-	ъ · ·	1
1	Revision	Т
-	100,101011	•

 $\mathbf{2}$

3	Experimental	and	thermodynamic	investigations	on	the	stability	of	Mg ₁₄ Si ₅ O ₂₄

- 4 anhydrous phase B with relevance to Mg₂SiO₄ forsterite, wadsleyite and ringwoodite
- $\mathbf{5}$
- 6 Hiroshi Kojitani*, Saki Terata, Maki Ohsawa, Daisuke Mori, Yoshiyuki Inaguma,
- 7 Masaki Akaogi
- 8
- 9 1-5-1 Mejiro, Toshima-ku, Tokyo 171–8588, Japan
- 10 Department of Chemistry, Faculty of Science, Gakushuin University
- 11
- 12 *Corresponding author: hiroshi.kojitani@gakushuin.ac.jp
- 13
- 14

16

15

17 High-pressure high-temperature phase relation experiments in $Mg_{14}Si_5O_{24}$ were

Abstract

18 performed using a 6-8 multi-anvil high-pressure apparatus in the pressure range of 12-

19	22 GPa and temperature range of 1673–2173 K. We first found that $Mg_{14}Si_5O_{24}$
20	anhydrous phase B (Anh-B) dissociates to Mg_2SiO_4 wadsleysite (Wd) and MgO
21	periclase (Per) at about 18 GPa and 1873 K. From the results of the high-pressure
22	experiments, the phase boundaries of 5 Mg_2SiO_4 forsterite (Fo) + 4 Per = Anh-B and
23	Anh-B = 5 Wd + 4 Per were determined. In addition, the isobaric heat capacity (C_P) of
24	Anh-B was measured by differential scanning calorimetry in the temperature range of
25	300-770 K and the thermal relaxation method using a Physical Property Measurement
26	System (PPMS) in the range of 2–303 K. From the measured low-temperature C_P , the
27	standard entropy ($S_{298.15}$) of Anh-B was determined to be 544.4(2) J/mol·K. We also
28	performed high-temperature X-ray diffraction measurements in the range 303-773 K to
29	determine the thermal expansivity (a) of Anh-B. The obtained C_P and a were
30	theoretically extrapolated to higher temperature region using a lattice vibrational model
31	calculation partly based on Raman spectroscopic data. Thermodynamic calculations by
32	adopting the thermochemical and thermoelastic data for Anh-B obtained in this study
33	and the estimated formation enthalpy for Anh-B of $-13208 \text{ kJ/mol}\cdot\text{K}$ gave phase
34	equilibrium boundaries for 5 Fo + 4 Per = Anh-B and Anh-B = 5 Wd + 4 Per that were
35	consistent with those determined by the present high-pressure high-temperature
36	experiments. The results clarified that, in the $Mg_{14}Si_5O_{24}$ system, Anh-B is stable

between 12 and 18 GPa at the expected temperatures of the Earth's mantle.

- 39 Keywords: anhydrous phase B, phase boundary, heat capacity, entropy, thermal
- 40 expansivity, Raman spectrum, wadsleyite, ringwoodite
- 41

Introduction

43

42

44	A high-pressure dense magnesium silicate $Mg_{14}Si_5O_{24}$ anhydrous phase B (Anh-B)
45	was first synthesized by Herzberg and Gasparik (1989) and its crystal structure was
46	determined by Finger et al. (1989, 1991). The crystal structure contains two different
47	stacking layers. One is a forsterite-like layer consisting of MgO_6 octahedra and SiO_4
48	tetrahedra, and the other is a layer consisting of MgO ₆ and SiO ₆ octahedra. The structure
49	is closely related to that of hydrous $Mg_{12}Si_4O_{19}(OH)_2$ phase B, as the name indicates
50	(Finger et al. 1989; 1991). Due to the SiO ₆ octahedra, Anh-B has a density higher than
51	that of 5 Mg_2SiO_4 forsterite (Fo) + 4 MgO periclase (Per). Ganguly and Frost (2006)
52	investigated the phase boundary between 5 Fo + 4 Per and Anh-B by using
53	high-pressure high-temperature experiments and thermodynamic calculation. Moreover,
54	by examining the phase stability field of Anh-B + 2 SiO_2 stishovite (St) in the
55	$Mg_{14}Si_7O_{28}$ system using a thermodynamic calculation, they suggested the possibility of
56	the existence of Anh-B in cold subducted oceanic plates around 15 GPa and 800 K.
57	Crichton et al. (1999) determined an equation of state (EoS) of Anh-B by

57 Crichton et al. (1999) determined an equation of state (EoS) of Anh-B by 58 high-pressure in situ X-ray diffraction (XRD) measurement at room temperature and 59 proposed a bulk modulus and its pressure derivative of 151.5 GPa and 5.5, respectively.

60	On the other hand, there have been no other experimentally determined thermoelastic
61	data, such as the temperature derivative of the bulk modulus and thermal expansivity,
62	and no thermochemical data on ehthalpy, heat capacity or entropy. Ottonello et al.
63	(2010) made a calculation of the phase equilibrium boundary for 5 Fo + 4 $Per = Anh-B$
64	using the thermodynamic parameters of Anh-B predicted by ab initio calculation and
65	gave a phase boundary very similar to that obtained in Ganguly and Frost (2006).
66	It has also been observed by Presnall and Gasparik (1990) that, in a high-pressure
67	high-temperature run at 16.5 GPa and 2623 K, Anh-B coexists with liquid on the
68	incongruent melting process of Fo. This fact suggests that around 15 GPa Anh-B may
69	be stable at not only low temperature of about 800 K as described above but also high
70	temperature over 2500 K.
71	Recently, Bindi et al. (2016) reported that Cr-bearing Anh-B appeared as a
72	high-pressure stability phase in the Mg ₂ SiO ₄ -MgCr ₂ O ₄ system at 12 GPa and 1873 K.
73	The Mg ₂ SiO ₄ -MgCr ₂ O ₄ system can be a simplified model for podiform chromitites
74	consisting of chromites surrounded by peridotites such as dunite and harzburgite, which
75	are found in ophiolites and are probably formed by reactions between peridotite and
76	melt (Arai 1997; Arai and Miura 2016). Since ultrahigh-pressure (UHP) minerals of
77	coesite and diamond have been found in the podiform chromitites, it is interpreted that

78	the UHP chromitites may have undergone deep mantle recycling (e.g., Yamamoto et al.
79	2009). Therefore, if Anh-B is discovered in the UHP podiform chromitites, its existence
80	could be a good geobarometer for constraining the origin of the chromitites.
81	It is important to clarify the thermodynamic stability of Anh-B in order to properly
82	interpret the melting relation of Fo at high pressure and high temperature and the origin
83	of the UHP chromitites. However, the detailed phase stability field of Anh-B in a $P-T$
84	space, especially at an upper limit in pressure, is still unknown. In this study, we
85	performed high-pressure and high-temperature experiments in the $Mg_{14}Si_5O_{24}$ system
86	up to 22 GPa and 2073 K to experimentally determine the high-pressure phase relations.
87	In addition, the stability field of Anh-B was also examined by a thermodynamic
88	approach. Thermal expansivity of Anh-B was determined by high-temperature X-ray
89	diffraction (XRD) measurement, and the low- and high-temperature heat capacities of
90	Anh-B were measured using a Physical Property Measurement System (PPMS) and a
91	differential scanning calorimeter (DSC), respectively. From the measured
92	low-temperature heat capacity, the standard entropy of Anh-B was also obtained. The
93	measured heat capacity and thermal expansivity were extrapolated to a higher
94	temperature region using a lattice vibrational model calculation partly based on the
95	Raman spectrum observed in this study. The thermodynamic data thus obtained were

96	applied to estimation of the stability field of Anh-B in the ranges of 10-21 GPa and
97	300–2700 K by a thermodynamic approach.
98	
99	
100	Experimental methods
101	
102	High-pressure high-temperature experiments and sample characterization
103	
104	Starting materials of high-pressure high-temperature experiments on anhydrous
105	phase B were synthesized as follows. Mg ₂ SiO ₄ Fo was prepared from a mixture of
106	analytical grade reagents of MgO Per and SiO ₂ quartz with a 2:1 mole ratio by heating
107	at 1773 K for 56 h, and it was confirmed to be a single-phase by the powder XRD
108	method. An intimate mixture of Fo and Per with a mole ratio of 5:4 was used as the
109	starting material for most of the high-pressure high-temperature experiments.
110	$Mg_{14}Si_5O_{24}$ Anh-B and a mixture of Mg_2SiO_4 wadsleyite (Wd):Per = 5:4 in mole ratio
111	were used as the starting materials for reverse runs. The Anh-B sample for the reverse
112	run was synthesized from the mixture of Fo and Per with a mole ratio of 5:4 at 15 GPa
113	and 1873 K for 3 h, and Wd was prepared by holding Fo at 16 GPa and 1873 K for 2 h.

114	High-pressure high-temperature experiments were performed at 12-23 GPa and
115	1673–2073 K using a Kawai-type 6–8 multi-anvil apparatus at Gakushuin University.
116	Tungsten carbide anvils with a truncated edge length (TEL) of 2.5 and 5.0 mm were
117	used in combination with a semi-sintered 5 wt% $\rm Cr_2O_3$ -doped MgO octahedron of 7 and
118	10 mm-edge, respectively, as the pressure media. Pressure calibration was made at room
119	temperature using pressure-fixed points of Bi I-II (2.55 GPa), Bi III-V (7.7 GPa), ZnS
120	(15.5 GPa), GaAs (18.3 GPa) and GaP (23 GPa) (Dunn and Bundy, 1978; Ito, 2007).
121	The pressure was corrected at 1873 K using coesite–stishovite transition in SiO_2 (Zhang
122	et al., 1996), forsterite-wadsleyite transition (Morishima et al. 1994) and wadsleyite-
123	ringwoodite transition (Inoue et al. 2006) in Mg ₂ SiO ₄ , and akimotoite-bridgmanite
124	transition in $MgSiO_3$ (Ono et al. 2001). The pressure calibration was also made at 1673
125	K and 2073 K in a similar manner to that at 1873 K. The uncertainties in the generated
126	pressures and temperature in the present experiments were estimated to be less than
127	about ± 0.3 GPa and ± 20 K, respectively. In the high-pressure phase relation
128	experiments, a tubular rhenium heater was placed in the central part of the pressure
129	medium of magnesia octahedron. A LaCrO3 sleeve and end-plugs were inserted between
130	the Re heater and the pressure medium for thermal insulation. The starting materials
131	were placed directly in the Re furnace, and kept at desired pressure and temperature

conditions for 1–3 h, then quenched, and returned to ambient conditions. The run
temperature was measured at the central part of the outer surface of the Re heater by a
Pt/Pt–13%Rh thermocouple. The pressure effect on emf of the thermocouple was
ignored.

The recovered samples were examined by microfocus and powder X-ray diffractometers (RINT 2500V; Rigaku). Cr K α radiation with a rotating anode was used at 45 kV and 250 mA for both the XRD measurements. For the microfocus XRD measurement, a collimated X-ray beam of 50 µm diameter was used. Lattice parameters of anhydrous phase B were determined by using a powder X-ray diffractometer with the step-scan method at 0.02° step.

A part of the run product of anhydrous phase B was mounted on a slide glass plate with epoxy resin, and polished for compositional analysis by a scanning electron microscope (SEM) (JMS-6360; JEOL) with the energy dispersive X-ray spectrometer (EDS) (Sirius SD 10133BE-IS; SGX Sensortech). The SEM was operated with an acceleration voltage of 15 kV and probe current of 0.55 nA. The composition analysis was made at 12 analysis points. Standard material for Mg and Si was a synthetic MgSiO₃ orthoenstatite.

149 Anh-B samples for the PPMS measurement were also synthesized with the

150	Kawai-type multianvil apparatus using the second stage tungsten carbide anvils with
151	TEL of 5.0 mm. The pressure medium was the 5 wt% Cr_2O_3 -doped MgO octahedron
152	with 10 mm edge. The LaCrO ₃ sleeve was used as a heater. Inside the LaCrO ₃ sleeve,
153	two Pt capsules containing the starting sample were placed symmetrically. The Pt
154	capsules were surrounded by MgO sleeves in order to electrically insulate them from
155	the LaCrO ₃ heater. The temperature was monitored by a W5%–Re95%/W26%–Re74%
156	thermocouple whose hot junction was placed at the center between the two Pt capsules.
157	The starting sample of the mixture of $Fo:Per = 5:4$ in mole ratio was kept at 15 GPa and
158	2073-2273 K for 3 h and then quenched by turning off the electric power and
159	decompressed to ambient pressure. Composition analysis indicated that the synthesized
160	sample consisted of MgO of 66.18(33) wt% and SiO ₂ of 34.41(40) wt% with total
161	100.59(60) wt%, resulting in an Mg:Si atomic ratio of 14.1(1):4.9(1) on a 24-oxygen
162	basis from the average of 12 data points, where the numerals in parentheses represent
163	twice the standard deviation of the mean.

164

165 High-temperature X-ray diffraction measurement

166

167 To measure the thermal expansion of Anh-B, high-temperature XRD experiments

168	were carried out using a powder X-ray diffractometer (RINT 2100; Rigaku) with a
169	high-temperature cell. The diffractometer with CuK α radiation was operated at 40 kV
170	and 40 mA in the 2 θ range of 10–70° with steps of 0.02°. High-purity Si was used as the
171	internal 20 standard. The sample temperature was monitored with a Pt/Pt-13%Rh $$
172	thermocouple. Before the high-temperature XRD experiments, the Anh-B sample was
173	heated at 773 K for 2 h to confirm that this treatment heat did not change the crystal
174	structure of the sample. The XRD data were collected at temperatures between 303 and
175	773 K with a 50 K interval in both the heating and cooling processes. At each fixed
176	temperature, the diffraction pattern was taken for 50 min. The obtained diffraction
177	patterns were analyzed by the Le Bail profile fitting method using RIETAN-FP software
178	(Izumi and Momma 2007) to calculate lattice parameters.

