE contents. Conversely, the BSE-brighter zones 483 

are mainly enriched in Th + U ± Si, thus effectively demonstrating that similar dissolution-484 

reprecipitation mechanisms operated here as well. However, the presence of small associated 485 

monazite-(Ce) grains also suggests that the dissolution-reprecipitation process liberated LREE 486 

from xenotime-(Y), which is consistent with the observed, strong LREE-depletion in some of the 487 

REE distribution patterns (Fig. 12). The prevalence of thorite over uraninite likely reflects the 488 

composition of the original unaltered xenotime-(Y) (Hetherington and Harlov 2008), resulting in 489 

Th/U < 1 in most of the (altered) xenotime-(Y) analyzed from Olserum-Djupedal. 490 

The coupled dissolution-reprecipitation processes involving Th and U have less 491 

obviously affected monazite-(Ce). However, some monazite-(Ce) grains with a large huttonite 492 

component (e.g., Fig. 5A) exhibit unaltered BSE-bright zones enriched in Th and Si and BSE-493 

darker zones. The latter are significantly depleted in Th and Si compared to the BSE-brighter 494 

zones, further demonstrating an essentially closed, or localized, chemical system. By contrast, 495 

monazite-(Ce) was more readily altered, pervasively or partially, to allanite-(Ce) and ferriallanite-496 
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(Ce), fluorapatite, and clinozoisite (e.g., Figs. 6B and D). This resulted from fluid-assisted 497 

dissolution-reprecipitation initiated along grain boundaries or along fracture networks, which 498 

acted as pathways for fluids to migrate into and interact with monazite-(Ce). The process released 499 

REE that were incorporated into allanite-(Ce) and ferriallanite-(Ce), which typically formed 500 

directly on adjacent biotite, as the latter supplied the other major components Al, Si, Fe, and Mg. 501 

The required Ca may have been supplied either by: (1) the removal of Ca from primary 502 

fluorapatite that was affected by dissolution-reprecipitation processes or dissolved completely; 503 

(2) fluid-rock interaction with the surrounding host rocks; or (3) external sources, e.g., during 504 

regional Na ± Ca metasomatism of rocks in the Västervik formation (Hoeve 1974, 1978). The 505 

release of P from monazite-(Ce) and the readily available Ca in the reactive fluid caused the 506 

formation of the second generation of fluorapatite. Comparable monazite replacement textures in 507 

various igneous and metamorphic rocks (e.g., Broska and Siman 1998; Ondrejka et al. 2012; 508 

Budzyń and Jastrzêbski 2016) are usually interpreted as the result of fluid-rock interaction 509 

involving rocks with a granitic composition, where Ca originated from the anorthite component 510 

in plagioclase. However, we are unable to evaluate the extent of such an interaction in Olserum-511 

Djupedal at this point, but note that the monazite-(Ce) alteration processes only occurred in 512 

Djupedal and in the biotite-magnetite schlieren, whose immediate surrounding is dominated by 513 

granite. 514 

The pervasive replacement appears to have extensively modified the composition of 515 

the primary monazite-(Ce), which is depleted in HREE, exhibits lower Y/Y* ratios, and has a 516 

smaller Eu anomaly compared to the unaltered primary monazite-(Ce) in Djupedal. By contrast, 517 

partially altered monazite-(Ce) (late-type and BMS-hosted) exhibits only minor compositional 518 

changes. The excess HREE+Y liberated during the pervasive alteration were either incorporated 519 

into the newly formed fluorapatite, or more probably the late-type xenotime-(Y), which exhibits 520 
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higher Y/Y*. The increase in Eu may reflect changes in oxidation state and Eu2+/Eu3+ ratios 521 

during alteration (see discussion below). The depletion in the HREE+Y may also in part be 522 

explained by the precipitation of small xenotime-(Y) inclusions oriented along 523 

crystallographically controlled domains in the primary monazite-(Ce), as observed in both 524 

Olserum and Djupedal. The Th ± U released during pervasive or partial alteration of monazite-525 

(Ce) led to the formation of discrete Th-bearing phases, if the monazite-(Ce) initially had high Th 526 

contents, or both elements were incorporated into allanite-(Ce) and ferriallanite-(Ce). 527 

