1	Revision 2:
2	Relationships between unit-cell parameters and composition for
3	rock-forming minerals on Earth, Mars, and other extraterrestrial
4	bodies
5	
6	SHAUNNA M. MORRISON, ^{1,2*} ROBERT T. DOWNS, ¹ DAVID F. BLAKE, ³ ANIRUDH PRABHU, ⁴
7	AHMED ELEISH, ⁴ DAVID T. VANIMAN, ⁵ DOUGLAS W. MING, ⁶ ELIZABETH B. RAMPE, ⁶ ROBERT
8	M. HAZEN, ² CHERIE N. ACHILLES, ¹ ALLAN H. TREIMAN, ⁷ ALBERT S. YEN, ⁸ RICHARD V.
9	MORRIS, ⁶ THOMAS F. BRISTOW, ³ STEVE J. CHIPERA, ⁹ PHILIPPE C. SARRAZIN, ¹⁰ KIM V.
10	FENDRICH, ¹¹ JOHN MICHAEL MOROOKIAN, ⁸ JACK D. FARMER, ¹² DAVID J. DES MARAIS, ³ AND
11	PATRICIA I. CRAIG ⁷
12	
13 14	¹ University of Arizona, 1040 E 4th St, Tucson, AZ, 85721 U.S.A. ² Geophysical Laboratory, Carnegie Institution, 5251 Broad Branch Rd NW, Washington, DC, 20015
15 16	U.S.A. ³ NASA Ames Research Center, Moefett Field, CA 94035, U.S.A.
17	⁴ Rensselaer Polytechnic Institute (RPI) 110 Eighth Street, Troy, NY 12180, U.S.A.
18	⁵ PLANETARY SCIENCE INSTITUTE, 1700 E. FORT LOWELL, TUCSON, AZ 85719-2395, U.S.A.
19	⁶ NASA JOHNSON SPACE CENTER, HOUSTON, TX, 77058 U.S.A.
20	⁸ LET PROPERTY AND PLANETARY INSTITUTE, 3600 BAY AREA BLVD, HOUSTON, TX 77058, U.S.A.
21 22	JET PROPULSION LABORATORY, CALIFORNIA INSTITUTE OF TECHNOLOGY, 4800 OAK GROVE DRIVE, PASADENA, CA 91109 U.S. A
23	⁹ CHESAPEAKE ENERGY CORPORATION, 6100 N. WESTERN AVENUE, OKLAHOMA CITY, OK 73118, U.S.A.
24	¹⁰ SETI INSTITUTE, MOUNTAIN VIEW, CA 94043 U.S.A.
25	¹¹ AMERICAN MUSEUM OF NATURAL HISTORY, NEW YORK, NY 10024, U.S.A.
20	ARIZONA STATE UNIVERSITY, TEMPE, AZ, 85281 U.S.A.
27	
28	ABSTRACT
29	Mathematical relationships between unit-cell parameters and chemical composition were
30	developed for selected mineral phases observed with the CheMin X-ray diffractometer onboard
31	the Curiosity rover in Gale crater. This study presents algorithms for estimating the chemical
32	composition of phases based solely on X-ray diffraction data. The mineral systems include
33	plagioclase, alkali feldspar, Mg-Fe-Ca $C2/c$ clinopyroxene, Mg-Fe-Ca $P2_{\rm l}/c$ clinopyroxene, Mg-
34	Fe-Ca orthopyroxene, Mg-Fe olivine, magnetite and other selected spinel oxides, and alunite-
35	jarosite. These methods assume compositions of Na-Ca for plagioclase, K-Na for alkali feldspar,
36	Mg-Fe-Ca for pyroxene, and Mg-Fe for olivine; however, some other minor elements may occur
37	and their impact on measured unit-cell parameters is discussed. These crystal-chemical

algorithms can be applied to material of any origin, whether that origin is Earth, Mars, an
 extraterrestrial body, or a laboratory.

40

Keywords: X-ray diffraction, crystal chemistry, unit-cell parameters, plagioclase, olivine,
 pyroxene, magnetite, spinel, jarosite, alunite, Mars, Gale crater, Mars Science Laboratory,
 CheMin.

- 44
- 45

INTRODUCTION

46 The Chemistry and Mineralogy (CheMin) X-ray diffraction (XRD) instrument onboard the 47 Mars Science Laboratory (MSL) rover, Curiosity, is employed by the MSL Science Team to 48 analyze martian rock and sediment samples in Gale crater, Mars (Bish et al. 2013, 2014; Blake et 49 al. 2013; Treiman et al. 2014, 2016; Vaniman et al. 2014; Bristow et al. 2015; Morris et al. 2016; 50 Rampe et al. 2017; Yen et al. 2017; Achilles et al. 2017). XRD data obtained from CheMin allow 51 mineral phase identification and refinement of unit-cell parameters and relative phase 52 abundances. Information regarding phase chemical composition is useful in characterizing the geologic history of a rock unit, region, or planet. We studied the relationships between unit-cell 53 54 parameters and chemical composition in order to constrain the composition of mineral phases 55 observed in Gale crater. While these crystal-chemical algorithms were created with the purpose 56 of studying Mars, they can be applied to any similar crystalline material regardless of origin.

To develop these crystal-chemical algorithms, we exploited the systematic relationship between atomic radii and unit-cell dimensions. Unit-cell lengths vary with chemical composition due to corresponding changes in atomic radii; therefore, measured unit-cell parameters provide insight into mineral composition and, in many cases, can be used to provide accurate estimates of anion composition. These systematics have been the focus of many mineralogical and XRD studies of synthetic and natural rock-forming minerals (Yoder and Sahama 1957; Bambauer et al.

63 1967; Louisnathan and Smith 1968; Matsui and Syono 1968; Fisher and Medaris 1969; 64 Jahanbagloo 1969; Nolan 1969; Rutstein and Yund 1969; Turnock et al. 1973; Smith 1974; Schwab and Kustner 1977; Kroll 1983; Kroll and Ribbe 1983; Angel et al. 1990, 1998). Some 65 research, such as the work on olivine by Yoder and Sahama (1957) and Fisher and Medaris 66 67 (1969), focused on the position of the single most prominent diffraction peak for determining the 68 chemical composition of unidentified phases. The principal reasons for using a single-peak 69 technique are the relative ease of measurement and the difficulty in calculating unit-cell 70 parameters from diffraction data prior to the widespread use of computers and the adoption of 71 full-pattern fitting methods such as Rietveld refinement. Some subsequent studies, such as the 72 work on pyroxenes by Turnock et al. (1973) and Angel et al. (1998), used high-resolution 73 diffraction patterns to estimate chemical composition based entirely on refined cell parameters.

74 In this study, we present algorithms to estimate the chemical composition of minerals based 75 solely on unit-cell parameters. We developed algorithms for plagioclase, alkali feldspar, Mg-Fe-76 Ca pyroxene, Fe-Mg olivine, magnetite and related spinel oxides, and alunite-jarosite group 77 phases by least-squares regression of known unit-cell parameters and composition. Additionally, 78 we employed minimization routines for the crystal-chemical relationships of Mg-Fe-Ca 79 pyroxenes. These studies were conducted with mineralogical data from many literature sources, 80 with special attention to previous crystal-chemical studies, and also from the RRUFF Project 81 (Lafuente et al. 2015). These data are publicly available at rruff.info/ima, and are compiled in 82 Appendix 1 and at github.com/shaunnamm/regression-and-minimization. The chemical variation 83 and abundance of phases in this mineralogical database provide a comprehensive list of unit-cell 84 parameters and associated composition, which can be harvested to produce robust chemical

relationships. Their application to refined CheMin unit-cell parameters of martian minerals is
reported in Morrison et al. (2017)

- 87
- 88

CRYSTAL CHEMISTRY

89 This study incorporates unit-cell parameters and composition of minerals reported in 90 previous studies as well as those documented in the RRUFF Project database (Lafuente et al. 91 2015) (Appendix 1). The availability of large databases, such as RRUFF, to evaluate 92 compositional systematics has increased the accuracy of estimated phase composition relative to 93 previous studies. The following sections detail these crystal-chemical systematics and the 94 resulting equations offer robust algorithms for estimating mineral composition from X-ray 95 diffraction data. All calculations were performed in R; the R code is provided at 96 github.com/shaunnamm/regression-and-minimization. The models selected in the sections below 97 minimize the residual standard error, σ_{SE} , and contain only significant parameters (p-value > 98 0.05). Where applicable, the residual standard error is given; the full error analysis procedure is 99 detailed in Appendix 2. In order to limit bias in the models generated by least-squares regression, 100 we averaged the unit-cell parameters of samples with identical compositions. However, the full 101 (not averaged) datasets were used in error determinations. Where applicable, cross-validation 102 was used in order to assess whether these algorithms can be generalized to other datasets, and to 103 recognize any over-fitting. Cross-validation was performed by training the model on 80% of the 104 data and testing on the remaining 20% with 1000 iterations. Errors reported from cross-105 validation represent the average of the 1000 iterations. The coefficients in the equations listed 106 throughout result in precision to the 4th decimal place for composition (apfu), the 5th decimal place for a, b, and c (Å), and the 3rd decimal place for β (°); more digits can be obtained by 107 108 specifying the number of desired digits in the R code.

109 Feldspar

110 Feldspar, variety plagioclase, is the most abundant mineral detected in twelve of the thirteen 111 Gale crater samples analyzed by CheMin as of June 2016. Alkali feldspar, variety sanidine, is 112 found in significantly lower quantities than plagioclase in all but one of the thirteen CheMin 113 samples. Substitutions of minor elements is relatively common in potassium feldspar and less so 114 in the plagioclase system. In alkali feldspar, minor amounts of other components can be present 115 in a sample without causing the b and c unit-cell parameters to deviate noticeably from the Na-K 116 trend. For example, alkali feldspars with cell dimensions that correspond to pure Na-K feldspar 117 have been shown to contain Ba and Cs up to 0.02 atoms per formula unit (apfu) (Angel et al. 118 2013) and Rb up to 0.008 apfu (Dal Negro et al. 1978). In lunar K-feldspar, as much as 0.18 Ba 119 apfu has been detected (Papike et al. 1998). However, Ba in martian meteorites has not been 120 detected above 0.05 apfu and only 0.006% of the ~1000 martian meteorite feldspars contained any measurable Ba (Papike et al. 2009; Santos et al. 2015; Wittmann et al. 2015; Nyquist et al. 121 2016; Hewins et al. 2017). Additionally, sanidine can incorporate significant Fe^{3+} in the 122 tetrahedral site, up to 0.698 Fe³⁺ apfu (Kuehner and Joswiak 1996; Linthout and Lustenhouwer 123 1993; Lebedeva et al. 2003). However, when the abundance of Fe^{3+} exceeds 0.1 apfu, the b unit-124 125 cell parameter increases beyond 13.05 Å and noticeably deviates from the trends shown in the 126 alkali feldspar section below (Best et al. 1968; Lebedeva et al. 2003). Hewins et al. (2017) reported as much as 0.09 Fe^{3+} apfu in martian meteorite feldspar, an abundance that is unlikely to 127 be detectable by examination of unit-cell parameters. In the plagioclase system, Fe^{2+} has been 128 129 reported in abundance of 0.01-0.02 apfu from localities in Mexico and Japan (rruff.info), with no 130 noticeable deviation from Na-Ca plagioclase unit-cell parameter trends. Matsui and Kimata (1997) synthesized anorthite with 0.196 Mn apfu; the resulting unit-cell parameters are 131

significantly smaller than those of Na-Ca plagioclase and therefore such a composition can be
easily distinguished from a pure Na-Ca phase. Of the martian meteorite feldspars with
plagioclase composition (Papike et al. 2009; Santos et al. 2015; Wittmann et al. 2015; Nyquist et
al. 2016; Hewins et al. 2017), 97.6% contain less than 2 wt% minor oxides (e.g., Fe₂O₃, K₂O,
MgO, MnO, TiO₂, BaO).

137

138 Plagioclase

139 Previous plagioclase crystal-chemical studies reported trends in solid solution composition 140 (NaAlSi₃O₈ - CaAl₂Si₂O₈) with unit-cell parameters (Bambauer et al. 1967; Smith 1974; Kroll 141 1983), and examined the relationship between composition and tetrahedral bond lengths to 142 investigate ordering systematics (Angel et al. 1990). Here, we correlate unit-cell parameters and composition of Na-Ca plagioclase. We performed statistical analyses on 49 relatively pure (\leq 143 0.042 K apfu) plagioclase samples (Table A1a), excluding the high-Ca plagioclase phases in 144 145 which ordering results in a doubled c cell edge. We determined that Na-Ca plagioclase chemical 146 composition can be estimated by a multivariate least-squares regression of the quadratic 147 relationship between Ca- or Na-content and a, b, c, and β (Fig. A3a-d) with a residual standard 148 error of 0.022 and 0.023 apfu for Ca and Na, respectively (Equations 1a-b). Note that only one of 149 the equations below (1a and 1b) is needed to calculate the Ca-Na composition of plagioclase, the 150 other component can be calculated by difference).

151 152

$$Ca (apfu) = -2480.385933a + 152.3540556a^{2} + 1505.941326b - 58.71571613b^{2} - (1a)$$

11.40375c - 0.003078067\beta^{2} - 10.4185945\gamma + 0.057444444\gamma^{2} + 1034.7951

Na (apfu) = $2025.35688a - 124.5278585a^2 - 1255.2328597b + 48.96341472b^2 +$ (1b) 9.244327c + 0.0033346038 β^2 + 8.63542135 γ - 0.04765164 γ^2 - 691.81443

Equations 1c and 1d result in correlated estimates of Al- and Si-content, respectively.

156 157

158

$$Al (afpu) = 1 + Ca (apfu)$$
(1c)

Si (apfu) = 3 - Ca (apfu) (1d)

The accuracy of Equations 1a-b is demonstrated by comparing the observed Ca- and Na-content
versus calculated Ca- and Na-content (Fig. 1a-b) and calculating the root-mean-square error
(RMSE = 0.022 Ca apfu and 0.024 Na apfu; cross-validation RMSE = 0.024 Ca apfu and 0.027
Na apfu). Plagioclase regression data are shown in Table A1a.

163

164 Alkali Feldspar

165 Previous alkali feldspar studies extensively examined and characterized the relationship 166 between composition, site ordering, and unit-cell parameters (Kroll and Ribbe 1983). Kroll and 167 Ribbe (1983) primarily focused on the effects of composition and Al/Si ordering in the 168 tetrahedral sites. In this study, we followed the same principles and similar techniques, while 169 focusing strictly on unit-cell parameters and their direct relationship to composition and 170 fractional order-disorder. In order to characterize fully the composition and ordering of Ca-free 171 alkali feldspars, we constructed a quadrilateral (Fig. 2) similar to that of Kroll and Ribbe (1983). 172 We used well-characterized alkali feldspar end-members (Kroll and Ribbe 1983), low 173 microcline, high sanidine, low albite, and high albite (Table A1b), to assemble the quadrilateral 174 diagram; these end-members were also used to derive the algorithm (Equations 2a-b) for 175 computing composition and ordering (1 = fully ordered; 0 = fully disordered). Note that this 176 model assumes a composition along the Na-K solid solution and does not account for any 177 potential celsian (BaAl₂Si₂O₈) component.

179
$$\begin{bmatrix} -3.76223 & -5.76875 & 90.42789 \\ -5.76875 & 13.37681 & -20.8328 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} b \\ c \\ 1 \end{bmatrix} = \begin{bmatrix} Na \text{ (apfu)} \\ ordering \\ 1 \end{bmatrix}$$
(2a)

181
$$K (apfu) = 1 - Na (apfu)$$
 (2b)

182

180

183 **Pyroxene**

To date, three distinct pyroxene phases have been detected in Gale crater by CheMin: Augite, ideally $(Ca,Mg,Fe)_2Si_2O_6$, with C2/c symmetry; pigeonite, ideally $(Mg,Fe,Ca)_2Si_2O_6$, with $P2_1/c$ symmetry; and orthopyroxene, ideally $(Mg,Fe)_2Si_2O_6$, with *Pbca* symmetry (Bish et al. 2013, 2014; Blake et al. 2013; Treiman et al. 2014, 2016; Vaniman et al. 2014; Morris et al. 2016; Rampe et al. 2017; Yen et al. 2017; Achilles et al. 2017).

189 In previous studies of pyroxenes, two approaches were used to correlate X-ray diffraction 190 data with chemical composition. The first approach focused on correlations between lattice 191 spacings and composition (Rutstein and Yund 1969). The second approach used the relationships 192 between unit-cell parameters and composition (Nolan 1969; Rutstein and Yund 1969; Turnock et 193 al. 1973; Angel et al. 1998). Here, we use the latter approach in conjunction with minimization to 194 characterize systematic relationships between unit-cell parameters and Mg-Fe-Ca composition 195 (Fig. A3e-ab). When applied to our dataset, our algorithms yield decreased uncertainty relative to 196 previous studies (Table 1).

197 Martian high-Ca pyroxenes (Ca mole fraction > 0.2, based on Ca, Fe, Mg and Mn) generally 198 have relatively low abundances of non-quadrilateral components (e.g., Papike et al. 2009) 199 compared to terrestrial high-Ca pyroxenes (e.g., Robinson 1980; Papike 1980). Given that the 200 main focus of the current work is on inferring pyroxene chemistry from XRD data acquired by 201 the Curiosity rover in Gale crater, Mars, we limit our discussion of non-quadrilateral components 202 to martian pyroxenes. Of the 876 high-Ca pyroxene analyses from martian meteorites reported in 203 Papike et al. (2009), Santos et al. (2015), Wittmann et al. (2015), Nyquist et al. (2016), and 204 Hewins et al. (2017), only 0.2% contain more than 10% non-quadrilateral components (as 205 defined in Cameron and Papike, 1981). None of the 1680 low-Ca pyroxene analyses of martian 206 meteorites (Papike et al. 2009; Santos et al. 2015; Wittmann et al. 2015; Nyquist et al. 2016; 207 Hewins et al. 2017) contain more than 10% non-quadrilateral components and only 1.4% contain 208 more than 5% non-quadrilateral cations. Due to the fact that non-quadrilateral components can 209 have ionic radii (and, consequently, unit-cell parameters) both greater than and less than Mg. Fe. 210 and Ca (Baker and Beckett 1999), it is difficult to determine a unique chemistry based strictly on 211 unit-cell parameters. Therefore, we limit our algorithms below to the Mg-Fe-Ca pyroxene 212 system, with the understanding that there may be small amounts of non-quadrilateral cations that 213 remain undetected by this method. To help the reader determine if their samples lie significantly outside of the Mg-Fe-Ca system, we have determined the maximum chi-squared value (χ^2_{max}) for 214 215 the a, b, and β unit-cell parameters in each pyroxene dataset based on Eq. 4a-b, 4d, 5a-b, 5d, and 6a-b below (χ^2_{max} : C2/c = 0.00026; $P2_1/c = 0.00043$; Pbca = 0.000028) and recommend 216 exercising caution when the χ^2 value of a dataset exceeds ~ $3 \cdot \chi^2_{max}$ because there is a possibility 217 218 of non-quadrilateral components.

This study incorporated three datasets containing a total 140 pyroxene compositions and corresponding unit-cell parameters (86 C2/c, 52 $P2_1/c$, and 41 Pbca) (Table A1c-e). Although the compositions of Fe-Mg-Ca pyroxenes are roughly a linear function of select unit-cell parameters, the relationships between composition and cell parameters are more accurately characterized by accounting for non-linearity. In order to determine the best relationship between the unit-cell parameters and composition, we began with the functional form presented in Turnock et al. (1973):

226 Clinopyroxene:
$$z = c_0 + c_1Mg + c_2Ca + c_3Mg^2 + c_4MgCa + c_5Ca^2 + c_6Mg^3 + c_7Mg^2Ca + c_8MgCa^2 + c_9Ca^3$$
 (3a)

(5a)

- 255
- 256

a (Å) = -0.050902Mg + 0.21487Ca - 0.1471Ca² - 0.05754MgCa + 0.04501Mg²Ca + 9.7121

(6b)

257
$$b(\text{\AA}) = -0.1751943 \text{Mg} + 0.0201938 \text{Mg}^2 - 0.03603 \text{Ca}^2 + 0.0284 \text{Mg}^2 \text{Ca} + 9.086603$$
 (5b)

258
$$c$$
 (Å) = 0.0910769Ca - 0.0296873Mg² - 0.17699Ca² + 0.145384MgCa +
259 0.007397Mg³ - 0.04537Mg²Ca + 5.23027 (5c)

260
$$\beta$$
 (°) = 0.6804Mg - 4.2167Ca - 0.64465Mg² + 7.2514MgCa + 0.14102Mg³ - 2.3217Mg²Ca - 4.187MgCa² + 108.4444 (5d)

262

263 Residual standard error: Eq.
$$5a = 0.007 \text{ Å}$$
, $5b = 0.006 \text{ Å}$, $5c = 0.008 \text{ Å}$, $5d = 0.09^{\circ}$. RMSE: Eq.

264 5a = 0.006 Å (cross-validation: 0.008 Å), 5b = 0.002 Å (cross-validation: 0.006 Å), 5c = 0.010 Å

265 (cross-validation: 0.014 Å), $5d = 0.04^{\circ}$ (cross-validation: 0.10°).

266

267 Orthopyroxene - *Pbca*:

268
$$a (\text{\AA}) = -0.14978 \text{Mg} + 0.7807 \text{Ca} + 0.025194 \text{Mg}^2 - 4.863 \text{Ca}^2 + 18.42965$$
 (6a)

269
$$b(\text{\AA}) = -0.17051 \text{Mg} + 0.01951 \text{Mg}^2 + 9.08082$$

270
$$c$$
 (Å) = -0.01007Mg + 0.31524Ca - 0.00982Mg² - 2.89809Ca² + 5.23733 (6c)

271

274 validation: 0.006 Å).

Employing Eq. 4a-d, 5a-d, and 6a-c, we performed a minimization of the weighted sum of

squared error ($\Sigma\sigma^2$) to estimate pyroxene chemical composition. We used a bounded ($0 \le Mg$

277 (apfu) ≤ 2 ; $0 \leq Ca$ (apfu) ≤ 2) PORT optimization (Gay 1990) with starting parameters of Mg = 2

and Ca = 1. Fe calculated post-minimization and is equal to two minus the sum of Mg and Ca.

We began by using all available unit-cell parameters in the minimization routine (Eq. 7a for the clinopyroxenes and 7b for orthopyroxenes).

281
$$\Sigma \sigma^2 = \left(\frac{(a - a_{\text{calc}})}{(a_{\text{calc}}/\beta_{\text{calc}})}^2 + \frac{(b - b_{\text{calc}})}{(b_{\text{calc}}/\beta_{\text{calc}})}^2 + \frac{(c - c_{\text{calc}})}{(c_{\text{calc}}/\beta_{\text{calc}})}^2 + \frac{(\beta - \beta_{\text{calculated}})^2}{(7a)} \right)^2$$

282
$$\Sigma \sigma^{2} = ((a - a_{calc})/(a_{calc}/b_{calc}))^{2} + (b - b_{calc})^{2} + (c - c_{calc})/(c_{calc}/b_{calc}))^{2}$$
(7b)

We tested every permutation of unit-cell parameter combinations for the minimization (Eq. 7a-b) and found that the lowest error resulted from a combination of *a*, *b* and β for clinopyroxenes (Eq. 8a) and *a* and *b* for orthopyroxene (Eq. 8b).

(8b)

286
$$\Sigma \sigma^2 = \left((a - a_{\text{calc}})/(a_{\text{calc}}/\beta_{\text{calc}}) \right)^2 + (b - b_{\text{calc}})/(b_{\text{calc}}/\beta_{\text{calc}}) \right)^2 + (\beta - \beta_{\text{calculated}})^2$$
(8a)
287

$$\Sigma \sigma^2 = ((a - a_{\text{calc}})/(a_{\text{calc}}/b_{\text{calc}}))^2 + (b - b_{\text{calc}})^2$$

288 289

The accuracy of the minimization method is demonstrated by plotting the observed Mg-, Ca-, and Fe-contents versus their calculated values (Fig. 3a-c, 4a-c, and 5a-c). Errors associated with the above method are in Table 1.

Note that Turnock et al. (1973) did not distinguish between $P2_1/c$ and C2/c pyroxenes in their algorithms; we tested this approach by combining all clinopyroxenes and performing the above regressions and minimization. However, the associated error (RMSE: Mg = 0.067 apfu, Ca = 0.090 apfu, Fe = 0.110 apfu) was significantly greater than when $P2_1/c$ and C2/c pyroxenes are treated separately. This difference is likely due to changes in the β trend between space groups (Turnock et al. 1973).

299

300 Olivine

As of June 2016, CheMin has detected an olivine phase in three of the thirteen Gale crater 301 302 samples. Numerous studies have examined the systematics of olivine composition in relation to 303 X-ray diffraction data (Table 2). Some of these studies focused on the correlation between 304 composition and the position of the most intense single diffraction peak, d_{130} (Yoder and Sahama 305 1957; Fisher and Medaris 1969; Schwab and Kustner 1977). Other studies examined the 306 relationship between composition and unit-cell parameters (Louisnathan and Smith 1968; Matsui 307 and Syono 1968; Jahanbagloo 1969). Following the success of the latter method, our study 308 focused on the crystal-chemical systematics of Fe-Mg olivine unit-cell parameters vs. 309 composition.

310 We incorporated unit-cell parameters and measured compositional data from 60 olivine 311 samples, including those reported by previous olivine crystal chemistry studies (Table A1f). Our

(9a)

312 data were limited to those samples containing only Mg and Fe. Distinguishing Fe-Mg-only 313 olivine from those containing Ca or Mn (Table A1g) is difficult, and sometimes not possible, 314 with unit-cell parameters alone. If Ca exceeds 0.5 apfu, the b parameter increases dramatically (> 315 10.80 Å), confirming that the sample is not in the Fe-Mg or Fe-Mg-Mn system. Likewise, as evident in Fig. 6, if b or V exceed 10.50 Å or 308 Å³, respectively, the sample is outside of the 316 317 Mg-Fe-only system. However, samples within the Mg-Fe-only unit-cell parameter range (b =318 10.19-10.50 Å; V = 289-308 Å³) can contain up to 0.19 Ca apfu and 1 Mn apfu, according to 319 literature data in Table A1g. In evaluating Gale crater olivine, we can limit our compositional 320 range to that reported in martian meteorites: Mn < 0.038 apfu and Ca < 0.027 apfu (Papike et al. 321 2009; Hewins et al. 2017).