179

180 Raman spectroscopy

181

The run product of Anh-B was fixed on a slide glass with epoxy resin and was well polished for Raman spectra measurements. A micro-Raman spectrometer (NRS–3100; JASCO) was used for the spectra measurements. The excitation light was a Nd:YAG laser with a wavelength of 532 nm. The slit width was 0.1 mm. The Raman shifts were

calibrated using trichloroethylene and a Ne lamp. The Raman spectrum was collected
by 3 rounds of 50-second exposures with an interval of 0.05 cm⁻¹. The measured
spectrum was analyzed using PeakFit software.

189

190 Calorimetry

192	Isobaric heat capacity (C_P) was measured using a differential scanning calorimeter
193	(DSC) (Diamond DSC; PerkinElmer) in the temperature range of 300-770 K. The
194	measurement temperature range was divided into four sections, i.e., 300-400, 380-480,
195	460-560 and 530-770 K. The ends of the temperature ranges of each section were
196	overlapped. The DSC temperature was calibrated with reference to the melting points of
197	indium, tin and zinc. The purge gas was nitrogen. In the temperature range of 300-560
198	K, data were obtained with a step of 5 K in the heating rate of 10 K min ^{-1} . In the range
199	of 530–770 K, the step was 20 K with a heating rate of 20 K min ⁻¹ . The set of
200	measurements was repeated 4-7 times in each section, and the results at each
201	temperature were averaged. The data acquisition interval was one second. A special
202	reagent grade α -Al ₂ O ₃ was used as the calorimetric standard. Prior to C_P measurements
203	of Anh-B, the C_P of Mg ₂ SiO ₄ Fo was measured to confirm the accuracy of the

204	measurements, as done by Kojitani et al. (2012a). The sample weights were 9.970,
205	10.150 and 10.074 mg for Fo, $\alpha\text{-Al}_2\text{O}_3$ and Anh-B, respectively. Each sample was
206	packed in an aluminum pan. A set of measurements for the empty pan, $\alpha\text{-}\mathrm{Al_2O_3},$ and Fo
207	or Anh-B was made over a single day run, and several measurements were made in the
208	above two temperature ranges. The measured heat data were analyzed by the enthalpy
209	method by Mraw and Naas (1979). The C_P of Fo and Anh-B were calibrated with
210	reference to those for α -Al ₂ O ₃ obtained just before each measurement using the heat
211	capacity data for α -Al ₂ O ₃ by Ditmars et al. (1982).
212	Low temperature C_P of Anh-B was measured by the thermal relaxation method
213	using a PPMS apparatus (Quantum Design). The C_P measurement was performed in the
214	temperature range of 2.0–302.6 K and at intervals of about 2 K. The sintered sample had
215	a weight of 10.988 mg and cylindrical shape with about 0.5 mm in height and 1 mm in
216	diameter. For better thermal contact, the surface at the bottom was flattened and
217	polished well. Apiezon N grease was placed between the sample and a sample platform
218	for the same purpose. More details of the measurement method are given in Akaogi et al.
219	(2007).
220	

Results and discussion

223

222

224 High-pressure phase relations

226	Table 1 shows the results of high-pressure high-temperature experiments in
227	$Mg_{14}Si_5O_{24}$, and the phase relations are illustrated in Figure 1. The phase boundary of
228	Fo + Per = Anh-B was determined to be $P = 0.0013(8) \times T + 10.3(14)$ by least-squares
229	fitting to the experimental data, where P and T are in GPa and K, respectively. This
230	boundary is located at 1-3 GPa lower pressure than that of the Fo-Wd transition
231	reported by Morishima et al. (1994). We found that Anh-B dissociates into a mixture of
232	Wd + Per at 18–20 GPa and 1600–2100 K. The phase transition pressure at 2073 K was
233	tightly constrained between 19.3 and 19.5 GPa by the normal and reverse runs. The
234	least-squares fitting to the experimental data with a fixing point of 19.4 GPa and 2073 K
235	provides the phase boundary equation of $P = 0.0025(5) \times (T-2073) + 19.4$. In addition,
236	the high pressure-recovered sample from 22 GPa and 1873 K was a mixture of Rw $+$
237	Per, not Wd + Per. This was consistent with the Wd-Rw transition boundary reported by
238	Inoue et al. (2006), which was recalibrated using Tsuchiya's (2003) Au EoS. These
239	results indicate that Anh-B is stable in a pressure range from 13 to 18 GPa around 1900

K. Our boundary of 5 Fo + 4 Per = Anh-B was placed at slightly higher pressure by 0.5–
1.5 GPa than that determined by Ganguly and Frost (2006). This discrepancy is
discussed later.
Using the powder X-ray diffraction data, lattice parameters and volume of Anh-B at
room temperature and 1 atm were determined to be *a* = 5.8749(1) Å, *b* = 14.1969(2) Å, *c* = 10.0585(2) Å, *V* = 838.93(2) Å³, i.e., molar volume of 252.61(1) cm³/mol. All the
determined lattice parameters and the volume showed good agreement with those of

247 Crichton et al. (1999), while the lattice parameters were about 0.1% larger than those of

Finger et al. (1991). Using our molar volume of Anh-B in combination with those of

249 Mg₂SiO₄ Fo (43.66 cm³/mol: Lager et al. 1981), Wd (40.53 cm³/mol: Finger et al. 1993)

and MgO Per (11.25 cm³/mol: Tange et al. 2009), the volume changes at ambient

251 conditions for the two reactions

252
$$5 \text{ Mg}_2 \text{SiO}_4 (\text{Fo}) + 4 \text{ MgO} (\text{Per}) = \text{Mg}_{14} \text{Si}_5 \text{O}_{24} (\text{Anh-B})$$
 (1)

253 $Mg_{14}Si_5O_{24} (Anh-B) = 5 Mg_2SiO_4 (Wd) + 4 MgO (Per)$ (2)

were determined to be -24.14 and -5.06 cm³/mol; i.e., the density increases were 9.6%

and 2.0%, respectively.

256

257 Thermal expansivity

259	The lattice parameters and cell volume of Anh-B determined by the
260	high-temperature XRD method are shown in Table 2. Figure 2 illustrates the measured
261	cell parameters and volumes as functions of temperature. At each temperature, the three
262	lattice parameters measured in both the heating and cooling processes agreed well,
263	within the range of experimental error. The volume data were used to obtain thermal
264	expansivity $\alpha = (1/V)(\partial V/\partial T)_P$. We examined three types of α expression: a constant, a
265	linear function $\alpha = a + bT$ and a polynomial $\alpha = a + bT + cT^2$, where a, b and c are
266	parameters. The least-squares fittings of $\ln V = \ln V_0 + \int_{298}^T \alpha dT$, where V_0 and V are
267	volumes at 298 K and T K, respectively, gave the results of the constant α of
268	$3.07(4) \times 10^{-5} \text{ K}^{-1}$ and $V_0 = 842.06(9) \text{ Å}^3 (\chi^2 = 0.040)$, the linear α of $2.24(27) \times 10^{-5} +$
269	$1.6(5) \times 10^{-8}T \text{ K}^{-1}$ and $V_0 = 842.29(11) \text{ Å}^3 (\chi^2 = 0.026)$ and the α polynomial of
270	2.4(16)×10 ⁻⁵ + 1.4 (21)×10 ⁻⁸ <i>T</i> – 0.1(12)× <i>T</i> ² K ⁻¹ and $V_0 = 842.30(13)$ Å ³ ($\chi^2 = 0.027$). χ^2
271	represents a reduced chi-squared value calculated from the equation of
272	$\chi^{2} = \left[\sum_{i}^{n} \frac{\left(V_{i}^{obs} - V_{i}^{calc}\right)^{2}}{\sigma_{i}^{2}}\right] / (n - m), \text{ where } V^{obs}_{i} \text{ and } \sigma_{i} \text{ are the measured volume and its}$
273	experimental error, respectively, V_{i}^{calc} is the calculated volume, and <i>n</i> and <i>m</i> are the
274	number of data points and the number of fitted parameters, respectively. Since α
275	expressed by the linear function of temperature had the smallest χ^2 and thus was the

276	most appropriate, we adopted it for the α experimentally determined in this study.
277	Similarly, from the least-squares fittings to lattice parameter data, the linear
278	expansivities (<i>l</i>) in the <i>a</i> -, <i>b</i> - and <i>c</i> -axis directions were determined as $l_a = 1.05(2) \times 10^{-5}$
279	K ⁻¹ ($\chi^2 = 0.024$), $l_b = 1.01(4) \times 10^{-5}$ K ⁻¹ ($\chi^2 = 0.217$) and $l_c = 1.01(4) \times 10^{-5}$ K ⁻¹ ($\chi^2 = 0.039$),
280	respectively. Even if the linear function of temperature for the l expression is used, the
281	obtained χ^2 values were almost the same as those by constant expression. The results
282	indicate that thermal expansion of Anh-B crystal is isotropic. Figure 3 compares the
283	obtained α with the α derived by Ottenello et al. (2010) using <i>ab initio</i> calculation.
284	Within the temperature range of 300-770 K where the high-temperature XRD
285	measurements were performed, our result was very consistent with that predicted by
286	Ottonello et al. (2010)

287

288 Heat capacities and standard entropy

289

The results of high-temperature C_P measurements by DSC are summarized in Table 3, and graphed in Figure 4. The DSC measurements were performed in the temperature range of 300–770 K. For each 5 K interval in the temperature range of 300–560 K or each 20 K interval in the temperature range of 530–770 K, the mean temperature was

adopted as a measurement temperature. The C_P was measured 4–7 times at each temperature, and the average value was determined. The experimental uncertainties obtained from twice the standard deviation of the mean were less than 1.7%. In Table 4 and Figure 4, the results of low-temperature C_P measurements using PPMS are shown. The experimental uncertainties are smaller than 2%. The data around 300 K are in very good agreement with those measured by DSC. This smooth correspondence between the DSC and PPMS data suggests the validity of both. The C_P

301 polynomial adopted in Yong et al. (2006) and Akaogi et al. (2007),

302
$$C_P(T) = k_0 + k_1 T^{-0.5} + k_2 T^{-2} + k_3 T^{-3} + k_4 T + k_5 T^2 + k_6 T^3,$$
(3)

303 was fitted to the obtained C_P data where k_0-k_6 are coefficients. The fitting range was 304divided into four sections, 0-20, 20-70, 70-200 and 200-380 K. The curve fitting was individually performed in each section by the least-squares method. In the first section, 305 $C_P = k_6 T^3$ was fitted to the C_P data because it is known that C_P is in proportion to the 306 307 cubes of T in the temperature region close to zero. If data at a temperature higher than 22 K are included in the fitting, the goodness of fit goes down. Therefore, the upper 308 limit of the first section was determined to be 20 K. In the second section, the C_P curve 309 has a large curvature. For better fitting of such curves with large curvature, it is useful to 310 311withhold the inflection point seen around 115 K. For this reason, the upper limit of the

312	second section was set at 70 K. In the fourth section, since the errors in C_P data in the
313	temperature range of 284.7–302.6 K were larger than the errors in the other PPMS data
314	due to an anomalous heat effect from the grease used to improve the thermal contact,
315	those C_P data were excluded from the fitting. To make the interpolation of this region
316	with withheld data more reliable, the boundary between the third and fourth sections
317	was set at 200 K and the C_P data up to 382.5 K measured by DSC were also included in
318	the fitting. The polynomial for each section but the first was chosen by considering a
319	reduced chi-squared value. Some of data were overlapped to provide a smooth
320	correspondence with the neighboring polynomial at the section boundary. $C_P(T) = k_6 T$
321	was fitted to the data in the range of 2.0–22.0 K, $C_P(T) = k_0 + k_2 T^{-2} + k_4 T + k_5 T^2$ to the
322	data in the range of 17.9–74.9 K, $C_P(T) = k_0 + k_1 T^{-0.5} + k_2 T^{-2} + k_3 T^{-3} + k_4 T + k_5 T^2$ to
323	the data in the range of 65.0–210.8 K and $C_P(T) = k_0 + k_1 T^{-0.5} + k_2 T^{-2} + k_3 T^{-3}$ to the
324	data in the range of 190.9-382.5 K. Coefficients derived from the fittings are given in
325	Table 5 together with the reduced chi-squared (χ^2) and correlation factor (R^2) to indicate
326	the goodness of fit. The degree of agreement between the measured data and the fitted
327	curve in each section is also shown in Figure 4.
328	Once the low-temperature C_P is known, lattice vibrational entropy at 1 atm and

329 298.15 K ($S_{vib,298.15}$) can be calculated using the equation

330
$$S_{\text{vib},298.15}^{\circ} = \int_{0}^{298.15} \frac{C_p}{T} dT.$$
 (4)

The fitted C_P polynomials shown in Table 5 were applied to this calculation. The S^o_{vib,298.15} of Anh-B was determined to be 544.4(2) J/mol·K. The uncertainty of the entropy ($\delta_{S298.15}$) was obtained by propagation of the experimental errors in the measured C_P (δ_{Cpl}) from the following equation:

$$\delta_{S_{298.15}}^2 = \sum_{i=1}^{n-1} \frac{1}{4} (T_{i+1} - T_i)^2 \left[\left(\frac{1}{T_i} \delta_{Cp_i} \right)^2 + \left(\frac{1}{T_{i+1}} \delta_{Cp_{i+1}} \right)^2 \right]$$
(5)

335

336 where n is the number of the data points, and it was assumed that the uncertainties in 337measurement temperatures were negligibly small, namely $\delta_{Ti} = 0$. We adopted twice the $\delta_{S298.15}$ as the uncertainty of the obtained S^o_{vib,298.15}. According to the crystal structure 338 339analysis by Finger et al. (1991), we can assume no cation disorder in the Anh-B structure, i.e., no configurational entropy. Therefore, the standard entropy ($S_{298.15}$) is 340341equal to $S_{vib,298,15}^{\circ}$. The experimentally determined $S_{298,15}^{\circ}$ is very close to the 547.3 J/mol·K estimated from the entropies of constituent oxides by Ganguly and Frost (2006), 342343rather than the 561.2 J/mol·K derived by Ottonello et al. (2010) from ab initio 344calculations.