Temperature constraints 528 

Based on geothermometry of texturally coexisting monazite-(Ce) and xenotime-(Y) 529 

pairs, the primary ore assemblages of stage A formed around 500-650 °C. Utilizing data from 530 

monazite-(Ce) that hosts small xenotime-(Y) inclusions, and from pervasively altered primary 531 

monazite-(Ce) from Djupedal, the calculated temperature range extends down to about 200 °C. 532 

We interpret the calculated lower end of the temperature range to reflect the fluid-mediated 533 

HREE+Y depletion in these monazites, rather than the true temperatures of formation. The 534 

temperatures calculated for monazite-(Ce) present as inclusions in fluorapatite are at the high end 535 

of the temperature spectrum, suggesting that the formation of these inclusions commenced at 536 

high temperatures. The subsequent fluid-assisted remobilization processes associated with 537 

fluorapatite operated under conditions where the hydrothermal system became progressively 538 

cooler. The lower temperatures, calculated for monazite-(Ce) formed by remobilization 539 

processes, are supported by the presence of coexisting biotite, andalusite, albite, quartz, and 540 

muscovite, which are readily interpreted as retrograde assemblages, formed at lower temperatures 541 

than the peak metamorphic mineral assemblages. 542 

The presence of cordierite, andalusite, and staurolite in the ore assemblages is in 543 

good agreement with the temperature estimates obtained from monazite-xenotime thermometry. 544 
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The monazite-xenotime temperatures are also in good agreement with the broadly high-545 

temperature, low-pressure conditions inferred for peak metamorphism in the Västervik area (e.g., 546 

Russel 1969; Kresten 1971; Gavelin 1984). Metamorphic conditions probably reached upper 547 

amphibolite facies (around 630-700 °C and <400 MPa), based on the presence of sillimanite + K-548 

feldspar bearing assemblages (Elbers 1971; Kresten 1971). Sillimanite + K-feldspar assemblages 549 

have also been observed in the Olserum-Djupedal area, in sillimanite and K-feldspar gneisses, 550 

and pegmatite veins and schlieren, which are likely related to the peak metamorphic conditions 551 

attained in the region. In Djupedal, late-type monazite-(Ce), which has been affected by partial 552 

replacement along grain boundaries, nevertheless records relatively high temperatures (515-670 553 

°C), and coexists with staurolite and quartz-muscovite symplectites (Fig. 6D). This demonstrates 554 

that the alteration of monazite-(Ce) likely occurred after these temperatures were reached, i.e., at 555 

slightly lower temperatures during retrograde conditions synchronous with the breakdown of K-556 

feldspar. At such retrograde conditions, fluids with high Ca activity can still readily alter 557 

monazite to allanite or apatite or both (e.g., Spear 2010; Budzyń et al. 2011, 2016). 558 

Fluid, mineral and textural evolution 559 

Recent experimental studies addressing the solubility and speciation of the REE in 560 

aqueous solutions at hydrothermal conditions (e.g., Poitrasson et al. 2004; Migdisov et al. 2009, 561 

2016; Loges et al. 2013; Tropper et al. 2013) have demonstrated that the REE can be efficiently 562 

transported under acidic conditions in chloride- and fluoride-rich fluids. However, the principal 563 

ore fluid at Olserum-Djupedal must have been capable of transporting the remaining elements of 564 

the primary mineralization stage A, most importantly Th, U, and Nb. One important common key 565 

factor appears to be the F content in the fluid, which greatly enhances the solubility of the REE 566 

and HFSE due to the formation of very stable metal-fluoride species (Keppler and Wyllie 1990, 567 

1991; Jiang et al. 2005; Timofeev et al. 2015, 2017). Keppler and Wyllie (1990, 1991) showed 568 
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that Cl-rich solutions are capable of transporting U, but not Th, and that the Th mobility increases 569 

with the F concentration in the system. Timofeev et al. (2015) and Timofeev et al. (2017) recently 570 

demonstrated that the solubility of both Nb and Ta increase with higher F concentration in the 571 

fluid. They also showed that Nb is one to two orders of magnitude more soluble than Ta under 572 

otherwise identical conditions (temperature, pressure, fluoride concentration, and pH). A 573 

plausible scenario is therefore that the primary REE-phosphate mineralization during stage A 574 

formed from fluids with elevated concentrations of both Cl and F compared to typical regional 575 

metamorphic fluids. The elevated F content in the system is inferred from the abundance of 576 

fluorapatite texturally coexisting with the monazite-(Ce) and xenotime-(Y). The ultimate source 577 

of the REE and HFSE transporting fluids for stage A remains a matter of speculation at this point, 578 

but the metamorphic assemblages and the close relation with the surrounding granite(s) would 579 

suggest fluid contributions from both metamorphic and magmatic sources to the hydrothermal 580 