A linear least-squares regression of Mg- and Fe-content versus *b* in olivine (Fig. A4ac-af) resulted in the expressions 6a-b for estimating the chemical composition of Mg-Fe olivine. Note that only one of the equations below (9a and 9b) is needed to calculate the Fe-Mg composition of olivine, the other component can be calculated by difference). The residual standard error of Mg and Fe is 0.018 and 0.018 apfu, respectively.

- 327 Mg (apfu) = -7.15567b + 79.9756 328
 - Fe (apfu) = 7.156854b 72.98787(9b)
 - 329 330 331

The RMSE of the observed versus calculated Mg- and Fe-content in olivine samples used in this
study (Fig. 7a-b) is 0.017 and 0.017 apfu (0.018 and 0.018 apfu in cross-validation), respectively.

335 Magnetite and selected spinel oxides

As of June 2016, each Gale crater samples analyzed by CheMin contains a spinel phase. Innature, the cubic spinel oxide structure can accommodate a variety of elements, including

338 transition elements Fe, Ti, Cr, Mn, Co, Cu, Zn, V, and Ni, as well as metals, metalloids, and non-339 metals such as Mg, Ca, Si, Al, Ge, Sb, and can also exhibit site vacancy (\Box). Chromite accounts 340 for $\sim 18\%$ of the spinel phases observed in the martian meteorites studied in the 64 references cited in Appendix 4. There are also significant amounts of Al-rich (up to 27.85 wt% Al₂O₃ or 341 342 1.01 Al apfu, assuming no site vacancy), Ti-rich (up to 33.8 wt% TiO₂/0.95 Ti apfu), and Mg-343 rich (up to 9.03 wt% MgO/0.43 Mg apfu) magnetite. Only ~2% have more than 0.50 Al apfu, but \sim 21% have more than 0.50 Ti apfu, and \sim 35% have more than 1.00 Cr apfu. Si, V, Mn, Ca, Na, 344 345 Ni. Co, and Zn have been detected, but in relatively small amounts (<0.05 apfu). In addition to 346 martian meteorite data, the MER Mössbauer spectrometers have also collected information on 347 spinel phases at Gusev crater and Meridiani Planum and found them to be of magnetite $(Fe^{2+}Fe^{3+}_{2}O_{4})$ or Ti-magnetite composition, with some minor chromite $(Fe^{2+}Cr_{2}O_{4})$ (Morris et al. 348 349 2006a, 2006b, 2008). Therefore, when evaluating Gale crater samples, we can have some 350 confidence that the spinel phase is likely in the Fe, Fe-Ti or Fe-Cr systems, or a mixture thereof. 351 While some of spinel compositional space is not relevant to martian samples, it may be to 352 samples of other origins; therefore, we considered it important to characterize the common spinel 353 systems. To characterize the crystal-chemical relationships in spinel phases, we compiled 354 crystallographic and compositional data (Table A1h) and observed that Al, Ti, Mg, Mn, Cr, Ni, 355 Zn, and V were frequently reported as major components of magnetite. In addition to magnetite (Fe₃O₄), other end-member spinel oxides include maghemite (Fe_{2.67}O₄), hercynite (Fe²⁺Al₂O₄), 356 ulvöspinel ($Fe^{2+}_{2}TiO_{4}$), magnesioferrite (MgFe³⁺₂O₄), magnesiochromite (MgCr³⁺₂O₄), chromite 357 $(Fe^{2+}Cr_2O_4)$, trevorite (NiFe³⁺₂O₄), franklinite (ZnFe³⁺₂O₄), and coulsonite (Fe²⁺V³⁺₂O₄). In 358 Figure 8, the literature trends of Fe versus the *a* unit-cell parameter are given for (Fe, \Box), (Fe,Al), 359 (Fe,Ti), (Fe,Mg), (Fe,Cr), (Fe,Ni), (Fe,Zn), (Fe,V) (Fe,Al, \Box), (Fe,Mg,Al), (Fe,Mn,Ti), 360

361	(Fe,Mg,Cr), and (Fe,Mg,Ti) phases. Data points with combinations other than those list	ted were
362	excluded from Figure 8 for clarity and because the complexity of the trends i	ncreases
363	significantly beyond three cations. The complexity of Figure 8, a result of variation in ca	tion size
364	and oxidation state of multi-element phases, illustrates that numerous chemical combinat	ions can
365	correlate with a given a cell edge in the spinel structure. Note that the (Mg,Fe) data are	e limited
366	and there is not a linear trend; this complexity likely reflects cation ordering.	
367	In order to interpret the possible composition of spinel oxide phases, we performe	ed linear
368	regressions of Fe-content versus a for each of the trends shown in Figure 8 (Equations	10a-m).
369	Error metrics associated with each linear regression can be found in Table 3.	
370		
371	$(\text{Fe}_{\Box}): 1320800a - 334254 = \text{Fe}_{(anfu)}$	(10_{2})
371	$(10, \Box)$. \pm	(100)
272	$J = \Gamma c (a p l u) = \Box (p l u)$	
2/2	$(E_{2}, A_{1}) = 0.2202(6) = (6.100002 - E_{2}, (2.16))$	(101)
3/4	(Fe,AI): 8.230266 <i>a</i> – 66.108983 = Fe (apru)	(10b)
375	3 - Fe (apfu) = AI (apfu)	
376		
377	(Fe,Ti): -6.577146a + 58.16868 = Fe (apfu)	(10c)
378	3 - Fe (apfu) = Ti (apfu)	
379		
380	(Fe,Mg): 74.172617a - 619.86623 = Fe (apfu)	(10d)
381	3 - Fe (apfu) = Mg (apfu)	
382		
383	(Fe,Cr): 97.561a - 816.22 = Fe (apfu)	(10e)
384	3 - Fe (apfu) = Cr (apfu)	. ,
385		
386	(Fe,Ni): $17.802356a - 146.47258 = Fe$ (apfu)	(10f)
387	3 - Fe(apfu) = Ni(apfu)	
388		
389	(Fe Zn): $-22.6677979a + 193.3425374 = Fe (anfu)$	(10g)
390	3 - Fe (anfu) = 7n (anfu)	(105)
301		
307	$(F_{e}, V): 35.714a + 302.80 - F_{e}$ (apfu)	(10h)
202	(10, v)55.714 <i>a</i> + 502.07 - 10 (aptu) 2 Eq. (aptu) - Ni (aptu)	(101)
201	$S = \Gamma c (a p I u) = \Gamma r (a p I u)$	
374	$\Gamma \left(\Gamma \right) \left($	
395	$(\text{Fe},\text{Al},\Box): \begin{bmatrix} 6.521577 & -51.8927 \\ -3.692257 & 31.05033 \end{bmatrix} \begin{bmatrix} a \\ 1 \end{bmatrix} = \begin{bmatrix} \text{Fe}(\text{aptu}) \\ \text{Al}(\text{apfu}) \end{bmatrix}$	(10i)
396	$3 - Fe (apfu) - Al (apfu) = \Box (pfu)$	

$$\begin{array}{l} 398 \\ 398 \\ 399 \\ 400 \end{array} (Fe,Mg,Al): \begin{bmatrix} 13.506902 & -109.20881 \\ -12.815325 & 104.6199886 \end{bmatrix} \begin{bmatrix} a \\ 1 \end{bmatrix} = \begin{bmatrix} Fe \ (apfu) \\ Mg \ (apfu) \end{bmatrix}$$
(10j)

401 (Fe,Mn,Ti):
$$\begin{bmatrix} -14.625663 & 126.9668 \\ 14.625663 & -124.9668 \end{bmatrix} \begin{bmatrix} a \\ 1 \end{bmatrix} = \begin{bmatrix} Fe (apfu) \end{bmatrix}$$
(10k)
402 $3 - Fe (apfu) - Mn (apfu) = Ti (apfu)$

404 (Fe,Mg,Cr):
$$\begin{bmatrix} 22.340604 & -186.14709 \\ -22.4088793 & 187.71818 \end{bmatrix} \begin{bmatrix} a \\ 1 \end{bmatrix} = \begin{bmatrix} Fe (apfu) \\ Mg (apfu) \end{bmatrix}$$
 (101)
405 $3 - Fe (apfu) - Mg (apfu) = Cr (apfu)$

407 (Fe,Mg,Ti):
$$\begin{bmatrix} 26.893648 & -227.37053 \\ -25.412612 & 216.80734 \end{bmatrix} \begin{bmatrix} a \\ 1 \end{bmatrix} = \begin{bmatrix} Fe (apfu) \\ Mg (apfu) \end{bmatrix}$$
 (10m)
408 $3 - Fe (apfu) - Mg (apfu) = Ti (apfu)$

397

403

*Equations based on datasets with only two points do not have an associated value for σ_{SE} because there is no spread in the data. The uncertainty associated with these equations is based solely on the input unit-cell parameters (see Appendix 2 for full error calculation).

413

414 Once the amount of Fe is estimated, the relative proportions of Fe^{2+} and Fe^{3+} can be computed by 415 charge balance.

416

417 Alunite-Jarosite

Alunite-jarosite group minerals are associated with secondary weathering and alteration of Sbearing deposits. The mineral phases are hexagonal with space group $R\overline{3}m$ and include alunite, KAl₃(SO₄)₂(OH)₆; jarosite, KFe³⁺₃(SO₄)₂(OH)₆; natroalunite, NaAl₃(SO₄)₂(OH)₆; natrojarosite, NaFe³⁺₃(SO₄)₂(OH)₆; ammonioalunite, NH₄Al₃(SO₄)₂(OH)₆; ammoniojarosite, NH₄Fe³⁺₃(SO₄)₂(OH)₆; and hydroniumjarosite, (H₃O)Fe³⁺₃(SO₄)₂(OH)₆. Alunite-jarosite minerals have been discovered on Mars and offer clues about the weathering and alteration history of the

17

- 424 martian surface (e.g., Klingelhöfer et al. 2004; Zolotov and Shock 2005; Morris et al. 2006;
 425 Golden et al. 2008; Swayze et al. 2008; Mills et al. 2013).
- In order to identify which alunite-jarosite phases are present in samples analyzed by CheMin, we constructed an alunite-jarosite quadrilateral (Fig. 9) by examining the relationship between aand c unit-cell parameters (Table A1i). Due to the lack of orthogonality in the alunitenatroalunite-jarosite-natrojarosite quadrilateral, compositions falling on or within the quadrilateral are calculated with a series of equations (Eq. 11a-e).
- 431 K (apfu) = 1.654c 27.508 (11a)

433
$$\begin{bmatrix} -0.00923 & 7.46919\\ 0.463717 & -0.966595 \end{bmatrix} \begin{bmatrix} c\\1 \end{bmatrix} = \begin{bmatrix} a_{jr}\\ a_{al} \end{bmatrix}$$
(11b)
434

Fe (apfu) =
$$\frac{-3(a-a_{jr})}{a_{al}-a_{jr}} + 3$$
 (11c)

436

 437
 Na (apfu) =
$$1 - K$$
 (apfu)
 (11d)

 438
 Al (apfu) = $3 - Fe$ (apfu)
 (11e)

439

432

435

440 Alunite-jarosite group phase regression data are shown in Table A1i.

441

442

IMPLICATIONS

The methods provided in this study offer users the opportunity to estimate the chemical composition of select phases based solely on X-ray diffraction data. The mineral systems studied include the important rock-forming mineral groups of Na-Ca plagioclase, Na-K alkali feldspar, Mg-Fe-Ca clinopyroxene, Mg-Fe-Ca orthopyroxene, Mg-Fe olivine, magnetite and selected other spinel-group minerals, and alunite-jarosite phases. These algorithms are applicable to minerals of any origin, whether that origin be a laboratory, Earth, Mars, or any of the various solid objects in our solar system.

451

ACKNOWLEDGEMENTS

452	We would like to acknowledge the support of the JPL engineering and Mars Science Laboratory
453	(MSL) operations team. The study benefited from discussions with Mike Baker concerning
454	relationships between the compositions of olivine and pyroxene and their associated unit-cell
455	parameters. We would like to thank the reviewers of this manuscript, Olivier Gagné and Bradley
456	Jolliff, for their insightful and constructive feedback. This research was supported by NASA
457	NNX11AP82A, MSL Investigations, and by the National Science Foundation Graduate Research
458	Fellowship under Grant No. DGE-1143953. Any opinions, findings, or recommendations
459	expressed herein are those of the authors and do not necessarily reflect the views of the National
460	Aeronautics and Space Administration or the National Science Foundation.
461	
462	References Cited
1(2)	
463	
463 464	
463 464 465	Achilles, C.N., Downs, R.T., Ming, D.W., Rampe, E.B., Morris, R.V., Treiman, A.H., Morrison,
463 464 465 466 467	 Achilles, C.N., Downs, R.T., Ming, D.W., Rampe, E.B., Morris, R.V., Treiman, A.H., Morrison, S.M., Yen, A.S., Vaniman, D.T., Blake, D.F., Bristow, T.F., Chipera, S.J., Ewing, R.C., Ehlmann, B.L., Crisp, I.A., Gellert, R., Fendrich, K.V., Craig, P.L., Grotzinger, J.P., Destermation of the statement of t
463 464 465 466 467 468	 Achilles, C.N., Downs, R.T., Ming, D.W., Rampe, E.B., Morris, R.V., Treiman, A.H., Morrison, S.M., Yen, A.S., Vaniman, D.T., Blake, D.F., Bristow, T.F., Chipera, S.J., Ewing, R.C., Ehlmann, B.L., Crisp, J.A., Gellert, R., Fendrich, K.V., Craig, P.I., Grotzinger, J.P., Des Marais D.J. Farmer J.D. Sarrazin P.C. and Morookian J.M. (2017) Mineralogy of an
463 464 465 466 467 468 469	 Achilles, C.N., Downs, R.T., Ming, D.W., Rampe, E.B., Morris, R.V., Treiman, A.H., Morrison, S.M., Yen, A.S., Vaniman, D.T., Blake, D.F., Bristow, T.F., Chipera, S.J., Ewing, R.C., Ehlmann, B.L., Crisp, J.A., Gellert, R., Fendrich, K.V., Craig, P.I., Grotzinger, J.P., Des Marais, D.J., Farmer, J.D. Sarrazin, P.C., and Morookian, J.M. (2017) Mineralogy of an Active Eolian Sediment from the Namib Dune, Gale crater, Mars. JGR-Planets, Bagnold
463 464 465 466 467 468 469 470	 Achilles, C.N., Downs, R.T., Ming, D.W., Rampe, E.B., Morris, R.V., Treiman, A.H., Morrison, S.M., Yen, A.S., Vaniman, D.T., Blake, D.F., Bristow, T.F., Chipera, S.J., Ewing, R.C., Ehlmann, B.L., Crisp, J.A., Gellert, R., Fendrich, K.V., Craig, P.I., Grotzinger, J.P., Des Marais, D.J., Farmer, J.D. Sarrazin, P.C., and Morookian, J.M. (2017) Mineralogy of an Active Eolian Sediment from the Namib Dune, Gale crater, Mars. JGR-Planets, Bagnold Dunes Special Issue (in press).
463 464 465 466 467 468 469 470 471	 Achilles, C.N., Downs, R.T., Ming, D.W., Rampe, E.B., Morris, R.V., Treiman, A.H., Morrison, S.M., Yen, A.S., Vaniman, D.T., Blake, D.F., Bristow, T.F., Chipera, S.J., Ewing, R.C., Ehlmann, B.L., Crisp, J.A., Gellert, R., Fendrich, K.V., Craig, P.I., Grotzinger, J.P., Des Marais, D.J., Farmer, J.D. Sarrazin, P.C., and Morookian, J.M. (2017) Mineralogy of an Active Eolian Sediment from the Namib Dune, Gale crater, Mars. JGR-Planets, Bagnold Dunes Special Issue (in press). Angel, R.J., Carpenter, M.A., and Finger, L.W. (1990) Structural variation associated with
463 464 465 466 467 468 469 470 471 472	 Achilles, C.N., Downs, R.T., Ming, D.W., Rampe, E.B., Morris, R.V., Treiman, A.H., Morrison, S.M., Yen, A.S., Vaniman, D.T., Blake, D.F., Bristow, T.F., Chipera, S.J., Ewing, R.C., Ehlmann, B.L., Crisp, J.A., Gellert, R., Fendrich, K.V., Craig, P.I., Grotzinger, J.P., Des Marais, D.J., Farmer, J.D. Sarrazin, P.C., and Morookian, J.M. (2017) Mineralogy of an Active Eolian Sediment from the Namib Dune, Gale crater, Mars. JGR-Planets, Bagnold Dunes Special Issue (in press). Angel, R.J., Carpenter, M.A., and Finger, L.W. (1990) Structural variation associated with compositional variation and order-disorder behavior in anorthite-rich feldspars. American
463 464 465 466 467 468 469 470 471 472 473 474	 Achilles, C.N., Downs, R.T., Ming, D.W., Rampe, E.B., Morris, R.V., Treiman, A.H., Morrison, S.M., Yen, A.S., Vaniman, D.T., Blake, D.F., Bristow, T.F., Chipera, S.J., Ewing, R.C., Ehlmann, B.L., Crisp, J.A., Gellert, R., Fendrich, K.V., Craig, P.I., Grotzinger, J.P., Des Marais, D.J., Farmer, J.D. Sarrazin, P.C., and Morookian, J.M. (2017) Mineralogy of an Active Eolian Sediment from the Namib Dune, Gale crater, Mars. JGR-Planets, Bagnold Dunes Special Issue (in press). Angel, R.J., Carpenter, M.A., and Finger, L.W. (1990) Structural variation associated with compositional variation and order-disorder behavior in anorthite-rich feldspars. American Mineralogist, 75, 150-162.
463 464 465 466 467 468 469 470 471 472 473 474 475	 Achilles, C.N., Downs, R.T., Ming, D.W., Rampe, E.B., Morris, R.V., Treiman, A.H., Morrison, S.M., Yen, A.S., Vaniman, D.T., Blake, D.F., Bristow, T.F., Chipera, S.J., Ewing, R.C., Ehlmann, B.L., Crisp, J.A., Gellert, R., Fendrich, K.V., Craig, P.I., Grotzinger, J.P., Des Marais, D.J., Farmer, J.D. Sarrazin, P.C., and Morookian, J.M. (2017) Mineralogy of an Active Eolian Sediment from the Namib Dune, Gale crater, Mars. JGR-Planets, Bagnold Dunes Special Issue (in press). Angel, R.J., Carpenter, M.A., and Finger, L.W. (1990) Structural variation associated with compositional variation and order-disorder behavior in anorthite-rich feldspars. American Mineralogist, 75, 150-162. Angel, R.J., McCammon, C., and Woodland, A.B. (1998) Structure, ordering and cation interactions in Ca-free P2(1)/c clinonyroyenes. Physics and Chemistry of Minerals, 25, 249-
463 464 465 466 467 468 469 470 471 472 473 474 475 476	 Achilles, C.N., Downs, R.T., Ming, D.W., Rampe, E.B., Morris, R.V., Treiman, A.H., Morrison, S.M., Yen, A.S., Vaniman, D.T., Blake, D.F., Bristow, T.F., Chipera, S.J., Ewing, R.C., Ehlmann, B.L., Crisp, J.A., Gellert, R., Fendrich, K.V., Craig, P.I., Grotzinger, J.P., Des Marais, D.J., Farmer, J.D. Sarrazin, P.C., and Morookian, J.M. (2017) Mineralogy of an Active Eolian Sediment from the Namib Dune, Gale crater, Mars. JGR-Planets, Bagnold Dunes Special Issue (in press). Angel, R.J., Carpenter, M.A., and Finger, L.W. (1990) Structural variation associated with compositional variation and order-disorder behavior in anorthite-rich feldspars. American Mineralogist, 75, 150-162. Angel, R.J., McCammon, C., and Woodland, A.B. (1998) Structure, ordering and cation interactions in Ca-free P2(1)/c clinopyroxenes. Physics and Chemistry of Minerals, 25, 249-258
463 464 465 466 467 468 469 470 471 472 473 474 475 476 477	 Achilles, C.N., Downs, R.T., Ming, D.W., Rampe, E.B., Morris, R.V., Treiman, A.H., Morrison, S.M., Yen, A.S., Vaniman, D.T., Blake, D.F., Bristow, T.F., Chipera, S.J., Ewing, R.C., Ehlmann, B.L., Crisp, J.A., Gellert, R., Fendrich, K.V., Craig, P.I., Grotzinger, J.P., Des Marais, D.J., Farmer, J.D. Sarrazin, P.C., and Morookian, J.M. (2017) Mineralogy of an Active Eolian Sediment from the Namib Dune, Gale crater, Mars. JGR-Planets, Bagnold Dunes Special Issue (in press). Angel, R.J., Carpenter, M.A., and Finger, L.W. (1990) Structural variation associated with compositional variation and order-disorder behavior in anorthite-rich feldspars. American Mineralogist, 75, 150-162. Angel, R.J., McCammon, C., and Woodland, A.B. (1998) Structure, ordering and cation interactions in Ca-free P2(1)/c clinopyroxenes. Physics and Chemistry of Minerals, 25, 249-258. Angel, R.J., Ross, N.L., Zhao, J., Sochalski-Kolbus, L., Krüger, H., and Schmidt, B.C. (2013)
463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478	 Achilles, C.N., Downs, R.T., Ming, D.W., Rampe, E.B., Morris, R.V., Treiman, A.H., Morrison, S.M., Yen, A.S., Vaniman, D.T., Blake, D.F., Bristow, T.F., Chipera, S.J., Ewing, R.C., Ehlmann, B.L., Crisp, J.A., Gellert, R., Fendrich, K.V., Craig, P.I., Grotzinger, J.P., Des Marais, D.J., Farmer, J.D. Sarrazin, P.C., and Morookian, J.M. (2017) Mineralogy of an Active Eolian Sediment from the Namib Dune, Gale crater, Mars. JGR-Planets, Bagnold Dunes Special Issue (in press). Angel, R.J., Carpenter, M.A., and Finger, L.W. (1990) Structural variation associated with compositional variation and order-disorder behavior in anorthite-rich feldspars. American Mineralogist, 75, 150-162. Angel, R.J., McCammon, C., and Woodland, A.B. (1998) Structure, ordering and cation interactions in Ca-free P2(1)/c clinopyroxenes. Physics and Chemistry of Minerals, 25, 249-258. Angel, R.J., Ross, N.L., Zhao, J., Sochalski-Kolbus, L., Krüger, H., and Schmidt, B.C. (2013) Structural controls on the anisotropy of tetrahedral frameworks: the example of monoclinic
463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479	 Achilles, C.N., Downs, R.T., Ming, D.W., Rampe, E.B., Morris, R.V., Treiman, A.H., Morrison, S.M., Yen, A.S., Vaniman, D.T., Blake, D.F., Bristow, T.F., Chipera, S.J., Ewing, R.C., Ehlmann, B.L., Crisp, J.A., Gellert, R., Fendrich, K.V., Craig, P.I., Grotzinger, J.P., Des Marais, D.J., Farmer, J.D. Sarrazin, P.C., and Morookian, J.M. (2017) Mineralogy of an Active Eolian Sediment from the Namib Dune, Gale crater, Mars. JGR-Planets, Bagnold Dunes Special Issue (in press). Angel, R.J., Carpenter, M.A., and Finger, L.W. (1990) Structural variation associated with compositional variation and order-disorder behavior in anorthite-rich feldspars. American Mineralogist, 75, 150-162. Angel, R.J., McCammon, C., and Woodland, A.B. (1998) Structure, ordering and cation interactions in Ca-free P2(1)/c clinopyroxenes. Physics and Chemistry of Minerals, 25, 249-258. Angel, R.J., Ross, N.L., Zhao, J., Sochalski-Kolbus, L., Krüger, H., and Schmidt, B.C. (2013) Structural controls on the anisotropy of tetrahedral frameworks: the example of monoclinic feldspars. European Journal of Mineralogy, 25(4), 597-614.
463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480	 Achilles, C.N., Downs, R.T., Ming, D.W., Rampe, E.B., Morris, R.V., Treiman, A.H., Morrison, S.M., Yen, A.S., Vaniman, D.T., Blake, D.F., Bristow, T.F., Chipera, S.J., Ewing, R.C., Ehlmann, B.L., Crisp, J.A., Gellert, R., Fendrich, K.V., Craig, P.I., Grotzinger, J.P., Des Marais, D.J., Farmer, J.D. Sarrazin, P.C., and Morookian, J.M. (2017) Mineralogy of an Active Eolian Sediment from the Namib Dune, Gale crater, Mars. JGR-Planets, Bagnold Dunes Special Issue (in press). Angel, R.J., Carpenter, M.A., and Finger, L.W. (1990) Structural variation associated with compositional variation and order-disorder behavior in anorthite-rich feldspars. American Mineralogist, 75, 150-162. Angel, R.J., McCammon, C., and Woodland, A.B. (1998) Structure, ordering and cation interactions in Ca-free P2(1)/c clinopyroxenes. Physics and Chemistry of Minerals, 25, 249-258. Angel, R.J., Ross, N.L., Zhao, J., Sochalski-Kolbus, L., Krüger, H., and Schmidt, B.C. (2013) Structural controls on the anisotropy of tetrahedral frameworks: the example of monoclinic feldspars. European Journal of Mineralogy, 25(4), 597-614. Baker, M.B., and Beckett, J.R. (1999) The origin of abyssal peridotites: a reinterpretation of
463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482	 Achilles, C.N., Downs, R.T., Ming, D.W., Rampe, E.B., Morris, R.V., Treiman, A.H., Morrison, S.M., Yen, A.S., Vaniman, D.T., Blake, D.F., Bristow, T.F., Chipera, S.J., Ewing, R.C., Ehlmann, B.L., Crisp, J.A., Gellert, R., Fendrich, K.V., Craig, P.I., Grotzinger, J.P., Des Marais, D.J., Farmer, J.D. Sarrazin, P.C., and Morookian, J.M. (2017) Mineralogy of an Active Eolian Sediment from the Namib Dune, Gale crater, Mars. JGR-Planets, Bagnold Dunes Special Issue (in press). Angel, R.J., Carpenter, M.A., and Finger, L.W. (1990) Structural variation associated with compositional variation and order-disorder behavior in anorthite-rich feldspars. American Mineralogist, 75, 150-162. Angel, R.J., McCammon, C., and Woodland, A.B. (1998) Structure, ordering and cation interactions in Ca-free P2(1)/c clinopyroxenes. Physics and Chemistry of Minerals, 25, 249-258. Angel, R.J., Ross, N.L., Zhao, J., Sochalski-Kolbus, L., Krüger, H., and Schmidt, B.C. (2013) Structural controls on the anisotropy of tetrahedral frameworks: the example of monoclinic feldspars. European Journal of Mineralogy, 25(4), 597-614. Baker, M.B., and Beckett, J.R. (1999) The origin of abyssal peridotites: a reinterpretation of constraints based on primary bulk compositions. Earth and Planetary Science Letters, 171(1), 49-61.

