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Abstract 35 

Elastic geothermobarometry is a method of determining metamorphic conditions from the 36 

excess pressures exhibited by mineral inclusions trapped inside host minerals. An exact solution 37 

to the problem of combining non-linear equations of state (EoS) with the elastic relaxation 38 

problem for elastically-isotropic spherical host-inclusion systems without any approximations of 39 

linear elasticity is presented. The solution is encoded into a Windows GUI program EosFit-Pinc. 40 

The program performs host-inclusion calculations for spherical inclusions in elastically-41 

isotropic systems with full P-V-T EoS for both phases, with a wide variety of EoS types. The 42 

EoS’s of any minerals can be loaded into the program for calculations. EosFit-Pinc calculates 43 

the isomeke of possible entrapment conditions from the pressure of an inclusion measured when 44 

the host is at any external pressure and temperature (including room conditions), and it can 45 

calculate final inclusion pressures from known entrapment conditions. It also calculates 46 

isomekes and isochors of the two phases. 47 

 48 

Introduction 49 

The determination of the remnant pressures in inclusions, as measured by X-ray diffractometry, 50 

birefringence analysis or Raman spectroscopy, provides an alternative and complementary 51 

method to conventional geothermobarometry by using elasticity theory. A remnant pressure in 52 

an inclusion is developed because the inclusion and the host have different thermal expansions 53 

and compressibilities, and therefore the inclusion does not expand in response to P and T as 54 

would a free crystal. Instead it is restricted by the host mineral, and this confinement can result 55 

in inclusions exhibiting over-pressures, or under-pressures, when the host is studied at room 56 

conditions. By measuring the remnant pressure the possible temperatures and pressures of 57 



entrapment can be calculated by using the elastic properties of the host and inclusion minerals. 58 

This basic concept has been known for a long time (Rosenfeld and Chase 1961). Difficulties 59 

arise because the classic solutions for the stress distribution in host-inclusion systems (e.g. 60 

Goodier 1933; Eshelby 1957) are derived for linear elasticity, which assumes that the stresses 61 

and strains are small, and that the elastic properties do not change with pressure or temperature. 62 

However, minerals are subject to large changes in pressure and temperature from formation to 63 

room conditions, so their elastic properties are not constant but are described by non-linear 64 

Equations of State (EoS).  65 

 66 

Several approaches have been used to apply the classic host-inclusion elastic solutions to 67 

mineral systems. All of them assume that the two minerals are elastically isotropic, and that the 68 

inclusion is spherical and isolated from the host surface and any other inclusions or defects in 69 

the host mineral. The simplest approach has been to ignore the variation of the elastic properties 70 

of minerals with pressure and temperature (e.g. Zhang 1998). This leads to errors in inclusion 71 

pressures, especially when they are calculated for prograde metamorphic conditions following 72 

entrapment (e.g. Angel et al. 2014b). A second approach has been to calculate the evolution of 73 

the inclusion pressure in a series of small steps from entrapment conditions by adjusting the 74 

elastic properties of the host and inclusion at each step according to either a full or approximate 75 

EoS, and then using the linear solution at each step to calculate mechanical equilibrium (Gillet 76 

et al. 1984; van der Molen and van Roermund 1986; d'Arco and Wendt 1994). A third approach 77 

is to consider the “thermodynamic pressure”, Pthermo, in the inclusion when it is constrained to 78 

have the same volume change as the host crystal from entrapment Ptrap and Ttrap to the final 79 

external Pend and Tend (Figure 1). Pthermo is different from the final external pressure on the host, 80 



and this drives a further mutual elastic relaxation that reduces the difference between the 81 

inclusion pressure and Pend. This relaxation must be calculated in a second step. The advantages 82 

of this approach are that the calculation of Pthermo can be exact by using appropriate non-linear 83 