REE mineralizing system. 581 

 The appearance of several Ca-bearing minerals during stage B and C, including 582 

allanite-(Ce) to ferriallanite-(Ce), clinozoisite, calcic tourmaline (uvite; unpublished data), and a 583 

second generation of fluorapatite, records an increase in the Ca content of the hydrothermal 584 

system. The Ca/Na activity ratio is a critical factor in controlling the stability of allanite over 585 

monazite (Spear 2010, Budzyń et al. 2011, 2016), in addition to the relative availabilities of P and 586 

Si. Indeed, massive allanite-(Ce) could only form locally together with the other Ca-rich minerals 587 

during stage B. Moreover, all late-type monazite-(Ce), formed together with massive allanite-588 

(Ce) in Ca-rich assemblages, was evidently unstable during later monazite-(Ce) alteration. The 589 

transition from massive allanite-(Ce) (stage B) to replacement-type allanite-(Ce) and ferriallanite-590 

(Ce) (stage C) records an increase in the Ca content, which further attest to an increase in Ca in 591 

the system. Whether this increase reflects the local fluid-rock interaction with surrounding Ca-592 
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rich host rocks or external introduction of Ca into the system cannot be resolved at present. In 593 

Olserum, where no allanite formed and monazite-(Ce) essentially lacks alteration, no other Ca-594 

bearing minerals were formed during stages B and C. 595 

It is not yet fully clear why this localized hydrothermal alteration developed in 596 

Djupedal and not in Olserum, but a first-order observation is the distinct difference in the 597 

immediate host-rock lithology, i.e., more granitic rocks in Djupedal compared to mainly 598 

metasedimentary rocks at Olserum. In addition to high Ca activity, local differences in the 599 

Eu/Eu* of monazite-(Ce) between the Olserum mineralization, the Djupedal mineralization, and 600 

the REE mineralization in BMS suggest that differences in oxidation appear to be another factor 601 

controlling the stability of monazite-(Ce) (Fig. 10). In principle, monazite-(Ce) preferably 602 

incorporates trivalent REE ions. If monazite-(Ce) formed from a fluid with dominantly Eu3+, no 603 

Eu anomaly would develop. When the fluid becomes reduced so that Eu2+ dominates, less Eu3+ is 604 

then available for monazite-(Ce) and a negative anomaly develops. However, we do not 605 

necessarily attribute the overall negative Eu anomaly in monazite-(Ce), and the other REE 606 

minerals, to the presence of a reducing fluid. Instead, we interpret this mainly as a result of 607 

inheritance in the source region via fluid-rock interactions. This is because both metasedimentary 608 

rocks and granitoids from the Västervik area invariably exhibit negative Eu anomalies (Nolte et 609 

al. 2011; Kleinhanns et al. 2012). Yet, the relative increase in Eu/Eu* values, i.e., progressively 610 

smaller Eu anomalies, from the unaltered to the pervasively altered monazite-(Ce) in Djupedal, 611 

suggest a progressive oxidation of the fluid during this alteration. This is because oxidized Eu3+ 
612 

should dominate over reduced Eu2+ in an oxidizing fluid, and become more available for 613 

monazite-(Ce). This eventually produces progressively smaller negative Eu anomalies. The 614 

inferred increase in oxidation is also supported by the relative increase in Fe3+ over Fe2+ and in 615 

Eu/Eu* (Figs. 10 and 13) from massive allanite-(Ce) to the replacement-type allanite-(Ce) and 616 
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ferriallanite-(Ce) (from stage B to C). Additionally, widespread martitization of magnetite during 617 

stage D, or potentially earlier, corroborates with this progressive oxidation of the system. 618 

In addition to the pervasive or partial alteration of monazite-(Ce), stage C records 619 

additional secondary, fluid-assisted alteration, and replacement processes. Experimental studies 620 

investigating similar processes have demonstrated that in the presence of F- and alkali-bearing 621 

fluids at temperatures between 450 and 750 °C (and at pressures between 200 and 1000 MPa), 622 

monazite and xenotime are highly reactive (Hetherington et al. 2010; Budzyń et al. 2011, 2016; 623 