345

346 Raman spectrum

347

348	Figure 5a shows the measured Raman spectrum of Anh-B. The unit cell of Anh-B
349	contains two $Mg_{14}Si_5O_{24}$ units, namely, it contains 86 atoms. Therefore, the total degree
350	of freedom in lattice vibration was 258, with 3 of these 258 modes being acoustic
351	modes and the remaining 255 being optic modes. According to Ottonello et al. (2010),
352	the irreducible representation of the optic modes is given as
353	$\Gamma_{\text{opt}} = 35A_{\text{g}} + 25B_{1\text{g}} + 35B_{2\text{g}} + 25B_{3\text{g}} + 28A_{\text{u}} + 40B_{1\text{u}} + 27B_{2\text{u}} + 40B_{3\text{u}} (6)$
354	with an axis setting of the space group Pmcb. The optic modes consist of 120 gerade
355	modes which are Raman active and 135 ungerade modes which are infrared (IR) active
356	or silent. In this study, 36 Raman peaks were observed, and their wave numbers are
357	listed in Table 6. Figure 5a also includes wave numbers of the 255 optic modes obtained
358	by the <i>ab initio</i> calculation of Ottenello et al. (2010). The vibrational mode frequencies
359	of the observed Raman peaks were generally consistent with those of the calculated
360	optic modes. This suggests that the distribution of the wave numbers at Γ -point for all
361	the calculated optic modes is acceptable. In the next section, we use the distribution of
362	the vibrational mode frequencies to model a vibrational density of state (VDoS) for the
363	lattice vibrational model calculation.

365 Calculation of heat capacity

366

367	The high-temperature heat capacity of Anh-B above 760 K was extrapolated using
368	lattice vibrational model calculation with the Kieffer model (Kieffer 1979a, 1979b), in
369	which the heat capacity at constant volume (C_V) is calculated by modeling the phonon
370	density of state for acoustic and optic modes.

371To calculate the contribution of the acoustic modes to C_V , directionally averaged 372sound velocities (u_1, u_2, u_3) are used, which are derived from compressional and shear 373wave velocities, v_p and v_s , respectively. The u_1 and u_2 are slower and faster transverse 374wave velocities, respectively, and the u_3 is a longitudinal wave velocity. In the manner 375of Kojitani et al. (2003), we estimated the compressional velocity (v_p) of Anh-B using Birch's (1961) law between v_p in km/s and density (ρ) in g/cm³, $v_p = -1.87 - 0.7(m-21)$ 376+ 3.05 ρ , where *m* is a mean atomic weight. v_s was calculated from 377 $v_s = \sqrt{\frac{3}{4}(v_p^2 - K_s/\rho)}$, where K_s is the adiabatic bulk modulus, and it was assumed that 378 K_S was equivalent to the isothermal bulk modulus (K_T). The directionally averaged 379sound velocities were calculated from the v_p and v_s using the method of Kieffer (1979a). 380 381The u_1 , u_2 and u_3 were determined to be 4.866, 6.671 and 9.194 km/s, respectively.

382 We adopted a four optic-continua model with wave-number ranges of 187–540,

383	540-700, 790-910 and 950-1050 cm ⁻¹ , which contained 190, 33, 26 and 6 optic modes,
384	respectively, based on the measured Raman spectrum and the vibrational mode
385	calculations by Ottonello et al. (2010). The vibrational density of state model is
386	illustrated in Figure 5b, and the parameters used for the Kieffer model calculation are
387	summarized in Table 7. Because, in general, C_V will be approximately equal to C_P at all
388	temperature below 200 K, the lower cutoff frequency of the first optic continuum,
389	which largely affects the calculated low-temperature C_V value, was adjusted to
390	reproduce the measured low-temperature C_P up to 200 K. The obtained C_V are listed in
391	Table 8.
392	

393 High-temperature extrapolation of thermal expansivity

394

395 Since the α determined by the high-temperature XRD measurement was limited up 396 to 773 K in this study, the experimentally determined values of α were extrapolated to 397 higher temperature using the Grüneisen relation equation

398
$$\alpha(T) = \frac{\gamma_{th} C_V(T)}{K_T(T) V_0(T)} , \qquad (7)$$

399 where γ_{th} , $C_{V}(T)$, $K_{T}(T)$ and $V_{0}(T)$ represent the thermal Grüneisen parameter, isochoric 400 heat capacity, isothermal bulk modulus and volume at T K and ambient pressure, 401 respectively. The C_V values obtained in the previous section were applied to this

402 calculation. K_T at T K was obtained by the equation

403
$$K_T(T) = K_T(298) + \left(\frac{\partial K_T}{\partial T}\right)_P (T - 298),$$
 (8)

404 where $(\partial K_T / \partial T)_P$ is a temperature derivative of K_T at constant pressure. Since there was

405 no experimentally determined $(\partial K_T / \partial T)_P$ for Anh-B, the value was estimated from the

406 equation proposed by Anderson (1995):

407
$$\left(\frac{\partial K_T}{\partial T}\right)_P = -\overline{\alpha K_T} \cdot (K_T' - q^{ht} + 1), \tag{9}$$

408 where $\overline{\alpha K_T}$ and K_T' refer to an averaged αK_T and pressure derivative of K_T , 409 respectively. q^{ht} is a parameter defined by the following equation:

410
$$q^{ht} = \frac{\partial \ln \gamma^{ht}}{\partial \ln V}$$
(10)

411 where γ^{ht} is a Grüneisen parameter at high temperature. In the present study, the q^{ht} 412 value was approximated to be unity (Anderson 1995). $V_0(T)$ was calculated by the 413 equation:

414
$$V_0(T) = V_0(298) \cdot exp \left[\int_{298}^T \alpha \, dT \right].$$
 (11)

415 As shown in Equations 9 and 11, the calculations of $(\partial K_T / \partial T)_P$ and $V_0(T)$ include α .

416 Therefore, α was calculated using the iteration calculation method with an initial $V_0(T)$,

417 keeping $V_0(298)$ constant, and an initial $(\partial K_T / \partial T)_P$ of a proper value. The final $(\partial K_T / \partial T)_P$

thus obtained does not depend on the initial value. Five iterations provided a converged

419 α . The detailed methods used for the iteration calculation of α are described in Kojitani 420 et al. (2012b).

421	Since the γ_{th} of Anh-B has not yet been tightly constrained, we calculated a different
422	α using different γ_{th} values of 1.1, 1.2 and 1.3 at 298 K by adopting $K_T(298)$ of 151.5
423	GPa and K_T of 5.5 as reported by Crichton et al. (1999) and a $V_0(298)$ of 252.61
424	cm ³ /mol as obtained in the present study, where the volume dependency, i.e., practical
425	temperature dependency, of γ_{th} was included with consideration for the q^{ht} value of unity
426	as shown in Equation 10. The results of the calculations are shown in Figure 3. In the
427	temperature range of 300–800 K, the α calculated with a $\gamma_{\rm th}$ of 1.2 is in very good
428	agreement with that determined by the present high-temperature XRD measurement.
429	Therefore, we adopted the α obtained with a $\gamma_{\rm th}$ of 1.2, which gave an $(\partial K_T / \partial T)_P$ of –
430	0.0275 GPa/K. The α calculated with a γ_{th} of 1.2 was also consistent with that of
431	Ottonello et al. (2010) below 800 K. However, above 800 K the former was larger than
432	the latter and the difference between them became larger with increasing temperature.
433	

434 Isobaric heat capacity calculation

435

436 The isobaric heat capacity (C_P) is calculated within the quasi-harmonic

437 approximation from the equation

438
$$C_P(T) = C_I(T) + \alpha(T)^2 K_T(T) V_0(T) T$$
. (12)
439 The physical properties used for the C_P calculation of Anh-B are summarized in Table 9.
440 The calculated C_P values of Anh-B are listed in Table 8 together with C_P and α , and they
441 are also shown in Figure 6 in comparison with the measured C_P values in this study and
442 those predicted by Ottonello et al. (2010). The calculated C_P values well-reproduced not
443 only the C_P data up to about 300 K by PPMS but also those by DSC within the
444 experimental uncertainties. The present C_P calculation result was quite close to that of
445 Ottonello et al. (2010) over the temperature range of the calculation; nonetheless, the
446 former was up to 0.7% higher than the latter. This was mostly due to the higher α of the
447 present study compared to that of Ottonello et al. (2010), as shown in Figure 3.
448
449
450 **Calculation of the phase boundaries on Anh-B**

452	Thermodynamic	calculations of	the phase eq	juilibrium b	oundaries for	r the reactions

- 453 of Equations 1 and 2 were performed by applying the thermodynamic properties of
- 454 Anh-B obtained in this study, using the following equation:

455
$$\Delta G(P,T) = \Delta H^{\circ}_{t}(T) - T \cdot \Delta S^{\circ}(T) + \int_{1 \text{ atm}}^{P} \Delta V(p,T) \,\mathrm{d}\, p = 0, \qquad (13)$$

456 where $\Delta H^{\circ}_{t}(T)$ and $\Delta S^{\circ}(T)$ are the enthalpy and entropy of a phase transition at 1 atm

and *T* K, respectively, and $\Delta V(p,T)$ is the volume change at *p* GPa and *T* K. The $\Delta H^{\circ}_{t}(T)$

458 and $\Delta S^{\circ}(T)$ were calculated using $\Delta H^{\circ}_{t}(298)$, $\Delta S^{\circ}(298)$ and isobaric heat capacities at 1

459 atm, C_P , as shown by the following equations:

460
$$\Delta H^{\circ}_{t}(T) = \Delta H^{\circ}_{t}(298) + \int_{298}^{T} \Delta C_{P}(T') dT'$$
(14)

461
$$\Delta S^{\circ}(T) = \Delta S^{\circ}(298) + \int_{298}^{T} \frac{\Delta C_{P}(T')}{T'} dT'.$$
(15)

Volumes at given pressures and temperatures, *V*, were calculated using a third-order high-temperature Birch–Murnaghan equation of state (EoS) or a Mie–Grüneisen–Debye

464 EoS. The third-order high-temperature Birch–Murnaghan EoS is represented as

465
$$P_T(V) = \frac{3}{2} K_T(T) \cdot \left[\left(\frac{V}{V_0(T)} \right)^{-7/3} - \left(\frac{V}{V_0(T)} \right)^{-5/3} \right] \cdot \left\{ 1 + \frac{3}{4} \left(K'_T - 4 \right) \cdot \left[\left(\frac{V}{V_0(T)} \right)^{-2/3} - 1 \right] \right\}$$

466

467 where $P_T(V)$ represents the pressure as a function of V at T K and $V_0(T)$ is the volume at

(16)

468 1 atm and T K. On the other hand, the Mie–Grüneisen–Debye EoS is expressed as

469
$$P_T(V) = P_{298}(V) + \frac{\gamma(V)}{V} \left[E_{\rm th}(V,T) - E_{\rm th}(V,298) \right]$$
(17)

470 where γ and E_{th} are a Grüneisen parameter and the internal thermal energy, respectively.

471 The $P_{298}(V)$ term was calculated using Equation 16 or a Vinet EoS:

472
$$P_{T}(V) = 3K_{T}(T) \cdot \left(\frac{V}{V_{0}(T)}\right)^{-2/3} \left[1 - \left(\frac{V}{V_{0}(T)}\right)^{1/3}\right] \cdot \exp\left\{\frac{3}{2}\left(K'_{T} - 1\right) \cdot \left[1 - \left(\frac{V}{V_{0}(T)}\right)^{1/3}\right]\right\}$$
473 (18)

474 $E_{\text{th}}(V,T)$ was obtained from the Debye model as follows:

475
$$E_{th}(V,T) = 9nRT \left[\frac{\theta_{\rm D}(V)}{T}\right]^{-3} \int_0^{\theta_{\rm D}(V)/T} \frac{x^3}{e^x - 1} dx$$
(19)

476 where *n*, *R* and θ_D are the number of atoms per formula, the gas constant and a Debye

477 temperature, respectively. The models for γ and θ_D are expressed as

478
$$\gamma(V) = \gamma_0 \left\{ 1 + k \left[\left(\frac{V}{V_0} \right)^q - 1 \right] \right\}$$
(20)

479
$$\theta_{\rm D}(V) = \theta_{\rm D0} \left(\frac{V}{V_0}\right)^{-\gamma_0(1-k)} \times \exp\left[-\frac{\gamma(V) - \gamma_0}{q}\right]$$
(21)

480 by following the equations of Tange et al. (2009), where γ_0 and θ_{D0} represent γ and θ_D at

481 V_0 , respectively, and q and k are constants.

Prior to the phase boundary calculations of the reactions of Equations 1 and 2, we performed thermodynamic calculations of the Fo–Wd and Wd–Rw phase transition boundaries to optimize enthalpy data and check the reliability of the other thermodynamic parameters for Fo and Wd. Thermodynamic parameters for the three phases are listed in Table 9.

