1 Revision 2

A siltstone reaction front related to CO₂ and sulfur bearing fluids: Integrating 2 quantitative elemental mapping with reactive transport modeling 3 Alexandra Maskell¹, Peter M. Scott¹, Iris Buisman¹, Mike Bickle¹ 4 5 ¹Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, UK 6 Abstract 7 For the purpose of geological carbon storage, it is necessary to understand the long-term effects 8 of introducing CO₂ and sulfur-species into saline aquifers. CO₂ stripped from the flue gas during 9 the carbon capture process may contain trace SO₂ and H₂S and it may be economically beneficial 10 to inject S-bearing CO₂ rather than costly purified CO₂. Further, reactions between the S-bearing 11 CO₂, formation brines and formation minerals will increase pH and promote further dissolution 12 and precipitation reactions. To investigate this we model reactions in a natural analogue where 13 CO₂ and SO₄-H₂S bearing fluids have reacted with clay-rich siltstones. In the Mid-Jurassic 14 Carmel formation in a cap rock to a natural CO₂-bearing reservoir at Green River, Utah, a 3.1 15 mm wide bleached alteration zone is observed at the uppermost contact between a primary 16 gypsum bed and red siltstone. Gypsum at the contact is ~ 1 mm thick and shows elongate fibers 17 perpendicular to the siltstone surface, suggesting fluid flow along the contact. Mineralogical 18 concentrations, analyzed by Quantitative Evaluation of Minerals by SCANning electron 19 microscopy (QEMSCAN), show the altered siltstone region comprises two main zones, a 0.8 20 mm-wide hematite-poor, dolomite-poor and illite-rich region adjacent to the gypsum bed and a 21 2.3 mm-wide hematite-poor, dolomite-poor, illite-poor region adjacent to the hematite alteration 22 front. A one-component analytical solution to reactive-diffusive transport for the bleached zone

23	implies it took less than 20 years to form before the fluid self-sealed, and that literature hematite
24	dissolution rates between 10^{-8} and 10^{-7} mol/m ² /s are valid for likely diffusivities. Multi-
25	component reactive-diffusive transport equilibrium modeling for the full phase assemblage,
26	conducted with PHREEQC, suggests dissolution of hematite and dolomite and precipitation of
27	illite over similar short timescales. Reaction progress with CO2-bearing, SO4-rich and minor
28	H_2S -bearing fluids is shown to be much faster than with CO_2 -poor, SO_4 -rich with minor H_2S -
29	earing fluids. The substantial buffering capacity of mineral reactions demonstrated by the S and
30	CO ₂ -related alteration of hematite-bearing siltstones at the Green River CO ₂ accumulation
31	implies that corrosion of such a cap rock are, at worst, comparable to the 10,000-year timescales
32	needed for carbon storage.
33	Keywords: reactive-transport modeling, Green River CO ₂ accumulation, QEMSCAN,
34	PHREEQC
35	
36	Introduction
37	Storing anthropogenic carbon dioxide (CO ₂) in geological reservoirs is a primary option to
38	mitigate climate change. One of the perceived risks of carbon storage is the leakage of stored
39	carbon dioxide (CO ₂) through cap rocks, faults and fractures. To quantify these risks through the
40	life of an individual carbon storage site it is essential to understand the geochemical behavior and
41	evolution of CO ₂ in geological reservoirs over a range of time-scales. Best practice guidelines
42	suggest leakage rates of less than 0.01% of the volume stored per year and storage times on the
43	order of several thousand to 10,000 years are required to ensure that storage sites meet the
44	ultimate aim of mitigating climate change (Chadwick et al. 2008).

45 CO_2 stripped from the flue gas during the carbon capture process is likely to contain trace (< 5 46 %) co-containments, i.e. SO₂, H₂S, NOx and O (Talman 2015). To purify the gas further is a 47 costly process and hence, if CO_2 can be safely stored with these co-contaminants it will be 48 economically beneficial. When SO₂ dissolves in groundwater it may form H_2SO_3 , H_2SO_4 or H_2S 49 depending upon redox conditions, and these compounds are stronger acids than dissolved 50 carbonate species formed through CO₂ dissolution. The resulting decreases in pH and pe are 51 likely to result in enhanced mineral dissolution and precipitation at the gas-groundwater interface 52 (e.g. Knauss et al. 2005; Xu et al. 2007; Wilke et al. 2012). Only a few studies have investigated 53 the short term impact of these coupled reactions through either batch reactor experiments 54 (Dawson et al. 2015; Pearce et al. 2015a,b) or field experiments (Bachu et al. 2005; Kaszuba et 55 al. 2011). Over geological time even less is known about the impact of the dissolved sulfur 56 species and CO₂ on cap rocks and reservoir rocks. These long exposure times may lead to 57 porosity-permeability changes from mineral precipitation and dissolution. The study of natural 58 analogues with S and CO₂ bearing reservoir fluids are needed to constrain long term predictions 59 of reservoir and cap rock alteration during CO₂ storage. 60 Natural CO₂ and CO₂- SO₄-bearing fluids have been migrating up two fault zones for > 400,00061 years at Green River, Utah through sandstones, mudstones and siltstones (Burnside et al., 2013). 62 These lithologies are typical of those proposed as geological repositories for anthropogenic CO₂. 63 Scientific drilling adjacent to the Little Grand Wash fault in 2012 has allowed study of CO₂ 64 transport mechanisms and long-term reactions between S-bearing CO₂-saturated brines and 65 formation minerals in shallow aquifers (Fig. 1; Kampman et al. 2013, 2014, 2016; Busch et al.

66 2014). Drill-core collected in this 2012 drilling campaign exhibits bleaching in the reservoir

sandstone, basal sections of the cap rocks related to these migrating fluids. The basal ~ 10 cm of a

68 siltstone bed in the middle of the Entrada Sandstone and a claystone bed at the base of the 69 Carmel Formation are bleached where in contact with CO₂- and S-bearing reservoir fluids (see 70 Busch et al. 2014 and Kampman et al. 2016 for further details). Small-scale bleaching is also 71 observed within the Carmel Formation adjacent to horizontal and sub-horizontal gypsum-filled 72 fractures. Figure 2 shows the contact between the top of a remobilized gypsum bed and the base 73 of a red siltstone bed. This remobilized gypsum bed associated with the bleaching has a 1mm 74 wide fibrous overgrowth perpendicular to bedding where in contact with the siltstone, suggesting 75 fluid flow along a previously open fracture. Numerous gypsum filled fractures have been 76 comprehensively documented and investigated in the core indicating gypsum-saturated fluids 77 were common (Chen et al. 2016). Additionally, celestine and gypsum have been found as 78 fracture fill at surface in the study area (Dockrill 2006). This is supported by the modern day 79 fluids, which are mildly reducing, and CO₂-saturated at depth (< ~320 m) with minor S and CH₄ 80 (Kampman et al. 2014).

81

In this paper we use mapping of quantitative elemental mineralogy by QEMSCAN techniques to
calibrate reactive transport modeling. The modeling is used to determine the duration of the
bleaching event and the sensitivity of the bleaching reactions to fluid composition; specifically,
the impact of CO₂-bearing fluids on clay-rich siltstones.

86

Regional Geology

Near the town of Green River, natural CO₂-bearing fluids are hosted in a series of fault bounded
Jurassic sandstone reservoirs in the footwall blocks of the southerly dipping Little Grand Wash
and Salt Wash normal faults, where they intersect the apex of the Green River anticline (e.g.
Heath et al. 2009; Dockrill and Shipton 2010; Kampman 2009, 2012, 2013; Shipton et al. 2004;

91 Wigley et al. 2012). The CO₂-bearing fluids escape to the surface through the fault damage zones 92 of the faults as well as a number of abandoned petroleum exploration and water wells (Fig. 1) 93 where they form a series of CO_2 springs and geysers (Heath, 2004; Kampman et al. 2009; 94 Dockrill and Shipton 2010; Shipton et al. 2004, 2005). Ancient travertine deposits along the 95 faults attest to CO₂ leakage for at least 400,000 years (Burnside et al. 2013). The intermittent 96 travertine deposition is driven by the CO₂-leakage with an episodicity controlled by climate 97 driven changes in the hydraulic behaviour of the faults (Kampman et al. 2012). Meteoric fluid 98 flows in the sandstone reservoirs from recharge regions in the northern San Rafael Swell to 99 discharge in the Green River, south of the Green River anticline (Hood and Patterson 1984). 100 Fluid flow is parallel to the faults (west to east) where they are sealing, and towards the south-101 east where they are transmissive towards the fault tips. Artesian conditions prevail throughout 102 the transmissive formations of the Palaeozoic stratigraphy, driving fluid migration up the normal 103 faults to discharge at CO_2 -springs at the surface. Details of the local hydrology are discussed in 104 Kampman et al. (2009) and the regional hydrology is discussed in Hood and Patterson (1984). 105 The regional burial diagenesis of the Jurassic strata includes development of hematite and 106 goethite grain coatings, giving the rock its characteristic red color (Cullers 1995; Trimble and 107 Doelling 1978). Proximal to hydrocarbon seeps and CO₂ accumulations, extensive bleaching has 108 occurred (e.g. Beitler et al. 2003, 2005; Parry et al. 2004; Wigley et al. 2012). At Green River, 109 Wigley et al. (2012) document bleaching at the base of the stratigraphy in Salt Wash Graben, 110 ascertaining that the reducing fluid (i.e. CO₂-S-bearing brines) must be more dense than the 111 formation fluid. The modern fluids in the Entrada and Navajo Sandstone are CO₂ and SO₄ -rich 112 with a low pH of 5.1. Furthermore, Eh measurements of spring and geyser waters indicate the 113 fluids are mildly reducing (0 to -50 mV; Kampman et al. 2014). Analyses of fluid inclusions by