Harlov et al. 2011). Experiments involving xenotime-(Y) produced breakdown of the xenotime to 624 

(Y,HREE)-epidote or Y-rich fluorcalciobritholite, coupled with a Th ± U alteration (Hetherington 625 

et al. 2010; Budzyń et al. 2016). This contrasts with the observations from ore textures and 626 

minerals assemblages in Olserum-Djupedal, where xenotime-(Y) shows no indication of 627 

(Y,HREE)-epidote alteration. The lack of such alteration may reflect different temperature and 628 

pressure conditions, or more likely the result of lower fluid-rock ratios compared to the 629 

conditions of the experiments of Budzyń et al. (2016). The breakdown of the primary 630 

(Y,REE,U,Fe)-(Nb-Ta) oxide phases may also have been induced by Cl- and F-bearing fluids, as 631 

suggested by the study of alteration textures of primary euxenite in pegmatites in southern 632 

Norway (Duran et al. 2016). 633 

While an alkali-bearing fluid promotes dissolution-reprecipitation processes in 634 

monazite-(Ce) and xenotime-(Y), such a fluid will not cause the formation of monazite-(Ce) and 635 

xenotime-(Y) inclusions in fluorapatite (Harlov and Förster 2003; Harlov et al. 2005). This 636 

process would rather be facilitated by H2O-KCl brines and CO2-H2O fluids (Harlov and Förster 637 

2003) and acids such as HCl and H2SO4 (Harlov et al. 2005). Conversely, similar fluid 638 

compositions will not cause the Th + U alteration in monazite-(Ce) and xenotime-(Y), and the 639 

partial to pervasive replacement of monazite-(Ce) (Budzyń et al. 2011). Hence, the coupled 640 
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dissolution-reprecipitation processes affecting monazite-(Ce), xenotime-(Y), and the 641 

(Y,REE,U,Fe)-(Nb-Ta) oxide phases (stage C), as opposed to the processes affecting fluorapatite 642 

(stage B), require a different type of fluid chemistry. Thus, textural observations combined with 643 

the inferences from experimental studies suggest that these two alteration types were produced at 644 

distinctly separate stages and driven by chemically different fluids. Textural relations show that 645 

coarsened xenotime-(Y) grains located at fluorapatite grain boundaries exhibit the same type of 646 

Th ± U alteration as the primary xenotime-(Y). This implies that the precipitation of monazite-647 

(Ce) and xenotime-(Y) inclusions in fluorapatite preceded the Th ± U alteration of stage C, and, 648 

by implication, also the alteration affecting monazite-(Ce). 649 

Stage D represents the latest stage of REE mineral formation. This stage comprises 650 

the REE-fluorocarbonates bastnäsite-(Ce) and synchysite-(Ce). They formed as a consequence of 651 

low-temperature alteration of allanite-(Ce) and ferriallanite-(Ce) that proceeded along fractures or 652 

grain boundaries, or sometimes in intragranular domains. REE released from the allanites became 653 

incorporated into the REE-fluorocarbonates, while excess Al, Si, Fe, and Mg liberated during the 654 

alteration formed chlorite. If the alteration was unable to affect the entire grain, the Al, Si, Fe, 655 

and Mg, together with the REE, intermittently remained in allanite, resulting in BSE-darker zones 656 

that contain thin fracture fillings of bastnäsite-(Ce). The liberated Th ± U was probably 657 

incorporated into the REE-fluorocarbonates, as shown by measurable Th and minor U contents in 658 

these phases. However, U also formed discrete uraninite grains close to the altered allanite (Fig. 659 

7D). The F required to stabilize REE-fluorocarbonates was most likely derived from the 660 

chloritization of biotite, or from the external fluid. In the allanite-bearing assemblages in 661 

Djupedal, which experienced extensive chloritization, magnetite also became chloritized. In 662 

contrast, magnetite in Olserum was only altered to calcite + chlorite. Thus, late chloritization and 663 

influx of CO2 ± F caused the formation of REE-fluorocarbonates in those domains of the 664 
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mineralization rich in allanite-(Ce) or ferriallanite-(Ce), whereas calcite formed instead in 665 

domains lacking allanite. 666 

Implications 667 

 The present study describes a new and previously unrecognized type of potentially 668 

economic hydrothermal REE mineralization dominated by abundant, coarse-grained monazite-669 