EoS, and the only linear elasticity approximation is in the relaxation term. However, the correct 84 

solution for the pressure in the spherical inclusion requires that the relaxation is evaluated 85 

during isothermal decompression from a state of uniform stress (Goodier 1933), and not along 86 

any P-T path as often incorrectly assumed (e.g. Guiraud and Powell 2006). The first step is 87 

therefore to consider a temperature change from Ttrap to Tend and to calculate the change in 88 

external pressure required to induce an equal pressure change in the inclusion (Figure 1). This 89 

thermodynamic path is an isomeke of the host and inclusion phases (Rosenfeld and Chase 1961; 90 

Adams et al. 1975). The pressure, Pfoot, on the entrapment isomeke at Tend can be determined 91 

from Ptrap and Ttrap and the EoS for the host and inclusion phases. The second step is to calculate 92 

the pressure change in the inclusion during an isothermal change in the external pressure from 93 

Pfoot to the final Pend. Angel et al (2014b) calculated this pressure change in the inclusion with 94 

the solution from Goodier (1933) and the assumption that the pressure derivatives of the elastic 95 

moduli of the host and inclusion are the same. In this paper we now present the solution to the 96 

problem in a way that avoids any such approximations of linear elasticity. The solution is 97 

encoded into a GUI program, EosFit-Pinc, which calculates entrapment conditions from 98 

measured remnant inclusion pressures, and vice-versa.  99 

 100 
Method 101 

As in Angel et al. (2014b) the full EoS of the two minerals are first used to calculate the external 102 

pressure Pfoot on the entrapment isomeke at the final temperature (Figure 1), where the host and 103 

inclusion are at the same pressure and temperature. For the second step of the calculation we 104 



start from Pfoot and we first consider a small change in pressure dPinc imposed internally in the 105 

inclusion and, simultaneously, a small pressure change dPext imposed externally on the host. We 106 

then calculate the radial displacement u of the host-inclusion boundary necessary to return the 107 

system to mechanical equilibrium.  Displacements of points at a distance R from the center of a 108 

spherically-symmetric system are governed by the equation 2R

B
ARu  . The parameters A 109 

and B are constants of integration determined by the particular boundary conditions. For a small 110 

finite inclusion of radius rinc much less than the host, the constants A and B can be obtained from 111 

the more general solution to the ‘pressurised hollow sphere problem’ (e.g. Bower 2010, 112 

www.solidmechanics.org) as: 113 
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KH and GH are respectively the bulk and shear moduli of the host. The fractional volume change 115 
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the displacement u is small compared to the radius of the inclusion, as for the relaxation of 117 

mineral inclusions, then the volume strain of the inclusion due to applying the inner and outer 118 
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Because the isothermal bulk modulus is defined as 

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 , the first term is the 121 

volume strain, host  , of the free host crystal unaffected by the inclusion,  so: 122 
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The second term is therefore the fractional volume change of the inclusion due to elastic 124 

relaxation. The important point is that this solution has been derived from considerations of 125 

force balance, and we are only calculating the displacement of the host-inclusion boundary in 126 

terms of a constant pressure applied to it from within the inclusion, and the external pressure on 127 

the host. There are no assumptions about elastic properties of the material inside the inclusion, 128 

and there are no assumptions of linear elasticity (which would mean constant values of KH and 129 

GH). Because the force balance is calculated for the final conditions, the value of GH to be used 130 

is that at the final conditions with the host under the external pressure change dPext. The only 131 

assumption used here is that GH does not change as a result of the deviatoric stresses that 132 

develop in the host around the inclusion (e.g. Eshelby 1957; Zhang 1998; Howell and Nasdala 133 

2008).  134 

 135 

The result can also be written (by following Bower 2010) in terms of finite changes in pressure 136 

from Pfoot to the final Pinc and Pend as: 137 
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The second term for the fractional volume change of the inclusion upon relaxation has been 139 

derived previously (e.g. Zhang 1998).  This expression is then used, sometimes with constant KI 140 

and GH for all P,T conditions, in several programs (e.g. Ashley et al. 2014; Kohn 2014). These 141 

programs follow Guiraud and Powell (2006) and perform a one-step calculation of the 142 

entrapment conditions from the measured Pinc. In doing so, they incorrectly mix in Equation (4) 143 

the volume strains from entrapment to final conditions (as host  and inc ) with the volume strain 144 



of relaxation,  

H

endinc

G

PP

4
3  , which is relative to Pfoot. The consequence is that entrapment 145 

conditions estimated in this way do not fall exactly on a thermodynamic isomeke1. 146 