114	Wigley et al. (2012) and exsolved gas compositions from the springs by Kampman et al. (2014)
115	show these fluids also contain trace quantities of CH_4 (0 – 28 %), a known reducing agent.
116	Kampman et al. (2014, 2016) inferred that reduced sulfur must be playing a role in the bleaching
117	given the mildly reducing groundwater (0 to -50 mV which implies that the fluids with \sim 20
118	mmol/L SO ₄ contain ~ 0.5 mmol/L H ₂ S) coupled with the evidence for precipitation of pyrite in
119	the basal portions of the Entrada and Carmel cap rocks. CO2 -bearing core experiments
120	conducted by Purser et al. (2014) on red Entrada Sandstone showed H ₂ S is most likely the main
121	driver for bleaching. Using 1 mg/l of thioacetamide (which breaks down on the addition to water
122	releasing reduced sulfur) the authors were able to reduce all the Fe^{3+} in the core sample to Fe^{2+}
123	(mobilizing 15 mg/l of iron), thus bleaching the entire sample in the 6-month experiment.
124	Whereas, using 5% CH_4 they were only able to mobilize at best one fifth (3 mg/l) of the iron in 6
125	months. It is evident that the kinetics of the hematite dissolution reaction are much faster with
126	H_2S rather than with CH_4 as the reducing agent. Given this evidence, H_2S is considered to be the
127	primary reductant in the Green River CO ₂ accumulation.
128	Fluid migration and subsequent alteration in the region likely occurred either: (i) pre-CO ₂
129	accumulation during uplift associated with the formation of the Colorado Plateau after the
130	Eocene (S-bearing CO ₂ -poor fluids), or (ii) synchronous with the CO ₂ accumulation and possibly
131	relating to the periodic recharging of the reservoir during the Quaternary (S-bearing CO ₂ -
132	saturated fluids; Kampman et al. 2012).
133	Local Geology
134	Scientific drilling into the Green River CO ₂ accumulation (see Kampman et al. 2013) intersected
135	the Entrada Sandstone, Carmel Formation and the Navajo Sandstone. Within the Carmel
136	Formation a red siltstone layer is bleached where it is in contact with a gypsum vein adjacent

137	to the top of a primary gypsum bed. The Carmel Formation is a 50 m-thick complex
138	lithologically heterogeneous package representing units that were deposited in environments
139	ranging from aeolian, fluvial, coastal sabkha to shallow and open marine (Blakey et al. 1983,
140	1988). The documented bleached contact occurs at 158.34m below surface within a package of
141	interbedded, unfossiliferous red and grey siltstone/shale and bedded gypsum/anhydride (Fig. 2).
142	Extensional faulting within the Carmel Formation has resulted in the re-mobilization of many of
143	these gypsum and anhydride beds, along with the brecciation of siltstone beds and formation of
144	gypsum-filled open fractures. It is above one of these gypsum filled open fractures adjacent
145	to the top of a primary gypsum bed where 3.1 mm of a red siltstone bed is bleached. The
146	bleaching is suggestive of penetration of reducing CO ₂ -saturated fluids by diffusion and
147	subsequent alteration of the siltstone mineralogy.
148	
149	Analytical Methods
150	The small-scale of this alteration front, means using standard techniques (i.e. subsampling for
151	XRD and XRF measurements) for determining quantitative mineralogical and chemical changes
152	is challenging. As such, in this study we take a different approach by quantifying mineralogical
153	profiles from QEMSCAN analyses and coupling these with reactive transport modeling.
154	QEMSCAN is a proven technique recently becoming popular with industry and research
155	organisations including studies relating to CO2 storage (e.g. Petrel Sub-Basin, NT, Australia;
156	Consoli et al. 2014). Generally good agreement has been seen with XRD analyses (Wunsch et al.
157	2014; Farquhar et al. 2015; Pearce et al. 2016).
158	Mineralogical and elemental maps were made of a thin section across a gypsum-siltstone
159	reaction front located in the drill-core at 158.34m below surface from the drill-hole CO2W55

160	(Fig. 2; Kampman et al. 2013). The quantitative elemental maps were obtained using a Quanta
161	650F, Field Emission Gun (FEG) Scanning Electron Microscope (SEM), equipped with two
162	Bruker XFlash 6130 Energy Dispersive Spectrometers (EDS) at the Department of Earth
163	Sciences, University of Cambridge. The fully automated system includes an automated spectrum
164	acquisition and classification procedure. Analyses were performed by obtaining field-scans (i.e.
165	phase maps) across the areas of interest thus providing a complete characterization of particle
166	surfaces above a predefined electron backscatter threshold. The brightness coefficients were
167	calibrated against quartz, gold and copper. Spectra were collected at 15 kV and 10 nA with 2000
168	total X-ray counts per pixel at a 1.5 micrometer spacing, and compared to a Species
169	Identification Protocol (SIP) that discriminates minerals on the basis of their characteristic X-ray
170	and electron backscatter intensities. Data was processed further through a FEI software package
171	under development, NanoMin, which has a better capacity in dealing with solid solutions
172	allowing for superior resolving power of the chemistry in each pixel. This software package was
173	used to obtain mineralogical and elemental maps illustrating the textural and chemical
174	relationships across the reaction front. XRD is better for clay identification, however it requires a
175	larger amount of sample and only gives a bulk measurement. In comparison, QEMSCAN is
176	particularly powerful for small samples. Additionally, it provides information on the
177	relationships between morphology, texture and chemistry in a mapped area which is useful for
178	this application.
179	
180	Mineralogical Changes

The early diagenetic mineralogy of the siltstones in the Carmel Formation is dominated by illite,
quartz, dolomite, ankerite, K-feldspar, albite and hematite (Table 1; Fig. 3). The contacts

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. DOI: http://dx.doi.org/10.2138/am-2018-6138CCBY

183	between the gypsum/anhydride beds and the siltstone beds mapped in the drillcore (Kampman et
184	al. 2014) show no evidence of alteration with the exception of one upper contact of a gypsum
185	bed at 158.34 meters where a \sim 3.1 mm-thick zone of alteration occurs in the siltstone adjacent to
186	the gypsum bed. Chen et al. (2016) measured the hydration waters of this gypsum bed at 158.48
187	m, the sample comprised 19.7 % H_2O . Figures 3 and 4 show the major mineralogical profiles of
188	the alteration zone adjacent to the gypsum bed as revealed by QEMSCAN analyses. The
189	mineralogy across the reaction front is determined by the NanoMin software using mineral
190	compositions of:
191	Albite: NaAlSi2O
171	
192	Ankerite: $CaFe_{0.7}Mg_{0.3}(CO_3)_2$
193	Dolomite: CaMg(CO ₃) ₂
194	Hematite: Fe ₂ O ₃
195	Illite: $K_{0.97}(H_3O)_{0.4}Al_{2.46}Fe_{0.3}Mg_{0.17}Ti_{0.03}Si_{3.07}O_{7.15}(OH)_2 \cdot (H_2O)$
196	Orthoclase/Microcline: K(AlSi ₃ O ₈)
197	Quartz: SiO ₂
198	It is evident from Figure 3 and Figure 4 that there are two dominant alteration zones: (1) a \sim 2
199	mm wide zone of Fe dissolution adjacent to the sharp bleached-red transition, and (2) a \sim 1 mm
200	zone of Fe, dolomite, orthoclase/microcline and albite dissolution, and the precipitation of illite
201	in the siltstone adjacent to the gypsum bed. The QEMSCAN analysis indicates that only minor
202	hematite is present in the unaltered sample and instead the Fe is bound in Fe-illite and ankerite
203	(ankerite has a similar spatial distribution to dolomite). Whether the hematite is too fine grained
204	to resolve or Fe-illite is actually present is not known. XRD analysis of the compositionally

205	similar Carmel cap rocks suggests the Fe is bound in hematite (Kampman et al. 2016). For the
206	purpose of modeling the geochemical profile it is assumed the Fe is in hematite.
207	A \sim 1 mm zone of elongate, fibrous gypsum is present at the contact between the gypsum and the
208	siltstone with the fibers growing with the growth generally perpendicular to the contact (Fig. 5).
209	Fibrous gypsum normally precipitates within fractures to form veins (e.g. Machel 1985; Raman
210	and Ramdas 1954; Warren 2006) therefore the presence of these structures at the contact, implies
211	the vein has undergone extension and thus at one point in time a fracture opened between these
212	two sedimentary units. This extensional period causing the open fracture could either be
213	associated with the uplift of the Colorado Plateau in the Cenozoic (Flowers 2010) or with later
214	de-glaciation events during crustal flexing from the glacial unloading of Lake Bonneville, Cutler
215	Dam or Little Valley (Kampman et al. 2012). The observed petrological changes in the adjacent
216	bleached zone are consistent with a series of dissolution reactions involving CO_2 , SO_2 and H_2S
217	which result in the removal of hematite, dolomite, orthoclase and albite via stoichiometries such
218	as,

219 Hematite dissolution:

$$\begin{split} 4Fe_2O_3 + \ H_2S + 14CO_2 + 6H_2O &\rightarrow 8Fe^{2+} + SO_4^{2-} + 14HCO_3^- \\ Fe_2O_3 + \ 2HS^- + 4CO_2 + H_2O &\rightarrow Fe^{2+} + FeS_2 + 4HCO_3^- \end{split}$$

220 Dolomite dissolution:

$$\begin{split} MgCa(CO_3)_2 + 2H^+ &\to Mg^{2+} + Ca^{2+} + 2HCO_3^- \\ MgCa(CO_3)_2 + 2H_2CO_3 &\to Mg^{2+} + Ca^{2+} + 4HCO_3^- \\ MgCa(CO_3)_2 &\leftrightarrow Mg^{2+} + Ca^{2+} + 2CO_3^{2-} \end{split}$$

221 Orthoclase/Microcline dissolution:

 $K(AlSi_3O_8)+9H^+\rightarrow K^++Al^{3+}+3H_3SiO_4$

222 Albite dissolution:

$$NaAlSi_3O_8 + 9H^+ \rightarrow Na^+ + Al^{3+} + 3H_3SiO_4$$

The released cations of Fe, Mg, K, and Al can then react form illite, i.e. by the illitization of kaolinite (i.e. Kohler et al. 2009).