(Ce), xenotime-(Y), and fluorapatite. The abundance of these phosphates clearly shows that the 670 

REE mineralizing system contained P as one of its principal components. Currently, phosphate is 671 

generally assumed to act as a precipitant rather than a complexing ligand for REE in 672 

hydrothermal systems, reflecting the low solubility of REE-phosphates at typical low- to 673 

moderate-temperature hydrothermal conditions (Poitrasson et al. 2004; Cetiner et al. 2005; Gysi 674 

et al. 2015; Migdisov et al. 2016). However, because of the strong enrichment of REE-675 

phosphates in the Olserum-Djupedal mineralization, mass balance considerations suggest that the 676 

REE-transporting fluid must have locally interacted with substantial volumes of P-enriched host 677 

rocks in order to precipitate REE exclusively as phosphates. Considering that the REE-678 

phosphates formed concomitantly with vein-hosted fluorapatite (instead of post-dating it), and 679 

that no other P-enriched units or earlier assemblages have been identified, a local rock source for 680 

the necessary, large amounts of P remains problematic. In addition, the Olserum-Djupedal REE 681 

mineralization formed at rather high P-T conditions, which are above the P-T ranges normally 682 

investigated by solubility and spectroscopic experiments. Thus, the possibilities that the REE can 683 

be cotransported with phosphate in F-rich fluids or even form stable phosphate complexes at such 684 

conditions calls for new experimental studies at high P-T conditions. 685 

The REE-bearing hydrothermal ore assemblages of the Olserum-Djupedal 686 

mineralization further demonstrate the joint mobility of REE and HFSE in a natural F-bearing, 687 

high-temperature hydrothermal system, both during the primary stage of formation, and the 688 
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subsequent alteration stages that modified the primary REE-phosphate ores. Similar to the 689 

conclusions drawn in other studies (e.g., Williams et al. 2011), we suggest that the fluid-assisted 690 

metasomatic processes in the Olserum-Djupedal mineralization have extensively altered the 691 

mineral assemblages and composition in some cases (i.e., during the Th ± U alteration or the 692 

pervasive monazite replacement), whereas in other cases the original mineralogy and chemical 693 

composition remained essentially unchanged. Consequently, if these textures and chemical 694 

variations are mapped in sufficient detail, geochronological dating could be applied to monazite 695 

and xenotime in systems where the primary age and the subsequent alteration stages are expected 696 

to be larger than the error for the selected dating method. 697 

698 
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Figure captions 966 

Figure 1. Geological map of the Västervik area showing the location of the Olserum-Djupedal 967 

REE deposits. Redrawn after Gavelin (1984) and mapping data from the database of the 968 

Geological Survey of Sweden. The inset map shows the large-scale geology of southern Sweden, 969 

modified after Andersen et al. (2009). 970 

Figure 2. Overview of the ore assemblages of the Olserum–Djupedal REE mineralization. (A) 971 

Biotite-dominated vein with magnetite, fluorapatite, xenotime-(Y), and monazite-(Ce), in 972 

metasedimentary quartz-biotite rock. The REE vein is crosscut by a calcite fracture. (B) Irregular 973 

biotite vein with coarse-grained monazite-(Ce) and xenotime-(Y) in metasedimentary quartz-974 

biotite rock. (C) Intergrown magnetite, monazite-(Ce), xenotime-(Y), and fluorapatite in a K-975 

feldspar rich granite, surrounded by a weak alteration halo of quartz, biotite, muscovite, and 976 

albitized K-feldspar. (D) Allanite-(Ce) bearing assemblages in the ore at Djupedal. Coarse-977 

grained and fractured monazite-(Ce) and xenotime-(Y) occur in a matrix dominated by biotite, 978 

quartz, cordierite, and muscovite. 979 

Figure 3. Simplified paragenesis diagram of the Olserum-Djupedal REE mineralization, 980 

illustrating the relative time sequence of the REE-Th-U-Nb minerals and the main gangue and 981 

alteration minerals. 982 

Figure 4. Schematic illustration showing the textural evolution of the REE minerals and the 983 

difference between Olserum, Djupedal, and the biotite-magnetite schlieren. 984 

Figure 5. BSE images of ore assemblages from the Olserum-Djupedal REE mineralization. (A) 985 