 147 

By applying the hollow sphere solution to the isothermal decompression of the inclusion and 148 

host from the isomeke at Tend, we have shown that Zhang’s (1998) widely-used assumption of 149 

linear elasticity to determine the pressure change on relaxation was un-necessary. Instead, we 150 

can use the full non-linear EoS of host and inclusion to evaluate their mutual relaxation and the 151 

final inclusion pressure Pinc provided we start this step of the calculation from Pfoot on the 152 

entrapment isomeke. The final pressure in the inclusion cannot be calculated directly because 153 

inc depends on Pinc, so an iterative approach has to be used, with the following steps: 154 

(1) Calculate the Pfoot of the entrapment isomeke from the given entrapment conditions and 155 

the full P-V-T EoS of the two phases. 156 

(2) Calculate the volume strain of the host host  on changing pressure from Pfoot  to Pend, 157 

from the EoS of the host. This value stays fixed. 158 

(3) Estimate a Pinc. 159 

(4) Calculate 
 

H

endinc
hostinc
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4
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  . 160 

(5) Calculate a new Pinc from inc and the full EoS of the inclusion. 161 

(6) Use this new value of Pinc in step (4). 162 

(7) Repeat steps 4-5-6  until the iteration converges to a final value of Pinc. 163 

                                                 
1 A full algebraic proof is provided in the Appendix, available as deposit item AM-17-****. Deposit items are 
stored on the MSA website and available via the American Mineralogist Table of Contents. Find the article in the 
table of contents at GSW (ammin.geoscienceworld.org) or MSA (www.minsocam.org), and then click on the 
deposit link 



In order to calculate entrapment conditions from a known Pinc, the Pfoot that produces the 164 

observed Pinc is found by the same iterative cycle, and then the entrapment isomeke can be 165 

calculated using the EoS of the two phases. 166 

 167 

EosFit-Pinc Program 168 

EosFit-Pinc is a Windows GUI program that performs host-inclusion elasticity calculations for 169 

spherical inclusions in an effectively infinite matrix for elastically isotropic materials by 170 

implementing the solution to the host-inclusion relaxation problem described above. The EosFit-171 

Pinc GUI consists of a series of tabs. When the program is started the calculation tabs are not 172 

active until valid EoS are loaded into the program. The Settings tab (Figure 2) provides the user 173 

with options for the GUI, including setting the temperature scale (K or oC) for the display. The 174 

display mode has an ‘expert’ setting in which more intermediate results of calculations, and the 175 

results from different elastic relaxation models (e.g. Zhang 1998; Angel et al. 2014b), are 176 

displayed when relevant. EoS parameters for the host and inclusion can be loaded into the 177 

program as .eos files, the standard file format for transferring EoS parameters between programs 178 

in the EosFit program suite (Angel et al. 2014a; Gonzalez-Platas  et al. 2016). These files can be 179 

created by the other EosFit programs, which can be launched directly from the EosFit-Pinc GUI, 180 

or EoS parameters can be imported directly from version ds62 of the Thermocalc database 181 

(Holland and Powell 2011). Other import options can be added if required. 182 

 183 

Figure 2 shows a calculation of entrapment conditions for a cubic ferropericlase inclusion within 184 

a diamond. The remnant inclusion pressure of 1.139 GPa was calculated from the unit-cell 185 

parameters of sample GU4A (Hutchison 1998) using the EoS for ferropericlase determined from 186 



the measurements of Mao et al. (2011). The user enters the remnant pressure and the external 187 

conditions under which it was measured into the GUI and sets the temperature range for the 188 

calculation of the entrapment isomeke. The P,T points along the entrapment isomeke 189 

representing possible entrapment conditions are then displayed in the lower results panel of the 190 