225

An overall loss of Mg, Fe, Na and Ca at the siltstone-gypsum bed boundary suggests the reacting

227 fluids transported these cations out of the system. The documented petrological changes are

228 consistent with the stoichiometry of the reaction:

229 $CO_2(g) + H_2S + albite + dolomite + orthoclase/microcline + hematite \rightarrow illite + ankerite$

 $230 + Mg^{2+} + Fe^{2+} + Na^{+} + Ca^{2+} + HCO_3^{-} + SO_4^{2-}$

231

232

Reactive Transport Modeling

233 The redistribution of chemical components in groundwater is controlled by four principal 234 processes: advection, mechanical dispersion, molecular diffusion and the rate of chemical 235 reaction (e.g. Bear 1972; Bethke 2008). Siltstones in the Carmel formation have low permeabilities, $< 10^{-18}$ m², effective solute diffusivities, D_e, in the fluid phase on the order of 10⁻ 236 ¹¹ to 10^{-12} m² (Kampman et al. 2016), and a piezometric pressure gradient between 10^4 and 10^6 237 238 Pa/m (taken from the hydraulic head data of the Navajo Sandstone; Hood and Patterson, 1984; Kampman et al. 2016). These parameters imply a flow rate ($\omega_0 \phi$) of $< 6 \times 10^{-10}$ m/s for the 239 240 siltstones, and Peclet numbers (Pe = $\omega_0 \phi h/D_e$), the ratio of diffusive to advective timescales, between 10^{-7} and 10^{-1} . As Pe << 1 diffusive transport dominates and advection can be neglected 241 242 in the transport equations.

- To further understand the governing processes of a reactive system we use a simplified one component analytical solution, coupling chemical reactions and physical transport processes.
- 245

246 **One Component Transport Model**

For one-dimensional transport, perpendicular to the vein margin, the diffusion-reaction equation describing the change in solute concentration $C \pmod{m^3}$ with time t (s) and distance, x (m) can be written as:

250
$$\phi \frac{\partial c}{\partial t} = D_e \frac{\partial^2 c}{\partial x^2} + k_f \alpha (C_{eq} - C)$$
(1)

where D_e is the effective diffusion coefficient, k_f is the mineral reaction rate (m/s), α is the mineral surface area (m²/m³) and C_{eq} is the solute concentration at equilibrium. The variation in the mineral molar concentration in the rock, φ_s (mol/m³) with time *t*, as controlled by surface dissolution, is modeled by a linear kinetics as:

255
$$\frac{\partial \varphi_S}{\partial t} = -k_f \alpha (C_{eq} - C) . \qquad (2)$$

256

Following Kampman et al. (2016), the following transformations to dimensionless variables aremade:

$$x = lx'$$

$$t = t'l^2/D_e$$

$$C = C_{eq} - C'(C_{eq} - C_0)$$

$$x = lx'$$
(3)

where ' indicates a dimensionless variable and *l* is an appropriate length scale. The dimensionless equations describing the changing solute concentration for one-dimensional diffusive transport with mineral reaction of over time, and the variation of mineral moles in dimensionless time (*t'*)
are, respectively:

264

$$\frac{\partial C'}{\partial t'} = \frac{\partial^2 C'}{\partial x'^2} + N_D C' \tag{4}$$

$$\frac{\partial \varphi'_S}{\partial t'} = -N_D C' \quad . \tag{5}$$

267

The solutions for fluid compositions and hematite mineral modes are controlled by the dimensionless Damköhler number, N_D , the ratio between the rate of reaction and the rate of transport of the fluid. For diffusion dominated reactive transport (equation 1) the Damköhler number is defined by:

$$N_D = \frac{k_f \alpha l^2}{D_e} \tag{6}$$

273 For a mildly reducing S-bearing CO₂-saturated fluid similar to that of the downhole Navajo fluids (Kampman et al. 2014) hematite dissolution rates (k_R) of 10⁻⁸ to 10⁻⁷ mol/m²/s are expected 274 275 (dos Santos Afonso and Strumm 1992). Hematite appears to be finely disseminated in the 276 siltstone, thus grain surface areas (α) are expected to be similar to the Carmel cap rock and are estimated to be ~ $10^6 \text{ m}^2/\text{m}^3$. The transport distance, l (m), is taken as the displacement of the 277 278 reaction front, 3.1 mm. Damköhler numbers for the gypsum-siltstone alteration zone in the 279 Carmel Formation are therefore estimated to be between 2 and 15. This implies that the timescale 280 of the system is diffusion limited and it can be assumed that the reacting fluids will be close to 281 equilibrium with the minerals. Taking these assumptions, we use the following analytical 282 solutions to the mass transport equations, as presented in Lichtner (1988).

After onset of hematite dissolution, the time (τ_0) it takes for hematite at the vein contact to

become exhausted is described, assuming a constant hematite surface area, by:

285
$$\tau_0 = \frac{\phi_S^\infty}{V_s k_f \alpha \Delta C_0} \tag{7}$$

286 where φ_S^{∞} is the dimensionless volume of hematite initially present. For times, $t > \tau_0$, hematite is

287 exhausted over distances $x \le l$.

288 Once this hematite dissolution front has formed ($t > \tau_0$), the time it takes for the front to migrate

an observed distance, *l*, is calculated by:

290
$$l + \frac{1}{2}ql^2 = \frac{1}{q\tau_0}(t - \tau_0)$$
(8)

291 Where q (m⁻¹) is the exponential constant giving the length scale over which fluid returns to

equilibrium with the initial mineralogy and defined as:

293
$$q = \sqrt{\frac{k_f \alpha}{D_e}} \tag{9}$$

294 Note that the Damköhler number, N_D , = $(ql)^2$.

295 The volume fraction of hematite across the alteration front, i.e. the shape of the hematite

296 concentration profile, over time, *t*, and at a distance, *x*, downstream of the reaction front is given297 by:

298
$$\varphi_S(x,l) = \varphi_S^{\infty}(1 - e^{-q(x-l)})$$
 (10)

299

300 Figure 6 shows the calculated position of the hematite reaction front at time, t, the geometry of

301 which is described by equation (7). The profile primarily reflects hematite dissolution and

- 302 diagenetic variations in primary hematite concentrations across the reaction front. The geometry
- 303 of this profile, assuming a constant D_e, is solely dependent on the kinetics of hematite
- 304 dissolution. Taking an average of the hematite volume in the red unaltered region, a line of best

305	fit across the profile is determined using the least squares method. Exponential constant, q , in
306	equation (7) is therefore calculated to be $896 \pm 150 \text{ m}^{-1}$ (1 σ), however, q could be as small as 472
307	m ⁻¹ . With a measured reaction front distance of $l = 0.0031$ m, an estimated effective diffusivity,
308	$D_e = 5 \times 10^{-12} \text{ m}^2/\text{s}$, an estimated hematite surface area of $10^6 \text{ m}^2/\text{m}^3$ and an infiltrating fluid
309	compositions akin to the downhole Navajo Sandstone fluid samples we can infer the Damköhler
310	number, timescales and dissolution rates (Fig. 7). The calculated values of q imply a Damköhler
311	number between 2.1 and 7.7, timescales of reaction between 4 and 20 years, for hematite
312	dissolution rates between 2 x 10^{-8} and 8 x 10^{-6} mol/m ² /s (grey shaded area; Fig. 7).
313	
314	Numerical Reactive Transport Model
315	Modeling the effects of multiple minerals, components and simultaneous reactions requires the
316	mass transport equations to be evaluated numerically. Such modeling of multiple mineral

317 profiles (Fig. 3-4) provides multiple constraints. As calculated above, low Peclet numbers and

318 high Damköhler numbers indicate the fluid transport is diffusion dominant and the fluids are

319 close to equilibrium with the host minerals. As such, we assume instantaneous equilibrium and

320 diffusion-only transport in the models below (to make modeling simpler and thus time efficient).

321 The modeling of the alteration was conducted using PHREEQC 3.3.9 and the llnl.dat database

322 (Parkhurst and Appelo 1999).

323

324 Key Parameters and Variables. The 3.1 mm wide gypsum-siltstone alteration zone was
325 modeled as a 1 cm long 1D reactive-diffusive model comprising of 20 cells of 0.5 mm length.
326 The choice of input parameters to the reactive transport model can have a significant impact on
327 the conclusions reached. Variables, including the thermodynamic parameters of the relevant

328	mineral and aqueous species, and their diffusivities are assumed to be constant. These variables
329	are taken from the thermodynamic database llnl.dat, with diffusivities taken from direct
330	measurements of the similar Carmel cap rock. The porosities and mineral volumes are based on
331	quantitative elemental mineralogy (QEMSCAN) maps (Table 1). Phases allowed to dissolve and
332	precipitate in this model were hematite, dolomite, orthoclase/microcline, albite, ankerite,
333	gypsum, illite and quartz. The phases were chosen based on the mineralogical maps across the
334	reaction front. The thermodynamic parameters for ankerite $(Mg_{0.3}Fe_{0.7}Ca(CO_3)_2)$ were taken
335	from TOUGHREACT's thermodynamic database (Xu et al. 2011). The initial pore fluid
336	composition of the siltstone was taken to be a fluid calculated to be in equilibrium with the
337	unaltered siltstone mineralogy, and with pCO ₂ , pO ₂ and salinity estimates as that for typical
338	Jurassic marine shales (Turrero et al. 2006, Kampman et al. 2016; Table 2). The infiltrating fluid
339	was taken to be a fluid in equilibrium with gypsum and saturated with CO ₂ .
340	Two sets of simulations were run to investigate whether the siltstone alteration zone adjacent to
341	the gypsum vein was associated with the infiltration of: (i) a CO_2 -poor SO_4 -rich fluid likely
342	relating the uplift of the Colorado Plateau after the Eocene, or; (ii) a CO ₂ -SO ₄ -saturated fluid
343	relating to the recharge phase of the CO ₂ -accumulation due to fluid movements during the
344	Quarternary, perhaps triggered by deglaciations (Kampman et al. 2012). Since the composition
345	of the bounding fluid in the vein is unknown, the basal Navajo Sandstone downhole fluid sample
346	(DFS004; Kampman et al. 2014) is used varying its CO ₂ content from saturated (Model 1) to
347	CO ₂ -poor (Model 2). The starting compositions of the bounding fluids are shown in Table 2. A
348	third set of models (Model 3) were run to test the sensitivity of the fronts to effective diffusivity,
349	with the CO ₂ -SO ₄ -saturated fluid as the infiltrating fluid. All infiltrating fluids were initially

350	equilibrated with gypsum. The models used PHREEQC assuming diffusive transport in the fluid
351	phase and local mineral-fluid equilibrium and were run for 100 years with a time step of 7 days.
352	Uncertainties. A Monte-Carlo approach is used to assess uncertainties contributions from
353	infiltrating fluid compositions and effective diffusivity. Additional uncertainties in the numerical
354	modeling are associated with thermodynamic databases and the assumption of instantaneous
355	fluid-rock equilibrium.
356	Model 1 and Model 2 were run for 1000 Monte-Carlo iterations with the components Al, Ca,
357	Mg, K, Na, Si, SO_4^{2-} , H ₂ S, pe and dissolved inorganic carbon (DIC; Table 2) in the bounding
358	fluid being randomly varied in each iteration by $\pm 10\%$ (normal random distribution) relative to
359	their listed concentrations. Cl concentrations were adjusted to maintain charge balance as Cl
360	concentration are independent of reactions. In Model 3, 10 iterations were run where effective
361	diffusivity was varied and bounding fluid composition kept constant for the CO ₂ -saturated case
362	only. Of the 1000 simulations in Models 1 and 2, 13 of the CO ₂ -saturated simulations and 3 of
363	the 1000 CO ₂ -poor simulations fail to converge within the 100 iterations specified by default in
364	PHREEQC's numerical equation solver. None of the 10 effective diffusivity simulations in
365	Model 3 failed to converge. Changes in DIC, pe, H_2S and SO_4^{2-} have the largest impact on final
366	mineral modes.