- Bambauer, H.U., Corlett, M., Eberhard, E., and Viswanathan, K. (1967) Diagrams for the
 determination of plagioclases using X-ray powder methods (Part III of laboratory
 investigations of plagioclases). Schweizerische Mineralogische und Petrographische
 Mitteilungen, 47, 333-349.
- Best, M.G., Henage, L.F., and Adams, J.A., 1968. Mica peridotite wyomingite and associated
 pottassic igneous rocks in Northeastern Utah. American Mineralogist, 53(5-6), p.1041.
- Bish, D., Blake, D., Vaniman, D., Sarrazin, P., Bristow, T., Achilles, C., Dera, P., Chipera, S.,
 Crisp, J., Downs, R., Farmer, J., Gailhanou, M., Ming, D., Morookian, J.M., Morris, R.,
 Morrison, S., Rampe, E., Treiman, A., and Yen, A. (2014). The first X-ray diffraction
 measurements on Mars, *IUCrJ* 1, 514-522.
- Bish, D.L., Blake, D.F., Vaniman, D.T., Chipera, S.J., Morris, R.V., Ming, D.W., Treiman, A.H.,
 Sarrazin, P., Morrison, S.M., Downs, R.T., Achilles, C.N., Yen, A.S., Bristow, T.F., Crisp,
 J.A., Morookian, J.M., Farmer, J.D., Rampe, E.B., Stolper, E.M., Spanovich, N., and MSL
 Science Team (2013) X-ray Diffraction Results from Mars Science Laboratory: Mineralogy
 of Rocknest at Gale Crater. Science, 27, 341, 1238932.
- Blake, D.F., Morris, R.V., Kocurek, G., Morrison, S.M., Downs, R.T., Bish, D.L., Ming, D.W.,
 Edgett, K.S., Rubin, D., Goetz, W., Madsen, M.B., Sullivan, R., Gellert, R., Campbell, I.,
 Treiman, A.H., McLennan, S.M., Yen, A.S., Grotzinger, J., Vaniman, D.T., Chipera, S.J.,
 Achilles, C.N., Rampe, E.B., Sumner, D., Meslin, P-Y., Maurice, S., Forni, O., Gasnault, O.,
 Fisk, M., Schmidt, M., Mahaffy, P., Leshin, L.A., Glavin, D., Steele, A., Freissinet, C.,
 Navarro-González, R., Yingst, R.A., Kah, L.C., Bridges, N., Lewis, K.W., Bristow, T.F.,
- Farmer, J.D., Crisp, J.A., Stolper, E.M., Des Marais, D.J., Sarrazin, P., and MSL Science
 Team (2013) Curiosity at Gale Crater, Mars: Characterization and Analysis of the Rocknest
 Sand Shadow. Science, 341, 1239505.
- Bristow, T.F., Bish, D.L., Vaniman, D.T., Morris, R.V., Blake, D.F., Grotzinger, J.P., Rampe,
 E.B., Crisp, J.A., Achilles, C.N., Ming, D.W., Ehlmann, B.L., King, P.L., Bridges, J.C.,
 Eigenbrode, J.L., Sumner, D.Y., Chipera, S.J., Moorokian, J.M., Treiman, A.H., Morrison,
- Eigenbrode, J.L., Sumner, D.Y., Chipera, S.J., Moorokian, J.M., Treiman, A.H., Morrison,
 S.M., Downs, R.T., Farmer, J.D., Des Marais, D., Sarrazin, P., Floyd, M.M., Mischna, M.A.,
- and McAdam, A. (2015) The origin and implications of clay minerals from Yellowknife Bay,
 Gale crater, Mars. American Mineralogist, 100, 824-836.
- Cameron, M., and Papike, J.J. (1981) Structural and chemical variations in pyroxenes. American
 Mineralogist, 66(1-2), 1-50.
- 515 Dal Negro, A., De Pieri, R., Quareni, S., and Taylor, W.H. (1978) The crystal structures of nine
 516 K feldspars from Adamello Massiff (Northern Italy). Acta Crystallographica, B34, 2699517 2707.
- 518 Fisher, G.W., and Medaris, L.G. (1969) Cell dimensions and X-ray determinative curve for 519 synthetic Mg-Fe olivines. American Mineralogist, 54, 741-753.
- Gay, D.M. (1990) Usage summary for selected optimization routines. Computing Science
 Technical Report 153, AT&T Bell Laboratories, Murray Hill.
- Golden, D.C., Ming, D.W., Morris, R.V., and Graff, T.G. (2008) Hydrothermal synthesis of
 hematite spherules and jarosite Implications for diagenesis and hematite spherule formation
 in sulphate outcrops at Meridiani Planum, Mars. American Mineralogist, 93, 1201-1214.
- Hewins, R.H., Zanda, B., Humayun, M., Nemchin, A., Lorand, J.P., Pont, S., Deldicque, D.,
 Bellucci, J.J., Beck, P., Leroux, H., and Marinova, M. (2017) Regolith breccia Northwest
- 527 Africa 7533: Mineralogy and petrology with implications for early Mars. Meteoritics &
- 528 Planetary Science, 52(1), 89-124.

- Jahanbagloo, I.C. (1969) X-ray diffraction study of olivine solid solution series. American
 Mineralogist, 54, 246-250.
- Klingelhöfer, G., Morris, R.V, Bernhardt, B., Schröder, C., Rodionov, D.S., de Souza, P.A., Yen,
 A., Gellert, R., Evlanov, E.N., Zubkov, B., and others (2004) Jarosite and hematite at
 Meridiani Planum from Opportunity's Mössbauer Spectrometer. Science, 306, 1740-5.
- Kroll, H. (1983) Lattice parameters and determinative methods for plagioclase and ternary
 feldspars. Reviews in Mineralogy p. 101-119.
- Kroll, H., and Ribbe, P.J. (1983) Lattice parameters, composition and Al,Si order in alkali
 feldspars. Reviews in Mineralogy p. 57-100.
- Kuehner, S.M., and Joswiak, D.J. (1996) Naturally occurring ferric iron sanidine from the
 Leucite Hills lamproite. American Mineralogist, 81(1-2), 229-237.
- Lafuente, B., Downs, R.T., Yang, H., and Stone, N. (2015) The power of databases: the RRUFF
 project. 1-30 p. Highlights in Mineralogical Crystallography.
- Lebedeva, Y.S., Pushcharovsky, D.Y., Pasero, M., Merlino, S., Kashaev, A.A., Taroev, V.K.,
 Goettlicher, J., Kroll, H., Pentinghaus, H., Suvorova, L.F., and Wulf-Bernodat, H. (2003)
 Synthesis and crystal structure of low ferrialuminosilicate sanidine. Crystallography Reports,
 48(6), 919-924.
- 546 Linthout, K. and Lustenhouwer, W.J. (1993) Ferrian high sanidine in a lamproite from Cancarix,
- 547 Spain. Mineralogical magazine, 57(2), 289-299.
- Louisnathan, S.J., and Smith, J.V. (1968) Cell dimensions of olivine. Mineralogical Magazine,
 36, 1123-1134.
- Matsui, T., and Kimata, M. (1997) Crystal chemistry of synthetic Mn-bearing anorthite;
 incorporation of MnAl 2 Si 2 O 8 end-member into feldspar. European Journal of Mineralogy,
 9(2), 333-344.
- 553 Matsui, Y., and Syono, Y. (1968) Unit cell dimensions of some synthetic olivine group solid 554 solutions. Geochemical Journal, 2, 51-59.
- Mills, S.J., Nestola, F., Kahlenberg, V., Christy, A.G., Hejny, C., and Redhammer, G.J. (2013)
 Looking for jarosite on Mars: The low-temperature crystal structure of jarosite. American
 Mineralogist, 98, 1966-1971.
- Morris, R.V., Klingelhoefer, G., Schröder, C., Rodionov, D.S., Yen, A., Ming, D.W., De Souza,
 P.A., Fleischer, I., Wdowiak, T., Gellert, R., and Bernhardt, B. (2006) Mössbauer mineralogy
 of rock, soil, and dust at Gusev crater, Mars: Spirit's journey through weakly altered olivine
 basalt on the plains and pervasively altered basalt in the Columbia Hills. Journal of
 Geophysical Research: Planets, 111(E2).
- Morris, R.V., Klingelhöfer, G., Schröder, C., Fleischer, I., Ming, D.W., Yen, A.S., Gellert, R.,
 Arvidson, R.E., Rodionov, D.S., Crumpler, L.S., Clark, B.C., Cohen, B.A., McCoy, T.J.,
 Mittlefehldt, D.W., Schmidt, M.E., de Souza, P.A., and Squyres, S.W. (2008), Iron
 mineralogy and aqueous alteration from Husband Hill through Home Plate at Gusev Crater,
 Mars: results from the Mössbauer instrument on the Spirit Mars Exploration Rover, Journal of
 Geophysical Research: Planets, 113, E12S42.
- Morris, R.V., Klingelhöfer, G., Schröder, C., Rodionov, D.S., Yen, A., Ming, D.W., de Souza,
 P.A., Wdowiak, T., Fleischer, I., Gellert, R., and others (2006) Mössbauer mineralogy of
 rock, soil, and dust at Meridiani Planum, Mars: Opportunity's journey across sulfate-rich
 outcrop, basaltic sand and dust, and hematite lag deposits. Journal of Geophysical Research:
 Planets, 111.
- 574 Morris, R.V., Vaniman, D.T., Blake, D.F., Gellert, R., Chipera, S.J., Rampe, E.B., Ming, D.W.,

- 575 Morrison, S.M., Downs, R.T., Treiman, A.H., Yen, A.S., Grotzinger, J.P., Achilles, C.N.,
- 576 Bristow, T.F., Crisp, J.A., Des Marais, D.J., Farmer, J.D., Fendrich, K.V., Frydenvang, J.,
- 577 Graff, T.G., Morookian, J.M., Stolper, E.M., and Schwenzer, S.P. (2016) Silicic volcanism on
- 578 Mars evidenced by tridymite in high-SiO₂ sedimentary rock at Gale crater, Proceedings of the 570 National Assidence 201(07008)
- 579 National Academy of Sciences, 201607098.
- Morrison, S.M., Downs, R.T., Blake, D.F., Vaniman, D.T., Ming, D.W., Rampe, E.B., Bristow,
 T.F., Achilles, C.N., Chipera, S.J., Yen, A.S., Morris, R.V., Treiman, A.H., Hazen, R.M.,
 Sarrazin, P.C., Gellert, R., Fendrich, K.V., Morookian, J.M., Farmer, J.D., Des Marais, D.J.,
 and Craig, P.I. (2017) Crystal chemistry of martian minerals from Bradbury Landing through
 Naukluft Plateau, Gale crater, Mars. American Mineralogist (submitted).
- Nolan, J. (1969) Physical properties of synthetic and natural pyroxenes in the system diopsite hedenbergite-acmite. Mineralogical Magazine, 37, 216-229.
- Nyquist, L.E., Shih, C.Y., McCubbin, F.M., Santos, A.R., Shearer, C.K., Peng, Z.X., Burger,
 P.V., and Agee, C.B. (2016) Rb-Sr and Sm-Nd isotopic and REE studies of igneous
 components in the bulk matrix domain of Martian breccia Northwest Africa 7034. Meteoritics
 & Planetary Science, 51(3), 483-498.
- Papike, J.J. (1980) Pyroxene mineralogy of the Moon and meteorites. Reviews in Mineralogy 7,
 495-525.
- Papike, J.J., Karner, J.M., Shearer, C.K., and Burger, P.V. (2009) Silicate mineralogy of martian
 meteorites. Geochimica et Cosmochimica Acta, 73, 7443-7485.
- Papike J.J., Ryder G., Shearer C.K., (1998) Lunar samples, In J.J. Papike, Ed., Reviews in
 Mineralogy, 36, p. 5.1-5.234.
- Rampe, E.B. Ming, D.W., Blake, D.F., Vaniman, D.T., Chipera, S.J., Bristow, T.F., Morris,
 R.V., Yen, A.S., Morrison, S.M., Grotzinger, J.P., Peretyazhko, T., Hurowitz, J.A., Siebach,
 K., Achilles, C.N., Downs, R.T., Farmer, J.D., Fendrich, K.V., Gellert, R., Morookian, J.M.,
 Sarrazin, P.C., Treiman, A.H., Berger, J., Fairén, A.G., Forni, O., Kah, L., Eigenbrode, J.,
 Lanza, N. L., Sutter, B. (2017) Mineralogical trends in mudstones from the Murray formation,
 Gale crater, Mars. Earth and Planetary Science Letters, 471, 172-185.
- Robinson, P. (1980) The composition space of terrestrial pyroxenes; internal and external limits.
 Reviews in Mineralogy, 7, 419-494.
- Rutstein, M.S., and Yund, R.A. (1969) Unit-cell parameters of synthetic diopside-hedenbergite
 solid solutions. American Mineralogist, 54, 238-245.
- Santos, A.R., Agee, C.B., McCubbin, F.M., Shearer, C.K., Burger, P.V., Tartese, R., and Anand,
 M. (2015) Petrology of igneous clasts in Northwest Africa 7034: Implications for the
 petrologic diversity of the Martian crust. Geochimica et Cosmochimica Acta, 157, 56-85.
- Schwab, R.B., and Kustner, D. (1977) Präzisionsgitterkonstantenbestimmung zur festlegung
 röntgenographischer Bestimmungskurven für synthetische Olivin der Mischkristallreihe
 Forsterit-Fayalit. Neues Jahrbuch für Mineralogie, Monatshefte, 205-215.
- 613 Smith, J.V. (1974) Feldspar Minerals, Springer-Verlag, Berlin Heidelberg.
- 614 Swayze, G.A., Desborough, G.A., Smith, K.S., Lowers, H.A., Hammarstrom, J.M., Diehl, S.F.,
- Leinz, R.W., and Driscoll, R.H. (2008), Understanding jarosite From mine waste to Mars.
 Understanding contaminants associated with mineral deposits, 1328, 8-13.
- 617 Treiman, A.H., Bish, D.L., Vaniman, D.T., Chipera, S.J., Blake, D.F., Ming, D.W., Morris, R.V.,
- Bristow, T.F., Morrison, S.M., Baker, M.B., Rampe, E.B., Downs, R.T., Filiberto, J., Glazner,
- 619 A.F., Gellert, R., Thompson, L.M., Schmidt, M.E., Le Deit, L., Wiens, R.C., McAdam, A.C.,
- 620 Achilles, C.N., Edgett, K.S., Farmer, J.D., Fendrich, K.V., Grotzinger, J.P., Gupta, S.

- Morookian, J.M., Newcombe, M.E., Rice, M.S., Spray, J.G., Stolper, E.M., Sumner, D.Y.,
 Vasavada, A.R., and Yen, A.S. (2016) Mineralogy, provenance, and diagenesis of a potassic
 basaltic sandstone on Mars: CheMin X-ray diffraction of the Windjana sample (Kimberley
 area, Gale Crater). Journal of Geophysical Research: Planets, 121, 75-106.
- Treiman, A.H., Morris, R.V., Agresti, D.G., Graff, T.G., Achilles, C.N., Rampe, E.B., Bristow,
 T.F., Ming, D.W., Blake, D.F., Bish, D.L., Chipera, S.J., Morrison, S.M., Downs, R.T. (2014)
 Ferrian saponite from the Santa Monica Mountains (California, U.S.A., Earth):
 Characterization as an analog for clay minerals on Mars with application to Yellowknife Bay
 in Gale crater. American Mineralogist, 99, 2234-2250.
- Turnock, A.C., Lindsley, D.H., and Grover, J.E. (1973) Synthesis and unit cell parameters of Ca Mg-Fe pyroxenes. American Mineralogist, 58, 50-59.
- Vaniman, D.T., Bish, D.L., Ming, D.W., Bristow, T.F., Morris, R.V., Blake, D.F., Chipera, S.J.,
 Morrison, S.M., Treiman, A.H., Rampe, E.B., Rice, M., Achilles, C.N., Grotzinger, J.P.,
- 634 McLennan, S.M., Williams, J., Bell, J.F. III, Newsom, H.E., Downs, R.T., Maurice, S.,
- 635 Sarrazin, P., Yen, A.S., Morookian, J.M., Farmer, J.D., Stack, K., Milliken, R.E., Ehlmann,
 636 B.L., Sumner, D.Y., Berger, G., Crisp, J.A., Hurowitz, J.A., Anderson, R., Des Marais, D.J.,
- 637 Stolper, E.M., Edgett, K.S., Gupta, S., Spanovich, N., and MSL Science Team (2014)
 638 Mineralogy of a Mudstone at Yellowknife Bay, Gale Crater, Mars. Science, 343, 1-9.
- Wittmann, A., Korotev, R.L., Jolliff, B.L., Irving, A.J., Moser, D.E., Barker, I., and Rumble, D.
 (2015) Petrography and composition of Martian regolith breccia meteorite Northwest Africa
 7475. Meteoritics & Planetary Science, 50(2), 326-352.
- Yen, A.S., Ming, D.W., Vaniman, D.T., Gellert, R., Blake, D.F., Morris, R.V., Morrison, S.M.,
 Downs, R.T., Bristow, T.F., Clark, B.C., Chipera, S.J., Farmer, J.D., Grotzinger, J.P., Rampe,
 E.B., Schimidt, M.E., Sutter, B., Thompson, L.M., Treiman, A.H., and the MSL Science
 Team (2017) Multiple episodes of aqueous alteration along fractures in mudstone and
 sandstone in Gale crater, Mars. Earth and Planetary Science Letters, 471, 186-198.
- Yoder, H.S., Jr., and Sahama, T.G. (1957) Olivine x-ray determinative curve. American
 Mineralogist, 42, 475-491.
- 649 Zolotov, M.Y., and Shock, E.L. (2005) Formation of jarosite-bearing deposits through aqueous
- 650 oxidation of pyrite at Meridiani Planum, Mars. Geophysical Research Letters, 32, L21203.
- 651

TABLES

- 656 TABLE 1. Root-mean-square error (RMSE) of estimated Mg-content in pyroxene subsets, based
- on data from Tables A1c-e. This study's methods compared with selected previous studies.

			658
C2/c	Mg (apfu)	Fe (apfu)	Ca (apfu)
This study	0.037	0.049	0.030 039
Turnock et al. (1973)	0.045	0.079	0.056 660
Rutstein and Yund (1969) all/Ca=1 [†]	0.221/0.032	0.202/0.032	0.291/NA
P2₁/c	Mg RMSE (apfu)	Fe RMSE (apfu)	CaRMSE (appful)
This study	0.041	0.045	0.026 662
Turnock et al. (1973)	0.070	0.067	0.045 002
Angel et al. (1998) all/Ca-free*	0.076/0.036	0.277/0.036	0.235/NA63
Pbca			
This study	0.053	0.049	0.021 004
Turnock et al. (1973)	0.088	0.115	^{0.043} 665

- ⁶⁶⁷ [†]The algorithm presented in Rutstein and Yund (1969) is specifically for *C*2/*c* pyroxenes with Ca
- 668 = 1 apfu. Therefore, we applied it both to our whole dataset (A1c-e) and to a subset with Ca = 1 apfu.
- 670 *The algorithm presented in Angel et al. (1998) is specifically for Ca-free $P2_1/c$ pyroxenes. 671 Therefore, we applied it both to our whole dataset (A1c-e) and to a Ca-free subset.

- 677 TABLE 2. Root-mean-square error (RMSE) of estimated Mg-content in olivine, based on data
- 678 from Table A1f. Equation 9a compared with selected previous studies

	6/9
Study	RMSE (Mg apfu)
Equation 9a, this study	0.017
Yoder and Sahama (1957)	0.064 681
Louisnathan and Smith (1968)	0.036
Fisher and Medaris (1969)	0.029 682
Jahanbagloo (1969)	0.062 (0.2
Schwab and Kustner (1977)	0.024 683
	684

24

695 Table 3. Root-mean-square errors (RMSE), RMSE of cross-validation, and residual standard

696 errors (σ_{SE}) associated with spinel linear models.

697

Model	Anion	RMSE (apfu)	RMSE (apfu)*	σ _{SE} (apfu)
FeVacancy	Fe	0.038	0.081	0.047
FeAl	Fe	0.012	0.306	0.021
FeTi	Fe	0.029	0.031	0.030
FeMg	Fe	0.031	0.741	0.054
FeNi	Fe	0.016	0.041	0.022
FeZn	Fe	0.027	0.338	0.038
FeAlVacancy	Fe	0.040	0.042	0.042
FeAlVacancy	Al	0.058	0.060	0.059
FeMgAl	Fe	0.035	0.037	0.038
FeMgAl	Mg	0.026	0.027	0.028
FeMnTi	Fe	0.038	0.045	0.042
FeMnTi	Mn	0.038	0.045	0.042
FeMgCr	Fe	0.023	0.023	0.024
FeMgCr	Mg	0.023	0.024	0.025
FeMgTi	Fe	0.036	0.056	0.047
FeMgTi	Mg	0.030	0.046	0.039

698 *Cross-validation

FIGURE 2. Alkali feldspar quadrilateral: composition and Al-Si ordering as a function of c and b unit-cell parameters. Black circles represent literature end-members. Composition trends from NaAlSi₃O₈ at the low albite - high albite edge to KAlSi₃O₈ at the low microcline - high sanidine edge. Al-Si ordering trends from completely ordered at the low albite - low microcline edge to completely disordered at the high albite - high sanidine edge.

FIGURE 3a-c. Augite Mg-, Fe-, and Ca-content: calculated versus observed. Mg, Fe, and Ca, RMSE = 0.037, 0.049, and 0.030 apfu, respectively.

FIGURE 4a-c. Pigeonite Mg-, Fe-, and Ca-content: calculated versus observed. Mg, Fe, and Ca RMSE = 0.041, 0.045, and 0.026 apfu, respectively.

respectively.

• Mg-Fe-Mn Olivine 325 Mg-Fe-Mn-Ca Olivine Fe-Mg Olivine 315 V (ų) 305 295 285 10.15 10.25 10.35 10.45 10.55 10.65 b (Å)

FIGURE 6. Mg-Fe, Mg-Fe-Mn, and Mg-Fe-Mn-Ca (with Ca \leq 0.5 apfu) olivine b unit-cell parameter versus unit-cell volume, V.

743 744

Appendices

765 766 767

768

-

Appendix 1 - Datasets used in regression analyses

769 Table A1a. Plagioclase regression data

Plagioclase-phase								
Chemical Composition	<i>a</i> (Å)	b (Å)	<i>c</i> (Å)	α (°)	β (°)	γ (°)	V (Å ³)	Reference
Na _{0.991} Ca _{0.007} K _{0.002} Al _{1.007} Si _{2.993} O ₈	8.139	12.782	7.157	94.29	116.6	87.69	663.869	[2]
Na _{0.977} Ca _{0.017} K _{0.006} Al _{1.017} Si _{2.983} O ₈	8.139	12.785	7.158	94.2	116.61	87.76	664.139	[2]
Na _{0.997} K _{0.003} Al _{1.000} Si _{3.000} O ₈	8.141	12.786	7.159	94.25	116.59	87.69	664.516	[2]
Na _{0.983} Ca _{0.005} K _{0.012} Al _{1.005} Si _{2.995} O ₈	8.141	12.785	7.159	94.26	116.59	87.69	664.456	[2]
Na _{0.875} Ca _{0.111} K _{0.014} Al _{1.111} Si _{2.889} O ₈	8.148	12.798	7.156	94.2	116.57	87.85	665.604	[2]
Na _{0.865} Ca _{0.130} K _{0.005} Al _{1.130} Si _{2.870} O ₈	8.149	12.804	7.142	94.07	116.52	88.45	665.094	[2]
Na _{0.828} Ca _{0.165} K _{0.007} Al _{1.165} Si _{2.835} O ₈	8.151	12.814	7.138	94.01	116.5	88.63	665.556	[2]
Na _{0.815} Ca _{0.176} K _{0.009} Al _{1.176} Si _{2.824} O ₈	8.153	12.824	7.134	93.95	116.46	88.84	666.122	[2]
Na _{0.773} Ca _{0.215} K _{0.012} Al _{1.21} 5Si _{2.785} O ₈	8.153	12.83	7.134	93.9	116.43	88.94	666.635	[2]
Na _{0.822} Ca _{0.172} K _{0.006} Al _{1.172} Si _{2.828} O ₈	8.154	12.826	7.137	93.94	116.48	88.74	666.494	[2]
Na _{0.758} Ca _{0.239} K _{0.003} Al _{1.239} Si _{2.761} O ₈	8.154	12.847	7.12	93.79	116.42	89.45	666.328	[2]
Na _{0.816} Ca _{0.179} K _{0.005} Al _{1.179} Si _{2.821} O ₈	8.155	12.834	7.13	93.88	116.45	89.07	666.509	[2]
Na _{0.806} Ca _{0.185} K _{0.009} Al _{1.185} Si _{2.815} O ₈	8.158	12.831	7.137	93.94	116.45	88.8	667.247	[2]
Na _{0.734} Ca _{0.256} K _{0.010} Al _{1.256} Si _{2.744} O ₈	8.158	12.837	7.124	93.8	116.4	89.26	666.667	[2]
Na _{0.737} Ca _{0.253} K _{0.010} Al _{1.253} Si _{2.747} O ₈	8.159	12.843	7.127	93.8	116.41	89.28	667.279	[2]
Na _{0.781} Ca _{0.210} K _{0.009} Al _{1.210} Si _{2.790} O ₈	8.161	12.836	7.131	93.89	116.45	89.01	667.2	[2]
Na _{0.643} Ca _{0.353} K _{0.004} Al _{1.353} Si _{2.647} O ₈	8.161	12.859	7.116	93.66	116.3	89.71	667.878	[2]
Na _{0.759} Ca _{0.202} K _{0.039} Al _{1.202} Si _{2.798} O ₈	8.162	12.827	7.137	93.88	116.46	88.85	667.353	[2]
Na _{0.712} Ca _{0.280} K _{0.008} Al _{1.280} Si _{2.720} O ₈	8.163	12.853	7.124	93.71	116.36	89.38	668.188	[2]
Na _{0.520} Ca _{0.478} K _{0.002} Al _{1.478} Si _{2.522} O ₈	8.166	12.851	7.113	93.61	116.26	89.64	667.888	[2]
Na _{0.564} Ca _{0.432} K _{0.004} Al _{1.432} Si _{2.568} O ₈	8.167	12.856	7.113	93.6	116.27	89.71	668.158	[2]
Na _{0.455} Ca _{0.537} K _{0.008} Al _{1.537} Si _{2.463} O ₈	8.169	12.862	7.108	93.58	116.22	89.81	668.436	[2]
Na _{0.584} Ca _{0.374} K _{0.042} Al _{1.374} Si _{2.626} O ₈	8.171	12.862	7.119	93.59	116.3	89.68	669.206	[2]
Na _{0.550} Ca _{0.437} K _{0.013} Al _{1.437} Si _{2.563} O ₈	8.172	12.865	7.116	93.6	116.27	89.66	669.334	[2]
Na _{0.447} Ca _{0.543} K _{0.010} Al _{1.543} Si _{2.457} O ₈	8.172	12.861	7.107	93.52	116.22	90.03	668.506	[2]
Na _{0.452} Ca _{0.538} K _{0.010} Al _{1.538} Si _{2.462} O ₈	8.173	12.855	7.11	93.58	116.23	89.79	668.537	[2]
Na _{0.400} Ca _{0.598} K _{0.002} Al _{1.598} Si _{2.402} O ₈	8.173	12.862	7.107	93.56	116.19	89.98	668.797	[2]
Na _{0.311} Ca _{0.687} K _{0.002} Al _{1.687} Si _{2.313} O ₈	8.175	12.865	7.102	93.5	116.14	90.31	668.846	[2]
Na _{0.303} Ca _{0.690} K _{0.007} Al _{1.690} Si _{2.310} O ₈	8.179	12.869	7.102	93.49	116.16	90.36	669.251	[2]
Na _{0.198} Ca _{0.800} K _{0.002} Al _{1.800} Si _{2.200} O ₈	8.179	12.868	7.093	93.34	116.08	90.8	668.719	[2]
Na _{0.069} Ca _{0.931} Al _{1.931} Si _{2.069} O ₈	8.179	12.873	7.09	93.21	115.97	91.11	669.261	[2]
Na _{0.407} Ca _{0.581} K _{0.012} Al _{1.581} Si _{2.419} O ₈	8.18	12.87	7.109	93.52	116.2	90.04	669.928	[2]
Na _{0.227} Ca _{0.770} K _{0.003} Al _{1.770} Si _{2.230} O ₈	8.18	12.869	7.096	93.38	116.13	90.63	668.905	[2]
Na _{0.263} Ca _{0.731} K _{0.006} Al _{1.731} Si _{2.269} O ₈	8.181	12.87	7.099	93.41	116.1	90.55	669.509	[2]
Na _{0.181} Ca _{0.819} Al _{1.819} Si _{2.181} O ₈	8.181	12.871	7.096	93.34	116.1	90.79	669.212	[2]
Ca _{0.65} Na _{0.32} Si _{2.38} Al _{1.62} O ₈	8.1736	12.874	7.1022	93.46	116.05	90.48	669.65	[9]
Ca _{0.634} Na _{0.366} Si _{2.348} Al _{1.648} O ₈	8.1747	12.871	7.1014	93.46	116.09	90.51	669.3	[9]
Ca _{0.650} Na _{0.350} Si _{2.348} Al _{1.648} O ₈	8.1747	12.871	7.1014	93.46	116.09	90.51	669.3	[9]
Na _{0.986} Al _{1.005} Si _{2.995} O ₈	8.142	12.785	7.159	94.19	116.61	87.68	664.48	[5]