Olserum: Primary, zoned monazite-(Ce) associated with Th-U-Y-Ca silicate and xenotime-(Y) 986 

inclusions. (B) Djupedal: Primary, zoned xenotime-(Y) crystal, with small inclusions of 987 

monazite-(Ce), uraninite, and thorite concentrated in particular zones of the xenotime-(Y) crystal. 988 

(C) Olserum: Paragenetically later primary monazite-(Ce) and xenotime-(Y) intergrown with 989 
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magnetite. (D) Olserum: Large primary fluorapatite crystal with abundant monazite-(Ce) and 990 

xenotime-(Y) inclusions. Note the lack of small inclusions in the zone at the center of the BSE 991 

image. (E) Fine-grained matrix surrounding the primary fluorapatite crystal shown in (D). 992 

Monazite-(Ce) and subordinate amounts of xenotime-(Y) are intergrown with magnetite. (F) 993 

Djupedal: Late-type monazite-(Ce) replacing primary xenotime-(Y) along grain boundaries. 994 

Monazite-(Ce) also shows incipient alteration by allanite-(Ce). Mineral abbreviations: aln: 995 

allanite; and: andalusite; ap: fluorapatite; bt: biotite; ilm: ilmenite; mag: magnetite; mnz: 996 

monazite; qz: quartz; thr: thorite; urn: uraninite; xtm: xenotime. 997 

Figure 6. BSE images from ore assemblages from the Olserum-Djupedal REE mineralization. 998 

(A) Djupedal: Massive allanite-(Ce) within fractures of primary xenotime-(Y). The massive 999 

allanite-(Ce) shows incipient alteration by bastnäsite-(Ce), while minor remobilized late-type 1000 

monazite-(Ce) occurs as part of the fracture-filling. (B) Djupedal: Pervasive replacement of 1001 

primary monazite-(Ce) by fluorapatite and ferriallanite-(Ce). (C) Djupedal: Pervasive 1002 

replacement of primary monazite-(Ce) with adjacent late-type xenotime-(Y). For additional 1003 

images of this pervasive alteration, please refer to Fig. EA4 in the Electronic Supplementary 1004 

Material. (D) Djupedal: Late-type monazite-(Ce) showing partial alteration into allanite-(Ce) 1005 

(replacement-type), fluorapatite, and clinozoisite, close to massive allanite-(Ce). Note the 1006 

presence of quartz-muscovite symplectites and chloritization of magnetite. Mineral abbreviations: 1007 

aln: allanite; ap: fluorapatite; bst: bastnäsite; bt: biotite; chl: chlorite; czo: clinozoisite; mag: 1008 

magnetite; mnz: monazite; ms: muscovite; qz: quartz; xtm: xenotime. 1009 

Figure 7. BSE images from ore assemblages from the Olserum-Djupedal REE mineralization. 1010 

(A) Djupedal: Textural manifestation of dissolution-reprecipitation processes in a xenotime-(Y) 1011 

grain at the boundary of a fluorapatite crystal. BSE-bright zones are enriched in Th, U, and 1012 

LREE, and depleted in Y, whereas BSE-darker as well as completely dark zones are depleted in 1013 
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Th, U, LREE, and enriched in Y. Note that the BSE-dark zones host inclusions of Th-U-Y-Pb 1014 

silicate phases. (B) Olserum: Metamict and altered primary (Fe,U,Y,REE,Ca,Si)-(Nb,Ta) oxide 1015 

with rims of columbite-(Fe) (based on EDS analysis) and xenotime-(Y). (C) Djupedal: 1016 