- 367
- 368

Results

The results of the reactive transport models are shown after 6 years of diffusion in Figure 8 and Figure 9. A 6 year time step is shown because it is the best fit to observations, this is discussed further below. The hematite and dolomite reaction fronts progress quicker with the $CO_2 - SO_4^{2-}$ saturated infiltrating fluid. Critically the CO_2 -poor infiltrating fluid did not precipitate illite in 373 any of the model runs. The peak in illite concentration in the core sample fracture is observed by 374 quantitative elemental mineralogy (Fig. 4) adjacent to the gypsum bed, and is reproduced best by the CO_2 -SO₄²⁻-saturated model, suggesting the alteration is associated with the CO₂-375 376 accumulation. Additionally, the velocity of the hematite reaction front is directly related to the concentration of H_2S and the H_2S/SO_4^{2-} ratio in the infiltrating fluid. Faster front velocities are 377 378 associated with a greater H₂S concentration in the infiltrating fluid. In several simulations in both 379 Model 1 and Model 2 dolomite precipitates at x = 0, where the bounding fluid is dolomite 380 saturated. However, there is no mineralogical evidence for dolomite precipitation at the margin 381 of the vein or in the basal contacts of siltstones with the Navajo sandstone in the Green River 382 CO₂ accumulation, which may be a consequence of kinetic limitations on dolomite precipitation 383 rates. In the absence of diffusivity measurements, effective diffusivity for the siltstone is approximated by the stratigraphically lower Carmel claystone cap rock (5 x 10^{-12} m²; Kampman 384 385 et al. 2016). In general, siltstones show slightly larger diffusivity than claystone. As shown in Figure 9, increasing effective diffusivity to $1 \times 10^{-11} \text{ m}^2$ increases the velocity of the reaction 386 front with the doubling of diffusivity causing the expected $\sqrt{2}$ increase for diffusive transport. 387 388 The uncertainty in diffusivity is a fundamental limitation on the inference of timescales. 389

390 Comparison between Analytical and Numerical Models, and Petrological Observations.

Both the analytical hematite model and the multi-component PHREEQC reactive-diffusion model using the gypsum-saturated basal down-hole fluid sample, give similar reproductions of the observed petrological trends. The solutions of the analytical model imply that the hematite reaction front took between 4 and 20 years to propagate 3.1 mm given hematite reaction rates of the order of 2 x 10^{-8} and 8 x 10^{-6} mol/m²/s. A comparison at a 6 year time step between the CO₂- 396 SO_4 -saturated model numerical model and petrological observations from OEMSCAN is shown 397 in Figure 10. The model predicts dissolution of albite, hematite and dolomite upstream of the 398 hematite reaction front, and growth of secondary illite adjacent to the gypsum bed. The latter is 399 not predicted by models of CO₂-poor fluids. Discrepancies between the observed mineral 400 profiles and the CO₂-saturated simulations can be explained by the simplifying assumptions 401 inherent in the models, that is, homogenous effective diffusivity, homogenous initial mineral 402 modes and local fluid-solid equilibrium between fluids and mineral phases. A least squares fit 403 between the Monte Carlo simulations and the observed mineralogical profile gave a best fit at 404 $6.1^{+2.0}_{-1.0}$ years (uncertainties reflecting uncertainties in fluid compositions) since the start of CO₂-405 SO_4 -saturated brine injection (Figure 10). This is comparable to the time estimates of the 406 analytical model for hematite dissolution. The estimate of diffusivity is the main source of 407 uncertainty where time scales as the inverse of diffusivity. If the fracture was actively 408 precipitating gypsum during this time it would give an average linear extension rate of gypsum \sim 409 0.17 mm/year. It is very unlikely precipitation occurred at a uniform rate though time, but this 410 rate is comparable to the rapid carbonate extension rates reported in Frery et al. (2016) for veins 411 in travertine mounds near Green River.

412

413

Discussion

This study has shown that QEMSCAN is an extremely useful technique for investigating and quantifying the mineralogy of small scale alteration fronts. These observed mineralogical profiles (as measured by QEMSCAN) in the siltstone adjacent to the gypsum bed can be explained in terms of the interplay of mineral reactions and diffusive transport of a reactive infiltrating fluid. The alteration comprises two main zones a ~ 0.8 mm-wide hematite-poor,

419	dolomite-poor and illite-rich region adjacent to a gypsum bed and a ~ 2.3 mm-wide hematite-
420	poor, dolomite-poor, illite-poor region adjacent to the hematite alteration front. There is an
421	apparent decrease in porosity adjacent to the gypsum-siltstone contact (0 mm) from 0 to 0.8 mm
422	and increase in porosity from 0.8 to 1.7 mm compared to the unaltered red siltstone region.
423	Overall there is no net change in porosity between the altered region and the unaltered region,
424	however, without BET measurements it is difficult to draw confident conclusions about the
425	effect the CO ₂ -S bearing fluids had on the sealing capabilities of the siltstone. The integration of
426	quantitative elemental mineralogical maps and reactive transport modeling has given consistent
427	results with an estimated reaction time of 4 to 20 years from analytical modeling and \sim 6 years
428	from numerical modeling required to produce the observed mineralogical alteration profiles
429	given the assumed diffusivity of $5 \times 10^{-12} \text{ m}^2 \text{ s}^{-1}$. It is also clear from the modeling that the illite
430	reaction profile is dependent on the dissolution of orthoclase/microcline and dolomite, however,
431	it could also be due to primary variations in clay content. Unlike the Carmel cap rock reaction
432	profile discussed in Kampman et al. (2016), the Entrada cap rock (Busch et al. 2014), and the
433	Entrada Sandstone reaction front around Salt Wash Graben (Wigley et al. 2012, 2013), there are
434	no concentration peaks in metal sulfides or metal oxides upstream of the hematite reaction front.
435	This is likely due to the lower concentration of Fe in the unaltered siltstone, with \sim 4 wt. % and 2
436	wt. % hematite in the unaltered Carmel and Entrada cap rocks, respectively, compared to a
437	hematite concentration of 0.4 wt. % in this study (Busch et al. 2014; Kampman et al. 2016).
438	
439	At long time-scales, assuming self-sealing does not occur, the numerical model predicts it would
440	take 5,000 year for the bleaching front to propagate ~ 10 cm. This is two orders of magnitude
441	faster than > 100,000 years predicted for the Carmel and Entrada cap rocks (Busch et al. 2014;

442	Kampman et al. 2016). This discrepancy is due to a greater concentration of hematite in the
443	unaltered Entrada and Carmel cap rocks. It is clear that the greater the hematite concentration,
444	the stronger the buffering capacity of the CO ₂ -S fluid-rock reactions will be.
445	
446	Other studies of CO ₂ altered siltstone and claystone caprocks have found similar mineralogical
447	trends to those seen in this study (i.e. Busch et al. 2014; Kampman et al. 2016). Gypsum
448	precipitation has been documented in the Carmel caprock where gypsum fills bedding parallel
449	fractures (Kampman et al. 2016). Kohler et al. (2009) found that at low temperature and
450	pressures in clayey caprocks CO_2 alteration resulted in the formation of Fe^{2+} -and K^+ -enriched
451	illites. Overall this study agrees with those of Busch et al. 2014 and Kampman et al. 2016 who
452	found that CO ₂ -S-related fluid-rock reactions have the capability to buffer the corrosive nature of
453	the fluids, allowing cap rocks to maintain their sealing capabilities.
454	
455	Implications
456	The results are important for geological carbon storage as they show that the addition of sulfur to
457	CO ₂ producing potentially corrosive fluids will not degrade the sealing capabilities of hematite-

bearing mud- and siltstone-rich cap rocks in carbon storage sites over the lifetime of the storage

459 projects. Further the timescales calculated from the modeling show that, even adjacent to an

460 active fault zone, the fluid-filled cracks are sealed within a few years further impeding migration

462 mapping by QEMSCAN with thermodynamic modeling should have a wider application to the

of CO₂-charged fluids. This coupling of high spatial resolution quantitative elemental and phase

- study small scale alteration fronts in a number of different geological settings, particularly in
- 464 stockwork veining and associated alteration in economic mineral deposits. This is because

465	standard methods which require larger sample volumes, miss small scale variability and only
466	give phase information or bulk compositions.
467	Acknowledgments
468	We thank Shell Global Solutions for giving us access to the samples and FEI for allowing us
469	access to the proprietary software NanoMin. Funding for Carbon Storage research at the
470	University of Cambridge was provided by the Natural Environment Research Council (NERC)
471	to the CRIUS consortium (NE/F004699/1), Shell Global Solutions International, and the UK
472	Department of Energy and Climate Change (DECC) through a CCS Innovation grant. A.M. was
473	supported by an EPSRC doctoral training grant.
474	References
475	Bachu, S., Haug, K., Michael, K., Buschkuehle, B., and Adams, J. (2005). Deep injection of acid
476	gas in Western Canada. Developments in Water Science, 52, 623-635.
477	Bear, J. (1972), Dynamics of Fluids in Porous Media, Dover Publications.
478	Beitler, B., Chan, M.A., and Parry, W.T. (2003). Bleaching of Jurassic Navajo sandstone on
479	Colorado Plateau Laramide highs: Evidence of exhumed hydrocarbon
480	supergiants?. Geology, 31(12), 1041-1044.
481	Beitler, B., Parry, W.T., and Chan, M.A. (2005). Fingerprints of fluid flow: chemical diagenetic
482	history of the Jurassic Navajo Sandstone, southern Utah, USA. Journal of Sedimentary
483	Research, 75(4), 547-561.
484	Bethke, C. (2008), Reactive Transport. In: Geochemical and Biochemical Reaction Modelling,
485	Cambridge University Press.