NaAl _{1.004} Si _{2.994} O ₈	8.142	12.785	7.159	94.19	116.61	87.68	664.48	[5]
NaAlSi ₃ O ₈	8.137	12.785	7.1583	94.26	116.6	87.71	664.01	[1]
NaAlSi ₃ O ₈	8.1372	12.787	7.1574	94.25	116.61	87.81	664.04	[3]
NaAlSi ₃ O ₈	8.133	12.773	7.159	94.23	116.64	87.72	662.92	[6]
Na _{0.98} Ca _{0.02} Si _{2.98} Al _{1.02} O ₈	8.1459	12.797	7.1578	94.25	116.6	87.8	665.34	[4]
Na _{0.99} Ca _{0.01} Al _{1.03} Si _{2.97} O ₈	8.135	12.784	7.1594	94.27	116.59	87.72	663.92	[8]
Na _{0.99} Ca _{0.01} Al _{1.03} Si _{2.97} O ₈	8.1365	12.788	7.1584	94.23	116.58	87.7	664.26	[8]
NaAlSi ₃ O ₈	8.1409	12.789	7.1598	94.27	116.59	87.68	664.73	[8]
Na _{0.821} Ca _{0.179} Al _{1.179} Si _{2.821} O ₈	8.154	12.823	7.139	94.06	116.5	88.59	666.32	[7]
Na _{0.723} Ca _{0.277} Al _{1.277} Si _{2.723} O ₈	8.169	12.851	7.124	93.63	116.4	89.46	668.39	[7]

[1] Armbruster, T., Burgi, H.B., Kunz, M., Gnos, E., Bronnimann, S., and Lienert, C.

(1990) Variation of displacement parameters in structure refinements of low albite.
 American Mineralogist, 75, 135-140.

[2] Bambauer, H.U., Corlett, M., Eberhard, E., and Viswanathan, K. (1967) Diagrams for
 the determination of plagioclases using X-ray powder methods (Part III of laboratory
 investigations of plagioclases). Schweizerische Mineralogische und Petrographische
 Mitteilungen, 47, 333-349.

[3] Downs, R.T., Hazen, R.M., and Finger, L.W. (1994) The high-pressure crystal
chemistry of low albite and the origin of the pressure dependency of Al-Si ordering.
American Mineralogist, 79, 1042-1052.

[4] Gualtieri, A.F. (2000) Accuracy of XRPD QPA using the combined Rietveld-RIR
 method. Journal of Applied Crystallography, 33, 267-278.

[5] Harlow, G., and Brown Jr, G.E. (1980) Low Albite- an X-Ray and Neutron Diffraction
 Study. American Mineralogist, 65, 986-995.

[6] Meneghinello, E., Alberti, A., and Cruciani, G. (1999) Order-disorder process in the tetrahedral sites of albite. American Mineralogist, 84, 1144-1151.

[7] Phillips, M.W., Colville, A.A., and Ribbe, P.H. (1971) The crystal structures of two
oligoclases: A comparison with low and high albite. Zeitschrift fur Kristallographie, 133,
43-65.

789 [8] RRUFF.info

790 [9] Wenk, H., Joswig, W., Tagai, T., Korekawa, M., and Smith, B.K. (1980) The average 791 structure of An 62-66 labradorite. American Mineralogist, 65, 81-95.

- 794
- 795
- 796
- 797
- 798

32

799 Table A1b. Alkali feldspar quadrilateral data

800

Phase	Composition	Ordering	b	С
high sanidine	KAISi ₃ O ₈	disordered	13.031	7.177
low microcline	KAISi ₃ O ₈	ordered	12.962	7.222
high albite	NaAlSi₃O ₈	disordered	12.871	7.108
low albite	NaAlSi₃O ₈	ordered	12.785	7.158

Kroll, H., and Ribbe, P.J. (1983) Lattice parameters, composition and Al,Si order in
 alkali feldspars. Reviews in Mineralogy p. 57-100.

804 Table A1c. Augite regression data

		Augite (C2/c)			
Chemical composition	a (Å)	b (Å)	c (Å)	β (°)	V (Å ³)	Reference
Ca _{0.10} Mg _{1.52} Fe _{0.38} Si ₂ O ₆	9.652	8.872	5.206	108.55	422.6	[7]
Ca _{0.20} Mg _{1.44} Fe _{0.36} Si ₂ O ₆	9.655	8.876	5.201	108.46	422.8	[7]
Ca _{0.59} Mg _{1.41} Si ₂ O ₆	9.711	8.8935	5.2452	107.278	432.559	[6]
Ca _{0.40} Mg _{1.28} Fe _{0.32} Si ₂ O ₆	9.718	8.902	5.239	107.85	431.4	[7]
Ca _{0.7} Mg _{1.3} Si ₂ O ₆	9.7264	8.9133	5.2485	106.742	435.728	[6]
Ca _{0.8} Mg _{1.2} Si ₂ O ₆	9.7323	8.9152	5.2464	106.357	436.782	[6]
Ca _{0.892} Mg _{1.108} Si ₂ O ₆	9.739	8.919	5.25	106.15	438.2	[7]
Ca _{0.60} Mg _{1.12} Fe _{0.28} Si ₂ O ₆	9.734	8.921	5.244	106.73	436.1	[7]
CaMgSi ₂ O ₆	9.747	8.924	5.252	105.94	439.28	[3]
CaMgSi ₂ O ₆	9.748	8.924	5.251	105.79	439.48	[2]
CaMgSi ₂ O ₆	9.7483	8.9246	5.2505	105.882	439.355	[4]
CaMgSi ₂ O ₆	9.755	8.926	5.241	105.84	439.04	[5]
CaMgSi ₂ O ₆	9.7507	8.9264	5.2515	105.837	439.74	[4]
CaMgSi ₂ O ₆	9.75	8.927	5.254	105.79	439.99	[5]
CaMgSi ₂ O ₆	9.7485	8.931	5.249	105.85	439.6	[7]
CaMgSi ₂ O ₆	9.754	8.933	5.252	105.84	440.22	[5]
CaMg _{0.9116} Fe _{0.0884} Si ₂ O ₆	9.759	8.934	5.254	105.77	440.86	[2]
CaMg _{0.921} Fe _{0.079} Si ₂ O ₆	9.772	8.934	5.253	105.76	441.32	[5]
Ca _{0.80} Mg _{0.96} Fe _{0.24} Si ₂ O ₆	9.745	8.935	5.246	106.23	438.6	[7]
CaMg _{0.90} Fe _{0.10} Si ₂ O ₆	9.762	8.936	5.249	105.75	441	[7]
CaMg _{0.921} Fe _{0.079} Si ₂ O ₆	9.767	8.936	5.246	105.68	440.84	[5]
CaMg _{0.921} Fe _{0.079} Si ₂ O ₆	9.775	8.936	5.244	105.74	440.91	[5]
CaMg _{0.941} Fe _{0.059} Si ₂ O ₆	9.757	8.937	5.245	105.82	440.05	[5]
Ca _{0.60} Mg _{0.98} Fe _{0.42} Si ₂ O ₆	9.745	8.939	5.244	106.69	437.6	[7]
CaMg _{0.8209} Fe _{0.1791} Si ₂ O ₆	9.765	8.941	5.250	105.68	441.32	[2]
Ca _{0.40} Mg _{0.80} Fe _{0.80} Si ₂ O ₆	9.727	8.942	5.255	108.1	434.4	[7]
Ca _{0.80} Mg _{0.84} Fe _{0.36} Si ₂ O ₆	9.757	8.943	5.246	106.05	439.9	[7]
CaMg _{0.861} Fe _{0.139} Si ₂ O ₆	9.77	8.943	5.252	105.69	441.75	[5]
CaMg _{0.796} Fe _{0.204} Si ₂ O ₆	9.774	8.944	5.249	105.64	441.88	[5]
CaMg _{0.796} Fe _{0.204} Si ₂ O ₆	9.772	8.945	5.253	105.65	442.15	[5]
CaMg _{0.796} Fe _{0.204} Si ₂ O ₆	9.771	8.946	5.253	105.66	442.08	[5]
CaMg _{0.80} Fe _{0.20} Si ₂ O ₆	9.771	8.947	5.25	105.68	442	[7]
CaMg _{0.82} Fe _{0.18} Si ₂ O ₆	9.7634	8.9488	5.2504	105.726	441.56	[3]
CaMg _{0.717} Fe _{0.283} Si ₂ O ₆	9.782	8.952	5.255	105.6	443.23	[5]
CaMg _{0.74} Fe _{0.26} Si ₂ O ₆	9.773	8.9523	5.2524	105.676	442.444	[3]
Ca _{0.60} Mg _{0.70} Fe _{0.70} Si ₂ O ₆	9.741	8.953	5.248	106.67	438.5	[7]
CaMg _{0.7278} Fe _{0.2722} Si ₂ O ₆	9.780	8.954	5.253	105.59	443.08	[2]
Ca ₁ Mg _{0.70} Fe _{0.30} Si ₂ O ₆	9.7755	8.955	5.251	105.67	443.1	[7]
Ca _{0.80} Mg _{0.60} Fe _{0.60} Si ₂ O ₆	9.767	8.956	5.249	105.97	441.4	[7]
CaMg _{0.717} Fe _{0.283} Si ₂ O ₆	9.782	8.96	5.243	105.59	442.66	[5]
CaMg _{0.589} Fe _{0.411} Si ₂ O ₆	9.789	8.96	5.251	105.49	443.85	[5]
CaMg _{0.6321} Fe _{0.3679} Si ₂ O ₆	9.793	8.962	5.254	105.50	444.28	[2]
CaMg _{0.589} Fe _{0.411} Si ₂ O ₆	9.794	8.963	5.249	105.48	444	[5]

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccc} CaMg_{0.5339}Fe_{0.4661}Si_2O_6 & 9.804 & 8.971 & 5.253 & 105.46 & 445.30 & [2] \\ CaMg_{0.50}Fe_{0.50}Si_2O_6 & 9.7955 & 8.9725 & 5.252 & 105.49 & 445.4 & [7] \\ CaFa & Max & Si & O & 0.204 & 0.074 & 5.240 & 105.40 & 144.00 & [5] \\ \end{array}$	
$CaMg_{0.50}Fe_{0.50}Si_2O_6 \qquad 9.7955 8.9725 5.252 105.49 445.4 \qquad [7]$	
$Care_{0.523}$ NIG _{0.477} SI ₂ O_6 9.801 8.974 5.248 105.46 444.92 [5]	
$CaFe_{0.523}Mg_{0.477}Si_2O_6$ 9.802 8.976 5.254 105.4 445.69 [5]	
CaMg _{0.5} Fe _{0.5} Si ₂ O ₆ 9.795 8.979 5.235 105.50 445.34 [3]	
$Ca_{0.60}Mg_{0.56}Fe_{0.84}Si_2O_6$ 9.752 8.981 5.249 106.63 440.5 [7]	
$Ca_{0.80}Mg_{0.48}Fe_{0.72}Si_2O_6$ 9.781 8.982 5.244 105.87 443.2 [7]	
$Ca_{1.00}Fe_{0.60}Mg_{0.40}Si_2O_6$ 9.813 8.982 5.251 105.32 445.5 [7]	
$Ca_{0.40}Mg_{0.64}Fe_{0.96}Si_2O_6$ 9.731 8.984 5.258 107.82 437.6 [7]	
$CaFe_{0.5670}Mg_{0.4330}Si_2O_6$ 9.809 8.985 5.249 105.28 446.33 [2]	
$CaFe_{0.682}Mg_{0.318}Si_2O_6$ 9.816 8.987 5.252 105.07 447.41 [5]	
CaFe _{0.682} Mg _{0.318} Si ₂ O ₆ 9.816 8.991 5.253 105.1 447.61 [5]	
Ca _{1.00} Fe _{0.70} Mg _{0.30} Si ₂ O ₆ 9.821 8.992 5.251 105.18 447.6 [7]	
CaFe _{0.6707} Mg _{0.3293} Si ₂ O ₆ 9.821 8.994 5.247 105.13 447.39 [2]	
CaMg _{0.7} Fe _{0.3} Si ₂ O ₆ 9.814 8.996 5.253 105.33 447.29 [3]	
Ca _{0.40} Mg _{0.48} Fe _{1.12} Si ₂ O ₆ 9.74 8.998 5.251 107.77 438.2 [7]	
$Ca_{0.70}Mg_{0.325}Fe_{0.975}Si_2O_6$ 9.791 9.001 5.242 106.02 444 [7]	
$Ca_{0.80}Mg_{0.30}Fe_{0.90}Si_2O_6$ 9.797 9.002 5.243 105.7 445.2 [7]	
$Ca_{0.90}Fe_{0.825}Mg_{0.275}Si_2O_6$ 9.814 9.002 5.249 105.46 447 [7]	
Ca _{1.00} Fe _{0.75} Mg _{0.25} Si ₂ O ₆ 9.821 9.002 5.251 104.98 448.4 [7]	
CaFe _{0.80} Mg _{0.20} Si ₂ O ₆ 9.832 9.002 5.251 105.02 448.6 [7]	
CaFe _{0.85} Mg _{0.15} Si ₂ O ₆ 9.834 9.01 5.247 104.96 449.15 [5]	
CaFe _{0.7774} Mg _{0.2226} Si ₂ O ₆ 9.826 9.012 5.251 105.01 449.20 [2]	
$CaFe_{0.85}Mg_{0.15}Si_2O_6$ 9.836 9.014 5.248 104.92 449.6 [7]	
$Ca_{0.60}Mg_{0.35}Fe_{1.05}Si_2O_6$ 9.767 9.015 5.242 106.44 442.7 [7]	
Ca _{0.40} Mg _{0.40} Fe _{1.20} Si ₂ O ₆ 9.749 9.018 5.247 107.4 440 [7]	
CaFe _{0.8871} Mg _{0.1129} Si ₂ O ₆ 9.832 9.018 5.247 104.88 449.61 [2]	
$Ca_{0.50}Mg_{0.375}Fe_{1.125}Si_2O_6$ 9.771 9.019 5.244 106.65 442.7 [7]	
$Ca_{0.30}Mg_{0.425}Fe_{1.275}Si_2O_6$ 9.744 9.021 5.256 108.06 439.2 [7]	
Ca _{1.00} Fe _{1.00} Si ₂ O ₆ 9.84 9.024 5.2495 104.68 450.8 [7]	
CaFeSi ₂ O ₆ 9.847 9.024 5.242 104.77 450.36 [5]	
CaFeSi ₂ O ₆ 9.852 9.025 5.247 104.77 451.16 [5]	
CaFeSi ₂ O ₆ 9.866 9.025 5.225 104.69 450.04 [5]	
CaFeSi ₂ O ₆ 9.857 9.026 5.227 104.7 449.81 [5]	
CaFeSi ₂ O ₆ 9.841 9.027 5.247 104.80 450.69 [2]	
CaFeSi ₂ O ₆ 9.85 9.028 5.23 104.75 449.69 [5]	
$Ca_{0.70}Mg_{0.195}Fe_{1.105}Si_2O_6$ 9.8 9.03 5.244 105.92 446.3 [7]	
$Ca_{0.50}Mg_{0.225}Fe_{1.275}Si_2O_6$ 9.772 9.038 5.245 106.75 443.4 [7]	
Ca _{0.80} Fe _{1.20} Si ₂ O ₆ 9.821 9.042 5.242 105.38 448.8 [7]	
Ca _{1.01} Mg _{0.99} Si ₂ O ₆ 9.8672 9.0469 5.2584 104.794 453.84 [1]	
Ca _{0.70} Fe _{1.30} Si ₂ O ₆ 9.8095 9.05 5.238 105.61 447.9 [7]	
$Ca_{0.30}Mg_{0.255}Fe_{1.445}Si_2O_6 9.746 9.055 5.255 107.7 441.8 \qquad [7]$	

[1] Heuer, M., Huber, A.L., Bromiley, G.D., Fehr, K.T., Bente, K. (2005) Characterization of synthetic hedenbergite (CaFeSi₂O₆)-petedunnite (CaZnSi₂O₆) solid solution series by X-ray single crystal diffraction. Physics and Chemistry of Minerals, 32, 552-563. 805

806

807

- [2] Nolan, J. (1969) Physical properties of synthetic and natural pyroxenes in the system
 diopsite-hedenbergite-acmite. Mineralogical Magazine, 37, 216-229
- [3] Raudsepp M, Hawthorne F C, Turnock A C (1990) Evaluation of the Rietveld method
- for the characterization of fine-grained products of mineral synthesis: the diopsidehedenbergite join. The Canadian Mineralogist 28, 93-109.
- [4] Redhammer, G.J. (1998) Mossbauer spectroscopy and Rietveld refinement on synthetic ferri-Tschermak's molecule $CaFe^{3+}(Fe^{3+}Si)O_6$ substituted diopside. European
- 815 Journal of Mineralogy, 10, 439-452.
- [5] Rutstein, M.S., and Yund, R.A. (1969) Unit-cell parameters of synthetic diopsidehedenbergite solid solutions. American Mineralogist, 54, 238-245.
- [6] Tribaudino, M., Nestola, F., and Meneghini, C. (2005) Rietveld refinement of clinopyroxene with intermediate Ca-content along the join diopside-enstatite. The Canadian Mineralogist, 43, 1411-1421.
- [7] Turnock, A.C., Lindsley, D.H., and Grover, J.E. (1973) Synthesis and unit cell parameters of Ca-Mg-Fe pyroxenes. American Mineralogist, 58, 50-59.
- 823
- 824

825 Table A1d. Pigeonite regression data

Pigeonite ($P2_1/c$)								
Chemical composition	a (Å)	b (Å)	c (Å)	β (°)	V (Å ³)	Reference		
Mg ₂ Si ₂ O ₆	9.606	8.8131	5.17	108.35	415.429	[9]		
Mg ₂ Si ₂ O ₆	9.6076	8.8152	5.1702	108.350	415.61	[1]		
Mg ₂ Si ₂ O ₆	9.62	8.825	5.188	108.33	418.095	[6]		
Mg _{1.78} Fe _{0.22} Si ₂ O ₆	9.6194	8.8396	5.1793	108.438	417.80	[1]		
Mg _{1.85} Ca _{0.15} Si ₂ O ₆	9.646	8.842	5.201	108.35	421.037	[7]		
Mg _{1.85} Ca _{0.15} Si ₂ O ₆	9.654	8.845	5.203	108.37	421.642	[10]		
Mg _{1.85} Ca _{0.15} Si ₂ O ₆	9.651	8.846	5.202	108.38	421.453	[11]		
Mg _{1.85} Ca _{0.15} Si ₂ O ₆	9.651	8.846	5.202	108.34	421.551	[11]		
Mg _{1.85} Ca _{0.15} Si ₂ O ₆	9.651	8.846	5.252	108.38	425.504	[4]		
Ca _{0.2} Mg _{1.8} Si ₂ O ₆	9.6655	8.8534	5.2138	108.349	423.474	[12]		
Ca _{0.23} Mg _{1.77} Si ₂ O ₆	9.69	8.862	5.229	108.31	426.295	[10]		
Ca _{0.4} Mg _{1.6} Si ₂ O ₆	9.7042	8.8805	5.2423	108.084	429.455	[12]		
Mg _{1.41} Fe _{0.59} Si ₂ O ₆	9.6434	8.8852	5.1950	108.548	422.01	[1]		
Mg _{1.26} Fe _{0.54} Ca _{0.20} Si ₂ O ₆	9.684	8.907	5.227	108.51	427.6	[13]		
Mg _{1.23} Fe _{0.77} Si ₂ O ₆	9.6519	8.9075	5.2004	108.590	423.77	[1]		
Mg _{1.22} Fe _{0.78} Si ₂ O ₆	9.6519	8.9075	5.2004	108.59	423.773	[1]		
Mg _{1.28} Fe _{0.56} Ca _{0.16} Si ₂ O ₆	9.692	8.917	5.239	108.55	429.25	[3]		
Mg _{1.12} Fe _{0.48} Ca _{0.40} Si ₂ O ₆	9.707	8.919	5.249	108.22	431.6	[13]		
Mg _{0.92} Fe _{0.92} Ca _{0.16} Si ₂ O ₆	9.689	8.93	5.232	108.53	429.2	[13]		
Mg _{0.95} Fe _{0.95} Ca _{0.10} Si ₂ O ₆	9.662	8.931	5.218	108.71	426.5	[13]		
Mg _{0.90} Fe _{0.90} Ca _{0.20} Si ₂ O ₆	9.703	8.947	5.238	108.57	431.1	[13]		
Mg _{0.78} Fe _{1.04} Ca _{0.18} Si ₂ O ₆	9.706	8.95	5.246	108.59	431.936	[5]		
Mg _{0.81} Fe _{1.19} Si ₂ O ₆	9.6744	8.9630	5.2157	108.630	428.57	[1]		
Fe _{1.29} Mg _{0.71} Si ₂ O ₆	9.6761	8.9664	5.2171	108.623	428.93	[1]		
Mg _{0.72} Fe _{1.08} Ca _{0.20} Si ₂ O ₆	9.712	8.978	5.244	108.49	433.7	[13]		
Mg _{0.72} Fe _{1.08} Ca _{0.20} Si ₂ O ₆	9.712	8.978	5.244	108.49	433.7	[13]		
Mg _{0.64} Fe _{1.36} Si ₂ O ₆	9.6846	8.9898	5.2209	108.627	430.73	[1]		
Fe _{1.38} Mg _{0.62} Si ₂ O ₆	9.6837	8.9905	5.2202	108.604	430.73	[1]		
Fe _{1.39} Mg _{0.61} Si ₂ O ₆	9.6868	8.9936	5.2218	108.611	431.13	[1]		
Fe _{1.42} Mg _{0.58} Si ₂ O ₆	9.6856	8.9964	5.2218	108.605	431.22	[1]		
Mg _{0.45} Fe _{1.35} Ca _{0.20} Si ₂ O ₆	9.732	9.015	5.258	108.38	437.7	[13]		
Fe _{1.60} Mg _{0.40} Si ₂ O ₆	9.6913	9.0171	5.2263	108.598	432.87	[1]		
Fe _{1.60} Mg _{0.40} Si ₂ O ₆	9.6931	9.0199	5.2264	108.590	433.10	[1]		
Mg _{0.27} Fe _{1.53} Ca _{0.20} Si ₂ O ₆	9.74	9.046	5.259	108.2	440.2	[13]		
Fe _{1.80} Mg _{0.20} Si ₂ O ₆	9.7011	9.0491	5.2321	108.556	435.43	[1]		
$Fe_2Si_2O_6$	9.7075	9.0807	5.2347	108.46	437.7	[2]		
Fe _{1.80} Ca _{0.20} Si ₂ O ₆	9.745	9.083	5.225	107.3	441.5	[13]		
Fe ₂ Si ₂ O ₆	9.709	9.087	5.228	108.43	437.6	[13]		
Fe _{1.7} Ca _{0.3} Si ₂ O ₆	9.779	9.088	5.258	107.39	445.928	[8]		
$Fe_{1,90}Ca_{0,10}Si_2O_6$	9.724	9.092	5.226	108.14	439.1	[13]		
$Mg_2Si_2O_6$	9.59	8.812	5.159	108.15	414.3	[13]		
(Mg _{1.86} Ca _{0.14})Si ₂ O ₆	9.65	8.84	5.18	108.45	419.2	[13]		
(Mg _{1.812} Ca _{0.188}) Si ₂ O ₆	9.653	8.848	5.202	108.41	421.5	[13]		

(Mg _{1.416} Ca _{0.584})Si ₂ O ₆	9.714	8.903	5.25	107.27	433.8	[13]
(Mg _{1.314} Ca _{0.686})Si ₂ O ₆	9.723	8.908	5.25	106.78	435	[13]
(Mg _{1.212} Ca _{0.788})Si ₂ O ₆	9.731	8.916	5.25	106.39	436.5	[13]
(Mg _{1.40} Fe _{0.60})Si ₂ O ₆	9.645	8.878	5.193	108.58	421.4	[13]
(Mg _{1.33} Ca _{0.10} Fe _{0.57})Si ₂ O ₆	9.662	8.893	5.21	108.61	424.2	[13]
(Mg _{1.20} Fe _{0.80})Si ₂ O ₆	9.649	8.9	5.199	108.59	423.2	[13]
(Fe _{1.20} Mg _{0.80})Si ₂ O ₆	9.667	8.961	5.216	108.69	428	[13]
(Fe _{1.14} Ca _{0.10} Mg _{0.76})Si ₂ O ₆	9.684	8.958	5.227	108.62	429.7	[13]
(Fe _{1.60} Ca _{0.40})Si ₂ O ₆	9.765	9.081	5.231	106.69	444.3	[13]
(Fe _{1.50} Ca _{0.50})Si ₂ O ₆	9.781	9.072	5.232	106.3	445.6	[13]

[1] Angel, R.J., McCammon, C., and Woodland, A.B. (1998) Structure, ordering and cation interactions in Ca-free *P*2(1)/*c* clinopyroxenes. Physics and Chemistry of Minerals, 25, 249-258.