487 Since α , C_P and $(\partial K_T / \partial T)_P$ of Wd have not yet been well constrained, we optimized

488	them using the same approach as for Anh-B. C_V of Wd was calculated by the Kieffer
489	model calculation using the VDoS model shown in Table 7, which reproduces the
490	low-temperature C_P data measured by Akaogi et al. (2007). The calculated C_V of Wd are
491	given in Table 8 and Figure 7. The obtained C_V was applied to α , $(\partial K_T / \partial T)_P$ and C_P
492	calculations. In the α calculation, a γ_{th} of 1.3 was used because it gave consistent α with
493	the α values measured by Suzuki et al. (1980) and Trots et al. (2012) below 1000 K, as
494	shown in Figure 8. At the same time, the γ_{th} of 1.3 provided $(\partial K_T / \partial T)_P$ of -0.0237
495	GPa/K. The C_P calculated using the obtained C_V , α and $(\partial K_T / \partial T)_P$ are given in Table 8
496	and Figure 7. The present calculations yielded 3–4% higher C_P values than the previous
497	DSC measurements by Watanabe (1982) and Ashida et al. (1987), which were rather
498	comparable to the C_V values calculated in this study.
499	Phase transition enthalpies at 298 K [$\Delta H^{\circ}_{t}(298)$] for the Fo-Wd and Wd-Rw
500	transitions can be obtained using drop-solution enthalpies (ΔH_{d-s}) of the three phases. In
501	the drop-solution enthalpy measurement, a material is dropped from outside of a
502	calorimeter at room temperature into molten oxide solvent inside the calorimeter at high
503	temperature, and the enthalpy difference between the crystalline state at room
504	temperature and dissolution state in the solvent at high temperature is measured. In this
505	approach, materials with the same composition can be assumed to have the same

506	dissolution state; for example, $\Delta H^{\circ}_{t}(298)$ of the Fo–Wd transition is calculated from
507	$\Delta H_{d-s}(Fo) - \Delta H_{d-s}(Wd)$ (cf., Akaogi et al. 2007). In Table 10, drop-solution enthalpies of
508	the related materials in $2PbO \cdot B_2O_3$ solvent at 978 K are summarized. The internal
509	consistency of ΔH_{d-s} data among Fo, Per and SiO ₂ quartz has already been confirmed in
510	Kojitani et al. (2016). Therefore, the ΔH_{d-s} data for Fo and Per by Kojitani et al. (2016)
511	were used. Since $\Delta H_{d-s}(Rw)$ has also been well constrained from the data by Akaogi et
512	al. (2007) and Kojitani et al. (2016), we adopted the average of their $\Delta H_{d-s}(Rw)$ values.
513	For $\Delta H_{d-s}(Wd)$, only the value measured by Akaogi et al. (2007) was used. The phase
514	equilibrium boundaries calculated by adopting ΔH_{d-s} of 168.2 ± 0.4 kJ/mol for Fo, 142.2
515	\pm 1.3 kJ/mol for Wd and 129.0 \pm 1.0 kJ/mol for Rw, which give $\Delta H^{\circ}_{t}(298)$ of 26.0 \pm 1.4
516	kJ/mol for the Fo–Wd transition and 13.2 \pm 1.6 kJ/mol for the Wd–Rw transition, are
517	shown in Figure 9. The calculated Fo-Wd boundary agrees well with that by the
518	high-pressure and high-temperature in situ experiments of Morishima et al. (1994).
519	On the other hand, the calculated Wd-Rw boundary is also consistent with those
520	determined by the high-pressure and high-temperature in situ experiments of Inoue et al.
521	(2006) and Suzuki et al. (2000), where the pressure data of Inoue et al. (2006) were
522	re-scaled using Tsuchiya's (2003) Au EoS. These findings confirm the validity of the
523	thermodynamic parameters used for Fo and Wd.

524	$\Delta H^{\circ}_{t}(298)$ for the reactions of Equations 1 and 2 are obtained from 5 $\Delta H_{d-s}(Fo) + 4$
525	$\Delta H_{d-s}(\text{Per}) - \Delta H_{d-s}(\text{Anh-B}) \text{ and } \Delta H_{d-s}(\text{Anh-B}) - 5 \Delta H_{d-s}(\text{Wd}) - 4 \Delta H_{d-s}(\text{Per}), \text{ respectively.}$
526	Measured ΔH_{d-s} data of Anh-B have not been yet reported, because it is difficult to
527	synthesize the large amount of single-phase sample required for drop-solution
528	calorimetry. For this reason, the phase boundary calculations of the reactions of
529	Equations 1 and 2 were performed using the expected ΔH_{d-s} values of Anh-B in the
530	range from 904 to 912 kJ/mol at intervals of 2 kJ/mol. The results of the calculations are
531	shown in Figure 10. A higher $\Delta H_{d-s}(Anh-B)$ value results in a lower transition pressure
532	for the reaction of Equation 1 and a higher one for the reaction of Equation 2, as shown
533	in Figures 10a and 10b, respectively. The transition pressure of the latter is especially
534	sensitive to the $\Delta H_{d-s}(Anh-B)$ values. It is important to note that both of the
535	experimentally determined boundaries can be explained within the experimental errors
536	by the thermodynamic calculations using the same $\Delta H_{d-s}(Anh-B)$ of 908 ± 1 kJ/mol.
537	As described earlier, the experimentally determined transition pressure for the
538	reaction of Equation 1 is about 1 GPa higher than that of Ganguly and Frost (2006). The
539	calculation with $\Delta H_{d-s}(Anh-B)$ of 917 kJ/mol gives a phase boundary very close to that
540	reported by Ganguly and Frost (2006), as shown in Figure 10a. However, when the
541	same $\Delta H_{d-s}(Anh-B)$ is applied to the phase boundary calculation of the reaction of

542	Equation 2, the transition pressure is calculated to be 22.2 GPa at 1873 K, which is
543	much higher than the value of about 18.5 GPa determined experimentally in this study,
544	and is beyond the phase stability region of Wd (Figure 10b). On the other hand,
545	although the boundary for the reaction in Equation 1 calculated by Ottonello et al.
546	(2010) is consistent with both our high-pressure experimental data above 1873 K and
547	the thermodynamic calculation with $\Delta H_{d-s}(Anh-B)$ of about 913 kJ/mol, the boundary
548	by Ottonello et al. (2010) does not agree with the high-pressure experimental data at
549	1673 K. This discrepancy is probably attributable to the fact that the $S^{\circ}_{298.15}$ of Anh-B
550	(561.2 J/mol·K) estimated by Ottonello et al. (2010) is higher than that measured in this
551	study (544.4 J/mol·K) because the higher $S_{298.15}^{\circ}$ of Anh-B results in a steeper
552	Clapeyron slope. Therefore, the present phase boundary would appear to be more
553	appropriate than the previous ones for the reaction of Equation 1.
554	From the above discussion on the phase boundaries, it is concluded that, in the
555	$Mg_{14}Si_5O_{24}$ system, Anh-B is stable in the pressure range from 13 to 18 GPa at 1873 K.
556	In addition, $\Delta H_{d-s}(Anh-B)$ is expected to be around 908 kJ/mol, suggesting that the
557	formation enthalpy from elements at the standard state ($\Delta_f H^o_{298}$) is -13208 kJ/mol, as
558	calculated from the enthalpy difference between 5 Fo + 4 Per and Anh-B and $\Delta_f H^{0}_{298}$

559 values of Fo and Per listed in Table 9.

560

561

562

Implications

564	The stability field of Anh-B in the $Mg_{14}\mathrm{Si}_5\mathrm{O}_{24}$ system was thermodynamically
565	calculated in the temperature range of 300–2700 K and the pressure range of 10–21 GPa
566	using the optimized $\Delta H_{d-s}(Anh-B)$ of 908 kJ/mol, namely $\Delta_f H^{o}_{298}(Anh-B)$ of -13208
567	kJ/mol. The thermodynamic parameters used are listed in Table 9. Our thermodynamic
568	calculation results shown in Figure 11 indicate that the stability field of Anh-B places
569	between 5 Fo + 4 Per and 5 Wd + 4 Per with a $3-7$ GPa interval over the whole
570	calculation temperature range of 300-2700 K. The interval of pressure of the Anh-B
571	stability field becomes narrower with increasing temperature. This suggests that Anh-B
572	can be stable in relatively wide pressure and temperature ranges if the local bulk
573	composition of a mantle rock is enriched with an MgO component because of, for
574	example, selective dissolution of the Si component into fluid. Furthermore, in the
575	Mg ₂ SiO ₄ -MgCr ₂ O ₄ system, it is expected that the Cr-bearing Anh-B synthesized by
576	Bindi et al. (2016) would also be allowed to exist in a similar pressure range between 13
577	and 18 GPa at 1873 K if it is assumed that the effect of the Cr component on the

578 stability pressure is negligibly small.

579	Presnall and Gasparik (1990) observed the coexistence of Anh-B with silica-rich
580	liquid in the Mg_2SiO_4 system under the conditions of 16.5 GPa and 2623 K. This
581	temperature was about 100 K higher than the upper temperature limit of the stability
582	field of Anh-B at 16.5 GPa (Figure 11). However, the higher temperature limit at 16.5
583	GPa becomes 80 K higher with the use of $\Delta_f H^{o}_{298}$ (Anh-B) of -13211 kJ/mol, which is
584	just 3 kJ/mol larger than the -13208 kJ/mol optimized in this study. Therefore, it is
585	likely that the result of Presnall and Gasparik (1990) is consistent with our calculated
586	stability field of Anh-B, when considering both the errors in their high-pressure and
587	high-temperature experiment and our thermodynamic calculations.
588	Seismic discontinuities in the 250–350 km depth range in the Earth's upper mantle,
589	or so-called X-discontinuity, have been observed beneath regions of the subduction zone
590	and continents (e.g., Schmarr et al. 2013). The depth range corresponds to a pressure
591	range of 8-11.5 GPa. If we consider that fluid in subducting slabs is enriched in the
592	SiO_2 component, it is possible that the reaction of 5 Fo + 4 Per = Anh-B proceeds in the
593	residual rock enriched with the MgO component. When we consider the slabs with an
594	internal temperature range of 800–1500 K at around 300-km depth as estimated by, e.g.,
595	Kirby et al. (1996), the reaction occurs at a pressure of 10–12 GPa based on our results

596	shown in Figure 11. As Ganguly and Frost (2006) suggested, the effect of water on the
597	phase boundary can reduce the pressure of the reaction by about 1 GPa. By taking this
598	effect into account, it is likely that the reaction occurs at 9–11 GPa under wet conditions.
599	The obtained pressure range of the reaction overlaps with that of the X-discontinuity.
600	Therefore, the reaction 5 Fo $+$ 4 Per = Anh-B under wet conditions would be another
601	candidate for the X-discontinuity, in addition to the coesite-stishovite phase transition in
602	SiO_2 (Williams and Revenaugh 2005), the hydrous phase A formation (Akaogi and
603	Akimoto 1980) and the orthorhombic to high-pressure monoclinic phase transition in
604	pyroxene (Woodland 1998).
605	We also performed thermodynamic calculations of the high-pressure
606	high-temperature phase relation in the $Mg_{14}Si_7O_{28}$ (i.e., Mg_2SiO_4) system to examine

the stability field of Anh-B + 2 St. In these calculations, Gibbs free energies at given *P*– *T* conditions for Fo, Wd, Rw, 14 Per + 7 St, and Anh-B + 2 St were compared in the pressure range of 10–21 GPa and the temperature range of 800–2500 K. The results of the calculations are shown in Figure 12. We found that the Anh-B + 2 St field was stable when $\Delta_{\rm f} H^{\rm o}_{298}$ (Anh-B) values negatively larger than –13235 kJ/mol were adopted. The Anh-B + 2 St field has a lens-like shape along the phase boundary between Wd and Rw.

613 It starts to appear at around 17 GPa and 800 K. The stability pressure is higher than that

614	of about 15 GPa previously suggested by Ganguly and Frost (2006). As described above,
615	the $\Delta_{\rm f} H^{0}_{298}$ (Anh-B) value of -13235 kJ/mol is too large to explain the phase boundaries
616	for 5 Fo + 4 Per = Anh-B and Anh-B = 5 Wd + 4 Per determined by our high-pressure
617	experiments. When a $\Delta_f H^{o}_{298}$ (Anh-B) of around -13208 kJ/mol is adopted, the stability
618	field of Anh-B + 2 St never appears under any $P-T$ conditions. The calculation results
619	thus suggest that Anh-B would not be formed in peridotites under subsolidus and
620	anhydrous conditions. If the local bulk compositions of such rocks are enriched with an
621	MgO component or the Gibbs free energy of Anh-B is effectively reduced by some
622	other components, Anh-B might possibly exist in mantle peridotites.
623	
623 624	
	Acknowledgments
624	Acknowledgments We thank P.D. Asimow for helpful review comments. This work was supported in
624 625	
624 625 626	We thank P.D. Asimow for helpful review comments. This work was supported in
624 625 626 627	We thank P.D. Asimow for helpful review comments. This work was supported in part by the JSPS grants (No. 15K05347 to H. K. and No. 25287145 and No. 17H02986
 624 625 626 627 628 	We thank P.D. Asimow for helpful review comments. This work was supported in part by the JSPS grants (No. 15K05347 to H. K. and No. 25287145 and No. 17H02986 to M. A.) and by the MEXT-supported program for the Strategic Research Foundation at

632	References
633	
634	Akaogi, M., and Akimoto, S. (1980) High-pressure stability of a dense hydrous
635	magnesian silicate $Mg_{23}Si_8O_{42}H_6$ and some geophysical implications. Journal of
636	Geophysical Research, 85, 6944–6948.
637	Akaogi, M., Yusa, H., Shiraishi, K., and Suzuki, T. (1995) Thermodynamic properties of
638	α -quartz, coesite, and stishovite and equilibrium phase relations at high pressures and
639	high temperatures. Journal of Geophysical Research, 100, 22337-22347.
640	Akaogi, M., Takayama, H., Kojitani, H., Kawaji, H., and Atake, T. (2007)
641	Low-temperature heat capacities, entropies and enthalpies of Mg ₂ SiO ₄ polymorphs,
642	and α - β - γ and post-spinel phase relations at high pressure. Physics and Chemistry of
643	Minerals, 34, 169–183.
644	Akaogi, M., Oohata, M., Kojitani, H., and Kawaji, H. (2011) Thermodynamic properties
645	of stishovite by low-temperature heat capacity measurements and the coesite-
646	stishovite transition boundary. American Mineralogist, 96, 1325–1330.
647	Anderson, O.L. (1995) Equations of state of solids for geophysics and ceramic science.
648	Oxford monographs on geology and geophysics, No. 31, Oxford University Press,
649	New York.