GUI. If the entrapment conditions are known or estimated, for example from the petrology and 191 

chemistry of the rock, then the CalcPinc tab of the GUI allows the remnant inclusion pressure to 192 

be calculated. Calculations of the isochors of the two phases separately, or their common 193 

isomekes can also be performed, and the results cut-and-pasted from the output window to other 194 

programs for plotting. 195 

 196 

EosFit-Pinc is written in Fortran-95 using the CrysFML (Rodriguez-Carvajal and Gonzalez-197 

Platas 2003) library, with the cfml_eos module (Angel et al. 2014a). The program is free for 198 

non-commercial use and does not require any commercial software or libraries other than those 199 

provided with the program. It is available for download from www.rossangel.net for Windows 200 

operating systems, together with .eos files for common minerals and complete help 201 

documentation. The same calculations can be performed with the EosFit7c console program, 202 

which also provides results for other relaxation models and is available for Mac, Linux and 203 

Windows from the same website.  204 

 205 

Implications 206 

The EosFit-Pinc program provides an easy-to-use GUI for rapid calculations of inclusion 207 

pressures of minerals. It allows more flexibility than recently-published programs and methods 208 

(e.g. Ashley et al. 2014; Kohn 2014) because the EoS are not built-in, but are provided to the 209 



program by the user. For quartz in garnet with Pinc < 0.3 GPa, all three programs predict 210 

entrapment conditions within ~50 bars. When Pinc is 1 GPa, the use of linear elasticity and the  211 

incorrect path for the relaxation calculation in other programs (Ashley et al. 2014; Kohn 2014) 212 

becomes significant and results in the entrapment conditions being under-estimated by more 213 

than 500 bars (0.05 GPa) at 800oC compared to EosFit-Pinc. EosFit-Pinc is not restricted to 214 

calculating inclusion pressures when the host is at room conditions. For example, it can be used 215 

to calculate that a quartz inclusion (EoS from Angel et al. 2017) trapped inside an almandine 216 

garnet (Milani et al. 2015) on a pro-grade metamorphic path at 400 oC and 0.7 GPa only 217 

experiences a pressure of 1.8 GPa when the garnet reaches the conditions of the quartz=coesite 218 

phase boundary at 750 oC, 2.7 GPa. And when the host reaches conditions in the diamond 219 

stability field at ~4.4 GPa and 800 oC, the inclusion will be at 2.6 GPa. By contrast, by 220 

importing the rutile EoS from ds62 of Thermocalc (Holland and Powell 2011) one can calculate 221 

with EosFit-Pinc that a rutile inclusion trapped at the same conditions as the quartz exhibits 222 

pressures within 0.2 GPa of the external conditions on the same metamorphic path, as a 223 

consequence of the smaller contrast in bulk moduli between rutile and garnet. 224 
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Fig. 1.  Routes in P-T space for the calculation of inclusion pressures. Pthermo is the pressure in 292 

the inclusion (bold black line) when it is constrained to the volume change of a free host crystal 293 

resulting from the external change in P and T from entrapment to the final conditions (grey 294 

arrow), without accounting for the mutual relaxation to the final inclusion pressure Pinc. An 295 

alternative is to calculate the pressure on the entrapment isomeke at the final temperature, at 296 

which point both the host and the inclusion have the same pressure Pfoot from which the final 297 

Pinc can be calculated using the method described in the text. Thin grey lines are isomekes of 298 

diamond and ferropericlase calculated with an EoS derived from data for high-spin 299 

ferropericlase (Mao et al. 2011) and the EoS of diamond (Angel et al. 2015). 300 

  301 



Fig. 2. Screenshot of the EosFit-Pinc GUI with the tab for the calculation of entrapment 302 

conditions open. The results shown in the lower panel are for a ferropericlase inclusion trapped 303 

inside a diamond with a remnant pressure of 1.139 GPa at room temperature (Hutchison 1998), 304 

calculated with an EoS derived from data for high-spin ferropericlase (Mao et al. 2011) and the 305 

EoS of diamond (Angel et al. 2015). The listed P-T points lie on the entrapment isomeke shown 306 

as the green line in Figure 1. 307 
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