[2] Hugh-Jones, D.A., Woodland, A.B., and Angel, R.J. (1994) The structure of high pressure *C2/c* ferrosilite and crystal chemistry of high-pressure *C2/c* pyroxenes.
 American Mineralogist, 79, 1032-1041.

[3] Kuno, H. (1953) Unit cell dimensions of clinoenstatite and pigeonite in relation to other common clinopyroxenes. American Journal of Science, 251, 741-752.

[4] Merli, M., and Camara, F. (2003) Topological analysis of the electron density of the
 clinopyroxene structure by the maximum entropy method: an exploratory study.
 European Journal of Mineralogy, 15, 903-911.

[5] Morimoto, N., and Guven, N. (1970) Refinement of the Crystal Structure of Pigeonite. American Mineralogist, 55, 1195-1209.

[6] Morimoto, N., Appleman, D.E., and Evans, H.T. (1960) The crystal structures of clinoenstatite and pigeonite. Zeitschrift fur Kristallographie, 114, 120-147.

[7] Nestola, F., Tribaudino, M., and Ballaran, T.B. (2004) High pressure behavior,
transformation and crystal structure of synthetic iron-free pigeonite. American
Mineralogist, 89, 189-196.

[8] Ohashi, Y., Burnham, C.W., and Finger, L.W. (1975) The Effect of Ca-Fe Substitution Structure Crystal. American Mineralogist, 60, 423-434.

[9] Ohashi, Y. (1984) Polysynthetically-twinned structures of enstatite and wollastonite.
 Physics and Chemistry of Minerals, 10, 217-229.

[10] Tribaudino, M., and Nestola, F. (2002) Average and local structure in *P*21/*c* clinopyroxenes along the join diopside-enstatite (CaMgSi₂O₆-Mg₂Si₂O₆). European Journal of Mineralogy 14, 549-555.

[11] Tribaudino, M., Nestola, F., Camara, F., Domeneghetti, M.C. (2002) The hightemperature P21/c-C2/c phase transition in Fe-free pyroxene (Ca0.15Mg1.85Si2O6):
Structural and thermodynamic behavior. American Mineralogist, 87, 648-657.

[12] Tribaudino, M., Nestola, F., and Meneghini, C. (2005) Rietveld refinement of clinopyroxene with intermediate Ca-content along the join diopside-enstatite. The Canadian Mineralogist, 43, 1411-1421.

[13] Turnock, A.C., Lindsley, D.H., and Grover, J.E. (1973) Synthesis and unit cell parameters of Ca-Mg-Fe pyroxenes. American Mineralogist, 58, 50.

861 Table A1e. Orthopyroxene regression data

(Drthopyrox	ene-pha	ise		
Chemical composition	a (Å)	b (Å)	c (Å)	V (Å ³)	Reference
Fe ₂ Si ₂ O ₆	0	2	0	18.417	[1]
Fe ₂ Si ₂ O ₆	0	2	0	18.418	[2]
Fe ₂ Si ₂ O ₆	0	2	0	18.431	[3]
Mg _{0.20} Fe _{1.80} Si ₂ O ₆	0	1.8	0.2	18.402	[3]
Mg _{0.40} Fe _{1.60} Si ₂ O ₆	0	1.6	0.4	18.37	[3]
Mg _{0.50} Fe _{1.50} Si ₂ O ₆	0	1.5	0.5	18.362	[3]
Mg _{0.80} Fe _{1.20} Si ₂ O ₆	0	1.2	0.8	18.321	[3]
Mg _{1.00} Fe _{1.00} Si ₂ O ₆	0	1	1	18.31	[3]
Mg _{1.18} Fe _{0.82} Si ₂ O ₆	0	0.82	1.18	18.2974	[1]
Mg _{1.20} Fe _{0.80} Si ₂ O ₆	0	0.8	1.2	18.289	[3]
Mg _{1.51} Fe _{0.48} Si ₂ O ₆	0	0.48	1.52	18.2747	[4]
Mg _{1.60} Fe _{0.60} Si ₂ O ₆	0	0.4	1.6	18.251	[3]
Mg _{1.68} Fe _{0.30} Si ₂ O ₆	0	0.3	1.68	18.2566	[5]
Mg _{1.68} Fe _{0.30} Si ₂ O ₆	0	0.3	1.68	18.2462	[5]
Mg _{1.72} Fe _{0.28} Si ₂ O ₆	0	0.28	1.72	18.2539	[5]
Mg _{1.80} Fe _{0.20} Si ₂ O ₆	0	0.2	1.8	18.24	[5]
Mg _{1.80} Fe _{0.20} Si ₂ O ₆	0	0.2	1.8	18.2496	[5]
Mg _{1.80} Fe _{0.20} Si ₂ O ₆	0	0.2	1.8	18.235	[3]
Mg ₂ Si ₂ O ₆	0	0	2	18.21	[6]
Mg ₂ Si ₂ O ₆	0	0	2	18.216	[7]
Mg ₂ Si ₂ O ₆	0	0	2	18.225	[8]
Mg ₂ Si ₂ O ₆	0	0	2	18.233	[9]
Mg ₂ Si ₂ O ₆	0	0	2	18.225	[10]
Mg ₂ Si ₂ O ₆	0	0	2	18.223	[10]
Mg ₂ Si ₂ O ₆	0	0	2	18.223	[3]
Mg _{1.98} Ca _{0.02} Si ₂ O ₆	0.02	0	1.98	18.235	[3]
Mg _{1.331} Fe _{0.636} Ca _{0.032} Si ₂ O ₆	0.032	1.331	0.636	18.337	[11]
Fe _{1.96} Ca _{0.04} Si ₂ O ₆	0.04	1.96	0	18.453	[3]
Mg _{0.25} Fe _{1.71} Ca _{0.04} Si ₂ O ₆	0.04	1.71	0.25	18.405	[12]
Mg _{1.96} Ca _{0.04} Si ₂ O ₆	0.04	0	1.96	18.262	[13]
Mg _{1.15} Fe _{0.807} Ca _{0.043} Si ₂ O ₆	0.043	0.807	1.15	18.316	[14]
Mg _{1.155} Fe _{0.802} Ca _{0.043} Si ₂ O ₆	0.043	0.802	1.155	18.32	[14]
Mg _{1.948} Ca _{0.052} Si ₂ O ₆	0.052	0	1.948	18.28	[15]
Mg _{1.93} Ca _{0.07} Si ₂ O ₆	0.07	0	1.93	18.2588	[16]
Mg _{1.93} Ca _{0.07} Si ₂ O ₆	0.07	0	1.93	18.268	[13]
Fe _{1.92} Ca _{0.08} Si ₂ O ₆	0.08	1.92	0	18.473	[3]
Mg _{0.96} Fe _{0.96} Ca _{0.08} Si ₂ O ₆	0.08	0.96	0.96	18.35	[3]
Mg _{0.48} Fe _{1.43} Ca _{0.10} Si ₂ O ₆	0.1	1.43	0.48	18.417	[3]
Mg _{0.76} Fe _{1.14} Ca _{0.10} Si ₂ O ₆	0.1	1.14	0.76	18.365	[3]
Mg _{1.33} Fe _{0.57} Ca _{0.10} Si ₂ O ₆	0.1	0.57	1.33	18.293	[3]
Mg _{1.52} Fe _{0.38} Ca _{0.10} Si ₂ O ₆	0.1	0.38	1.52	18.257	[3]

- [1] Hugh-Jones, D.A., Chopelas, A., and Angel, R.J. (1997) Tetrahedral compression in
- 863 (Mg,Fe)SiO3 orthopyroxenes. Physics and Chemistry of Minerals, 24, 301-310.
- 864 [2] Sueno, S., Cameron, M., and Prewitt, C.T. (1976) Orthoferrosilite: High-temperature 865 crystal chemistry. American Mineralogist, 61, 38-53.
- 866 [3] Turnock, A.C., Lindsley, D.H., and Grover, J.E. (1973) Synthesis and unit cell 867 parameters of Ca-Mg-Fe pyroxenes. American Mineralogist, 58, 50-59.
- 868 [4] Yang, H., and Ghose, S. (1995) A transitional structural state and anomalous Fe-Mg
- 869 order-disorder in Mg-rich orthopyroxene, (Mg0.75Fe0.25)2Si2O6. American
- 870 Mineralogist, 80, 9-20.
- 871 [5] RRUFF.info
- [6] Morimoto, N., and Koto, K. (1969) The crystal structure of orthoenstatite. Zeitschrift fur Kristallographie, 129, 65-83.
- [7] Hawthorne, F.C., and Ito, J. (1977) Sythensis and crystal-structure refinement of
- transition-metal orthopyroxenes I: orthoenstatite and (Mg, Mn, Co) orthopyroxene. The Canadian Mineralogist, 15, 321-338.
- [8] Ohashi, Y. (1984) Polysynthetically-twinned structures of enstatite and wollastonite.
 Physics and Chemistry of Minerals, 10, 217-229.
- 879 [9] Hugh-Jones, D.A., and Angel, R.J. (1994) A compressional study of MgSiO, 880 orthoenstatite up to 8.5 GPa. American Mineralogist, 79, 405-410.
- [10] Huebner, S.J. (1986) Nature of phases synthesized along the join (Mg,Mn)2Si2O6.
 American Mineralogist, 15, 365-371.
- [11] Smyth, J.R. (1973) An Orthopyroxene Structure Up to 850°C
- [12] Burnham, C.W., Ohashi, Y., Hafner, S.S., and Virgo, D. (1971) Cation distribution
 and atomic thermal vibrations in an iron-rich orthopyroxene. American Mineralogist, 56,
 850-876.
- [13] Nestola, F., and Tribaudino, M. (2003) The structure of Pbca orthopyroxenes along
- the join diopside-enstatite (CaMgSi2O6-Mg2Si2O6). European Journal of Mineralogy,
 15, 365-371.
- [14] Domeneghetti, M.C., Molin, G.M., Stimpfl, M., and Tribaudino, M. (1995)
 Orthopyroxene from the Serra de Mag6 meteorite: Structure refinement and estimation
 of C2/c pyroxene contributions to apparent Pbca diffraction violations. American
- 893 Mineralogist, 80, 923-929.
- 894 [15] Carlson, W.D., Swinnea, J.S., and Miser, D.E. (1988) Stability of orthoenstatite at 895 high temperature and low pressure. American Mineralogist, 73, 1255-1263.
- 896 [16] Nestola, F., Gatta, G.D., and Ballaran, T.B. (2006) The effect of Ca substitution on 897 the elastic and structural behavior of orthoenstatite. American Mineralogist, 91, 809-
- 897 the elastic and structural behavior of orthoenstatite. American Mineralogist, 91, 809-898 815.

899 Table A1f. Olivine regression data

	Olivine-p	hase (Fe-M	lg only)		
Chemical composition	a (Å) [`]	b (À)	c (Å)	V (Å ³)	Reference
Mg ₂ SiO ₄	4.7534	10.1902	5.9783	289.577	[9]
Mg ₂ SiO ₄	4.753	10.191	5.982	289.755	[7]
Mg ₂ SiO ₄	4.753	10.196	5.979	289.76	[6]
Mg ₂ SiO ₄	4.754	10.1971	5.9806	289.92	[21]
Mg ₂ SiO ₄	4.7549	10.1985	5.9792	289.948	[4]
Mg ₂ SiO ₄	4.755	10.196	5.9809	289.97	[24]
Mg ₂ SiO ₄	4.7534	10.1989	5.9813	289.97	[13]
Mg ₂ SiO ₄	4.751	10.203	5.983	290.023	[23]
Mg ₂ SiO ₄	4.7558	10.1965	5.9817	290.068	[20]
Mg ₂ SiO ₄	4.7545	10.2	5.9814	290.08	[14]
Mg ₂ SiO ₄	4.7553	10.1977	5.982	290.09	[15]
Mg ₂ SiO ₄	4.757	10.197	5.982	290.17	[24]
Mg ₂ SiO ₄	4.75534	10.20141	5.98348	290.266	[25]
Mg ₂ SiO ₄	4.756	10.207	5.98	290.296	[22]
Mg ₂ SiO ₄	4.7533	10.2063	5.9841	290.31	[5]
Mg ₂ SiO ₄	4.7536	10.2066	5.9845	290.36	[18]
Mg _{1.997} Si _{0.995} O ₄	4.7552	10.1985	5.9822	290.112	[12]
Mg _{1.98} Fe _{0.02} SiO ₄	4.7555	10.1999	5.9816	290.14	[21]
Mg _{1.96} Fe _{0.04} SiO ₄	4.7563	10.2026	5.9842	290.39	[21]
Mg _{1.94} Fe _{0.06} SiO ₄	4.7571	10.2053	5.9831	290.47	[21]
Mg _{1.92} Fe _{0.08} SiO ₄	4.7578	10.2085	5.9857	290.72	[21]
Mg _{1.91} Fe _{0.09} SiO ₄	4.7584	10.2099	5.9863	290.83	[21]
Mg _{1.9} Fe _{0.1} SiO ₄	4.758	10.2115	5.9865	290.86	[21]
Mg _{1.88} Fe _{0.12} SiO ₄	4.759	10.2145	5.988	291.08	[21]
Mg _{1.84} Fe _{0.16} SiO ₄	4.7579	10.2151	5.989	291.08	[17]
Mg _{1.82} Fe _{0.18} SiO ₄	4.7611	10.2207	5.99	291.49	[1]
Mg _{1.82} Fe _{0.18} Si ₁ O ₄	4.7615	10.2248	5.9932	291.781	[20]
Fe _{0.19} Mg _{1.81} SiO ₄	4.7641	10.2269	5.9952	292.098	[16]
Mg _{1.8} Fe _{0.2} SiO ₄	4.762	10.225	5.994	291.857	[3]
Mg _{1.77} Fe _{0.23} SiO ₄	4.7645	10.23467	5.99727	292.45	[11]
Mg _{1.73} Fe _{0.27} SiO ₄	4.7655	10.2351	5.997	292.5	[21]
Mg _{1.67} Fe _{0.33} SiO ₄	4.7673	10.2488	6.003	293.301	[20]
Mg _{1.63} Fe _{0.37} SiO ₄	4.7687	10.2491	6.0023	293.36	[21]
Mg _{1.6} Fe _{0.4} SiO ₄	4.7698	10.2531	6.003	293.58	[21]
Mg _{1.6} Fe _{0.4} SiO ₄	4.769	10.261	6.006	293.9	[6]
Mg _{1.55} Fe _{0.45} SiO ₄	4.7733	10.2676	6.0112	294.611	[10]
Mg _{1.4} Fe _{0.6} SiO ₄	4.7779	10.2831	6.0161	295.58	[21]
Mg _{1.3} Fe _{0.7} SiO ₄	4.7818	10.2972	6.0223	296.53	[21]
Mg _{1.2} Fe _{0.8} SiO ₄	4.784	10.308	6.024	297.09	[6]
Mg _{1.2} Fe _{0.8} SiO ₄	4.7849	10.3101	6.0263	297.29	[21]
Mg _{1.15} Fe _{0.85} SiO ₄	4.7871	10.3181	6.0297	297.83	[21]
Mg _{1.05} Fe _{0.95} SiO ₄	4.786	10.332	6.032	298.2	[19]
Mg _{1.02} Fe _{0.98} SiO ₄	4.7901	10.3305	6.0343	298.6	[1]

Fe _{1.0} Mg _{1.0} SiO ₄	4.7929	10.3412	6.038	299.27	[21]
Fe _{1.18} Mg _{0.82} SiO ₄	4.7974	10.3635	6.0463	300.61	[21]
Fe _{1.2} Mg _{0.8} SiO ₄	4.797	10.358	6.048	300.5	[6]
Fe _{1.2} Mg _{0.8} SiO ₄	4.798	10.367	6.047	300.8	[6]
Fe _{1.2} Mg _{0.8} SiO ₄	4.7986	10.3665	6.0482	300.87	[21]
Fe _{1.4} Mg _{0.6} SiO ₄	4.8043	10.3923	6.0577	302.45	[21]
Fe _{1.5} Mg _{0.5} SiO ₄	4.8074	10.4063	6.0618	303.25	[21]
Fe _{1.6} Mg _{0.4} SiO ₄	4.81	10.419	6.068	304.08	[6]
Fe _{1.6} Mg _{0.4} SiO ₄	4.813	10.417	6.067	304.18	[6]
Fe _{1.6} Mg _{0.4} SiO ₄	4.8111	10.4213	6.0684	304.26	[21]
Fe _{1.8} Mg _{0.2} SiO ₄	4.8169	10.4512	6.0783	306	[21]
Fe ₂ SiO ₄	4.819	10.47	6.086	307.1	[6]
Fe ₂ SiO ₄	4.815	10.49	6.085	307.3	[6]
Fe ₂ SiO ₄	4.8195	10.4788	6.0873	307.42	[8]
Fe ₂ SiO ₄	4.8195	10.4788	6.0873	307.424	[9]
Fe ₂ SiO ₄	4.8211	10.4779	6.0889	307.58	[21]
Fe ₂ SiO ₄	4.821	10.478	6.092	307.7	[2]

900 [1] Akamatsu, T., Kumazawa, M., Aikawa, N., and Takei, H. (1993) Pressure Effect on
901 the Divalent Cation Distribution in Nonideal Solid Solution of Forsterite and Fayalite.
902 Physics and Chemistry of Minerals, 19, 431-444.

903 [2] Annersten, H., Ericsson, T., and Filippidis, A. (1982) Cation ordering in Ni-Fe 904 olivines. American Mineralogist, 67, 1212-1217.

905 [3] Birle, J.D., Gibbs, G.V., Moore, P.B., and Smith, J.V. (1968) Crystal structures of 906 natural olivines. American Mineralogist, 53, 807-824.

907 [4] Bostrom, D. (1987) Single-crystal X-ray diffraction studies of synthetic Ni-Mg olivine 908 solid solutions. American Mineralogist, 72, 965-972.

909 [5] Cernik, R.J., Murray, P.K., Pattison, P., and Fitch, A.N. (1990) A two-circle powder

910 diffractometer for synchrotron radiation with a closed loop encoder feedback system.911 Journal of Applied Crystallography, 23, 292-296.

912 [6] Fisher G W, Medaris L G (1969) Cell dimensions and X-ray determinative curve for 913 synthetic Mg-Fe olivines. American Mineralogist, 54, 741-753.

914 [7] Frances, C.A. (1985) New data on the forsterite-tephroite series. American 915 Mineralogist, 70, 568-575.

916 [8] Fujino, K., Sasaki, S., Takeuchi, Y., and Sadanaga, R. (1981) X-ray determination of

- 917 electron distributions in forsterite, fayalite and tephroite. Acta Crystallographica B, 37,918 513-518.
- 919 [9] Fujino, K., Sasaki, S., Takeuchi, Y., and Sadanaga, R. (1981) X-ray determination of 920 electron distributions in forsterite, fayalite and tephroite. Acta Crystallographica, B37, 921 513-518.

922 [10] Heinemann, R., Kroll, H., Kirfel, A., and Barbier, B. (2007) Order and anti-order in

- 923 olivine III: variation of the cation distribution in the Fe,Mg olivine solid solution series
- with temperature and composition. European Journal of Mineralogy, 19, 15-27.
- 925 [11] Heuer, M. (2001) The determination of site occupancies using a new strategy in 926 Rietveld refinements. Journal of applied crystallography, 34, 271-279.

- [12] Hushur, A., Manghnani, M.H., Smyth, J.R., Nestola F., and Frost, D.J. (2009)
 Crystal chemistry of hydrous forsterite and its vibrational properties up to 41 GPa.
 American Mineralogist, 94, 751-760.
- 930 [13] Lager, G.A., Ross, F.K., Rotella, F.J., and Jorgensen, J.D. (1981) Neutron powder
- 931 diffraction of Forsterite, Mg2SiO4: a comparison with single-crystal investigations.
- Journal of applied crystallography, 14, 137-139.
- [14] Louisnathan, S.J., and Smith, J.V. (1968) Cell dimensions of olivine. Mineralogical
 Magazine, 36, 1123-1134.
- [15] Matsui, Y., and Syono, Y. (1968) Unit cell dimensions of some synthetic olivinegroup solid solutions. Geochemical Journal, 2, 51-59.
- 937 [16] McCormick, T.C., Smyth, J.R., and Lofgren, G.E. (1987) Site occupancies of minor
- elements in synthetic olivines as determined by channeling-enhanced X-ray emission.Physics and Chemistry of Minerals, 14, 368-372.
- 940 [17] Merli, M., Oberti, R., Caucia, F., and Ungaretti, L. (2001) Determination of site
 941 population in olivine: Warnings on X-ray data treatment and refinement. American
 942 Mineralogist, 86, 55-65.
- 943 [18] Müller-Sommer, M., Hock, R., and Kirfel, A. (1997) Rietveld refinement study of the
- cation distribution in (Co, Mg)-olivine solid solution. Physics and Chemistry of Minerals,24, 17-23.
- 946 [19] Nord, A.G., Annersten, H., and Filippidis, A. (1982) The cation distribution in 947 synthetic Mg-Fe-Ni olivines. American Mineralogist, 67, 1206-1211.
- 948 [20] RRUFF.info
- [21] Schwab, R.G., and Kustner, D. (1977) Precise determination of lattice constants to
 establish X-ray determinative curves for synthetic olivines of the solid solution series
 forsterite-fayalite. Neues Jahrbuch für Mineralogie, Monatshefte, 5, 205-215.
- 952 [22] Smyth, J.R., and Hazen, R.M. (1973) The crystal structures of forsterite and
 953 hortonolite at several temperatures up to 900 C. American Mineralogist, 58, 588-593.
- [23] Urusov, V.S., Lapina, I.V., Kabala, Yu.K., and Kravchuk, I.F. (1984) Isomorphism in
 the forsterite-tephrolite series. Geokhimiya, 7, 1047-1055.
- 956 [24] van der Wal, R.J., Vos, A., and Kirfel, A. (1987) Conflicting results for the 957 deformation properties of Forsterite, Mg2SiO4. Acta Crystallographica B, 43, 132-143.
- [25] Yamazaki, S., and Toraya, H. (1999) Rietveld refinement of site-occupancy
 parameters of Mg2-xMnxSiO4 using a new weight function in least-squares fitting.
 Journal of Applied Crystallography, 32, 51-59.
- 961
- 962
- 963
- 964
- 965 966
- 967
- 968
- 969
- 970
- 971
- 972

43

974 Table A1g. Olivine with Mn and Ca

	Olivine phase (with Ca and/or Mn)								
Са	Fe	Mg	Mn	<i>a</i> (Å)	b (Å)	a/b	c (Å)	V (Å ³)	ref
0.01	0.35	1.64	0	4.771	10.274	0.464	6.011	294.643	[19]
0.01	0.61	1.38	0	4.785	10.298	0.465	6.028	297.035	[19]
0.045	0	1.955	0	4.7575	10.2144	0.466	5.99	291.08	[20]
0.045	0	1.955	0	4.7581	10.223	0.465	5.9929	291.51	[20]
0.045	0	1.955	0	4.7585	10.2248	0.465	5.9933	291.61	[20]
0.091	0	1.909	0	4.7596	10.2463	0.465	6.0027	292.74	[20]
0.091	0	1.909	0	4.7606	10.2499	0.464	6.0023	292.89	[20]
0.137	0	1.863	0	4.7664	10.2926	0.463	6.023	295.48	[20]
0.18	0	1.82	0	4.7694	10.318	0.462	6.0353	297	[20]
0.492	1.508	0	0	4.854	10.83	0.448	6.24	328.029	[21]
0.748	1.252	0	0	4.87	11.078	0.440	6.385	344.47	[21]
0.782	0	1.218	0	4.8139	10.9131	0.441	6.2921	330.56	[20]
0.836	0	1.164	0	4.8152	10.9599	0.439	6.3092	332.96	[20]
0.89	0	1.11	0	4.818	11.0074	0.438	6.3327	335.84	[20]
0.935	0	1.065	0	4.8202	11.0506	0.436	6.3519	338.34	[20]
0.945	0	1.055	0	4.8201	11.053	0.436	6.3552	338.59	[20]
0.99	0	1.01	0	4.8209	11.0911	0.435	6.3726	340.74	[20]
0.998	1.002	0	0	4.91	11.126	0.441	6.457	352.737	[21]
1	0	1	0	4.815	11.08	0.435	6.37	339.841	[22]
1	0	1	0	4.821	11.105	0.434	6.381	341.621	[23]
1	0.07	0.93	0	4.825	11.111	0.434	6.383	342.196	[24]
1	0.12	0.88	0	4.8281	11.1098	0.435	6.3894	342.722	[25]
1	0.69	0.31	0	4.875	11.164	0.437	6.447	350.875	[26]
1	0.77	0.22	0	4.877	11.166	0.437	6.448	351.136	[26]
1.104	0.896	0	0	4.922	11.202	0.439	6.489	357.779	[21]
1.217	0.783	0	0	4.906	11.206	0.438	6.485	356.523	[21]
2	0	0	0	5.07389	11.21128	0.453	6.7534	384.166	[27]
2	0	0	0	5.081	11.224	0.453	6.778	386.544	[28]
0	0.172	1.826	0.002	4.7605	10.2116	0.466	5.9894	290.68	[1]
0	0.19	1.808	0.002	4.7613	10.219	0.466	5.9921	291.55	[1]
0	0.216	1.782	0.002	4.7628	10.2227	0.466	5.9933	291.81	[1]
0.002	0.194	1.802	0.002	4.7599	10.2299	0.465	5.9933	291.85	[1]
0.002	0.226	1.77	0.002	4.7619	10.2248	0.466	5.9943	291.85	[1]
1.021	0.086	0.896	0.003	4.829	11.116	0.434	6.393	343.171	[2]
0	0.092	1.904	0.004	4.757	10.2067	0.466	5.987	290.68	[1]