- 486 Blakey, R.C., Peterson, F., Caputo, M.V., Geesaman, R.C, and Voorhees, B.J. (1983),
- 487 Paleogeography of Middle Jurassic continental, shoreline, and shallow marine
- 488 sedimentation, southern Utah. In: Rocky Mountain Section (SEPM).
- 489 Blakey, R.C., Peterson, F., and Kocurek, G. (1988), 'Synthesis of late Paleozoic and Mesozoic
- 490 eolian deposits of the Western Interior of the United States', Sedimentary Geology 56(1),
 491 3-125.
- 492 Burnside, N.M., Shipton, Z.K., Dockrill, B., and Ellam, R.M. (2013). Man-made versus natural
- 493 CO₂ leakage: A 400 k.y. history of an analogue for engineered geological storage of CO₂.
 494 Geology, 41, 471-474.
- 495 Busch, A., Kampman, N., Hangx, S.J., Snippe, J., Bickle, M., Bertier, P., Chapman, H., Spiers,
- 496 C.J., Pijnenburg, R., Samuelson, J., and Evans, J.P. (2014). The Green River natural
- 497 analogue as a field laboratory to study the long-term fate of CO_2 in the
- 498 subsurface. Energy procedia, 63, 2821-2830.
- 499 Chadwick, R.A., Arts, R., Bernstone, C., May, F., Thibeau, S., and Zweigel, P. (2008). Best
- practice for the storage of CO₂ in saline aquifers. British Geological Survey Occasional
 Publication No. 14. Keyworth, UK.
- 502 Chen, F., Turchyn, A.V., Kampman, N., Hodell, D., Gázquez, F., Maskell, A., and Bickle, M.
- 503 (2016). Isotopic analysis of sulfur cycling and gypsum vein formation in a natural CO₂
 504 reservoir. Chemical Geology, 436, 72-83.
- 505 Consoli, C.P., Higgins, K., Jorgensen, D., Khider, K., Lescinsky, D.T., Morris, R., and Nguyen,
- 506 V. (2013). Regional assessment of the CO₂ storage potential of the Mesozoic succession
- 507 in the Petrel Sub-basin, Northern Territory, Australia: summary report. Record 2014/11.
- 508 Geoscience Australia, Canberra.Cullers, R.L. (1995). The controls on the major-and

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. DOI: http://dx.doi.org/10.2138/am-2018-6138CCBY

509	trace-element evolution of shales, siltstones and sandstones of Ordovician to Tertiary age
510	in the Wet Mountains region, Colorado, USA. Chemical Geology, 123(1), 107-131.
511	Dawson, G., Pearce, J., Biddle, D., and Golding, S. (2015). Experimental mineral dissolution in
512	Berea Sandstone reacted with CO ₂ or SO ₂ -CO ₂ in NaCl brine under CO ₂ sequestration
513	conditions. Chemical Geology, 399, 87-97.
514	Dockrill, B. (2006). Understanding leakage from a fault-sealed CO ₂ reservoir in east-central
515	Utah: A natural analogue applicable to CO ₂ storage. PhD Thesis. Trinity College
516	Dublin.Dockrill, B., and Shipton, Z.K. (2010). Structural controls on leakage from a
517	natural CO ₂ geologic storage site: Central Utah, U.S.A. Journal of Structural Geology,
518	32(11), 1768–1782.
519	Dos Santos Afonso, M., and Stumm, W. (1992). Reductive dissolution of iron (iii)(hydr)oxides
520	by hydrogen sulfide. Langmuir, 8(6), 1671–1675.
521	Farquhar, S.M., Pearce, J.K., Dawson, G.K.W., Golab, A., Sommacal, S., Kirste, D., Biddle, D.,
522	and Golding, S.D., (2015). A fresh approach to investigating CO ₂ storage: Experimental
523	CO ₂ -water rock interactions in a freshwater reservoir system. Chemical Geology, 399,
524	98-122.
525	Flowers, R.M. (2010). The enigmatic rise of the Colorado Plateau. Geology, 38(7), 671-672.
526	Frery, E., Gratier, J.P., Ellouz-Zimmerman, N., Deschamps, P., Blamart, D., Hamelin, B., and
527	Swennen, R. (2016). Geochemical transect through a travertine mount: A detailed record
528	of CO ₂ -enriched fluid leakage from Late Pleistocene to present-day-Little Grand Wash
529	fault (Utah, USA). Quaternary International.
530	Heath, J.E. (2004). Hydrogeochemical characterization of leaking carbon dioxide-charged fault
531	zones in east-central Utah, M.S. thesis, 175 pp., Utah State Univ., Logan, Utah.

532	Heath, J., Lachmar, T., Evans, J., Kolesar, P., and Williams, A. (2009). Hydrogeochemical
533	characterization of leaking, carbon dioxide-charged fault zones in east-central Utah, with
534	implications for geologic carbon storage. In: Mcpherson, B. and Sundquist, E. eds.
535	Carbon Sequestration and Its Role in the Global Carbon Cycle. American Geophysical
536	Union, 147–158.
537	Hood, J.W., and Patterson, D.J. (1984). Bedrock aquifers in the northern San Rafael Swell area,
538	Utah, with special emphasis on the Navajo Sandstone. State of Utah Department of
539	Natural Resources. Technical Publication, 78, 1-128.
540	Kampman, N., Bickle, M.J., Becker, J., Assayag, N., and Chapman, H.J. (2009). Feldspar
541	dissolution kinetics and Gibbs free energy dependence in a CO2-enriched groundwater
542	system, Green River, Utah. Earth and Planetary Science Letters, 284, 473-488.
543	Kampman, N., Burnside, N.M., Shipton, Z.K., Chapman, H.J., Nicholl, J.A., Ellam, R.M., and
544	Bickle, M.J. (2012). Pulses of carbon dioxide emissions from intracrustal faults following
545	climatic warming. Nature Geoscience, 5, 352–358.
546	Kampman, N., Maskell, A., Bickle, M., Evans, J., Schaller, M., Purser, G., Zhou, Z., Gattacceca,
547	J., Peitre, E., Rochelle, C., Ballentine, C., and Busch, A. (2013). Scientific drilling and
548	downhole fluid sampling of a natural CO2 reservoir, Green River, Utah. Scientific
549	Drilling, 16, 33–43.
550	Kampman, N., Bickle, M., Maskell, A., Chapman, H., Evans, J., Purser, G., Zhou, Z., Schaller,
551	M., Gattacceca, J.C., Bertier, P., and Chen, F. (2014). Drilling and sampling a natural
552	CO ₂ reservoir: Implications for fluid flow and CO ₂ -fluid-rock reactions during CO ₂
553	migration through the overburden. Chemical Geology, 369, 51-82.

- 554 Kampman, N., Bertier, P., Busch, A., Snippe, J., Hangx, S. J., Pipich, V., Di, Z., Rother, G.,
- 555 Harrington, J.F., Kemp, S.J., Evans, J., Maskell, A., Chapman, H., and Bickle, M.J.
- 556 (2016). Observational evidence confirms modelling of the long-term integrity of CO₂-
- 557 reservoir caprocks. Nature Communications, 7:12268.
- 558 Kaszuba, J.P., Navarre-Sitchler, A., Thyne, G., Chopping, C., and Meuzelaar, T. (2011).
- 559 Supercritical carbon dioxide and sulfur in the Madison Limestone: A natural analog in
- 560 southwest Wyoming for geologic carbon-sulfur co-sequestration. Earth and Planetary
- 561 Science Letters, 309, 131-140.
- 562 Knauss, K.G., Johnson, J.W., and Steefel, C.I. (2005). Evaluation of the impact of CO₂, co-
- 563 contaminant gas, aqueous fluid and reservoir rock interactions on the geologic
- sequestration of CO₂. Chemical Geology, 217, 339–350.
- 565 Kohler, E., Parra, T., and Vidal, O. (2009). Clayey cap-rock behavior in H₂O-CO₂ media at low
- 566 pressure and temperature conditions: an experimental approach. Clays and Clay
- 567 Minerals, 57(5), 616-637.
- 568 Lichtner, P.C. (1988). The quasi-stationary state approximation to coupled mass transport and
- fluid-rock interaction in a porous medium. Geochimica et Cosmochimica Acta, 52(1),
 43–165.
- 571 Machel, H.-G. (1985). Fibrous gypsum and fibrous anhydrite in veins. Sedimentology, 32(3),
 572 443–454.
- 573 Parkhurst, D.L., and Appelo, C.A.J. (1999). User's guide to PHREEQC (version 2) A
- 574 computer program for speciation, batch reaction, one dimensional transport, and inverse
 575 geochemical calculations. U.S. Geological Survey Water-Resources Investigations
 576 Report, 99(4259).