- 650 Arai, S. (1997) Control of wall-rock composition on the formation of podiform
- chromitites as a result of magma/peridotite interaction. Resource Geology, 47, 177–
- 652 187.
- Arai, S. and Miura, M. (2016) Formation and modification of chromitites in the mantle.
- 654 Lithos, 264, 277–295.
- Ashida, T., Kume, S., and Ito, E. (1987) Thermodynamic aspects of phase boundary
- among α -, β and γ -Mg₂SiO₄, In: M.H. Manghnani and Y. Syono, Eds., High-pressure
- research in mineral physics, p. 269-274. Terra Scientific Publishing, Tokyo/
- 658 American Geophysical Union, Washington D.C.
- Bindi, L., Sirotkina, E.A., Bobrov, A.V., Nestola, F., and Irifune, T. (2016) Chromium
- solubility in anhydrous Phase B. Physics and Chemistry of Minerals, 43, 103–110.
- Birch, F. (1961) The velocity of compressional waves in rocks to 10 kilobars, part 2.
- G62 Journal of Geophysical Research, 66, 2199–2224.
- 663 Crichton, W.A., Ross, N.L., and Gasparik, T. (1999) Equations of state of magnesium
- silicates anhydrous B and superhydrous B. Physics and Chemistry of Minerrals, 26,
 570–575.
- 666 Ditmars, D.A., Ishihara, S., Chang, S.S., Bernstein, G., and West, E.D. (1982) Enthalpy
- and heat-capacity standard reference material: synthetic sapphire (α -Al₂O₃) from 10

- to 2250 K. Journal of Research of the National Bureau of Standards, 87, 159–163.
- 669 Dunn, K.J. and Bundy, F.P. (1978) Materials and techniques for pressure calibration by
- resistance-jump transitions up to 500 kilobars. Review of Scientific Instruments, 49,
- 671 <u>365–370</u>.
- 672 Fei, Y., Mao, H.K., Shu, J., Parthasarathy, G., Bassett W.A., and Ko, J. (1992)
- 673 Simultaneous high-P, high-T X ray diffraction study of β -(Mg,Fe)₂SiO₄ to 26 GPa
- and 900 K. Journal of Geophysical Research, 97, 4489–4495.
- 675 Finger, L.W., Ko, J., Hazen, R.M., Gasparik, T., Hemley, R.J., Prewitt, C.T., and
- 676 Weidner, D.J. (1989) Crystal chemistry of phase B and an anhydrous analogue:
- 677 implications for water storage in the upper mantle. Nature, 341, 140–142.
- 678 Finger, L.W., Hazen, R.M., and Prewitt, C.T. (1991) Crystal structures of
- 679 Mg₁₂Si₄O₁₉(OH)₂ (phase B) and Mg₁₄Si₅O₂₄ (phase AnhB). American Mineralogist,
- 680 76, 1–7.
- 681 Finger, L.W., Hazen, R.M., Zhang, J., Ko, J., and Navrotsky, A. (1993) The effect of Fe
- on the crystal structure of wadsleyite β -(Mg_{1-x}Fe_x)₂SiO₄, 0.00 \leq x \leq 0.40. Physics and
- 683 Chemistry of Minerals, 19, 361–368.
- 684 Ganguly, J. and Frost, D.J. (2006) Stability of anhydrous phase B: Experimental studies
- and implications for phase relations in subducting slab and the X discontinuity in the

- mantle. Journal of Geophysical Research, 111, B06203.
- 687 Herzberg, C.H. and Gasparik, T. (1989) Melting experiments on chondrite at high
- 688 pressures: Stability of anhydrous B. Eos Trans., AGU, 70, 484.
- 689 Inoue, T., Irifune, T., Higo, Y., Sanehira, T., Sueda, Y., Yamada, A., Shinmei, T.,
- 690 Yamazaki, D., Ando, J., Funakoshi, K., and Utsumi, W. (2006) The phase boundary
- between wadsleyite and ringwoodite in Mg₂SiO₄ determined by in situ X-ray
- diffraction. Physics and Chemistry of Minerals, 33, 106–114.
- 693 Ito, E., 2007. Theory and practice Multianvil cells and high-pressure experimental
- 694 methods. In: G.D. Price, Ed., Mineral Physics, 2, p. 197–230. Treatise on Geophysics,
- 695 Elsevier, Amsterdam.
- 696 Izumi, F. and Momma, K. (2007) Three-dimensional visualization in powder diffraction.
- 697 Solid State Phenomena, 130, 15–20.
- $_{698}$ Jacobs, M.H.G. and Oonk, H.A.J. (2001) The Gibbs energy formulation of the α , β , and
- γ forms of Mg₂SiO₄ using Grover, Getting and Kennedy's empirical relation between
- volume and bulk modulus. Physics and Chemistry of Minerals, 28, 572–585.
- 701 Kajiyoshi, K (1986) High-temperature equation of state for mantle minerals and their
- anharmonic properties. MS Thesis, Okayama University, Okayama, Japan.
- 703 Kieffer, S.W. (1979a) Thermodynamics and lattice vibrations of minerals: 1. Mineral

- heat capacities and their relationships to simple lattice vibrational models. Reviews of
- Geophysics and Space Physics, 17, 1–19.
- 706 Kieffer, S.W. (1979b) Thermodynamics and lattice vibrations of minerals: 3. Lattice
- dynamics and an approximation for minerals with application to simple substances
- and framework silicates. Reviews of Geophysics and Space Physics, 17, 35–59.
- 709 Kirby, S.H., Stein, S., Okal, E.A., and Rubie, D.C. (1996) Metastable mantle phase
- transformations and deep earthquakes in subducting oceanic lithosphere. Reviews of
- 711 Geophysics, 34, 261–306.
- 712 Kojitani, H., Nishimura, K., Kubo, A., Sakashita, M., Aoki, K., and Akaogi, M. (2003)
- Raman spectroscopy and heat capacity measurement of calcium ferrite type MgAl₂O₄
- and CaAl₂O₄. Physics and Chemistry of Minerals, 30, 409–415.
- 715 Kojitani, H., Oohata, M., Inoue, T., and Akaogi, M. (2012a) Redetermination of
- high-temperature heat capacity of Mg₂SiO₄ ringwoodite: Measurement and lattice
- vibrational model calculation. American Mineralogist, 97, 1314–1319.
- 718 Kojitani, H., Ishii, T., and Akaogi, M. (2012b) Thermodynamic investigation on phase
- equilibrium boundary between calcium ferrite-type MgAl₂O₄ and MgO + α -Al₂O₃.
- Physics of the Earth and Planetary Interiors, 212–213, 100–105.
- 721 Kojitani, H., Inoue, T., and Akaogi, M. (2016) Precise measurements of enthalpy of

- postspinel transition in Mg_2SiO_4 and application to the phase boundary calculation.
- Journal of Geophysical Research Solid Earth, 121, 729–742.
- Lager, G.A., Ross, F.K., and Rotella, F.J. (1981) Neutron powder diffraction of forsterite,
- 725 Mg₂SiO₄: a comparison with single-crystal investigations. Journal of Applied
- 726 Crystallography, 14, 137–139.
- 727 Morishima, H., Kato, T., Suto, M., Ohtani, E., Urakawa, U., Shimomura, O., and
- Kikegawa, T. (1994) The phase boundary between α and β -Mg₂SiO₄ determined by
- in situ X-ray observation. Science, 265, 1202–1203.
- 730 Mraw, S.C. and Naas, D.F. (1979) The measurement of accurate heat capacities by
- differential scanning calorimetry. Comparison of d.s.c. results on pyrite (100 to 800
- 732 K) with literature values from precision adiabatic calorimetry. Journal of Chemical
- 733 Thermodynamics, 11, 567–584.
- Nishihara, Y., Nakayama, K., Takahashi, E., Iguchi, T., and Funakoshi, K. (2005) P–V–T
- equation of state of stishovite to the mantle transition zone conditions. Physics and
- 736 Chemistry of Minerals, 31,660–670.
- 737 Ono, S., Katsura, T., Ito, E., Kanzaki, M., Yoneda, A., and Walter, M.J. (2001) In situ
- observation of ilmenite-perovskite phase transition in MgSiO₃ using synchrotron
- radiation. Geophysical Research Letters, 28, 835–838.

- 740 Ottonello, G., Civalleri, B., Ganguly, J., Perger, W.F., Belmonte, D., and Vetuschi
- 741 Zuccolini, M. (2010) Thermo-chemical and thermo-physical properties of the
- high-pressure phase anhydrous B ($Mg_{14}Si_5O_{24}$): An ab-initio all-electron investigation.
- American Mineralogist, 95, 563–573.
- Presnall, D.C. and Gasparik, T. (1990) Melting of enstatite (MgSiO₃) from 10 to 16.5
- GPa and the forsterite (Mg₂SiO₄)-majorite (MgSiO₃) eutectic at 16.5 GPa:
- T46 Implications for the origin of the mantle. Journal of Geophysical Research, 95,
- 747 15771–15777.
- 748 Robie, R.A. and Hemingway, B.S. (1995) Thermodynamic properties of minerals and
- related substances at 298.15 K and 1 bar (10^5 Pascals) pressure and at higher
- temperatures, 461 p. US Geological Survey Bull 2131.
- 751 Sasaki, S., Prewitt, C.T., Sato, Y., and Ito, E. (1982) Single-crystal X-ray study of
- γ -Mg₂SiO₄. Journal of Geophysical Research, 87, 7829–7832.
- 53 Schmarr, N.C., Kelly, B.M., and Thorne, M.S. (2013) Broadband array observations of
- the 300 km seismic discontinuity. Geophysical Research Letters, 40, 841–846.
- 755 Suzuki, I., Ohtani, E., and Kumazawa, M. (1980) Thermal expansion of modified
- spinel, β -Mg₂SiO₄. Journal of Physics of the Earth, 28, 273–280.
- 757 Suzuki, A., Ohtani, E., Morishima, H., Kubo, T., Kanbe, Y. Kondo, T., Okada, T.,

- 758 Terasaki, H., Kato, T., and Kikegawa, T. (2000) In situ determination of the phase
- boundary between wadsleyite and ringwoodite in Mg₂SiO₄. Goephysical Research
- 760 Letters, 27, 803–806.
- 761 Tange, Y., Nishihara, Y., and Tsuchiya, T. (2009) Unified analyses for P–V–T equation
- of state of MgO: A solution for pressure-scale problems in high P-T experiments.
- Journal of Geophysical Research, 114, B03208.
- Trots, D.M, Kurnosov, A., Boffa Ballaran, T., and Frost, D.J. (2012) High-temperature
- structural behaviors of anhydrous wadsleyite and forsterite. American Mineralogist,
- 766 97, 1582–1590.
- 767 Tsuchiya, T. (2003) First-principles prediction of the P-V-T equation of state of gold
- and the 660-km discontinuity in Earth's mantle. Journal of Geophysical Research,
- 769 108, B10, 2462.
- Wang, F., Tange, Y., Irifune, T., and Funakoshi, K. (2012) P-V-T equation of state of
- stishovite up to mid-lower mantle conditions. Journal of Geophysical Research, 117,B06209.
- 773 Watanabe, H. (1982) Thermochemical properties of synthetic high-pressure compounds
- relevant to the Earth's mantle. In: S. Akimoto and M.H. Manghnani, Eds.,
- High-pressure research in geophysics, p. 441–464. Center for Academic Publications,

776 Japan, Tokyo.

- Williams, Q. and Revenaugh, J. (2005) Ancient subduction, mantle eclogite, and the 300
- km seismic discontinuity. Geology, 33, 1–4.
- 779 Woodland, A.B. (1998) The orthorhombic to high-P monoclinic phase transition in
- 780 Mg-Fe pyroxenes: Can it produce a seismic discontinuity?. Geophysical Research
- 781 Letters, 25, 1241–1244.
- 782 Yamamoto, S., Komiya, T., Hirose, K., and Maruyama, S. (2009) Coesite and
- clinopyroxene exsolution lamellae in chromitites: In-situ ultrahigh-pressure evidence
- from podiform chromitites in the Luobusa ophiolite, southern Tibet. Lithos, 109,
- 785 314-322.
- 786 Yong, D., Dachs, E., Withers, A.C., and Essene, E.J. (2006) Heat capacity and phase
- equilibria of hollandite polymorph of KAlSi₃O₈. Physics and Chemistry of Minerals,
- 788 33, 167–177.
- 789 Zhang, J., Li, B., Utsumi, W., and Liebermann, R.C. (1996) In situ X-ray observations
- 790 of the coesite-stishovite transition: reversed phase boundary and kinetics. Physics
- and Chemistry of Minerals, 23, 1–10.
- 792

793 Figure captions

795	Figure 1. The results of high-pressure high-temperature experiments. Open, red solid,
796	gray solid and light blue solid triangles indicate that the recovered samples are
797	forsterite (Fo) + periclase (Per), anhydrous phase B (Anh-B), wadsleyite (Wd) + Per
798	and ringwoodite (Rw) + Per, respectively. Reverse triangles represent reverse runs.
799	Half red-half open triangles, half gray-half red triangles and the half light blue-half
800	gray triangle show mixtures of Anh-B + Fo + Per, Anh-B + Wd + Per and Rw + Wd
801	+ Per, respectively. Solid lines are the phase boundaries of Fo + Per = Anh-B and
802	Anh-B = Wd + Per determined using the least-squares method. Dashed lines show
803	their uncertainty. The dash-dotted line is the Wd-Rw phase boundary of Inoue et al.
804	(2006) rescaled using Tsuchiya's (2003) equation of state of Au.
805	Figure 2. Temperature dependences of the lattice parameters and volume of anhydrous
806	phase B. The open circles and plus symbols are lattice parameters and volumes
807	measured in the heating and cooling processes, respectively. Red solid lines show
808	fitted curves by the least-squares method.
809	Figure 3. Thermal expansivity of anhydrous phase B. The red thick broken line
810	represents thermal expansivity determined by the high-temperature X-ray diffraction

811	(HTXRD) method. The solid curves were calculated using thermal Grüneisen
812	parameters (γ_{th}) of 1.1, 1.2 and 1.3. The dash-dotted line shows a curve previously
813	predicted by the <i>ab initio</i> calculations of Ottonello et al. (2010).
814	Figure 4. Measured isobaric heat capacity of anhydrous phase B. Red and blue open
815	circles show the data obtained by the thermal relaxation method and differential
816	scanning calorimetry, respectively. Insets show the results of the least-squares fitting
817	individually performed in the temperature ranges of 0-20, 20-70, 70-200 and 200-
818	380 K. The fitted curves are represented by solid lines.
819	Figure 5. Information on the lattice vibration of anhydrous phase B. (a) Observed
820	Raman spectrum of anhydrous phase B. Vertical bars below the Raman spectrum
821	indicate lattice vibrational mode frequencies for the Raman active modes (upper
822	ones) and infra-red (IR) active and silent modes (lower ones) calculated by Ottonello
823	et al. (2010). (b) Vibrational density of state model used for the Kieffer model
824	calculation. Three vertical lines around 100 cm ⁻¹ indicate cut off frequencies of
825	Debye-like oscillators for acoustic modes. The distribution of the optic modes based
826	on the data shown in (a) is modeled using four rectangles (i.e., optic continua).
827	Numbers in or above the rectangles indicate the fraction of optic modes assigned to
828	each optic continuum.