0.01	0.23	1.756	0.004	4.7636	10.2376	0.465	5.9989	292.55	[1]
0	0.238	1.756	0.006	4.7631	10.2351	0.465	5.9975	292.38	[1]
0.002	0.25	1.742	0.006	4.7646	10.236	0.465	5.9983	292.54	[1]
0.002	0.482	1.51	0.006	4.7723	10.2643	0.465	6.0147	294.62	[1]
800.0	0.47	1.516	0.006	4.774	10.266	0.465	6.0133	294.71	[1]
0.01	0.378	1.606	0.006	4.7698	10.2558	0.465	6.007	293.85	[1]
0.004	0.914	1.07	0.012	4.7832	10.3227	0.463	6.0337	297.92	[1]
0.004	0.912	1.07	0.012	4.785	10.325	0.463	6.038	298.308	[3]
0.005	0.399	1.583	0.012	4.7696	10.255	0.465	6.0053	293.733	[4]
0.005	0.399	1.583	0.012	4.7687	10.2555	0.465	6.0066	293.755	[4]
0.005	0.399	1.583	0.012	4.7688	10.256	0.465	6.0065	293.771	[4]
0.005	0.399	1.584	0.012	4.7701	10.2556	0.465	6.006	293.815	[4]
0	0.956	1.03	0.014	4.786	10.3304	0.463	6.04	298.62	[1]
0.01	0.778	1.198	0.014	4.7839	10.3133	0.464	6.0295	297.49	[1]
0.012	0.756	1.218	0.014	4.7787	10.3168	0.463	6.0315	297.36	[1]
0.012	0.928	1.046	0.014	4.7849	10.3275	0.463	6.0391	298.43	[1]
0.002	1.434	0.544	0.02	4.8002	10.4028	0.461	6.0748	303.36	[1]
0.02	0.98	0.98	0.02	4.787	10.341	0.463	6.044	299.192	[3]
0.004	1.704	0.266	0.026	4.8099	10.442	0.461	6.0892	305.83	[1]
0.012	1.96	0	0.028	4.8176	10.482	0.460	6.0995	308.01	[1]
0.006	0.825	1.139	0.03	4.7871	10.3325	0.463	6.0347	298.493	[4]
0.006	0.825	1.139	0.03	4.7891	10.3321	0.464	6.0346	298.601	[4]
0.006	0.825	1.139	0.03	4.7911	10.3316	0.464	6.035	298.731	[4]
0.01	1.778	0.182	0.03	4.8122	10.4524	0.460	6.0945	305.55	[1]
0.99	0.12	0.85	0.03	4.8295	11.1083	0.435	6.3872	342.658	[2]
0	1.134	0.824	0.042	4.7912	10.3642	0.462	6.055	300.67	[1]
0.004	1.936	0	0.06	4.8177	10.4789	0.460	6.1046	308.19	[1]
0.004	1.844	0.078	0.074	4.816	10.469	0.460	6.099	307.504	[3]
0.001	0.002	1.918	0.079	4.757	10.219	0.466	5.993	291.3	[5]
0	0	1.9	0.1	4.753	10.231	0.465	5.999	291.719	[6]
0	1.89	0	0.11	4.8233	10.4959	0.460	6.0966	308.64	[2]
0.002	1.806	0.074	0.118	4.8161	10.4689	0.460	6.0974	307.43	[1]
0	1.87	0	0.13	4.8245	10.4959	0.460	6.0974	308.757	[2]
0	1.1	0.75	0.15	4.798	10.387	0.462	6.055	301.762	[7]
0	1.1	0.75	0.15	4.798	10.39	0.462	6.055	301.849	[8]
0.001	0.004	1.832	0.163	4.761	10.254	0.464	6.007	293.3	[5]
0.001	0.003	1.832	0.164	4.76	10.244	0.465	6.006	292.8	[5]
0	0	1.8	0.2	4.761	10.258	0.464	6.013	293.665	[6]
0	1.78	0	0.22	4.826	10.514	0.459	6.105	309.8	[9]

0	1.6	0.4	4.773	10.317	0.463	6.043	297.576	[6]
0	1.548	0.451	4.775	10.344	0.462	6.049	298.8	[5]
0.001	1.543	0.453	4.773	10.351	0.461	6.055	299.1	[5]
1.52	0	0.48	4.8378	10.536	0.459	6.1234	312.116	[10]
1.319	0.052	0.545	4.831	10.558	0.458	6.137	313.075	[11]
1.297	0.057	0.567	4.844	10.552	0.459	6.135	313.563	[11]
1.225	0.089	0.596	4.828	10.549	0.458	6.109	311.135	[11]
0	1.4	0.6	4.781	10.356	0.462	6.067	300.39	[6]
1.4	0	0.6	4.84857	10.55545	0.459	6.14054	314.266	[12]
1.38	0	0.62	4.84	10.556	0.459	6.135	313.5	[9]
0.002	1.368	0.626	4.778	10.398	0.460	6.078	302	[5]
0.002	1.356	0.64	4.782	10.406	0.460	6.083	302.7	[5]
1.112	0.078	0.728	4.842	10.552	0.459	6.136	313.558	[11]
0	1.2	0.8	4.798	10.416	0.461	6.102	304.953	[6]
1.1	0	0.9	4.852	10.576	0.459	6.142	315.1	[9]
0.002	1.028	0.964	4.799	10.499	0.457	6.127	308.7	[5]
0	1.03	0.97	4.794	10.491	0.457	6.123	307.949	[13]
1.01	0	0.99	4.8578	10.5818	0.459	6.1641	316.861	[10]
0	1	1	4.80757	10.451	0.460	6.12446	307.717	[14]
0	1	1	4.80757	10.451	0.460	6.12446	307.717	[14]
0	1	1	4.797	10.48	0.458	6.135	308.422	[6]
0	1	1	4.797	10.48	0.458	6.135	308.422	[6]
1	0	1	4.86184	10.58358	0.459	6.1695	317.456	[12]
1	0	1	4.86184	10.58358	0.459	6.1695	317.456	[12]
0.94	0	1.06	4.856	10.585	0.459	6.168	317	[9]
0	0.8	1.2	4.813	10.506	0.458	6.16	311.483	[6]
0	0.6	1.4	4.83927	10.52411	0.460	6.17903	314.692	[14]
0.6	0	1.4	4.871	10.594	0.460	6.2	319.9	[9]
0.6	0	1.4	4.8789	10.60587	0.460	6.20468	321.061	[12]
0.584	0	1.416	4.8734	10.5991	0.460	6.1982	320.16	[10]
0	0.2	1.8	4.862	10.553	0.461	6.208	318.524	[6]
0.18	0	1.82	4.896	10.603	0.462	6.241	324	[9]
0	0.17	1.83	4.879	10.589	0.461	6.234	322.072	[13]
0	0.015	1.993	4.893	10.592	0.462	6.243	323.55	[15]
0	0	2	4.8968	10.59	0.462	6.25	324.1	[16]
0	0	2	4.894	10.61	0.461	6.259	325.001	[6]
0	0	2	4.9023	10.5964	0.463	6.2567	325.015	[17]
0	0	2	4.9042	10.597	0.463	6.2545	325.045	[18]
0	0	2	4.906	10.598	0.463	6.255	325.2	[5]
	0 0 0.001 1.52 1.319 1.297 1.225 0 1.4 1.38 0.002 0.002 1.112 0 1.1 0.002 0 1.1 0.002 0 1.1 0 0 0 1.01 0 0 0 0 1.01 0 0 0 0 0 0 0 1.01 0 0 0 0 0 0 0 0	01.601.5480.0011.5431.5201.3190.0521.2970.0571.2250.08901.41.401.3800.0021.3680.0021.3561.1120.07801.21.1001.21.1001.02801.02801.031.01001010101010101010101010100.60.600.584000.1700.015000	01.60.401.5480.4510.0011.5430.4531.5200.481.3190.0520.5451.2970.0570.5671.2250.0890.59601.40.61.400.61.3800.620.0021.3680.6260.0021.3560.641.1120.0780.72801.20.81.100.90.0021.0280.96401.030.971.0100.9901101101101101101101101101101.40.601.40.601.40.601.40.601.40.601.40.601.40.601.40.601.40.601.40.601.40.601.40.601.40.601.40.6020020020020020020 <td>0 1.6 0.4 4.773 0 1.548 0.451 4.775 0.001 1.543 0.453 4.773 1.52 0 0.48 4.8378 1.319 0.052 0.545 4.831 1.297 0.057 0.567 4.844 1.225 0.089 0.596 4.828 0 1.4 0.6 4.781 1.4 0 0.6 4.84857 1.38 0 0.62 4.84 0.002 1.368 0.626 4.778 0.002 1.368 0.626 4.782 1.112 0.078 0.728 4.842 0 1.2 0.8 4.799 0 1.03 0.97 4.794 1.01 0 0.99 4.8578 0 1 1 4.80757 0 1 1 4.797 0 1 1 4.80757 0<!--</td--><td>01.60.44.77310.31701.5480.4514.77510.3440.0011.5430.4534.77310.3511.5200.484.837810.5361.3190.0520.5454.83110.5581.2970.0570.5674.84410.5521.2250.0890.5964.82810.54901.40.64.78110.3561.400.624.8410.5560.0021.3680.6264.77810.3980.0021.3660.644.78210.4061.1120.0780.7284.84210.55201.20.84.79810.4161.100.94.85210.5760.0021.0280.9644.79910.49901.030.974.79410.4911.0100.994.857810.58180114.8075710.4510114.8075710.4510114.8075710.4510114.8075710.4510114.8075710.4510114.8075710.4510114.8075710.451014.8618410.583581014.8618410.5835800.61.44.873410.59400.21.8<t< td=""><td>0 1.6 0.4 4.773 10.317 0.463 0 1.548 0.451 4.775 10.344 0.462 0.001 1.543 0.453 4.773 10.351 0.461 1.52 0 0.48 4.8378 10.536 0.459 1.319 0.052 0.545 4.831 10.558 0.458 1.297 0.057 0.567 4.844 10.552 0.459 1.225 0.089 0.596 4.828 10.549 0.458 0 1.4 0.6 4.781 10.356 0.462 1.48 0 0.6 4.84857 10.5545 0.459 0.002 1.368 0.626 4.778 10.398 0.460 0.002 1.368 0.626 4.778 10.406 0.460 1.112 0.078 0.728 4.842 10.552 0.459 0 1.2 0.8 4.799 10.490 0.457 1.01<!--</td--><td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td><td>0 1.6 0.4 4.773 10.317 0.463 6.043 297.576 0 1.548 0.451 4.775 10.344 0.462 6.049 298.8 0.001 1.543 0.453 4.773 10.351 0.461 6.055 299.1 1.52 0 0.48 4.8378 10.558 0.458 6.137 313.075 1.297 0.057 0.567 4.844 10.552 0.459 6.135 313.563 1.225 0.089 0.596 4.828 10.549 0.458 6.109 311.135 0 1.4 0.6 4.781 10.356 0.462 6.067 302 0.002 1.368 0.626 4.778 10.398 0.460 6.073 302 0.002 1.368 0.626 4.778 10.522 0.459 6.136 313.55 0 1.2 0.8 4.798 10.416 0.460 6.023 302.7 1.11</td></td></t<></td></td>	0 1.6 0.4 4.773 0 1.548 0.451 4.775 0.001 1.543 0.453 4.773 1.52 0 0.48 4.8378 1.319 0.052 0.545 4.831 1.297 0.057 0.567 4.844 1.225 0.089 0.596 4.828 0 1.4 0.6 4.781 1.4 0 0.6 4.84857 1.38 0 0.62 4.84 0.002 1.368 0.626 4.778 0.002 1.368 0.626 4.782 1.112 0.078 0.728 4.842 0 1.2 0.8 4.799 0 1.03 0.97 4.794 1.01 0 0.99 4.8578 0 1 1 4.80757 0 1 1 4.797 0 1 1 4.80757 0 </td <td>01.60.44.77310.31701.5480.4514.77510.3440.0011.5430.4534.77310.3511.5200.484.837810.5361.3190.0520.5454.83110.5581.2970.0570.5674.84410.5521.2250.0890.5964.82810.54901.40.64.78110.3561.400.624.8410.5560.0021.3680.6264.77810.3980.0021.3660.644.78210.4061.1120.0780.7284.84210.55201.20.84.79810.4161.100.94.85210.5760.0021.0280.9644.79910.49901.030.974.79410.4911.0100.994.857810.58180114.8075710.4510114.8075710.4510114.8075710.4510114.8075710.4510114.8075710.4510114.8075710.4510114.8075710.451014.8618410.583581014.8618410.5835800.61.44.873410.59400.21.8<t< td=""><td>0 1.6 0.4 4.773 10.317 0.463 0 1.548 0.451 4.775 10.344 0.462 0.001 1.543 0.453 4.773 10.351 0.461 1.52 0 0.48 4.8378 10.536 0.459 1.319 0.052 0.545 4.831 10.558 0.458 1.297 0.057 0.567 4.844 10.552 0.459 1.225 0.089 0.596 4.828 10.549 0.458 0 1.4 0.6 4.781 10.356 0.462 1.48 0 0.6 4.84857 10.5545 0.459 0.002 1.368 0.626 4.778 10.398 0.460 0.002 1.368 0.626 4.778 10.406 0.460 1.112 0.078 0.728 4.842 10.552 0.459 0 1.2 0.8 4.799 10.490 0.457 1.01<!--</td--><td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td><td>0 1.6 0.4 4.773 10.317 0.463 6.043 297.576 0 1.548 0.451 4.775 10.344 0.462 6.049 298.8 0.001 1.543 0.453 4.773 10.351 0.461 6.055 299.1 1.52 0 0.48 4.8378 10.558 0.458 6.137 313.075 1.297 0.057 0.567 4.844 10.552 0.459 6.135 313.563 1.225 0.089 0.596 4.828 10.549 0.458 6.109 311.135 0 1.4 0.6 4.781 10.356 0.462 6.067 302 0.002 1.368 0.626 4.778 10.398 0.460 6.073 302 0.002 1.368 0.626 4.778 10.522 0.459 6.136 313.55 0 1.2 0.8 4.798 10.416 0.460 6.023 302.7 1.11</td></td></t<></td>	01.60.44.77310.31701.5480.4514.77510.3440.0011.5430.4534.77310.3511.5200.484.837810.5361.3190.0520.5454.83110.5581.2970.0570.5674.84410.5521.2250.0890.5964.82810.54901.40.64.78110.3561.400.624.8410.5560.0021.3680.6264.77810.3980.0021.3660.644.78210.4061.1120.0780.7284.84210.55201.20.84.79810.4161.100.94.85210.5760.0021.0280.9644.79910.49901.030.974.79410.4911.0100.994.857810.58180114.8075710.4510114.8075710.4510114.8075710.4510114.8075710.4510114.8075710.4510114.8075710.4510114.8075710.451014.8618410.583581014.8618410.5835800.61.44.873410.59400.21.8 <t< td=""><td>0 1.6 0.4 4.773 10.317 0.463 0 1.548 0.451 4.775 10.344 0.462 0.001 1.543 0.453 4.773 10.351 0.461 1.52 0 0.48 4.8378 10.536 0.459 1.319 0.052 0.545 4.831 10.558 0.458 1.297 0.057 0.567 4.844 10.552 0.459 1.225 0.089 0.596 4.828 10.549 0.458 0 1.4 0.6 4.781 10.356 0.462 1.48 0 0.6 4.84857 10.5545 0.459 0.002 1.368 0.626 4.778 10.398 0.460 0.002 1.368 0.626 4.778 10.406 0.460 1.112 0.078 0.728 4.842 10.552 0.459 0 1.2 0.8 4.799 10.490 0.457 1.01<!--</td--><td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td><td>0 1.6 0.4 4.773 10.317 0.463 6.043 297.576 0 1.548 0.451 4.775 10.344 0.462 6.049 298.8 0.001 1.543 0.453 4.773 10.351 0.461 6.055 299.1 1.52 0 0.48 4.8378 10.558 0.458 6.137 313.075 1.297 0.057 0.567 4.844 10.552 0.459 6.135 313.563 1.225 0.089 0.596 4.828 10.549 0.458 6.109 311.135 0 1.4 0.6 4.781 10.356 0.462 6.067 302 0.002 1.368 0.626 4.778 10.398 0.460 6.073 302 0.002 1.368 0.626 4.778 10.522 0.459 6.136 313.55 0 1.2 0.8 4.798 10.416 0.460 6.023 302.7 1.11</td></td></t<>	0 1.6 0.4 4.773 10.317 0.463 0 1.548 0.451 4.775 10.344 0.462 0.001 1.543 0.453 4.773 10.351 0.461 1.52 0 0.48 4.8378 10.536 0.459 1.319 0.052 0.545 4.831 10.558 0.458 1.297 0.057 0.567 4.844 10.552 0.459 1.225 0.089 0.596 4.828 10.549 0.458 0 1.4 0.6 4.781 10.356 0.462 1.48 0 0.6 4.84857 10.5545 0.459 0.002 1.368 0.626 4.778 10.398 0.460 0.002 1.368 0.626 4.778 10.406 0.460 1.112 0.078 0.728 4.842 10.552 0.459 0 1.2 0.8 4.799 10.490 0.457 1.01 </td <td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td> <td>0 1.6 0.4 4.773 10.317 0.463 6.043 297.576 0 1.548 0.451 4.775 10.344 0.462 6.049 298.8 0.001 1.543 0.453 4.773 10.351 0.461 6.055 299.1 1.52 0 0.48 4.8378 10.558 0.458 6.137 313.075 1.297 0.057 0.567 4.844 10.552 0.459 6.135 313.563 1.225 0.089 0.596 4.828 10.549 0.458 6.109 311.135 0 1.4 0.6 4.781 10.356 0.462 6.067 302 0.002 1.368 0.626 4.778 10.398 0.460 6.073 302 0.002 1.368 0.626 4.778 10.522 0.459 6.136 313.55 0 1.2 0.8 4.798 10.416 0.460 6.023 302.7 1.11</td>	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0 1.6 0.4 4.773 10.317 0.463 6.043 297.576 0 1.548 0.451 4.775 10.344 0.462 6.049 298.8 0.001 1.543 0.453 4.773 10.351 0.461 6.055 299.1 1.52 0 0.48 4.8378 10.558 0.458 6.137 313.075 1.297 0.057 0.567 4.844 10.552 0.459 6.135 313.563 1.225 0.089 0.596 4.828 10.549 0.458 6.109 311.135 0 1.4 0.6 4.781 10.356 0.462 6.067 302 0.002 1.368 0.626 4.778 10.398 0.460 6.073 302 0.002 1.368 0.626 4.778 10.522 0.459 6.136 313.55 0 1.2 0.8 4.798 10.416 0.460 6.023 302.7 1.11

0	0	0	2	4.90338	10.60016	0.463 6.25753	325.245	[14]
0	0	0	2	4.90338	10.60016	0.463 6.25753	325.246	[14]

[1] Louisnathan, S.J., and Smith, J.V. (1968) Cell dimensions of olivine. Mineralogical
 Magazine, 36, 1123-1134.

- 977 [2] RRUFF.info
- 978 [3] Birle, J.D., Gibbs, G.V., Moore, P.B., and Smith, J.V. (1968) Crystal structures of 979 natural olivines. American Mineralogist, 53, 807-824.
- 980 [4] Ottonello, G., Princivalle, F., and Della Giusta, A., 1990. Temperature, composition,
 981 and fO2 effects on intersite distribution of Mg and Fe2+ in olivines. Physics and
 982 Chemistry of Minerals, 17(4), 301-312.
- 983 [5] Frances, C.A. (1985) New data on the forsterite-tephroite series. American 984 Mineralogist, 70, 568-575.
- [6] Urusov, V.S., Lapina, I.V., Kabala, Yu.K., and Kravchuk, I.F. (1984) Isomorphism in
 the forsterite-tephrolite series. Geokhimiya, 7, 1047-1055.
- 987 [7] Smyth, J.R., and Hazen, R.M. (1973) The crystal structures of forsterite and 988 hortonolite at several temperatures up to 900 C. American Mineralogist, 58, 588-593.
- 989 [8] Hazen, R.M., 1977. Effects of temperature and pressure on the crystal structure of 990 ferromagnesian olivine. American Mineralogist, 62(3-4), 286-295.
- [9] Annersten, H., Adetunji, J., and Filippidis, A., 1984. Cation ordering in Fe-Mn silicate
 olivines. American Mineralogist, 69(11-12), 1110-1115.
- [10] Ballet, O., Fuess, H., and Fritzsche, T., 1987. Magnetic structure and cation
 distribution in (Fe, Mn) 2 SiO 4 (olivine) by neutron diffraction. Physics and chemistry of
 minerals, 15(1), 54-58.
- [11] Mossman, D.J., and Pawson, D.J., 1976. X-ray and optical characterization of the
 forsterite-fayalite-tephroite series with comments on knebelite from Bluebell Mine,
 British Columbia. The Canadian Mineralogist, 14(4), 479-486.
- 999 [12] Redfern, S.A., Knight, K.S., Henderson, C.M.B., and Wood, B.J., 1998. Fe-Mn 1000 cation ordering in fayalite-tephroite (FexMn1- x) 2SiO4 olivines: a neutron diffraction 1001 study. Mineralogical Magazine, 62(5), 607-615.
- 1002 [13] Francis, C.A., and Ribbe, P.H., 1980. The forsterite-tephroite series: I. Crystal 1003 structure refinements. American Mineralogist, 65(11-12), 1263-1269.
- 1004 [14] Matsui, Y., and Syono, Y. (1968) Unit cell dimensions of some synthetic olivine 1005 group solid solutions. Geochemical Journal, 2, 51-59.
- 1006 [15] Lucchetti, G., 1991. Tephroite from the Val Graveglia metacherts (Liguria, Italy):
- mineral data and reactions for Mn-silicates and Mn-Ca-carbonates. European Journal ofMineralogy, 63-68.
- 1009 [16] Sharp, Z.D., Hazen, R.M., and Finger, L.W., 1987. High-pressure crystal chemistry 1010 of monticellite, CaMgSiO 4. American Mineralogist, 72(7-8), 748-755.
- 1011 [17] Fujino, K., Sasaki, S., Takeuchi, Y., and Sadanaga, R. (1981) X-ray determination
- 1012 of electron distributions in forsterite, fayalite and tephroite. Acta Crystallographica B, 37,
- 1013 **513-518**.
- 1014 [18] Takei, H., 1976. Czochralski growth of Mn2SiO4 (tephroite) single crystal and its 1015 properties. Journal of Crystal Growth, 34(1), 125-131.

1016 [19] Brown, G.E., and Prewitt, C.T., 1973. High-temperature crystal chemistry of 1017 hortonolite. Am. Mineral, 58, 577-587.