- 577 Parry, W.T., Chan, M.A., and Beitler, B. (2004). Chemical bleaching indicates episodes of fluid
- flow in deformation bands in sandstone. AAPG bulletin, 88(2), 175-191.
- 579 Pearce, J.K., Kirste, D.M., Dawson, G.K., Farquhar, S.M., Biddle, D., Golding, S.D., and
- 580 Rudolph, V. (2015a). SO₂ impurity impacts on experimental and simulated CO₂-water-
- 581 reservoir rock reactions at carbon storage conditions. Chemical Geology, 399, 65–86.
- 582 Pearce, J.K., Law, A.C.K., Dawson, G.K.W., and Golding, S.D. (2015b). SO₂-CO₂ and pure CO₂
- 583 reactivity of ferroan carbonates at carbon storage conditions. Chemical Geology,
- 584 10.1016/j.chemgeo.2015.07.001.
- 585 Pearce, J.K., Golab, A., Dawson, G.K., Knuefing, L., Goodwin, C., and Golding, S.D., (2016).
- 586 Mineralogical controls on porosity and water chemistry during O₂-SO₂-CO₂ reaction of 587 CO₂ storage reservoir and cap-rock core. Applied Geochemistry, 75, 152-168.
- 588 Purser, G., Rochelle, C.A., Rushton, J., Pearce, J.M., and Wagner, D. (2014). An experimental
- 589 and analogue study of iron release from red sandstones. Energy Procedia, 63, 3268-3274.
- Raman, C., and Ramdas, A. (1954). On the polycrystalline forms of gypsum and their optical
- behaviour. In: Proceedings of the Indian Academy of Sciences-Section A, v39, 153–161.
 Springer.
- 593 Shipton, Z.K., Evans, J.P., Dockrill, B., Heath, J., Williams, A.P., Kirschner, D., and Kolesar,
- 594 P.T. (2005). Natural leaking CO₂-charged systems as analogues for failed geologic
- 595 storage reservoirs. In: Benson, S., Oldenburg, C., Hoversten, M., and Imbus, S., eds.
- 596 Carbon Dioxide Capture for Storage in Deep Geological Formations- Results from the
- 597 CO₂ Capture Project, 699–712. Elsevier B.V.
- 598 Shipton, Z.K., Evans, J.P., Kirschner, D., Kolesar, P.T., Williams, A.P., and Heath, J. (2004).
- 599 Analysis of CO₂ leakage through low-permeability faults from natural reservoirs in the

600	Colorado Plateau, east-central Utah. Geological Society, London, Special Publications,
601	233(1), 43–58.
602	Trimble L., and Doelling, H.H. (1978). Geology and uranium-vanadium deposits of the San
603	Rafael River mining area, Emery County, Utah. Utah Geological and Mineral Survey
604	Bulletin, 113, 122 p.
605	Turrero, M.J., Fernández, A.M., Peña, J., Sánchez, M.D., Wersin, P., Bossart, P., Sánchez, M.,
606	Melón, A., Garralón, A., Yllera, A., and Hernán, P. (2006) Pore water chemistry of a
607	Paleogene continental mudrock in Spain and a Jurassic marine mudrock in Switzerland:
608	Sampling methods and geochemical interpretation. Journal of Iberian Geology, 32, 233-
609	258.
610	Warren, J.K. (2006). Evaporites: sediments, resources and hydrocarbons. Springer Science &
611	Business Media.Wigley, M., Kampman, N., Dubacq, B., and Bickle, M. (2012). Fluid-
612	mineral reactions and trace metal mobilization in an exhumed natural CO ₂ reservoir,
613	Green River, Utah. Geology, 40(6), 555–558.
614	Wigley, M., Kampman, N., Chapman, H., Dubacq, B., and Bickle, M. (2013). In situ
615	redeposition of trace metals mobilized by CO ₂ -charged brines. Geochemistry,
616	Geophysics, Geosystems, 14(5), 1321–1332.
617 618	Wilke, F.D.H., Vásquez, M., Wiersberg, T., Naumann, R., and Erzinger, J. (2012). On the
619	interaction of pure and impure supercritical CO2 with rock forming minerals in saline
620	aquifers: An experimental geochemical approach. Applied Geochemistry, 27(8), 1615-
621	1622.
622	Wunsch, A., Navarre-Sitchler, A.K., Moore, J., and McCray, J.E. (2014). Metal release from
623	limestones at high partial-pressures of CO2. Chemical Geology, 363, 40-55.

624 625	Xu, T., Apps, J.A., Pruess, K., and Yamamoto, H. (2007). Numerical modeling of injection and
626	mineral trapping of CO ₂ with H ₂ S and SO ₂ in a sandstone formation. Chemical Geology,
627	242(3), 319–346.
628	Xu, T., Spycher, N., Sonnenthal, E., Zhang, G., Zheng, L., and Pruess, K. (2011).
629	TOUGHREACT Version 2.0: A simulator for subsurface reactive transport under non-
630	isothermal multiphase flow conditions. Computers & Geosciences, 37(6), 763-774.
631	
632	List of figure captions
633	Figure 1. Geological map of the Green River anticline showing locations of the Little Grand
634	Wash and Salt Wash Graben normal fault systems, CO ₂ -springs and location of drill-hole
635	CO2W55. Structure contours are for the top surface of the Navajo Sandstone, the main CO_2
636	bearing reservoir (modified after Kampman et al. 2013).
637	
638	Figure 2. Sedimentary log, core photos and plane polarized light (PPL) images of the bleached
639	alteration zone at the upper contact of the gypsum bed. Images show the bleached siltstone
640	reaction zone at the upper contact of a gypsum bed.
641	
642	Figure 3. Images of the alteration zone that occurs between an upper contact of a gypsum bed
643	and a siltstone bed: a) Plane polarized light (PPL) photomicrograph of the region that was
644	analyzed with QEMSCAN, and; b) Quantitative elemental mineralogy over the
645	bleached/unbleached contact in the siltstone.
646	

647	Figure 4. Images collected from QEMSCAN analyses of the alteration zone, presented are the
648	Backscatter Electron (BSE) map, and quantitative elemental mineralogy maps; illite, kaolinite,
649	dolomite, albite, orthoclase/microcline and hematite.

Figure 5. PPL photomicrographs of fibrous gypsum adjacent to the altered siltstone. The

occurrence of fibrous gypsum at the contact implies that at one point in time there was an open

653 fracture between these two sedimentary units allowing the flow of reactive fluids.

654

Figure 6. Volume fraction of hematite across the gypsum-siltstone reaction front. Squares

represent the observed lithological changes as determined by quantitative mapping. The solid

657 curve is least-squares best fit of the hematite profile to equation (7) with the shaded area

representing 1 σ standard deviation. The initial hematite volume, φ_{S}^{∞} , is the average volume over

the red siltstone region. Dashed line shows profile for the minimum limit for q values of 427 m⁻¹.

660

661 **Figure 7.** Plot showing the solution to the analytical one-component reactive transport equations. 662 The duration it takes for the hematite reaction front to migrate 3.1 mm calculated from equation (5) given the time for the reaction front to develop (τ_0 ; equation (4)). The shaded area represents 663 the solutions for $427 < q < 896 \text{ m}^{-1}$, implying time-scales of reaction between 4 and 20 years and 664 hematite dissolution rates between 1 x 10^{-9} and 5 x 10^{-8} mol/m²/s. Solid black line give the 665 median solution ($D_e = 5 \ge 10^{-12} \text{ m}^2$, $\Delta C_0 = 3.84 \text{ mol/m}^3$, while dashed lines show extreme 666 solutions. Minimum estimates of D_e and ΔC_0 give maximum calculated reactions times ($D_e = 1 \text{ x}$ 667 10^{-12} m^2 , $\Delta C_0 = 3.34 \text{ mol/m}^3$), and maximum estimates of D_e and ΔC_0 give minimum calculated 668 reactions times ($D_e = 1 \times 10^{-11} \text{ m}^2$, $\Delta C_0 = 4.34 \text{ mol/m}^3$). 669

070	
671	Figure 8. Diffusion-reaction modeling of gypsum-siltstone alteration zone in PHREEQC at 6
672	years since start of injection; with: a) CO ₂ -SO ₄ -saturated infiltrating fluid (Model 1), and; b)
673	CO ₂ -poor SO ₄ -saturated infiltrating fluid (Model 2). 1000 iterations of each model were run
674	(grey lines) with the infiltrating fluid compositions randomly varied \pm 10 % from the
675	compositions presented in Table 2. The black lines are the mean of all these models. The
676	precipitation of illite in the CO ₂ -saturated model matches the observed mineralogical profiles the
677	best, suggesting the fluids responsible for the alteration were CO ₂ -saturated.
678	
679	Figure 9. Diffusion-reaction modeling of gypsum-siltstone alteration zone in PHREEQC at with
680	a CO ₂ -SO ₄ -saturated infiltrating fluid (see Table 2 for composition). 1D models were run exactly
681	like the models presented in Figure 8, except the effective diffusivity (D_e) was varied instead of
682	fluid composition. Three models are plotted, with D_e of 1 x 10 ⁻¹² m ² , 5 x 10 ⁻¹² m ² and 1 x 10 ⁻¹¹
683	m^2 , respectively. The plot shows the effect diffusivity has on the propagation speed of the
684	reaction fronts.
685	
686	Figure 10. Comparison between CO ₂ -SO ₄ -saturated PHREEQC model at 6 years with an
687	effective diffusivity (D_e) of 5 x 10 ⁻¹² m ² and observed mineralogical profiles: a) hematite profile;
688	b) dolomite profile, and; c) illite profile. Squares represent the average concentration over a 0.31
689	mm block across the alteration zone, these 26 points were determined from the QEMSCAN
690	mineralogical maps. Model shown was the best fit to the observations of all simulation based on
691	least squares. The modeling predicts the trends of the dissolution of hematite and dolomite

- 692 upstream of the hematite reaction front, and growth of secondary illite adjacent to the gypsum
- 693 bed.
- 694
- 695 Tables