Alteration of allanite-(Ce) into bastnäsite-(Ce) and chlorite in fracture fillings of primary 1017 

xenotime-(Y). (D) Olserum: Replacement of BMS-hosted allanite-(Ce) into a bastnäsite-(Ce), 1018 

synchysite-(Ce), and chlorite assemblage containing a small uraninite grain. Mineral 1019 

abbreviations: aln: allanite; ap: fluorapatite; bst: bastnäsite; bt: biotite; chl: chlorite; col: 1020 

columbite; crd: cordierite; gn: galena; Kfs: K-feldspar; mag: magnetite; mnz: monazite; ms: 1021 

muscovite; qz: quartz; syn: synchysite; urn: uraninite; xtm: xenotime. 1022 

Figure 8. Diagrams illustrating the major element chemistry of monazite-(Ce). (A) Ternary 1023 

diagram showing monazite-(Ce) composition in LREE-(HREE+Y)-(Th+U) space. (B) Variation 1024 

diagram of Th+U+Si+Pb versus REE+Y+P, illustrating the cheralite (Ca(Th,U,Pb)REE-2) and 1025 

huttonite ((Th,U,Pb)SiREE-1P-1) substitution mechanisms in monazite-(Ce). 1026 

Figure 9. Normalized (relative to upper continental crust; Rudnick and Gao 2003) REE 1027 

distribution diagrams for monazite-(Ce) from (A) the Olserum mineralization and (B) the 1028 

Djupedal mineralization. Monazite-(Ce) from both schlieren types are shown separately. 1029 

Figure 10. Variation diagram of the LREE to HREE slope, (La/Yb)N, as function of the 1030 

magnitude of the Eu anomaly, Eu/Eu*, for monazite-(Ce), allanite-(Ce), and ferriallanite-(Ce). 1031 

Pervasively altered monazite-(Ce) shows increased (La/Yb)N and Eu/Eu* values, whereas 1032 

partially altered monazite-(Ce) show average (La/Yb)N values, but higher Eu/Eu* than primary 1033 

monazite-(Ce). Allanite related to the pervasive alteration shows similar Eu/Eu* as monazite-1034 

(Ce). The high (La/Yb)N values of some primary monazite-(Ce) grains from the Olserum 1035 

mineralization are probably related to precipitation of small late-type xenotime-(Y). 1036 
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Figure 11. Diagrams illustrating the major and trace element chemistry of xenotime-(Y). (A) 1037 

Ternary diagram showing xenotime-(Y) composition in Y-HREE-LREE space. (B) Variation 1038 

diagram of (Th+U+Si+Pb) versus (REE+Y+P) highlighting the cheralite and thorite substitution 1039 

mechanisms in xenotime-(Y). (C) Variation diagram of Zr versus Hf showing a good correlation 1040 

between both elements. 1041 

Figure 12. Normalized (relative to upper continental crust; Rudnick and Gao 2003) REE 1042 

distribution diagrams for xenotime-(Y) from (A) the Olserum mineralization and (B) the 1043 

Djupedal mineralization. Xenotime-(Y) related to the breakdown of Nb-Ta oxides and xenotime-1044 

(Y) from the biotite-magnetite schlieren are showed separately. 1045 

Figure 13. Diagram illustrating the major element composition of allanites and clinozoisite in 1046 

terms of ∑REE versus Al. The major substitution mechanisms in allanites (Petrík et al. 1995) are 1047 

shown for reference. 1048 

Figure 14. Normalized (relative to upper continental crust; Rudnick and Gao 2003) REE 1049 

distribution diagram (A) for allanite-(Ce), clinozoisite, bastnäsite-(Ce), and synchysite-(Ce) (REE 1050 

concentration data from EPMA), and corresponding box plots illustrating the magnitude of (B) 1051 

the LREE to HREE slope, (La/Yb)N, (C) the Eu anomaly, Eu/Eu*, (D) the MREE enrichment, 1052 

(La/Sm)N, and (E) the Y anomaly, Y/Y*. 1053 

Figure 15. Variation diagram of F/(F+OH+Cl) versus Ca/(Ca+REE+Y), showing the 1054 

composition of the analyzed REE-fluorocarbonates. 1055 

1056 
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Tables 1057 

Table 1. Calculated temperatures using monazite-xenotime geothermometry.  1058 

Type Range (°C) Average (°C) SD N 

Primary in Olserum 490-650 580 50 9 

Primary in Djupedal 500-570 540 30 5 

Granite-hosted veins 550-680 640 40 5 

Fluorapatite-associated, inclusions 490-690 630 50 15 

Fluorapatite-associated, others 430-700 560 90 26 

Late-type 520-670 630 50 8 

Biotite-magnetite schlieren 650-660 650 10 2 

Quartz-magnetite schlieren 460-590 550 30 13 

 1059 
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