1018 [20] WeRNrnl, R.D., and Lurn, W.C., 1973. Two-Phase Data for the Join Monticellite

- 1019 (GaMgSiO.)-Forsterite (MgSiO,): Experimental Results and Numerical Analysis. 1020 American Mineralogist, 58, 998-1008.
- 1021 [21] Wyderko, M., and Mazanek, E., 1968. The mineralogical characteristics of calcium-1022 iron olivines. Mineral. Mag, 36, 955-961.
- 1023 [22] Brown, G.B., and West, J., 1928. X. The structure of monticellite (MgCaSiO4). 1024 Zeitschrift für Kristallographie-Crystalline Materials, 66(1-6), 154-161.
- [23] Bradley, R.S., Engel, P., and Munro, D.C., 1966. Subsolidus Solubility Between
 R2.. SiO4 and LiR.. PO 4: A Hydrothermal Investigation. Min. Mag, 35, 742-755.
- 1027 [24] Lncnn, G.A., and eNo, E.P., 1978. High-temperature structural study of six olivines.1028 American Mineralogist, 63, 365-377.
- 1029 [25] Pilati, T., Demartin, F., and Gramaccioli, C.M., 1995. Thermal parameters for 1030 minerals of the olivine group: their implication on vibrational spectra, thermodynamic 1031 functions and transferable force fields. Acta Crystallographica Section B: Structural 1032 Science, 51(5), 721-733.
- 1033 [26] Folco, L., and Mellini, M., 1997. Crystal chemistry of meteoritic kirschsteinite. 1034 European Journal of Mineralogy, 9(5), 969-973.
- 1035 [27] Gobechiya, E.R., Yamnova, N.A., Zadov, A.E., and Gazeev, V.M. (2008. Calcio-
- 1036 olivine γ -Ca 2 SiO 4: I. Rietveld refinement of the crystal structure. Crystallography 1037 Reports, 53(3), 404-408.
- 1038 [28] Udagawa, S., Urabe, K., Natsume, M., and Yano, T., 1980. Refinement of the 1039 crystal structure of v-Ca2SiO4. Cement and Concrete Research 10(2) 139-144
- 1039 crystal structure of γ -Ca2SiO4. Cement and Concrete Research, 10(2), 139-144.
- 1040

1042 Table A1h. Spinel regression data

	Spinel-phase)		
Mineral	Chemical composition	<i>a</i> (Å)	V (Å ³)	Reference
	Fe + 🗆			
Maghemite	Fe _{2.667} O ₄	8.33	578.01	[9]
Magnetite	Fe ²⁺ _{0.26} Fe ³⁺ _{2.49} O ₄	8.3583	583.921	[10]
Magnetite	Fe ²⁺ _{0.52} Fe ³⁺ _{2.32} O ₄	8.3799	588.459	[10]
Magnetite	Fe ²⁺ _{0.48} Fe ³⁺ _{2.35} O ₄	8.3806	588.607	[10]
Magnetite	Fe ²⁺ _{0.50} Fe ³⁺ _{2.33} O ₄	8.3833	589.176	[10]
Magnetite	Fe ²⁺ 0.57Fe ³⁺ 2.28O ₄	8.3846	589.45	[10]
Magnetite	Fe ²⁺ _{0.56} Fe ³⁺ _{2.29} O ₄	8.3852	589.577	[10]
Magnetite	Fe ₃ O ₄	8.394	591.435	[15]
Magnetite	Fe ₃ O ₄	8.3941	591.456	[3]
Magnetite	Fe ₃ O ₄	8.395	591.646	[6]
Magnetite	Fe ₃ O ₄	8.3958	591.815	[13]
Magnetite	Fe ₃ O ₄	8.3967	592.006	[1]
Magnetite	Fe ₃ O ₄	8.3969	592.048	[4]
Magnetite	Fe ₃ O ₄	8.397	592.069	[8]
Ū	Fe + Al			
Magnetite	Fe ₃ O ₄	8.397	592.069	[8]
Hercynite	(Al _{1.897} Fe _{1.103}) O ₄	8.1646	544.258	[16]
Hercynite	Fe Al ₂ O ₄	8.15579	542.498	[28]
,	<i>Fe</i> + <i>Al</i> + □			
Magnetite	Fe ²⁺ _{0.70} Fe ³⁺ _{2.15} Al _{0.05} O ₄	8.3887	590.315	[10]
Magnetite	Fe ²⁺ _{0.64} Fe ³⁺ _{2.20} Al _{0.04} O ₄	8.3844	589.408	[10]
Magnetite	Fe ²⁺ _{0.77} Fe ³⁺ _{2.07} Al _{0.08} O ₄	8.391	590.801	[10]
Magnetite	Fe ²⁺ _{0.61} Fe ³⁺ _{2.21} Al _{0.05} O ₄	8.3824	588.986	[10]
Magnetite	Fe ²⁺ _{0.62} Fe ³⁺ _{2.20} Al _{0.05} O ₄	8.387	589.956	[10]
Magnetite	Fe ²⁺ _{0.70} Fe ³⁺ _{2.12} Al _{0.07} O ₄	8.3877	590.104	[10]
Magnetite	Fe ²⁺ _{0.65} Fe ³⁺ _{2.16} Al _{0.08} O ₄	8.3833	589.176	[10]
Magnetite	Fe ²⁺ _{0.67} Fe ³⁺ _{2.11} Al _{0.11} O ₄	8.3795	588.375	[10]
Magnetite	Fe ²⁺ _{0.68} Fe ³⁺ _{2.09} Al _{0.12} O ₄	8.3842	589.366	[10]
Magnetite	Fe ²⁺ 0.47Fe ³⁺ 2.29Al0.07O4	8.3742	587.259	[10]
Magnetite	Fe ²⁺ _{0.70} Fe ³⁺ _{2.05} Al _{0.15} O ₄	8.3904	590.674	[10]
Magnetite	Fe ²⁺ _{0.51} Fe ³⁺ _{2.23} Al _{0.10} O ₄	8.3732	587.049	[10]
Magnetite	Fe ²⁺ _{0.64} Fe ³⁺ _{2.08} Al _{0.16} O ₄	8.3776	587.975	[10]
Magnetite	Fe ²⁺ _{0.50} Fe ³⁺ _{2.22} Al _{0.12} O ₄	8.3794	588.354	[10]
Magnetite	Fe ²⁺ _{0.18} Fe ³⁺ _{2.51} Al _{0.03} O ₄	8.3628	584.864	[10]
Magnetite	Fe ²⁺ _{0.55} Fe ³⁺ _{2.14} Al _{0.16} O ₄	8.3717	586.734	[10]
Magnetite	Fe ²⁺ _{0.62} Fe ³⁺ _{2.07} Al _{0.19} O ₄	8.379	588.27	[10]
Magnetite	Fe ²⁺ _{0.19} Fe ³⁺ _{2.48} Al _{0.05} O ₄	8.3612	584.529	[10]
Magnetite	Fe ²⁺ _{0.54} Fe ³⁺ _{2.12} Al _{0.19} O ₄	8.3728	586.965	[10]
Magnetite	Fe ²⁺ _{0.44} Fe ³⁺ _{2.19} Al _{0.18} O ₄	8.3581	583.879	[10]
Magnetite	Fe ²⁺ _{0.59} Fe ³⁺ _{2.04} Al _{0.23} O ₄	8.3651	585.347	[10]
Magnetite	Fe ²⁺ _{0.19} Fe ³⁺ _{2.42} Al _{0.12} O ₄	8.355	583.229	[10]
Magnetite	Fe ²⁺ _{0.43} Fe ³⁺ _{2.17} Al _{0.21} O ₄	8.3562	583.481	[10]

Magnetite	Fe ²⁺ 0.46Fe ³⁺ 2.13Al0.24O4	8.3496	582.099	[10]
Magnetite	$Fe^{2+}_{0.48}Fe^{3+}_{2.10}Al_{0.25}O_{4}$	8.3546	583.146	10
Magnetite	$Fe^{2+}_{0.44}Fe^{3+}_{2.14}Al_{0.23}O_{4}$	8.3588	584.025	101
Magnetite	$Fe^{2+}_{0.24}Fe^{3+}_{2.33}Al_{0.18}O_{4}$	8.3471	581.576	[10]
Magnetite	$Fe^{2+}_{0.36}Fe^{3+}_{2.21}Al_{0.22}O_{4}$	8.3493	582.036	[10]
Magnetite	Fe^{2+} ae^{3+} ae^{3+} ae^{3+}	8 3481	581 786	[10]
Magnetite	Fe^{2+} 16 Fe^{3+} 25 $Alo 2104$	8 3278	577 552	[10]
Magnetite	Fe^{2+} of Fe^{3+} of Fe^{3+} of Fe^{3+}	8 3406	580 219	[10]
Magnetite	Fe^{2+} $arga = Fe^{3+}$ $arga = Alarga = O_4$	8 3369	579 447	[10]
Magnetite	Ee^{2+} on Ee^{3+} on Ee^{3+}	8 326	577 177	[10]
Magnetite	Ee^{2+} on Ee^{3+} on A in A	8 3395	579 989	[10]
Magnetite	Ee^{2+} e^{3+} $4Ale e^{0}$	8 3400	580 282	[10]
Magnetite	Ee^{2+} Ee^{3+} Ee^{3+} Ee^{3+}	8 3174	575 301	[10]
Magnetite	Fe = 0.10Fe 2.23AI0.37O4 Fe = Ti	0.3174	575.591	[IU]
Magnetite		8.4067	594.123	[1]
Magnetite	$Fe_{2} \circ Ti_{0} \circ SO_{4}$	8.4095	594.717	[1]
Magnetite	Fe ₂ 814 Tio 186 O4	8 4 1 4 5	595 779	[1]
Magnetite	Fe ₂ 75°Tio 242O4	8 4 2 5	598 012	[1]
Magnetite	Fe2 646 Tio 254 O4	8 4348	600 101	[1]
Magnetite	Fe2 520 Tio 462 O4	8 4 5 6 9	604 83	[1]
Ulvospinel	$Fe_{2} \circ Ti_{1} \circ O_{4}$	8 5297	620 585	[14]
Ulvospinel	$Fe_{24} = Ti_{0} = Ti_{0} = Ti_{0}$	8 5131	616 969	[14]
Llivospinel	Feb acc Tio 704	8 4 9 6 9	613 453	[14]
Ulvospinel	$Fe_{2,200} = 10.734 O 4$	8 4802	609 843	[14]
Ulvospinel	Fea 440 Tio 554 O4	8 4632	606 183	[14]
Llivospinel	$Fe_{0.55}Ti_{0.04}O_{4}$	8 4875	611 42	[1]
Llivospinel	Feo 007Tio 740O4	8 4972	613 518	[1]
Lilvospinel	$F_{0,2}$	8 4 9 7 5	613 583	[1]
Llivospinel	$Fe_{0.04}$	8 5052	615 253	[']
Lilvospinel	$F_{0,248} = 10.75204$	8 5050	615 405	[']
Lilvospinel	$Fe_{2,247} = 10.75104$	8 5070	615 830	[']
Ulvospinel	$E_{2.244} = 0.756 + $	8 5130	617 1/3	[']
Ulvospinel	$Fe_{2.2} I I_{0.8} O_4$	0.0109	619 006	[1]
Ulvospinel	$Fe_{2.155} Fi_{0.845} O_4$	9.522	620.093	[1]
Ulvospinel	$Fe_{2.092} Fi_{0.908} O_4$	9.5274	620.003	[1]
Ulvospinel	$Fe_{2.07} \Pi_{0.93} O_4$	0.0007	621 121	[1]
Ulvospinel	$Fe_{2.055} Fi_{0.945} O_4$	0.0022	021.131	[1]
Ulvospinei	$Fe_{2.134} \Pi_{0.866} O_4$	0.5139	017.143	[၁] [5]
Uivospinei	$Fe_{2.111} \Pi_{0.889} O_4$	0.5139	017.143	[ວ] [44]
Uivospinei	HFe_2O_4	0.0439	023.09	[11]
Magnatita		0 207	502 060	101
Magnetita	$(E_{0}, \dots, M_{d}) \cap$	0.391 0 2075	502 175	[0]
Magnaciaforrita	$(\Gamma = 2.961 \text{ IVI} = 0.039) \text{ U}_4$	0.3913	592.175	[4] [26]
Magnasiofarrita	$(Fe_2 Wg) O_4$	0.39/04	092.070 501.670	[20] [26]
Magnesiolerrite	$(\Gamma e_2 \text{ IVIG}) O_4$	0.39314	591.070	[∠0] [27]
wagnesioternie	$(re_2 NG) O_4$	ō.30	J04.277	[27]
	re + Ur			

Magnetite	Fe ₃ O ₄	8.397	592.069	[8]
Chromite	Fe Cr ₂ O ₄	8.3765	587.743	[7]
	Fe + Ni			
Magnetite	Fe ₃ O ₄	8.397	592.069	[8]
Magnetite	(Fe ²⁺ _{0.51} Ni _{0.48} Co _{0.01})Fe ³	8.368	585.956	[23]
÷ ·	² 0 ₄	0.0000	504 000	10.43
l revorite	Fe _{2.42} NI.52 Cr.03 Al.01	8.3626	584.822	[24]
Trovorito	$O_{.02} O_4$	0 330	570 995	[25]
TEVUILE	$(1\times10.9631\times1110.0011\times190.002)$	0.339	019.000	[20]
	0.013/(1 - 1.964 - 0.014 - 0.013)			
	Fe + 7n			
Magnetite	Fe ₃ O ₄	8.397	592.069	[8]
Franklinite	Fe _{2.024} Zn _{.976} O ₄	8.4418	601.596	[20]
Franklinite	Zn Fe ₂ O ₄	8.4412	601.468	[21]
Franklinite	(Zn _{1.08} Fe _{1.92}) O ₄	8.443	601.853	[22]
	Fe + V	_		
Magnetite	Fe ₃ O ₄	8.397	592.069	[8]
Coulsonite	$Fe V_2 U_4$	8.453	603.994	[19]
Illuceninel	re + II + Mg	9 5071	620 019	[0]
Uvospinel	Mga as For Time O	0.0271	020.010 618 122	[2] [2]
Illyosninel	$M_{0,291} = 1.768 + 10.94 \cup 4$	8 5104	616 382	[4] [2]
Ulvospinel	$M_{0} = 5311 = 0.511 + 0.9604$ Ma 70 Fe1 220 Tio 0004	8 5021	614 58	[<u>~</u>]
Ulvospinel	Man 918 Fe1 108 Tin 98 O4	8.4946	612.955	[2]
	Fe + Mg + AI			r <u>-</u> 1
Hercynite	(Al _{1.926} Mg _{.177} Fe _{.897)} O ₄	8.1494	541.224	[16]
Hercynite	(AI _{1.938} Mg _{.303} Fe _{.759})	8.1406	539.472	[16]
Hercynite		8,1396	539 274	[17]
Hercynite	Fe 924 Al _{1 948} Ma 116 O ₄	8.1511	541.563	[18]
Horovoito	(Al _{1.962} Mg _{.544} Fe _{.494})	0 1001	E2E 902	
петсупце	O ₄	0.1221	JJJ.0UJ	[16]
Hercynite	Fe _{.878} Al _{1.964} Mg _{.138} O ₄	8.1584	543.019	[18]
Hercynite	(AI _{1.964} IVI <u>9.419</u> Fe.617) O4	8.1306	537.487	[16]
Hercynite	Fe _{.84} Al _{1.966} Mg _{.19} O ₄	8.146	540.547	[18]
Hercynite	(Al _{1.981} Mg _{.648} Fe _{.371})	8.1134	534.083	[46]
-	(A)			
Hercynite	יתיו.982 ויוש.726 רש.292) O₄	8.1071	532.84	[16]
Hercynite	(Al _{1.99} Mg _{.816} Fe ₁₉₄) O ₄	8.1006	531.559	[16]
Hercynite	Al _{1.999} Mg _{.89} Fe _{.111} O ₄	8.0937	530.202	[16]
Hercynite	Al _{1.999} Mg _{.955} Fe _{.046} O ₄	8.0895	529.377	[16]
	Mn + Ti + Fe			
Ulvospinel	Ti(Fe _{0 804} Mn _{1 196})O ₄	8.6315	643.071	[11]

Ulvospinel	Ti(Fe _{0.6} Mn _{1.4})O ₄	8.6429	645.622	[11]
Ulvospinel	Ti(Fe _{0.378} Mn _{1.622})O ₄	8.6556	648.472	[11]
Ulvospinel	Ti(Fe _{0.174} Mn _{1.826})O ₄	8.6651	650.61	[11]
Ulvospinel	TiMn ₂ O ₄	8.6789	653.723	[11]
Ulvospinel	Ti(Fe _{1.804} Mn _{0.196})O ₄	8.557	626.563	[11]
Ulvospinel	Ti(Fe _{1.604} Mn _{0.396})O ₄	8.5688	629.158	[11]
Ulvospinel	Ti(Fe _{1.424} Mn _{0.576})O ₄	8.5837	632.446	[11]
Ulvospinel	Ti(Fe _{1.218} Mn _{0.782})O ₄	8.6004	636.145	[11]
Ulvospinel	TiFe ₂ O ₄	8.5439	623.69	[11]
Ulvospinel	Ti(Fe _{1.008} Mn _{0.992})O ₄	8.6112	638.544	[11]
	Fe + Cr + Mg	g		
Chromite	(Fe _{0.6} Mg _{0.4})Cr ₂ O ₄	8.3577	583.795	[7]
Chromite	(Fe _{0.65} Mg _{0.35})Cr ₂ O ₄	8.362	584.696	[7]
Chromite	(Fe _{0.67} Mg _{0.33})Cr ₂ O ₄	8.3613	584.55	[7]
Chromite	(Fe _{0.76} Mg _{0.24})Cr ₂ O ₄	8.3672	585.788	[7]
Chromite	(Fe _{0.87} Mg _{0.13})Cr ₂ O ₄	8.371	586.586	[7]
Chromite	(Fe _{0.91} Mg _{0.09})Cr ₂ O ₄	8.3739	587.196	[7]
Chromite	FeCr ₂ O ₄	8.3765	587.743	[7]
Magnesiochromite	MgCr ₂ O ₄	8.3327	578.572	[12}
Magnesiochromite	Mg _{0.984} Fe _{0.024} Cr _{1.992} O ₄	8.334	578.843	[7]
Magnesiochromite	Mg _{0.932} Fe _{0.072} Cr _{1.996} O ₄	8.3352	579.093	[7]
Magnesiochromite	(Mg _{0.87} Fe _{0.13})Cr ₂ O ₄	8.3379	579.656	[7]
Magnesiochromite	(Mg _{0.8} Fe _{0.2})Cr ₂ O ₄	8.3415	580.407	[7]
Magnesiochromite	(Mg _{0.68} Fe _{0.32})Cr ₂ O ₄	8.3462	581.388	[7]
Magnesiochromite	(Mg _{0.63} Fe _{0.37})Cr ₂ O ₄	8.3465	581.451	[7]
Magnesiochromite	(Ma _{0.67} Fe _{0.33})Cr ₂ O ₄	8.349	581.974	[7]

1043 [1] Bosi, F., Halenius, U., and Skogby, H. (2009) Crystal chemistry of the magnetite-1044 ulvospinel series. American Mineralogist, 94, 181-189.

1045 [2] Bosi, F., Halenius, U., and Skogby, H. (2014) Crystal chemistry of the ulvospinel-1046 qandilite series. American Mineralogist, 99, 847-851.

1047 [3] Fleet, M.E. (1981) The structure of magnetite, Acta Crystallographica, B37, 917-920.

- 1048 [4] Fleet, M.E. (1984) The structure of magnetite: two annealed natural magnetites, 1049 Fe3.005O4 and Fe2.96Mg0.04O4, Acta Crystallographica, C40, 1491-1493.
- 1050 [5] Gatta, G.D., Bosi, F., McIntyre, G.J., and Halenius, U. (2014) Static positional 1051 disorder in ulvospinel: A single-crystal neutron diffraction study. American Mineralogist, 1052 99, 255-260.
- 1053 [6] Gatta, G.D., Kantor, I., Ballaran, T.B., Dubrovinsky, L., and McCammon, C. (2007) 1054 Effect of non-hydrostatic conditions on the elastic behaviour of magnetite: an in situ 1055 single-crystal X-ray diffraction study. Physics and Chemistry of Minerals, 34, 627-635.
- 1056 [7] Lenaz, D., Skogby, H., Princivalle, F., and Halenius, U. (2004) Structural changes 1057 and valence states in the MgCr2O4-FeCr2O4 solid solution series. Physics and 1058 Chemistry of Minerals, 31, 633-642.
- 1059 [8] O'Neill, H.St.C., and Dollase, W.A. (1994) Crystal structures and cation distributions 1060 in simple spinels from powder XRD structural refinements: MgCr2O4, ZnCr2O4, Fe3O4 1061 and the temperature dependence of the cation distribution in ZnAl2O4. Physics and
- 1062 Chemistry of Minerals, 20, 541-555.

1063 [9] Pecharroman, C., Gonzalez-Carreno, T., and Iglesias, J.E. (1995) The infrared 1064 dielectric properties of maghemite, gamma-Fe2O3, from reflectance measurement on 1065 pressed powders. Physics and Chemistry of Minerals, 22, 21-29.

1066 [10] Schwertmann, U., and Murad, E. (1990) The influence of aluminum on iron oxides:

1067 XIV. Al-substituted magnetite synthesized at ambient temperatures. Clay and Clay 1068 Minerals, 38, 196-202.

- 1069 [11] Sedler, I.K., Feenstra, A., and Peters, T. (1994) An X-ray powder diffraction study 1070 of synthetic (Fe,Mn)2TiO4 spinel. European Journal of Mineralogy, 6, 873-885.
- 1071 [12] Tabira, Y., and Withers, R.L. (1999) Cation ordering in NiAl2O4 spinel by a 111 1072 systematic row CBED technique. Physics and Chemistry of Minerals, 27, 112-118.
- 1073 [13] Wechsler B A, Lindsley D H, Prewitt C T (1984) Crystal structure and cation 1074 distribution in titanomagnetites (Fe3-xTixO4). American Mineralogist, 69, 754-770.
- 1075 [14] Yamanaka, T., Kyono, A., Nakamoto, Y., Meng, Y., Kharlamova, S., Struzhkin,
- 1076 V.V., and Mao, H. (2013) High-pressure phase transitions of Fe3-xTixO4 solid solution
 1077 up to 60 GPa correlated with electronic spin transition. American Mineralogist, 98, 736 1078 744.
- 1079 [15] Yamanaka, T., Shimazu, H., and Ota, K. (2001) Electric conductivity of Fe2SiO4-1080 Fe3O4 spinel solid solutions. Physics and Chemistry of Minerals, 28, 110-118.
- [16] Andreozzi, G B, and Lucchesi, S. (2002) Intersite distribution of Fe2+ and Mg in the
 spinel (sensu stricto)-hercynite series by single-crystal X-ray diffraction, American
 Mineralogist, 87, 1113-1120
- 1084 [17] Lavina B, Princivalle F, Della Giusta A (2005) Controlled time-temperature oxidation 1085 reaction in a synthetic Mg-hercynite, Physics and Chemistry of Minerals, 32, 83-88.
- [18] Lavina B, Cesare B, Álvarez-Valero A M, Uchida H, Downs R T, Koneva A, Dera P
 (2009) Closure temperatures of intracrystalline ordering in anatectic and metamorphic
 hercynite, Fe²⁺Al₂O₄. American Mineralogist 94, 657-665.
- 1089 [19] Reuter B, Riedel E, Hug P, Arndt D, Geisler U, Behnke J (1969) Zur kristallchemie 1090 der vanadin(III)-spinelle. Zeitschrift für Anorganische und Allgemeine Chemie 369, 306-1091 312.
- 1092 [20] Pavese A, Levy D, Hoser A (2000) Cation distribution in synthetic zinc ferrite 1093 (Zn0.97Fe2.02O4) from in situ high temperature neutron powder diffraction, American 1094 Mineralogist, 85, 1497-1502.
- 1095 [21] Levy D, Pavese A, Hanfland M (2000) Phase transition of synthetic zinc ferrite 1096 spinel (ZnFe2O4) at high pressure, from synchrotron X-ray powder diffraction, Physics 1007 and Chemistry of Minorals, 27, 638, 644
- and Chemistry of Minerals, 27, 638-644.
- 1098 [22] Moran E, Blesa M C, Medina M E, Tornero J D, Menendez N, Amado U (2002)
 1099 Nonstoichiometric spinel ferrites obtained from α-NaFeO2 via molten media reactions.
 1100 Inorganic Chemistry 41, 5961-5967.
- 1101 [23] RRUFF.info
- 1102 [24] O'Driscoll B, Clay P L, Cawthorn P L, Lenaz D, Adetunji J, Kronz A (2014)
- 1103 Trevorite: Ni-rich spinel formed by metasomatism and desulfurization processes at Bon 1104 Accord, South Africa?. Mineralogical Magazine 78, 145-163.
- 1105 [25] de Waal S A (1972) Mineralogical notes: nickel minerals from Barberton, South
- 1106 Africa: V. trevorite, redescribed. American Mineralogist 57, 1524-1527.

R

$1107 \\1108 \\1109 \\1110 \\1111 \\1112 \\1113 \\1114 \\1115 \\1116 \\1117 \\1118 \\1119 \\1120 \\1121 \\1122 \\1123 \\1124 \\1125 \\1126 \\1127 \\1128 \\1129 \\1130 \\1131 \\1132 \\1133 \\1134 \\1134 \\1135 \\1135 \\1134 \\1135 \\1135 \\1134 \\1135 \\1135 \\1134 \\1135$	 [26] Antao S M, Hassan I, Parise J B (2005) Cation MgFe2O4 to 982°C using in situ synchrotron X-ray Mineralogist 90, 219-228 [27] Nakatsuka A, Ueno H, Nakayama N, Mizota T, Maeka ray diffraction study of cation distribution in MgAl2O4 - N Physics and Chemistry of Minerals 31, 278-287 [28] Hill R J (1984) X-ray powder diffraction profile refinitiversion parameter = .163, American Mineralogist, 69, 93 	ordering powder d awa H (200 IgFe2O4 s nement of 7-942.	in magne iffraction. 04) Single- spinel solic	esioferrite, American -crystal X- d solution. hercynite	
1134					
1135					
1136					
1137	Table A11. Jarosite-Alunite regression data				
1138		- (8)	L (Å)	- (8)	1/(8.3)
minera	name cnemical composition	a(A)	D(A)	C(A)	V(A°)
Alunite	$(K_{0.94}Na_{0.06})AI_3(SO_4)_2(OH)_6$	6.979	6.979 6.0744	17.284	729.057
Alunite	$S_2AI_{2.967}U_{14.063}$ (0.805) $Nd_{0.132}\Pi_6$	0.9741	0.9741	17.19	725 045
Alumite	$(K_{13}(504))(OH)_{6}$ (K_{23}Sr_{23})(Ee ³⁺ , a)((S_{23}))((S_{23}))(0))(OH)_{2}	7.0Z 7.3013	7.0Z 7.3013	17.223	707 570
Jarosite	$(N_{0.88} \cup 12)(F = 0.96 A_{0.04})((\cup 0.94 F_{0.06}) \cup 4)2(\cup F)6$	7 33013	7 33013	17 1374	794.579
Jarosite	$K_{0.51116.491} = C_{3}C_{2}C_{14}$	7 3207	7 3207	17 1517	796 055
Jarosite	$K_{0.6} = 16.41 = 2302014$ $K_{0.7} = 16.41 = 2502014$	7 3112	7 3112	17 1792	795 263
Jarosite	$K_{0.86}H_{6.14}Fe_3S_2O_{14}$	7 307	7 307	17 1916	794 923
Jarosite	$K_{0.95}H_{6.05}Fe_3S_2O_{14}$	7.30293	7.30293	17.2043	794.624
Jarosite	$K_{0.87}H_{6.13}Fe_{2.79}S_2O_{14}$	7.3063	7.3063	17.0341	787.49
Jarosite	$K_{0.02}H_7Fe_3S_2O_{14}$	7.3478	7.3478	17.028	796.176

7.3128

7.3045

7.3128

7.3045

17.1973

17.0875

796.45

789.569

 $K_{0.84}H_{6.16}Fe_{2.73}S_2O_{14}$

(K_{0.76}Na_{0.24})Fe₃S₂O₁₄H₆

Jarosite

Jarosite

Jarosite		$(K_{0.6}Na_{0.4})Fe_3S_2O_{14}H_6$	7.3052	7.3052	16.9706	784.318
Jarosite		$K_{0.52}Na_{0.46}Fe_3S_2O_{14}H_6$	7.3079	7.3079	16.9028	781.762
Jarosite		$K(Fe_{2.79}AI_{0.21})S_2O_{14}H_6$	7.2913	7.2913	17.1744	790.719
Jarosite		$K_{0.81}H_{5.83}Fe_{2.88}S_2O_{13.64}$	7.311	7.311	17.175	795.025
Jarosite		$KFe_3(SO_4)_2(OH)_6$	7.304	7.304	17.268	797.8
Jarosite		$KFe_3(SO_4)_2(OH)_6$	7.315	7.315	17.224	798.166
Natrojaros	ite	(Na _{0.99} K _{0.01})Fe ³⁺ ₃ (S ₁ O ₄) ₂ (OH) ₆	7.3156	7.3156	16.6097	769.826
Natrojaros	ite	Na _{0.69} K _{0.29} Fe ₃ S ₂ O ₁₄ H ₆	7.3101	7.3101	16.7658	775.892
Natrojaros	ite	$Na_{0.85}K_{0.11}Fe_3S_2O_{14}H_6$	7.3144	7.3144	16.6491	771.399
Natrojarosite		$NaFe_3(SO_4)_2(OH)_6$	7.31525	7.31525	16.5868	768.691
Natrojaros	ite	Na _{0.87} H _{6.13} Fe ₃ S ₂ O ₁₄	7.31984	7.31984	16.6474	772.468
Natrojaros	ite	Na _{0.67} H _{6.33} Fe ₃ S ₂ O ₁₄	7.3254	7.3254	16.7209	777.057
Natrojaros	ite	$NaFe_3(SO_4)_2(OH)_6$	7.317	7.317	16.5955	769.462
Hydronium	njarosite	[(NH ₄) _{0.32} (H ₃ O) _{0.68}]Fe _{3.04} (SO ₄) ₂ (OH) ₆	7.3431	7.3431	17.1595	801.30
Hydronium	jarosite	$H_{6.92}Fe_3S_2O_{14}$	7.3552	7.3552	16.9945	796.211
Hydronium	jarosite	K _{0.1} H _{6.86} Fe ₃ S ₂ O ₁₄	7.3521	7.3521	17.0108	796.303
Hydronium	jarosite	K _{0.2} H _{6.81} Fe ₃ S ₂ O ₁₄	7.3428	7.3428	17.0316	795.261
Hydronium	jarosite	K _{0.35} H _{6.65} Fe ₃ S ₂ O ₁₄	7.3373	7.3373	17.103	797.399
Hydronium	jarosite	Na _{0.49} H _{6.51} Fe ₃ S ₂ O ₁₄	7.33876	7.33876	16.8105	784.073
Hydronium	jarosite	$Na_{0.35}H_{6.65}Fe_{3}S_{2}O_{14}$	7.342	7.342	16.8574	786.955
Hydronium	jarosite	Na _{0.24} H _{6.76} Fe ₃ S ₂ O ₁₄	7.34742	7.34742	16.9253	791.292
Hydronium	jarosite	S ₂ Fe _{2,919} O _{14,905} H ₆	7.3559	7.3559	17.0186	797.492
Hydroniumiarosite		$S_2Fe_3O_{15}$	7.3499	7.3499	17.0104	795.807
Hydronium	jarosite	H _{14,31} O _{14,77} Na _{0,2} K _{0,02} Fe _{2,949} Al _{0,03} (S _{1,97} Si _{0,03})	7.3408	7.3408	17.0451	795.457
Ammoniojarosite		[(NH ₄) _{0.59} (H ₃ O) _{0.39}]Fe _{3.03} (SO ₄) ₂ (OH) ₆	7.3293	7.3293	17.3584	807.54
Ammoniojarosite		[(NH ₄) _{0.93} (H ₃ O) _{0.07}]Fe _{3.05} (SO ₄) ₂ (OH) ₆	7.3226	7.3226	17.499	812.60
Ammonioja	arosite	NFe ₃ S ₂ O ₁₄ H ₁₀	7.3177	7.3177	17.534	813.132
1139 [11 Bascia	no L C. Peterson R C (2007) Jarosite - hvdroniu	m iarosite	solid solut	ion series	
1140 v	, with full in	on occupancy: Mineralogy and crystal chemist	rv. America	an Minera	logist, 92,	
1141 [·]	1464-147	3.	,		J , ,	
1142	2] Basci	ano L C, Peterson R C (2007) The crystal	structure o	of ammon	iojarosite.	
1143	(NH4)Fe3	(SO4)2(OH)6 and the crystal chemistry of th	e ammoni	ojarosite-h	vdronium	
1144 i	arosite so	blid-solution series. Mineralogical Magazine, 71,	427-441.	,	5	
1145	[3] Basciano L C. Peterson R C (2008) Crystal chemistry of the natroiarosite-iarosite					
1146	and natrojarosite-hydronium jarosite solid-solution: A synthetic study with full Fe site					
1147 o	occupancy. American Mineralogist, 93, 853-862.					
1148	[4] Becker U. Gasharova B (2001) AFM observations and simulations of jarosite growth					
1149 8	at the molecular scale:					
1150 r	probing the basis for the incorporation of foreign ions into jarosite as a storage mineral.					
1151	Physics and Chemistry of Minerals, 28, 545-556.					
1152 [[5] Kato T, Miura Y (1977) The crystal structure of jarosite and svanbergite.					
1153 I	Mineraloo	ical Journal, 8, 419-430.	,		0.5	

- [6] Majzlan J, Stevens R, Boerio-Goates J, Woodfield B F, Navrotsky A, Burns P C,
- 1155 Crawford M K, Amos T G (2004) Thermodynamic properties, low-temperature heat-
- 1156 capacity anomalies, and single-crystal X-ray refinement of hydronium jarosite,
- (H3O)Fe3(SO4)2(OH)6. Physics and Chemistry of Minerals, 31, 518-531.