	Unaltered Red Siltstone												
Mineral	7.65 mm	7.35 mm	7.05 mm	6.75 mm	6.45 mm	6.15 mm	5.85 mm	5.55 mm	5.25 mm	4.95 mm	4.65 mm	4.35 mm	4.05 mm
Quartz	45.96	51.71	51.65	45.62	40.38	45.47	47.19	45.07	43.09	41.81	40.23	44.84	38.77
Illite	21.53	17.22	17.73	21.93	24.03	21.34	21.00	20.26	20.26	20.14	21.86	21.35	25.14
Orthoclase	12.70	14.45	13.89	14.16	17.43	16.20	13.85	16.49	16.85	20.03	18.47	15.88	18.01
Dolomite	9.80	7.91	8.79	7.82	8.42	7.36	9.24	9.26	9.57	8.81	9.28	9.01	9.38
Kaolinite	2.88	2.97	2.52	3.10	3.24	3.70	3.21	2.56	2.97	2.68	2.55	2.44	2.13
Ankerite	3.57	2.38	2.62	3.15	2.82	2.58	2.41	2.47	3.15	2.90	3.28	2.74	2.96
Muscovite	1.85	1.47	1.42	2.37	2.34	1.96	1.71	1.74	2.23	2.08	2.40	2.07	2.03
Plagioclase	0.79	0.69	0.63	0.91	0.74	0.78	0.66	0.70	0.94	0.84	0.94	0.75	0.95
Anatase	0.11	0.32	0.12	0.14	0.07	0.12	0.16	0.16	0.51	0.22	0.14	0.22	0.16
Hematite	0.57	0.61	0.45	0.57	0.29	0.29	0.40	1.19	0.30	0.30	0.31	0.31	0.16
Apatite	0.11	0.08	0.10	0.11	0.13	0.14	0.08	0.04	0.06	0.06	0.46	0.08	0.26
Ilmenite	0.10	0.19	0.07	0.11	0.09	0.05	0.07	0.06	0.04	0.12	0.07	0.31	0.04
Zircon	0.02	0.00	0.00	0.01	0.00	0.01	0.01	0.00	0.02	0.00	0.01	0.00	0.00
Pyrite	0.01	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.01	0.01	0.00	0.00	0.00
	Unaltered Red Siltstone				Hematite-poor						Illite-rich Hem poor		
Maria	ו	Unaltered F	Red Siltston	e			Hemati	ite-poor			Illite	e-rich Hem	poor
Mineral	3.75 mm	Unaltered F 3.45 mm	Red Siltston 3.15 mm	e 2.85 mm	2.55 mm	2.25 mm	Hemati 1.95 mm	ite-poor 1.65 mm	1.35 mm	1.05 mm	Illite 0.75 mm	e-rich Hem 0.45 mm	poor 0.15 mm
Mineral Quartz	3.75 mm 39.93	Unaltered F 3.45 mm 34.35	Red Siltston 3.15 mm 37.14	e 2.85 mm 36.43	2.55 mm 43.58	2.25 mm 48.05	Hemati 1.95 mm 49.16	1.65 mm 38.01	1.35 mm 48.16	1.05 mm 40.92	Illite 0.75 mm 40.84	e-rich Hem 0.45 mm 48.36	0.15 mm 47.57
Mineral Quartz Illite	3.75 mm 39.93 21.52	Unaltered F 3.45 mm 34.35 22.75	Red Siltston 3.15 mm 37.14 22.21	e 2.85 mm 36.43 20.89	2.55 mm 43.58 21.15	2.25 mm 48.05 17.91	Hemati 1.95 mm 49.16 17.03	ite-poor 1.65 mm 38.01 25.85	1.35 mm 48.16 21.10	1.05 mm 40.92 23.04	Illite 0.75 mm 40.84 26.03	e-rich Hem 0.45 mm 48.36 26.88	0.15 mm 47.57 30.81
Mineral Quartz Illite Orthoclase	3.75 mm 39.93 21.52 19.67	Unaltered F 3.45 mm 34.35 22.75 19.60	Red Siltston 3.15 mm 37.14 22.21 17.99	e 2.85 mm 36.43 20.89 20.20	2.55 mm 43.58 21.15 17.77	2.25 mm 48.05 17.91 19.93	Hemati 1.95 mm 49.16 17.03 19.62	ite-poor 1.65 mm 38.01 25.85 16.41	1.35 mm 48.16 21.10 14.69	1.05 mm 40.92 23.04 15.75	Illite 0.75 mm 40.84 26.03 22.62	e-rich Hem 0.45 mm 48.36 26.88 15.92	0.15 mm 47.57 30.81 11.35
Mineral Quartz Illite Orthoclase Dolomite	3.75 mm 39.93 21.52 19.67 10.14	Unaltered F 3.45 mm 34.35 22.75 19.60 13.77	Red Siltstom 3.15 mm 37.14 22.21 17.99 14.08	e 2.85 mm 36.43 20.89 20.20 12.92	2.55 mm 43.58 21.15 17.77 9.98	2.25 mm 48.05 17.91 19.93 6.46	Hemati 1.95 mm 49.16 17.03 19.62 6.70	ite-poor 1.65 mm 38.01 25.85 16.41 10.11	1.35 mm 48.16 21.10 14.69 5.41	1.05 mm 40.92 23.04 15.75 11.95	Illite 0.75 mm 40.84 26.03 22.62 4.03	e-rich Hem 0.45 mm 48.36 26.88 15.92 1.29	poor 0.15 mm 47.57 30.81 11.35 0.32
Mineral Quartz Illite Orthoclase Dolomite Kaolinite	3.75 mm 39.93 21.52 19.67 10.14 1.88	Unaltered F 3.45 mm 34.35 22.75 19.60 13.77 1.71	Red Siltstom 3.15 mm 37.14 22.21 17.99 14.08 1.68	e 2.85 mm 36.43 20.89 20.20 12.92 1.76	2.55 mm 43.58 21.15 17.77 9.98 2.23	2.25 mm 48.05 17.91 19.93 6.46 2.69	Hemati 1.95 mm 49.16 17.03 19.62 6.70 2.97	ite-poor 1.65 mm 38.01 25.85 16.41 10.11 2.76	1.35 mm 48.16 21.10 14.69 5.41 3.39	1.05 mm 40.92 23.04 15.75 11.95 2.56	Illito 0.75 mm 40.84 26.03 22.62 4.03 2.74	e-rich Hem 0.45 mm 48.36 26.88 15.92 1.29 4.13	poor 0.15 mm 47.57 30.81 11.35 0.32 7.71
Mineral Quartz Illite Orthoclase Dolomite Kaolinite Ankerite	3.75 mm 39.93 21.52 19.67 10.14 1.88 2.84	Unaltered F 3.45 mm 34.35 22.75 19.60 13.77 1.71 3.37	Red Siltstom 3.15 mm 37.14 22.21 17.99 14.08 1.68 3.26	e 2.85 mm 36.43 20.89 20.20 12.92 1.76 3.36	2.55 mm 43.58 21.15 17.77 9.98 2.23 2.16	2.25 mm 48.05 17.91 19.93 6.46 2.69 1.94	Hemati 1.95 mm 49.16 17.03 19.62 6.70 2.97 1.66	ite-poor 1.65 mm 38.01 25.85 16.41 10.11 2.76 2.80	1.35 mm 48.16 21.10 14.69 5.41 3.39 2.11	1.05 mm 40.92 23.04 15.75 11.95 2.56 2.63	Illita 0.75 mm 40.84 26.03 22.62 4.03 2.74 0.98	e-rich Hem 0.45 mm 48.36 26.88 15.92 1.29 4.13 0.39	poor 0.15 mm 47.57 30.81 11.35 0.32 7.71 0.15
Mineral Quartz Illite Orthoclase Dolomite Kaolinite Ankerite Muscovite	3.75 mm 39.93 21.52 19.67 10.14 1.88 2.84 2.01	Unaltered F 3.45 mm 34.35 22.75 19.60 13.77 1.71 3.37 2.31	Red Siltstom 3.15 mm 37.14 22.21 17.99 14.08 1.68 3.26 2.13	e 2.85 mm 36.43 20.89 20.20 12.92 1.76 3.36 2.44	2.55 mm 43.58 21.15 17.77 9.98 2.23 2.16 1.88	2.25 mm 48.05 17.91 19.93 6.46 2.69 1.94 1.83	Hemati 1.95 mm 49.16 17.03 19.62 6.70 2.97 1.66 1.91	ite-poor 1.65 mm 38.01 25.85 16.41 10.11 2.76 2.80 2.53	1.35 mm 48.16 21.10 14.69 5.41 3.39 2.11 2.28	1.05 mm 40.92 23.04 15.75 11.95 2.56 2.63 1.71	Illita 0.75 mm 40.84 26.03 22.62 4.03 2.74 0.98 1.34	e-rich Hem 0.45 mm 48.36 26.88 15.92 1.29 4.13 0.39 1.35	poor 0.15 mm 47.57 30.81 11.35 0.32 7.71 0.15 1.14
Mineral Quartz Illite Orthoclase Dolomite Kaolinite Ankerite Muscovite Plagioclase	3.75 mm 39.93 21.52 19.67 10.14 1.88 2.84 2.01 1.00	Unaltered F 3.45 mm 34.35 22.75 19.60 13.77 1.71 3.37 2.31 1.18	Red Siltstom 3.15 mm 37.14 22.21 17.99 14.08 1.68 3.26 2.13 1.15	e 2.85 mm 36.43 20.89 20.20 12.92 1.76 3.36 2.44 1.06	2.55 mm 43.58 21.15 17.77 9.98 2.23 2.16 1.88 0.82	2.25 mm 48.05 17.91 19.93 6.46 2.69 1.94 1.83 0.82	Hemati 1.95 mm 49.16 17.03 19.62 6.70 2.97 1.66 1.91 0.63	ite-poor 1.65 mm 38.01 25.85 16.41 10.11 2.76 2.80 2.53 0.96	1.35 mm 48.16 21.10 14.69 5.41 3.39 2.11 2.28 0.88	1.05 mm 40.92 23.04 15.75 11.95 2.56 2.63 1.71 0.93	Illite 0.75 mm 40.84 26.03 22.62 4.03 2.74 0.98 1.34 0.42	e-rich Hem 0.45 mm 48.36 26.88 15.92 1.29 4.13 0.39 1.35 0.33	poor 0.15 mm 47.57 30.81 11.35 0.32 7.71 0.15 1.14 0.40
Mineral Quartz Illite Orthoclase Dolomite Kaolinite Ankerite Muscovite Plagioclase Anatase	3.75 mm 39.93 21.52 19.67 10.14 1.88 2.84 2.01 1.00 0.32	Unaltered F 3.45 mm 34.35 22.75 19.60 13.77 1.71 3.37 2.31 1.18 0.36	Red Siltstom 3.15 mm 37.14 22.21 17.99 14.08 1.68 3.26 2.13 1.15 0.15	e 2.85 mm 36.43 20.89 20.20 12.92 1.76 3.36 2.44 1.06 0.43	2.55 mm 43.58 21.15 17.77 9.98 2.23 2.16 1.88 0.82 0.23	2.25 mm 48.05 17.91 19.93 6.46 2.69 1.94 1.83 0.82 0.15	Hemati 1.95 mm 49.16 17.03 19.62 6.70 2.97 1.66 1.91 0.63 0.15	ite-poor 1.65 mm 38.01 25.85 16.41 10.11 2.76 2.80 2.53 0.96 0.25	1.35 mm 48.16 21.10 14.69 5.41 3.39 2.11 2.28 0.88 1.50	1.05 mm 40.92 23.04 15.75 11.95 2.56 2.63 1.71 0.93 0.30	Illit 0.75 mm 40.84 26.03 22.62 4.03 2.74 0.98 1.34 0.42 0.60	e-rich Hem 0.45 mm 48.36 26.88 15.92 1.29 4.13 0.39 1.35 0.33 1.02	poor 0.15 mm 47.57 30.81 11.35 0.32 7.71 0.15 1.14 0.40 0.38
Mineral Quartz Illite Orthoclase Dolomite Kaolinite Ankerite Muscovite Plagioclase Anatase Hematite	3.75 mm 39.93 21.52 19.67 10.14 1.88 2.84 2.01 1.00 0.32 0.23	Unaltered F 3.45 mm 34.35 22.75 19.60 13.77 1.71 3.37 2.31 1.18 0.36 0.19	Red Siltstom 3.15 mm 37.14 22.21 17.99 14.08 1.68 3.26 2.13 1.15 0.15 0.07	e 2.85 mm 36.43 20.89 20.20 12.92 1.76 3.36 2.44 1.06 0.43 0.02	2.55 mm 43.58 21.15 17.77 9.98 2.23 2.16 1.88 0.82 0.23 0.03	2.25 mm 48.05 17.91 19.93 6.46 2.69 1.94 1.83 0.82 0.15 0.02	Hemati 1.95 mm 49.16 17.03 19.62 6.70 2.97 1.66 1.91 0.63 0.15 0.03	ite-poor 1.65 mm 38.01 25.85 16.41 10.11 2.76 2.80 2.53 0.96 0.25 0.04	1.35 mm 48.16 21.10 14.69 5.41 3.39 2.11 2.28 0.88 1.50 0.03	1.05 mm 40.92 23.04 15.75 11.95 2.56 2.63 1.71 0.93 0.30 0.06	Illite 0.75 mm 40.84 26.03 22.62 4.03 2.74 0.98 1.34 0.42 0.60 0.01	e-rich Hem 0.45 mm 48.36 26.88 15.92 1.29 4.13 0.39 1.35 0.33 1.02 0.01	poor 0.15 mm 47.57 30.81 11.35 0.32 7.71 0.15 1.14 0.40 0.38 0.01
Mineral Quartz Illite Orthoclase Dolomite Kaolinite Ankerite Muscovite Plagioclase Anatase Hematite Apatite	3.75 mm 39.93 21.52 19.67 10.14 1.88 2.84 2.01 1.00 0.32 0.23 0.30	Unaltered F 3.45 mm 34.35 22.75 19.60 13.77 1.71 3.37 2.31 1.18 0.36 0.19 0.15	Red Siltstom 3.15 mm 37.14 22.21 17.99 14.08 1.68 3.26 2.13 1.15 0.15 0.07 0.11	e 2.85 mm 36.43 20.89 20.20 12.92 1.76 3.36 2.44 1.06 0.43 0.02 0.28	2.55 mm 43.58 21.15 17.77 9.98 2.23 2.16 1.88 0.82 0.23 0.03 0.12	2.25 mm 48.05 17.91 19.93 6.46 2.69 1.94 1.83 0.82 0.15 0.02 0.15	Hemati 1.95 mm 49.16 17.03 19.62 6.70 2.97 1.66 1.91 0.63 0.15 0.03 0.03	ite-poor 1.65 mm 38.01 25.85 16.41 10.11 2.76 2.80 2.53 0.96 0.25 0.04 0.12	1.35 mm 48.16 21.10 14.69 5.41 3.39 2.11 2.28 0.88 1.50 0.03 0.08	1.05 mm 40.92 23.04 15.75 11.95 2.56 2.63 1.71 0.93 0.30 0.06 0.12	Illite 0.75 mm 40.84 26.03 22.62 4.03 2.74 0.98 1.34 0.42 0.60 0.01 0.31	e-rich Hem 0.45 mm 48.36 26.88 15.92 1.29 4.13 0.39 1.35 0.33 1.02 0.01 0.20	poor 0.15 mm 47.57 30.81 11.35 0.32 7.71 0.15 1.14 0.40 0.38 0.01 0.10
Mineral Quartz Illite Orthoclase Dolomite Kaolinite Ankerite Muscovite Plagioclase Anatase Hematite Apatite Ilmenite	3.75 mm 39.93 21.52 19.67 10.14 1.88 2.84 2.01 1.00 0.32 0.23 0.30 0.13	Unaltered F 3.45 mm 34.35 22.75 19.60 13.77 1.71 3.37 2.31 1.18 0.36 0.19 0.15 0.04	Red Siltstom 3.15 mm 37.14 22.21 17.99 14.08 1.68 3.26 2.13 1.15 0.15 0.07 0.11 0.01	e 2.85 mm 36.43 20.89 20.20 12.92 1.76 3.36 2.44 1.06 0.43 0.02 0.28 0.09	2.55 mm 43.58 21.15 17.77 9.98 2.23 2.16 1.88 0.82 0.23 0.03 0.12 0.03	2.25 mm 48.05 17.91 19.93 6.46 2.69 1.94 1.83 0.82 0.15 0.02 0.15 0.04	Hemati 1.95 mm 49.16 17.03 19.62 6.70 2.97 1.66 1.91 0.63 0.15 0.03 0.03 0.10	ite-poor 1.65 mm 38.01 25.85 16.41 10.11 2.76 2.80 2.53 0.96 0.25 0.04 0.12 0.13	1.35 mm 48.16 21.10 14.69 5.41 3.39 2.11 2.28 0.88 1.50 0.03 0.08 0.34	1.05 mm 40.92 23.04 15.75 11.95 2.56 2.63 1.71 0.93 0.30 0.06 0.12 0.02	Illit 0.75 mm 40.84 26.03 22.62 4.03 2.74 0.98 1.34 0.42 0.60 0.01 0.31 0.04	e-rich Hem 0.45 mm 48.36 26.88 15.92 1.29 4.13 0.39 1.35 0.33 1.02 0.01 0.20 0.10	poor 0.15 mm 47.57 30.81 11.35 0.32 7.71 0.15 1.14 0.40 0.38 0.01 0.10 0.02
Mineral Quartz Illite Orthoclase Dolomite Kaolinite Ankerite Muscovite Plagioclase Anatase Hematite Apatite Ilmenite Zircon	3.75 mm 39.93 21.52 19.67 10.14 1.88 2.84 2.01 1.00 0.32 0.23 0.30 0.13 0.01	Unaltered F 3.45 mm 34.35 22.75 19.60 13.77 1.71 3.37 2.31 1.18 0.36 0.19 0.15 0.04 0.22	Red Siltstom 3.15 mm 37.14 22.21 17.99 14.08 1.68 3.26 2.13 1.15 0.15 0.07 0.11 0.01 0.00	e 2.85 mm 36.43 20.89 20.20 12.92 1.76 3.36 2.44 1.06 0.43 0.02 0.28 0.09 0.10	2.55 mm 43.58 21.15 17.77 9.98 2.23 2.16 1.88 0.82 0.23 0.03 0.12 0.03 0.02	2.25 mm 48.05 17.91 19.93 6.46 2.69 1.94 1.83 0.82 0.15 0.02 0.15 0.04 0.00	Hemati 1.95 mm 49.16 17.03 19.62 6.70 2.97 1.66 1.91 0.63 0.15 0.03 0.03 0.10 0.00	ite-poor 1.65 mm 38.01 25.85 16.41 10.11 2.76 2.80 2.53 0.96 0.25 0.04 0.12 0.13 0.01	1.35 mm 48.16 21.10 14.69 5.41 3.39 2.11 2.28 0.88 1.50 0.03 0.08 0.34 0.00	1.05 mm 40.92 23.04 15.75 11.95 2.56 2.63 1.71 0.93 0.30 0.06 0.12 0.02 0.01	Illit 0.75 mm 40.84 26.03 22.62 4.03 2.74 0.98 1.34 0.42 0.60 0.01 0.31 0.04 0.02	e-rich Hem 0.45 mm 48.36 26.88 15.92 1.29 4.13 0.39 1.35 0.33 1.02 0.01 0.20 0.10 0.01	poor 0.15 mm 47.57 30.81 11.35 0.32 7.71 0.15 1.14 0.40 0.38 0.01 0.10 0.02 0.01