845

829	Figure 6. Comparison of observed and calculated heat capacities for anhydrous phase B.
830	Open circles are the isobaric heat capacity data observed in this study. Red and blue
831	curves indicate isobaric and isochoric heat capacities calculated using the Kieffer
832	model. The dashed line is the isobaric heat capacity obtained using ab initio
833	calculations by Ottonello et al. (2010).
834	Figure 7. Heat capacities of Mg ₂ SiO ₄ wadsleyite calculated using the Kieffer model.
835	Red and blue open circles and blue diamonds are the isobaric heat capacity data
836	measured by Akaogi et al. (2007), Ashida et al. (1987) and Watanabe (1982),
837	respectively. Solid curves show isochoric and isobaric heat capacities obtained by the
838	Kieffer model calculation using a vibrational density of state model which well
839	reproduces the data of Akaogi et al. (2007).
840	Figure 8. Thermal expansivity of Mg_2SiO_4 wadsleyite. The solid curve shows a
841	calculated thermal expansivity using the Grüneisen relation equation. Open squares
842	and open triangles are the data determined experimentally by Suzuki et al. (1980)
843	and Trots et al. (2012), respectively.
844	Figure 9. Forsteirte (Fo)-wadsleyite (Wd) and Wd-ringwoodite (Rw) phase boundaries

thermodynamically in this study. Error bars indicate uncertainties in the calculated 846

in Mg₂SiO₄. Solid curves are phase equilibrium boundaries calculated

847	boundaries caused by the errors in the phase transition enthalpies. The dash-dotted
848	line is the Fo-Wd phase boundary determined by the high-pressure in situ
849	experiment by Morishima et al. (1994) and the dotted and broken lines are the Wd-
850	Rw phase boundaries determined by the high-pressure in situ experiments by Suzuki
851	et al. (2000) and Inoue et al. (2006), respectively. Note that the boundary of Inoue et
852	al. (2006) was recalibrated using the equation of state of Au by Tsuchiya (2003).
853	Figure 10. Thermodynamically calculated phase boundaries for (a) 5 Mg ₂ SiO ₄ forsterite
854	(Fo) + 4 MgO periclase (Per) = $Mg_{14}Si_5O_{24}$ anhydrous phase B (Anh-B) and (b)
855	Anh-B = 5 Mg_2SiO_4 wadsleyite (Wd) + 4 Per. Solid curves indicate
856	thermodynamically calculated boundaries under the assumption of different
857	drop-solution enthalpies (ΔH_{d-s}) for Anh-B. Broken and dash-dotted lines are the
858	boundaries for 5 Fo + 4 Per = Anh-B determined by the high-pressure experiment of
859	Ganguly and Frost (2006) and calculations of Ottonello et al. (2010), respectively.
860	The dotted line is a Wd-ringwoodite (Rw) boundary determined by the high-pressure
861	in situ experiment of Inoue et al. (2006), rescaled with Tsuchiya's (2003) equation of
862	state of Au. Triangles represent the results of the present high-pressure experiments.
863	Open, red solid, gray solid and light blue solid triangles indicate the phases of Fo +
864	Per, Anh-B, Wd + Per and Rw + Per, respectively. Reverse triangles represent reverse

865	runs. Half red-half open triangles, half gray-half red triangles and the half light
866	blue-half gray triangle show phase assemblies of Anh-B + Fo + Per, Anh-B + Wd +
867	Per and Rw + Wd + Per, respectively.
868	Figure 11. Thermodynamically calculated phase relations in $Mg_{14}Si_5O_{24}$. Anh-B:
869	anhydrous phase B; Fo: forsterite; Wd: wadsleyite; Rw: ringwoodite; Per: periclase.
870	In this calculation, the optimized formation enthalpy from elements for Anh-B of -
871	13208 kJ/mol was adopted. Obtained phase equilibrium boundaries are shown by
872	solid curves. The star symbol indicates the run condition (16.5 GPa and 2623 K) of a
873	melting experiment of Fo performed by Presnall and Gasparik (1990), in which
874	coexistence of Anh-B with liquid was observed.
875	Figure 12. Thermodynamically calculated phase relations in Mg ₂ SiO ₄ . Solid lines are
876	calculated equilibrium boundaries. Anh-B: Mg ₁₄ Si ₅ O ₂₄ anhydrous phase B; St: SiO ₂
877	stishovite; Fo: Mg_2SiO_4 forsterite; Wd: Mg_2SiO_4 wadsleyite; Rw: Mg_2SiO_4
878	ringwoodite. The area surrounded by broken lines is the stability field of Anh-B + St
879	calculated by assuming the formation enthalpy from elements ($\Delta_f H^{\circ}_{298}$) for Anh-B of
880	–13236 kJ/mol. If a value of $\Delta_{\rm f} H^{\circ}_{298}$ (Anh-B) negatively smaller than –13235 kJ/mol
881	is adopted, the stability field of Anh-B + St never appears.

Run no.	Starting	P	Т	Time	Recovered phases
	material	(GPa)	(K)	(h)	
25	Fo + Per	12	1673	3	Fo, Per
24	Fo + Per	13	1673	3	Anh-B, Fo, Per
9	Fo + Per	17	1673	3	Anh-B
10	Fo + Per	18	1673	3	Anh-B
12	Fo + Per	19	1673	3	Wd, Per
21	Fo + Per	12	1873	3	Fo, Per
27	Anh-B	12	1873	3	Anh-B, Fo, Per
22	Fo + Per	13	1873	3	Fo, Per, Anh-B
23	Fo + Per	13.5	1873	3	Anh-B, Fo, Per
26	Fo + Per	15	1873	3	Anh-B
6	Fo + Per	18	1873	1	Anh-B >> Wd, Per
8	Fo + Per	18	1873	2.5	Anh-B >> Wd, Per
17	Wd + Per	18.5	1873	3	Wd, Per, Anh-B
5	Fo + Per	19	1873	3	Wd, Per
11	Fo + Per	19.3	1873	3	Wd, Per >> Anh-B
4	Fo + Per	19	1873	3	Wd, Per
2	Fo + Per	20	1873	3	Wd, Rw, Per
1	Fo + Per	22	1873	3	Rw, Per
19	Fo + Per	12.5	2073	3	Fo, Per
28	Anh-B	12.5	2073	3	Anh-B, Fo, Per
20	Fo + Per	13.5	2073	3	Anh-B >> Fo, Per
14	Fo + Per	18	2073	3	Anh-B
16	Fo + Per	19	2073	2.5	Anh-B >> Wd, Per
18	Wd + Per	19.3	2073	3	Wd, Per, Anh-B
15	Fo + Per	19.5	2073	1.5	Wd, Per >> Anh-B

916

Т	а	b	С	V
(K)	(Å)	(Å)	(Å)	(Å ³)
303	5.887(6)	14.199(7)	10.081(7)	842.6(7)
373	5.890(5)	14.210(7)	10.085(7)	844.1(7)
423	5.893(6)	14.225(8)	10.089(7)	845.7(8)
473	5.896(5)	14.220(7)	10.100(7)	846.5(7)
523	5.898(5)	14.229(7)	10.102(7)	847.7(6)
573	5.902(5)	14.230(7)	10.106(7)	849.0(7)
623	5.905(5)	14.246(7)	10.111(7)	850.5(6)
673	5.909(5)	14.249(7)	10.117(7)	851.8(7)
723	5.913(5)	14.258(7)	10.121(7)	853.3(7)
773	5.915(5)	14.265(7)	10.128(7)	854.6(7)
723	5.912(5)	14.260(7)	10.122(6)	853.3(6)
673	5.910(5)	14.250(7)	10.116(6)	851.8(6)
623	5.905(5)	14.246(7)	10.111(7)	850.6(7)
573	5.902(5)	14.236(7)	10.105(6)	849.0(6)
523	5.900(5)	14.228(7)	10.101(7)	847.7(6)
473	5.895(5)	14.223(7)	10.090(7)	846.3(6)
423	5.893(5)	14.217(7)	10.088(6)	845.1(6)
373	5.890(5)	14.206(7)	10.090(7)	843.8(7)
303	5.887(5)	14.197(7)	10.077(7)	842.2(7)

Table 2. Lattice parameters and unit cell volumes of anhydrousphase B measured by high-temperature powder X-ray diffraction

)	measured	l using a diff	ferential so	canning calor	rimeter (D	SC)		
	Sec	tion I	Sec	tion II	Sec	tion III	Sect	tion IV
	Т	C_P	Т	C_P	Т	C_P	Т	C_P
	(K)	$(J/mol \cdot K)$	(K)	$(J/mol \cdot K)$	(K)	$(J/mol \cdot K)$	(K)	$(J/mol \cdot K)$
	302.5	738(2)	382.5	845(3)	462.5	908(5)	540.0	956(13)
	307.5	750(4)	387.5	850(3)	467.5	915(6)	560.0	966(11)
	312.5	754(1)	392.5	854(4)	472.5	917(6)	580.0	976(14)
	317.5	765(4)	397.5	859(4)	477.5	922(6)	600.0	983(13)
	322.5	771(6)	402.5	863(4)	482.5	925(6)	620.0	991(14)
	327.5	780(4)	407.5	868(5)	487.5	928(6)	640.0	999(15)
	332.5	786(4)	412.5	871(5)	492.5	931(6)	660.0	1007(16)
	337.5	793(3)	417.5	876(5)	497.5	935(6)	680.0	1013(15)
	342.5	799(2)	422.5	881(5)	502.5	938(8)	700.0	1019(15)
	347.5	806(2)	427.5	884(5)	507.5	942(6)	720.0	1025(16)
	352.5	812(4)	432.5	888(5)	512.5	945(7)	740.0	1031(17)
	357.5	818(3)	437.5	892(4)	517.5	947(6)	760.0	1036(17)
	362.5	824(4)	442.5	896(5)	522.5	951(7)		
	367.5	831(3)	447.5	901(7)	527.5	953(7)		
	372.5	835(3)	452.5	904(4)	532.5	956(8)		
	377.5	842(4)	457.5	906(4)	537.5	959(7)		
	382.5	847(4)	462.5	909(4)	542.5	962(7)		
	387.5	851(7)	467.5	916(5)	547.5	964(7)		
	392.5	855(5)	472.5	920(5)	552.5	967(6)		
	397.5	860(4)	477.5	924(5)	557.5	970(7)		

Table 3. High-temperature isobaric heat capacity of $Mg_{14}Si_5O_{24}$ anhydrous phase B measured using a differential scanning calorimeter (DSC)

950 Numbers in parentheses are uncertainties in last significant figure, which were obtained

951 from twice the standard deviation of the mean.

952

955	measured	using a Physical I	Property Me	easurement Syste	em (PPMS)	
	<i>T</i> (K)	$C_P \left(\text{J/mol} \cdot \text{K} \right)$	<i>T</i> (K)	$C_P \left(\text{J/mol} \cdot \text{K} \right)$	<i>T</i> (K)	$C_P(J/\text{mol}\cdot K)$
	2.0	0.00603(8)	105.1	190.0(4)	206.9	536.8(6)
	3.9	0.0127(2)	107.1	197.5(4)	208.9	543.3(6)
	5.9	0.0329(5)	109.1	205.5(5)	210.8	547.7(8)
	8.1	0.080(2)	111.1	212.6(5)	212.8	554.1(8)
	10.1	0.151(2)	113.1	220.7(5)	214.8	556.9(10)
	12.1	0.250(5)	115.1	227.8(5)	216.8	559.7(5)
	14.1	0.404(6)	117.0	235.3(5)	218.8	564.7(6)
	15.9	0.588(9)	119.0	243.1(5)	220.8	570.8(6)
	17.9	0.843(9)	121.0	249.8(5)	222.8	576.2(7)
	20.0	1.14(2)	123.0	257.3(5)	224.8	583.0(10)
	22.0	1.56(2)	125.0	264.8(5)	226.8	586.5(11)
	24.0	2.07(3)	127.0	272.4(5)	228.8	589.6(6)
	26.0	2.70(3)	129.0	280.4(5)	230.8	595.9(9)
	28.1	3.51(3)	131.0	287.4(4)	232.8	599.8(9)
	30.2	4.52(3)	133.0	295.2(3)	234.8	602.0(9)
	32.2	5.67(4)	135.0	303.3(3)	236.8	610.3(10)
	34.3	7.02(5)	137.0	310.5(3)	238.8	608.8(9)
	36.3	8.71(7)	139.0	317.4(4)	240.8	614.7(13)
	38.4	10.59(6)	141.0	325.8(3)	242.8	623.5(11)
	40.5	12.73(6)	143.0	332.3(3)	244.8	628.6(9)
	42.5	15.25(11)	145.0	339.9(4)	246.8	636.7(9)
	44.6	17.58(8)	147.0	346.0(3)	248.8	642.3(18)
	46.7	20.46(9)	148.9	353.0(5)	250.8	641.3(12)
	48.7	23.52(9)	150.9	360.6(4)	252.8	648.9(8)
	50.8	26.91(9)	152.9	367.7(5)	254.7	650.9(11)
	52.8	30.53(10)	154.9	373.0(3)	256.7	658.2(10)
	54.8	34.2(2)	156.9	380.2(4)	258.7	655.6(15)
	56.8	38.4(2)	158.9	388.4(5)	260.7	664.7(11)
	58.9	42.8(2)	160.9	395.1(4)	262.7	664.0(12)
	60.9	47.6(2)	162.9	401.1(4)	264.7	667.4(15)
	63.0	52.4(2)	164.9	408.7(3)	266.7	666.5(18)
	65.0	57.9(2)	166.9	417.1(4)	268.7	681.1(17)
	67.0	63.3(2)	168.9	423.0(3)	270.7	680.4(16)

954 Table 4. Low-temperature isobaric heat capacity of $Mg_{14}Si_5O_{24}$ anhydrous phase B

69.0	68.8(2)	170.9	429.0(3)	272.7	682.5(17)
71.0	74.5(3)	172.9	436.2(3)	274.7	688.3(15)
73.0	80.4(2)	174.9	440.3(4)	276.7	693.5(15)
74.9	86.1(3)	176.9	445.9(3)	278.7	699.7(15)
77.0	92.0(3)	178.9	453.2(3)	280.7	702.1(15)
79.0	98.0(2)	180.9	461.9(6)	282.7	706.5(19)
80.9	105.3(4)	182.9	467.6(4)	284.7	704.9(24)
82.9	110.5(3)	184.9	472.3(4)	286.7	711.2(24)
85.0	117.2(2)	186.9	476.1(4)	288.7	712.0(21)
87.0	124.2(3)	188.9	484.2(4)	290.7	711.8(20)
89.0	131.1(3)	190.9	490.3(5)	292.7	719.4(24)
91.0	138.1(4)	192.9	497.7(7)	294.7	717.6(26)
93.0	145.2(4)	194.9	502.6(8)	296.7	725.0(24)
95.0	152.5(4)	196.9	510.2(5)	298.7	726.8(27)
97.0	160.0(4)	198.9	514.3(4)	300.7	734.8(28)
99.1	167.3(4)	200.9	520.4(5)	302.6	734.2(25)
101.1	175.0(4)	202.9	526.3(5)		
103.1	182.6(4)	204.8	531.8(6)		

⁹⁵⁶ Numbers in parentheses are uncertainties in last significant figure.