- [7] Majzlan, J., Speziale, S., Duffy, T.S., Burns, P.C. (2006) Single-crystal elastic
 properties of alunite, KAl3(SO4)2(OH)6. Physics and Chemistry of Minerals, 33, 567 573.
- 1161 [8] Menchetti S, Sabelli C (1976) Crystal chemistry of the alunite series: crystal structure 1162 refinement of alunite and synthetic jarosite. Neues Jahrbuch fur Mineralogie,
- 1163 Monatshefte, 1976, 406-417.
- 1164 [9] Mills S J, Nestola F, Kahlenberg V, Christy A G, Hejny C, Redhammer G J (2013)
- 1165 Looking for jarosite on Mars: The low-temperature crystal structure of jarosite. American
- 1166 Mineralogist, 98, 1966-1971.
- 1167 [10] Nestola F, Mills S J, Periotto B, Scandolo L (2013) The alunite supergroup under
- high pressure: the case of natrojarosite, NaFe3(SO4)2(OH)6. Mineralogical Magazine,77, 3007-3017.
- 1170 [11] Plasil J, Skoda R, Fejfarova K, Cejka J, Kasatkin A V, Dusek M, Talla D, Lapcak L,
- 1171 Machovic V, Dini M (2014) Hydroniumjarosite, (H3O)+Fe3(SO4)2(OH)6, from Cerros
- 1172 Pintados, Chile: Single-crystal X-ray diffraction and vibrational spectroscopic study.
- 1173 Mineralogical Magazine, 78, 535-547.
- 1174 **[12] RRUFF**.info
- 1175
- 1176

Appendix 2 - Error analysis

1178 The uncertainties associated with *y*, estimated composition, are computed as follows:

$$\sigma_y^2 = \sigma_{SE}^2 + \sigma_{y\,uc}^2$$

1179 1180

$$\sigma_{SE}^{2} = \frac{1}{n} \sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2}$$

Where.

1182 Where *n* is the number of datasets in the regression; y_i and \hat{y}_i are the observed and calculated *y* 1183 values of the regression data, respectively.

1184 1185 and

1186

$$\sigma_{y\,uc}^{2} = \frac{1}{m} \sum_{j=1}^{m} (\hat{y}_{j} - \hat{y}_{j\,\sigma_{uc}})^{2}$$

1187

1188 Where m is the number of unit-cell parameters in the function (e.g., five in plagioclase), \hat{y}_j is the 1189 composition calculated with your input unit-cell parameters, $\hat{y}_j \sigma_{uc}$ is the calculated composition 1190 calculated with the error associated with your unit-cell parameter added to the unit-cell 1191 parameter [e.g., $a_{\sigma_{uc}} = (a + \sigma_a)$].

1192

1193 Errors associated with arithmetical equations were computed with the following formula:

1194

$$\sigma_{y_i}^2 = \sum_i^n \sigma_{x_i}^2$$

1195

- 1196 Where σ_{x_i} is the uncertainty associated with each coefficient in the equation.
- 1197

1198 Root-Mean-Square Error (RMSE) = $\sqrt{\frac{\sum_{i=1}^{n} (y_i - \hat{y}_i)^2}{n}}$

1199

1200 Where *n* is the number of datasets in the regression; y_i and \hat{y}_i are the observed and calculated *y* 1201 values of the equation, respectively.

- 1202
- 1203
- 1204

Figures A3a-d. Ca-content of plagioclase as a function of unit-cell parameters. Dataset from literature and RRUFF Project data (Table A1a).

- 1215
- 1216 1217
- 1218
- 1219
- 1220
- 1221

Figures A3e-m. Fe, Ca, and Mg-content of augite as a function of *a*, *b*, and β , respectively. Dataset from literature and RRUFF Project data (Table A1c). 1228

- 1229
- 1230
- 1231

1237 Figures A3n-v. Fe, Ca, and Mg-content of pigeonite as a function of *a*, *b*, and β 1238 respectively. Dataset from literature and RRUFF Project data (Table A1b).

Figures A3ac-ad. Mg-content of Fa-Fo olivine as a function of *a*, *b*, *c* cell edges and
unit-cell volume, *V*. Dataset from literature and RRUFF Project data (Table A1e).

1265		Appendix 4 – magnetite/chromite martian meteorite references
1266		
1267	1.	Aoudjehane, H.C., Avice, G., Barrat, J.A., Boudouma, O., Chen, G., Duke, M.J.M., Franchi,
1268		I.A., Gattacceca, J., Grady, M.M., Greenwood, R.C., and Herd, C.D.K. (2012) Tissint
1269		martian meteorite: A fresh look at the interior, surface, and atmosphere of Mars. Science,
1270		338(6108), 785-788.
1271	2.	Balta, J.B., Sanborn, M., McSween, H.Y., and Wadhwa, M. (2013) Magmatic history and
1272		parental melt composition of olivine-phyric shergottite LAR 06319: Importance of magmatic
1273		degassing and olivine antecrysts in Martian magmatism. Meteoritics & Planetary Science,
1274		48(8), 1359-1382.
1275	3.	Balta, J.B., Sanborn, M.E., Udry, A., Wadhwa, M., and McSween, H.Y. (2015) Petrology
1276		and trace element geochemistry of Tissint, the newest shergottite fall. Meteoritics &
1277		Planetary Science, 50(1), 63-85.
1278	4.	Barrat, J.A., Jambon, A., Bohn, M., Gillet, P., Sautter, V., Göpel, C., Lesourd, M., and
1279		Keller, F. (2002) Petrology and chemistry of the picritic shergottite North West Africa 1068
1280		(NWA 1068). Geochimica et Cosmochimica Acta, 66(19), 3505-3518.
1281	5.	Basu Sarbadhikari, A., Babu, E.V.S.S.K., Vijaya Kumar, T., and Chennaoui Aoudjehane, H.
1282		(2016) Martian meteorite Tissint records unique petrogenesis among the depleted
1283		shergottites. Meteoritics & Planetary Science, 51(9), 1588-1610.
1284	6.	Beck, P., Barrat, J.A., Gillet, P., Wadhwa, M., Franchi, I.A., Greenwood, R.C., Bohn, M.,
1285		Cotten, J., Van de Moortèle, B., and Reynard, B. (2006) Petrography and geochemistry of the
1286		chassignite Northwest Africa 2737 (NWA 2737). Geochimica et Cosmochimica Acta, 70(8),
1287		2127-2139.
1288	7.	Bunch, T.E., and Reid, A.M. (1975) The nakhlites Part I: Petrography and mineral chemistry.
1289		Meteoritics & Planetary Science, 10(4), 303-315.
1290	8.	Day, J., Taylor, L.A., Floss, C., and McSween, H.Y. (2006) Petrology and chemistry of MIL
1291		03346 and its significance in understanding the petrogenesis of nakhlites on Mars.
1292		Meteoritics & Planetary Science, 41(4), 581-606.
1293	9.	Floran, R.J., Prinz, M., Hlava, P.F., Keil, K., Nehru, C.E., and Hinthorne, J.R. (1978) The
1294		Chassigny meteorite: A cumulate dunite with hydrous amphibole-bearing melt inclusions.
1295		Geochimica et Cosmochimica Acta, 42(8), 1213-1229.
1296	10.	Folco, L., Franchi, I.A., D'orazio, M., Rocchi, S., and Schultz, L. (2000) A new martian
1297		meteorite from the Sahara: The shergottite Dar al Gani 489. Meteoritics & Planetary Science,
1298		35(4), 827-839.
1299	11.	Gattacceca, J., Rochette, P., Scorzelli, R.B., Munayco, P., Agee, C., Quesnel, Y., Cournède,
1300		C., and Geissman, J. (2014) Martian meteorites and Martian magnetic anomalies: A new
1301		perspective from NWA 7034. Geophysical Research Letters, 41(14), 4859-4864.
1302	12.	Gillet, P., Barrat, J.A., Beck, P., Marty, B., Greenwood, R.C., Franchi, I.A., Bohn, M., and
1303		Cotten, J. (2005) Petrology, geochemistry, and cosmic-ray exposure age of Iherzolitic
1304		shergottite Northwest Africa 1950. Meteoritics & Planetary Science, 40(8), 1175-1184.

13. Gleason, J.D., Kring, D.A., Hill, D.H., and Boynton, W.V. (1997) Petrography and bulk 1305 1306 chemistry of Martian lherzolite LEW88516. Geochimica et Cosmochimica Acta, 61(18), 4007-4014. 1307

- 1308 14. Gnos, E., Hofmann, B., Franchi, I.A., Al-Kathiri, A., Huser, M., and Moser, L. (2002) Sayh
 1309 al Uhaymir 094: A new martian meteorite from the Oman desert. Meteoritics & Planetary
 1310 Science, 37(6), 835-854.
- 1311 15. Goodrich, C.A. (2003) Petrogenesis of olivine-phyric shergottites Sayh al Uhaymir 005 and
 1312 Elephant Moraine A79001 lithology A. Geochimica et Cosmochimica Acta, 67(19), 37351313 3772.
- 1314 16. Goodrich, C.A., Herd, C.D., and Taylor, L.A. (2003) Spinels and oxygen fugacity in olivine 1315 phyric and lherzolitic shergottites. Meteoritics & Planetary Science, 38(12), 1773-1792.
- 1316 17. Greshake, A., Fritz, J., and Stöffler, D. (2004) Petrology and shock metamorphism of the
 1317 olivine-phyric shergottite Yamato 980459: Evidence for a two-stage cooling and a single1318 stage ejection historyl 1Associate editor: C. Koeberl. Geochimica et Cosmochimica Acta,
 1319 68(10), 2359-2377.
- 1320 18. Gross, J., Filiberto, J., Herd, C.D., Daswani, M.M., Schwenzer, S.P., and Treiman, A.H.
 1321 (2013) Petrography, mineral chemistry, and crystallization history of olivine-phyric
 1322 shergottite NWA 6234: A new melt composition. Meteoritics & Planetary Science, 48(5),
 1323 854-871.
- 1324 19. Gross, J., Treiman, A.H., Filiberto, J., and Herd, C.D. (2011) Primitive olivine-phyric
 1325 shergottite NWA 5789: Petrography, mineral chemistry, and cooling history imply a magma
 1326 similar to Yamato-980459. Meteoritics & Planetary Science, 46(1), 116-133.
- 1327 20. Hale V. S. (1998) A Re-evaluation of cumulus pyroxene estimates and oxidation state for the
 1328 Shergotty meteorite. M.S. Thesis, University of Tennessee, Knoxville, 105.
- 1329 21. Harvey, R.P., Wadhwa, M., McSween, H.Y., and Crozaz, G. (1993) Petrography, mineral
 1330 chemistry, and petrogenesis of Antarctic shergottite LEW88516. Geochimica et
 1331 Cosmochimica Acta, 57(19), 4769-4783.
- 1332 22. Herd, C.D., Papike, J.J., and Brearley, A.J. (2001) Oxygen fugacity of martian basalts from
 1333 electron microprobe oxygen and TEM-EELS analyses of Fe-Ti oxides. American
 1334 Mineralogist, 86(9), 1015-1024.
- 1335 23. Hewins, R.H., Zanda, B., Humayun, M., Nemchin, A., Lorand, J.P., Pont, S., Deldicque, D.,
 1336 Bellucci, J.J., Beck, P., Leroux, H., and Marinova, M. (2017) Regolith breccia Northwest
 1337 Africa 7533: Mineralogy and petrology with implications for early Mars. Meteoritics &
 1338 Planetary Science, 52(1), 89-124.
- 1339 24. Howarth, G.H., and Udry, A. (2017) Trace elements in olivine and the petrogenesis of the
 intermediate, olivine-phyric shergottite NWA 10170. Meteoritics & Planetary Science, 52(2),
 1341 391-409.
- 1342 25. Howarth, G.H., Pernet-Fisher, J.F., Bodnar, R.J., and Taylor, L.A. (2015) Evidence for the
 1343 exsolution of Cl-rich fluids in Martian magmas: Apatite petrogenesis in the enriched
 1344 lherzolitic shergottite Northwest Africa 7755. Geochimica et Cosmochimica Acta, 166, 2341345 248.
- 1346 26. Howarth, G.H., Pernet-Fisher, J.F., Balta, J.B., Barry, P.H., Bodnar, R.J., and Taylor, L.A.
 1347 (2014) Two-stage polybaric formation of the new enriched, pyroxene-oikocrystic, lherzolitic
 1348 shergottite, NWA 7397. Meteoritics & Planetary Science, 49(10), 1812-1830.

- 1349 27. Hu, S., Feng, L., and Lin, Y. (2011) Petrography, mineral chemistry and shock
 1350 metamorphism of Yamato 984028 lherzolitic shergottite. Chinese Science Bulletin, 56(15),
 1351 1579-1587.
- 1352 28. Ikeda, Y. (1997) Petrology and mineralogy of the Y-793605 Martian meteorite. Antarctic
 1353 Meteorite Research, 10, 1340
- 1354 29. Ikeda, Y. (1998) Petrology of magmatic silicate inclusions in the Allan Hills 77005
 1355 lherzolitic shergottite. Meteoritics & Planetary Science, 33(4), 803-812.
- 1356 30. Ikeda, Y. (2004) Petrology of the Yamato 980459 shergottite. Antarctic meteorite research,
 1357 17, 35-54
- 1358 31. Imae, N., and Ikeda, Y. (2007) Petrology of the Miller Range 03346 nakhlite in comparison
 1359 with the Yamato-000593 nakhlite. Meteoritics & Planetary Science
- 32. Jambon, A., Barrat, J.A., Sautter, V., Gillet, P., Göpel, C., Javoy, M., Joron, J.L., and
 Lesourd, M. (2002) The basaltic shergottite Northwest Africa 856: Petrology and chemistry.
 Meteoritics & Planetary Science, 37(9), 1147-1164.
- 1363 33. Jiang, Y., and Hsu, W. (2012) Petrogenesis of Grove Mountains 020090: An enriched
 "lherzolitic" shergottite. Meteoritics & Planetary Science, 47(9), 1419-1435.
- 1365 34. Johnson, M.C., Rutherford, M.J., and Hess, P.C. (1991) Chassigny petrogenesis: Melt
 1366 compositions, intensive parameters and water contents of Martian (?) magmas. Geochimica
 1367 et Cosmochimica Acta, 55(1), 349-366.
- 1368 35. Kring, D.A., Gleason, J.D., Swindle, T.D., Nishiizumi, K., Caffee, M.W., Hill, D.H., Jull,
 1369 A.J., and Boynton, W.V. (2003) Composition of the first bulk melt sample from a volcanic
 1370 region of Mars: Queen Alexandra Range 94201. Meteoritics & Planetary Science, 38(12),
 1371 1833-1848.
- 1372 36. Lin, Y., Guan, Y., Wang, D., Kimura, M., and Leshin, L.A. (2005) Petrogenesis of the new
 1373 lherzolitic shergottite Grove Mountains 99027: Constraints of petrography, mineral
 1374 chemistry, and rare earth elements. Meteoritics & Planetary Science, 40(11), 1599-1619.
- 1375 37. Lin, Y., Hu, S., Miao, B., Xu, L., Liu, Y., Xie, L., Feng, L., and Yang, J. (2013) Grove
 1376 Mountains 020090 enriched lherzolitic shergottite: A two-stage formation model. Meteoritics
 1377 & Planetary Science, 48(9), 1572-1589.
- 1378 38. McCoy, T.J., Wadhwa, M., and Keil, K. (1999) New lithologies in the Zagami meteorite:
 1379 Evidence for fractional crystallization of a single magma unit on Mars. Geochimica et
 1380 Cosmochimica Acta, 63(7), 1249-1262.
- 39. McSween, H.Y., and Jarosewich, E. (1983) Petrogenesis of the Elephant Moraine A79001
 meteorite: Multiple magma pulses on the shergottite parent body. Geochimica et
 Cosmochimica Acta, 47(8), 1501-1513.
- 40. McSween, H.Y., and Treiman, A.H. (1998) Martian meteorites. Reviews in Mineralogy and
 Geochemistry, 36(1), 6-1.
- 41. Mcsween, H.Y., Eisenhour, D.D., Taylor, L.A., Wadhwa, M., and Crozaz, G. (1996)
 QUE94201 shergottite: Crystallization of a Martian basaltic magma. Geochimica et
 Cosmochimica Acta, 60(22), 4563-4569.
- 42. Mikouchi, T., and Miyamoto, M. (2002) Mineralogy and olivine cooling rate of the Dhofar
 019 shergottite. Antarctic meteorite research, 15, 122-142.

- 43. Mikouchi, T. (2001) Mineralogical similarities and differences between the Los Angeles
 basaltic shergottite and the Asuka-881757 lunar mare meteorite. Antarctic meteorite research,
 14, 1-20.
- 44. Mikouchi, T. (2005) Northwest Africa 1950: Mineralogy and comparison with Antarctic
 lherzolitic shergottites. Meteoritics & Planetary Science, 40(11), 1621-1634.
- 45. MIKOUCHI, T., MIYAMOTO, M., and McKAY, G.A. (1998) Mineralogy of Antarctic
 basaltic shergottite Queen Alexandra Range 94201: similarities to Elephant Moraine A79001
 (lithology B) martian meteorite. Meteoritics & Planetary Science, 33(2), 181-189.
- 46. Mittlefehldt, D.W. (1994) ALH84001, a cumulate orthopyroxenite member of the Martian
 meteorite clan. Meteoritics & Planetary Science, 29(2), 214-221.
- 47. Nagao, K., Nakamura, T., Miura, Y.N., and Takaoka, N. (1997) Noble gases and mineralogy of primary igneous materials of the Yamato-793605 shergottite. Antarctic meteorite research, 10, 125-142.
- 48. Peslier, A.H., Hnatyshin, D., Herd, C.D.K., Walton, E.L., Brandon, A.D., Lapen, T.J., and
 Shafer, J.T. (2010) Crystallization, melt inclusion, and redox history of a Martian meteorite:
 Olivine-phyric shergottite Larkman Nunatak 06319. Geochimica et Cosmochimica Acta,
 74(15), 4543-4576.
- 49. Santos, A.R., Agee, C.B., McCubbin, F.M., Shearer, C.K., Burger, P.V., Tartese, R., and
 Anand, M. (2015) Petrology of igneous clasts in Northwest Africa 7034: Implications for the
 petrologic diversity of the Martian crust. Geochimica et Cosmochimica Acta, 157, 56-85.
- 50. Sarbadhikari, A.B., Day, J.M., Liu, Y., Rumble, D., and Taylor, L.A. (2009) Petrogenesis of
 olivine-phyric shergottite Larkman Nunatak 06319: Implications for enriched components in
 Martian basalts. Geochimica et Cosmochimica Acta, 73(7), 2190-2214.
- 1414 51. Sautter, V., Barrat, J.A., Jambon, A., Lorand, J.P., Gillet, P., Javoy, M., Joron, J.L., and
 1415 Lesourd, M. (2002) A new Martian meteorite from Morocco: the nakhlite North West Africa
 1416 817. Earth and Planetary Science Letters (195(3), 223-238.
- 1417 52. Shearer, C.K., Leshin, L.A., and Adcock, C.T. (1999) Olivine in Martian meteorite Allan
 1418 Hills 84001: Evidence for a high-temperature origin and implications for signs of life.
 1419 Meteoritics & Planetary Science, 34(3), 331-339.
- 53. Steele, Ian M., and Joseph V. Smith. (1982) Petrography and mineralogy of two basalts and
 olivine-pyroxene-spinel fragments in achondrite EETA79001. Journal of Geophysical
 Research: Solid Earth 87, A375-A384.
- 54. Szymanski, A., Brenker, F.E., Palme, H., and El Goresy, A. (2010) High oxidation state
 during formation of Martian nakhlites. Meteoritics & Planetary Science, 45(1), 21-31.
- 1425 55. Taylor, L.A., Nazarov, M.A., Shearer, C.K., McSween, H.Y., Cahill, J., Neal, C.R., Ivanova,
 1426 M.A., Barsukova, L.D., Lentz, R.C., Clayton, R.N., and Mayeda, T.K. (2002) Martian
 1427 meteorite Dhofar 019: A new shergottite. Meteoritics & Planetary Science, 37(8), 1107-1128.
- 56. Treiman, A.H., Dyar, M.D., McCanta, M., Noble, S.K., and Pieters, C.M. (2007) Martian
 Dunite NWA 2737: Petrographic constraints on geological history, shock events, and olivine
 color. Journal of Geophysical Research: Planets, 112(E4).
- 1431 57. Treiman, A.H., McKay, G.A., Bogard, D.D., Mittlefehldt, D.W., Wang, M.S., Keller, L.,
- Lipschutz, M.E., Lindstrom, M.M., and Garrison, D. (1994) Comparison of the LEW88516

- and ALHA77005 martian meteorites: Similar but distinct. Meteoritics & Planetary Science,
 29(5), 581-592.
- 1435 58. Udry, A., McSWEEN Jr, H.Y., LECUMBERRI-SANCHEZ, P., and Bodnar, R.J. (2012)
 1436 Paired nakhlites MIL 090030, 090032, 090136, and 03346: Insights into the Miller Range
 1437 parent meteorite. Meteoritics & Planetary Science, 47(10), 1575-1589.
- 1438 59. Usui, T., McSween, H.Y., and Floss, C. (2008) Petrogenesis of olivine-phyric shergottite
 1439 Yamato 980459, revisited. Geochimica et Cosmochimica Acta, 72(6), 1711-1730.
- 60. Wadhwa, M., Lentz, R.C.F., McSween, H.Y., and Crozaz, G. (2001) A petrologic and trace
 element study of Dar al Gani 476 and Dar al Gani 489: Twin meteorites with affinities to
 basaltic and lherzolitic shergottites. Meteoritics & Planetary Science, 36(2), 195-208.
- 1443 61. Warren, P.H., Greenwood, J.P., and Rubin, A.E. (2004) Los Angeles: A tale of two stones.
 1444 Meteoritics & Planetary Science, 39(1), 137-156.
- 1445 62. Wittmann, A., Korotev, R.L., Jolliff, B.L., Irving, A.J., Moser, D.E., Barker, I., and Rumble,
- D. (2015) Petrography and composition of Martian regolith breccia meteorite Northwest
 Africa 7475. Meteoritics & Planetary Science, 50(2), 326-352.
- 1448 63. Yukio, I., Makoto, K., Hiroshi, T., Gen, S., Kita, N., Yuichi, M., Akio, S., Emil, J., and
 1449 Gerlind, D. (2006) Petrology of a new basaltic shergottite: Dhofar 378. Antarctic Meteorite
 1450 Research, 19 (20-44.
- 64. Zipfel, J., Scherer, P., Spettel, B., Dreibus, G., and Schultz, L. (2000) Petrology and
 chemistry of the new shergottite Dar al Gani 476. Meteoritics & Planetary Science, 35(1),
 95-106.