697 measured from the gypsum-siltstone contact and the analyses are averaged over 0.3 mm.

- **Table 2.** Compositions (mol/L) of initial pore water (Turrero et al. 2006), CO₂-SO₄-saturated
- brine (measured sample DFS004 saturated with gypsum; Kampman et al. 2014) and CO₂-poor
- 701 SO₄-saturated brine used in the PHREEQC reactive transport modeling. Alk alkalinity
- 702 (mEq/L), DIC dissolved inorganic carbon.

pН	Al ³⁺	Ca ²⁺	Mg ²⁺	K ⁺	Na ⁺	SiO ₂	Cl	SO ₄ ²⁻	H ₂ S	Alk	DIC	
Initia	al Pore	Water	ſ									
7.52	0	13.6	1.63	0.43	23.9	0	30.4	23.9	0	0.76	0.8	
CO ₂ -	CO ₂ -SO ₄ -Saturated Brine											
5.1	0.01	24.1	10.1	7.2	112.5	0.1	84.9	20.7	0.5	64	884	
CO ₂ -	CO ₂ -poor SO ₄ -Saturated Brine											
5.1	0.01	24.1	10.1	7.2	112.5	0.1	84.9	20.7	0.5	2.5	2.5	

Figure 1

Figure 2

a) PPL photomicrograph

Figure 4

Figure 5

Figure 6

Figure 8

Figure 9

Figure 10