957

958

959

960

961

region	Coefficient
<i>T</i> : 0–20 K	coefficient
k_6	(1.4543±0.0060)×10
χ^2	1.274
$\frac{\lambda}{R^2}$	0.99929
<i>T</i> : 20–70 K	
k_0	(2.4036±0.0917)×10
k_2	(-1.9128±0.1782)×10
k_4	$-1.5349{\pm}0.0307$
k_5	(3.1674±0.0266) ×10
χ^2	3.404
R^2	0.99995
<i>T</i> : 70–200 K	
k_0	$(1.5708 \pm 0.6587) \times 10^{3}$
k_1	(-1.9024±0.6096)×10
k_2	$(5.3763 \pm 1.4376) \times 10^{6}$
k_3	(-1.3569±0.3742)×10
k_4	1.1361 ± 1.8168
k_5	(-1.3137±2.612) ×10
χ^2	3.331
R^2	0.99997
<i>T</i> : 200–380 K	
k_0	$(1.4964 \pm 0.098) \times 10^3$
k_1	(-1.0859±0.2570)×10
k_2	(-1.9386±0.6796)×10
k_3	(2.1885±0.6927)×10 ⁹
χ^2	4.754
R^2	0.99935

968
$$\chi^2 = \left[\sum_i^n \frac{(Cp_i - Cp(T_i))^2}{\sigma_i^2}\right] / (n - m) \text{ where } n \text{ is}$$

969 the number of data and m is the number of

970 fitted parameters.

971
$$R^{2} = 1 - \frac{\sum (Cp_{i} - Cp(T_{i}))^{2}}{\sum (Cp_{i} - (Cp))^{2}} \text{ where } \langle Cp \rangle \text{ is the}$$

972 mean value of
$$C_{Pi}$$
.

973

975	Table	6. Observe	d Ra	man peaks of		
976	anhyd	rous phase B				
	No.	Raman shift	No.	Raman shift		
		(cm^{-1})		(cm^{-1})		
	1	125	19	464		
	2	164	20	475		
	3	170	21	481		
	4	195	22	511		
	5	216	23	520		
	6	238	24	559		
	7	250	25	570		
	8	309	26	590		
	9	332	27	601		
	10	345	28	643		
	11	360	29	683		
	12	371	30	819		
	13	389	31	842		
	14	405	32	871		
	15	415	33	894		
	16	437	34	904		
	17	447	35	949		
	18	460	36	1022		
977						

978

979

Туре	Lower limit	Upper limit	Number of modes
	(cm^{-1})	(cm^{-1})	
Mg ₁₄ Si ₅ O ₂	24 Anh-B		
D (TA-1)	0	67	1
D (TA-2)	0	93	1
D (LA)	0	128	1
OC-1	187	540	190
OC-2	540	700	33
OC-3	790	910	26
OC-4	950	1050	6
Mg ₂ SiO ₄ V	Wd		
D (TA-1)	0	108	1
D (TA-2)	0	122	1
D (LA)	0	199	1
OC-1	185	630	68
OC-2	800	1000	10
Е	_	700	3

980	Table 7. Lattice	vibrational	density	of states	models	for 1	$Mg_{14}Si_5O_{24}$
-----	------------------	-------------	---------	-----------	--------	-------	---------------------

1000 D: Debye oscillator; OC: optic continuum; E: Einstein oscillator.

1001 TA: transverse acoustic mode; LA: longitudinal acoustic mode.

1002

	M	g ₁₄ Si ₅ O ₂₄ Anh	Mg ₂ SiO ₄ Wd			
Т					$\alpha \times 10^5$	
		$\alpha \times 10^5$	C_P	C_V		C_P
(K)	(J/mol·K)	(1/K)	(J/mol·K)	(J/mol·K)	(1/K)	(J/mol·K)
10	0.19	0.00056	0.19	0.02	0.00040	0.02
20	1.78	0.0053	1.78	0.26	0.0047	0.26
30	4.75	0.014	4.75	1.01	0.018	1.01
40	10.75	0.032	10.75	2.43	0.043	2.43
50	22.74	0.068	22.74	4.74	0.084	4.74
60	41.85	0.126	41.86	8.01	0.143	8.01
70	67.49	0.203	67.50	12.14	0.217	12.14
80	98.31	0.297	98.34	16.95	0.304	16.95
90	132.86	0.402	132.92	22.25	0.399	22.26
100	169.80	0.514	169.90	27.89	0.501	27.90
150	358.76	1.096	359.46	57.00	1.031	57.12
200	518.19	1.597	520.17	82.32	1.498	82.64
250	639.49	1.988	643.30	102.03	1.870	102.65
300	729.71	2.289	735.47	116.89	2.155	117.85
400	847.56	2.708	859.05	136.53	2.552	138.39
500	916.21	2.982	933.04	148.07	2.807	150.82
600	958.60	3.180	980.72	155.23	2.984	158.87
700	986.24	3.336	1013.80	159.91	3.119	164.46
800	1005.11	3.468	1038.38	163.12	3.228	168.61
900	1018.50	3.586	1057.83	165.39	3.321	171.86
1000	1028.32	3.695	1074.09	167.06	3.405	174.54
1100	1035.72	3.801	1088.34	168.32	3.483	176.86
1200	1041.43	3.905	1101.31	169.29	3.558	178.92
1300	1045.91	4.009	1113.49	170.06	3.630	180.83
1400	1049.51	4.114	1125.20	170.67	3.702	182.62
1500	1052.42	4.221	1136.65	171.17	3.773	184.33
1600	1054.82	4.332	1148.00	171.57	3.845	186.00
1700	1056.82	4.445	1159.33	171.92	3.917	187.64
1800	1058.50	4.564	1170.72	172.20	3.991	189.27
1900	1059.93	4.687	1182.20	172.44	4.066	190.89
	1061.15	4.816	1193.81	172.65	4.143	192.51

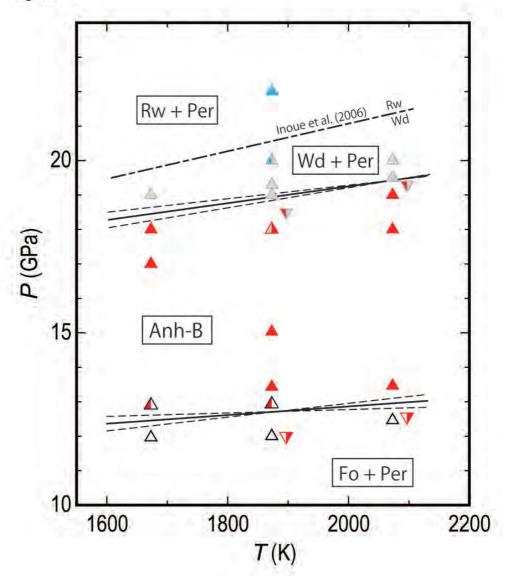
1004	Table 8. Results of heat capacity and thermal expansivity calculations for $Mg_{14}Si_5O_{24}$
1005	anhydrous phase B and Mg ₂ SiO ₄ wadsleyite

2100	1062.21	4.951	1205.54	172.83	4.222	194.13
2200	1063.12	5.092	1217.40	172.99	4.304	195.77
2300	1063.92	5.241	1229.36	173.13	4.388	197.41
2400	1064.63	5.399	1241.41	173.25	4.475	199.07
2500	1065.25	5.566	1253.50	173.35	4.565	200.74

1006

1008

H° ₂₉₈ (kJ/mol) ₂₉₈ (J/mol·K)		Fo	Wd	Rw	Per	St
₂₉₈ (J/mol·K)	-132108^{a}	-2174.0 ^a	-2148.0^{a}	-2134.8 ^a	-601.6 ^b	-874.7
	544.4 ^a	94.1 ^b	86.4 °	82.7 °	26.9 ^b	24.0 ^d
oS	HTBM	HTBM	HTBM	HTBM	MGD-BM	MGD-V
(298) (cm ³ /mol)	252.61 ^a	43.66 ^e	$40.53^{\rm \ f}$	39.49 ^g	11.25 ^h	14.01
(298) (GPa)	151.5 ^j	128.75 ^k	174 ¹	184 ^m	160.64 ^h	292 ⁿ
,	5.5 ^j	4.6 ^k	4.3 ¹	4.8 ^m	4.22 ^h	5.01 ^r
$K_T / \partial T)_P (\text{GPa/K})$	-0.0275^{a}	-0.0234^{k}	-0.0237^{a}	-0.019^{m}	_	_
	_	_		_	1.431 ^h	1.67 ⁿ
$_{0}\left(\mathrm{K} ight)$	_	_		_	761 ^h	1130 ^r
	_	_		_	0.290^{h}	1 ⁿ
	_	_		_	3.5 ^h	3 ⁿ
$(T) = a_0 + a_1 T + a_2 T^{-1}$	$^{1} + a_{3}T^{-2}$ (1/K)					
$\times 10^5$	1.990 ^a	2.384°	2.682 ^a	$2.479^{\text{ m}}$	—	—
×10 ⁹	13.21	12.28	7.327	3.951	—	—
$\times 10^4$	52.01	29.80	6.331	-2.271	—	
×10	-16.91	-9.309	-8.841	-5.604	—	—
$c_0(T) = c_0 + c_1 T + c_2 T$	$c_{-0.5} + c_3 T^{-1} + c_4 t_{-1}$	$T^{-2} + c_5 T^{-3} (J/m)$	nol·K)			
	300.5 ^a	175.7 ^k	79.66 ^a	121.9 ^m	-46.25 ^m	85.78
$\times 10^2$	17.91	1.580	2.314	1.358	1.452	0
$\times 10^{-3}$	37.02	0	4.749	2.725	5.207	-0.345
$\times 10^{-5}$	-5.942	-0.1574	-0.7996	-0.4703	-0.9168	0
(17.11	-1.192	1.259	-2.965	10.51	-3.60
$\times 10^{-6}$	9.302	1.317	2.589	5.944	-8.765	4.51
×10 ² ×10 ⁻³ ×10 ⁻⁵	300.5 ^a 17.91 37.02 -5.942 17.11	175.7 ^k 1.580 0 -0.1574 -1.192	79.66 ^a 2.314 4.749 -0.7996 1.259	1.358 2.725 -0.4703 -2.965	1.4 5.2 -0.9 10.	52 07 168 51


Table 9. Thermochemical and thermoelastic parameters used for thermodynamic 1009

1043	К.
1044	^a This study.
1045	^b Robie and Hemingway (1995).
1046	^c Akaogi et al. (2007).
1047	^d Akaogi et al. (2011).
1048	^e Lager et al. (1981).
1049	^f Finger et al. (1993).
1050	^g Sasaki et al. (1982).
1051	^h Tange et al. (2009).
1052	ⁱ Nishihara et al. (2005).
1053	^j Crichton et al. (1999).
1054	^k Optimized by Jacobs and Oonk (2001) using α of Kajiyoshi (1986).
1055	¹ Fei et al. (1992).
1056	^m Kojitani et al. (2016).
1057	ⁿ Wang et al. (2012).
1058	^o Converted from α equation optimized by Jacobs and Oonk (2001).
1059	^p Akaogi et al. (1995).
1060	

1062	Table 10. Drop-solution	n enthalpies o	of Mg ₂ S	iO ₄ polymorphs and their			
1063	constituent oxides in 2PbO·B ₂ O ₃ solvent at 978 K						
1064	Phase	$\Delta H^{\rm o}{}_{\rm d-s}$		Reference			
1065		(kJ/mol)					
1066	Mg ₂ SiO ₄ forsterite	169.35±1.19	[9]	Akaogi et al. (2007)			
1067	Mg ₂ SiO ₄ forsterite	168.21±0.44	[13]	Kojitani et al. (2016)			
1068	Mg ₂ SiO ₄ wadsleyite	142.19±1.33	[7]	Akaogi et al. (2007)			
1069	Mg ₂ SiO ₄ ringwoodite	129.31±0.98	[7]	Akaogi et al. (2007)			
1070	Mg ₂ SiO ₄ ringwoodite	128.75±1.00	[8]	Kojitani et al. (2016)			
1071	MgO periclase	33.74±0.50		Kojitani et al. (2012b)			
1072	SiO ₂ quartz	40.05±0.18	[6]	Akaogi et al. (1995)			
1073	SiO ₂ stishovite	3.04±0.46	[6]	Akaogi et al. (1995)			
1074	Errors are the standard d	leviation of the	mean. 1	Numerals in square brackets			

represent number of measurements.

Figure 1

Figure 2

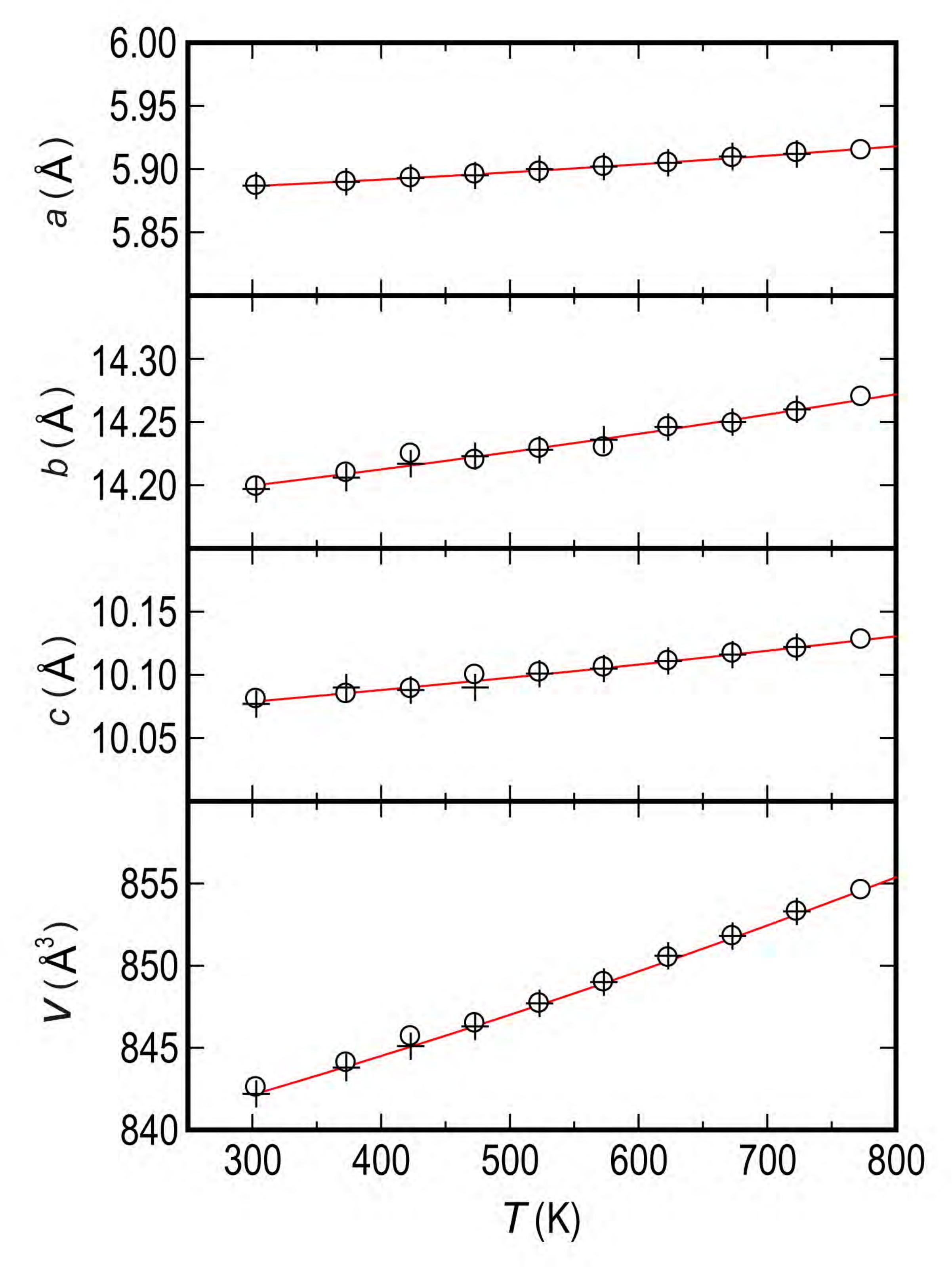


Figure 3

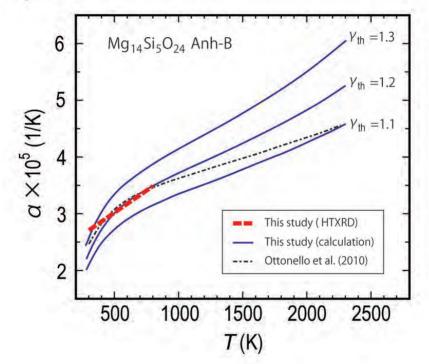
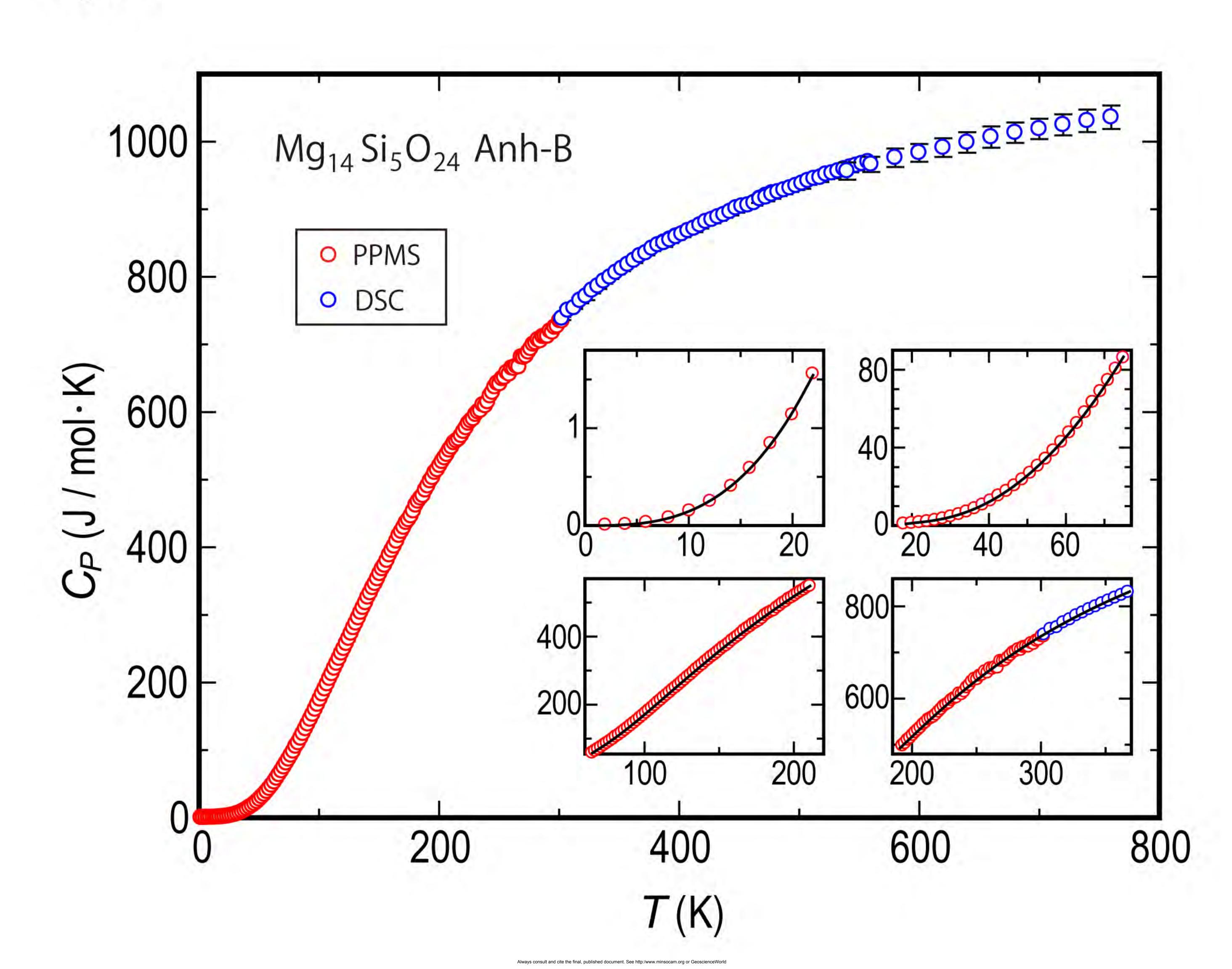
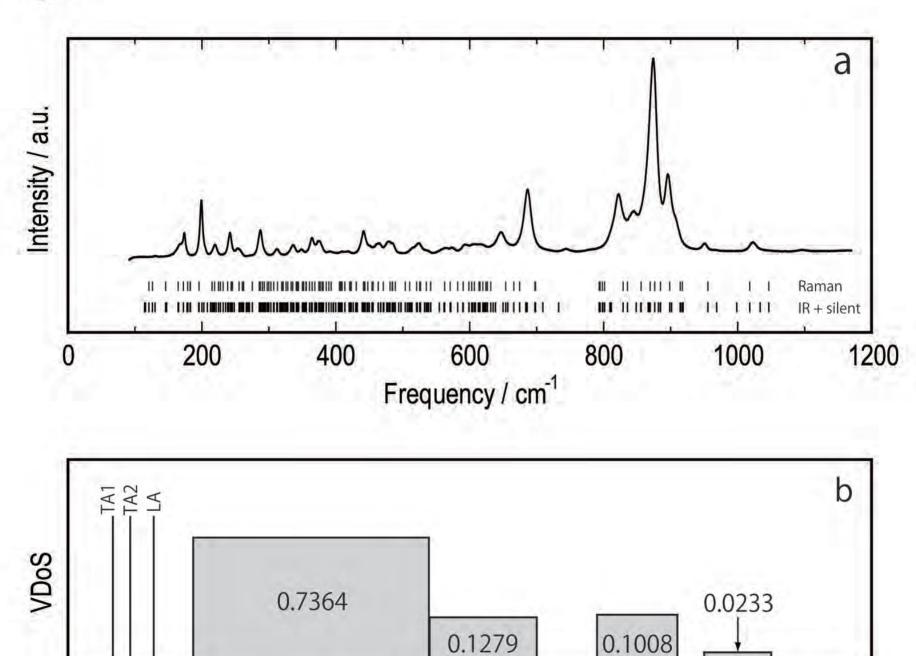




Figure 4

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am-2017-6115

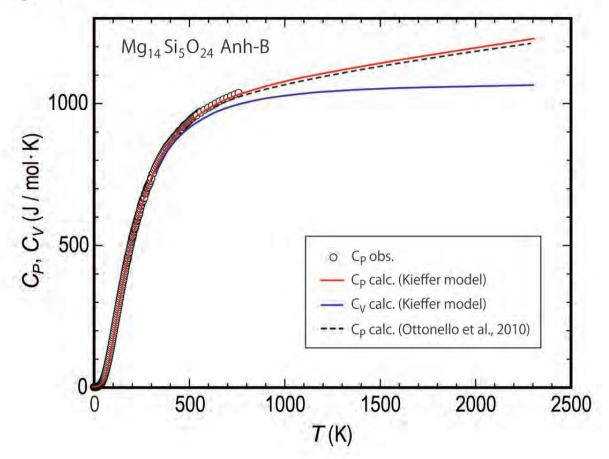
Figure 5

600

Frequency / cm⁻¹

800

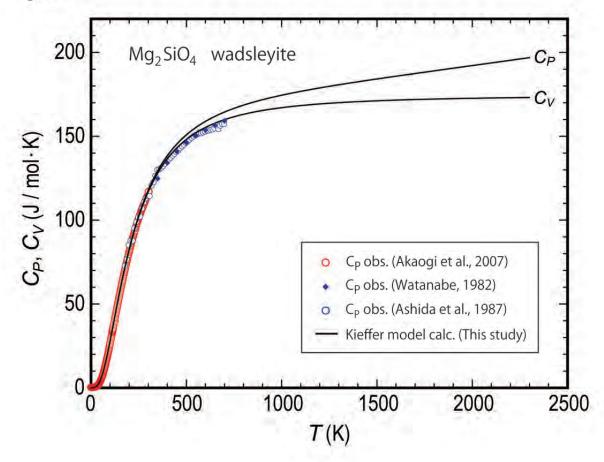
1000

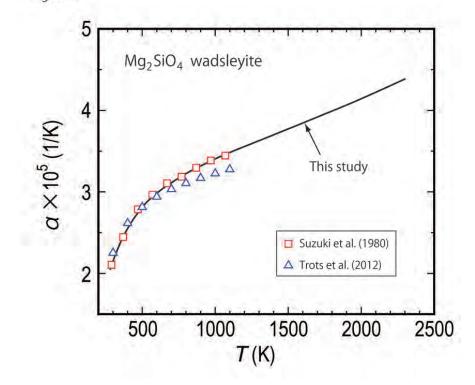

1200

400

200

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld


Figure 6


Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld

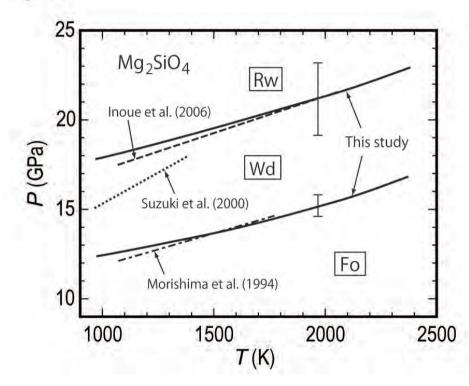

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am-2017-6115

Figure 7

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld

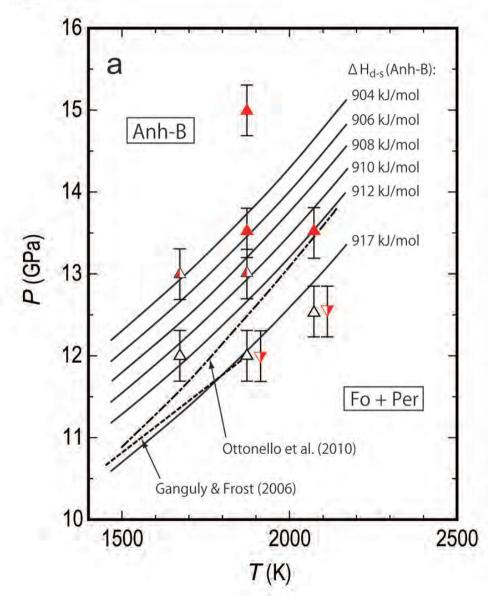


Figure 10

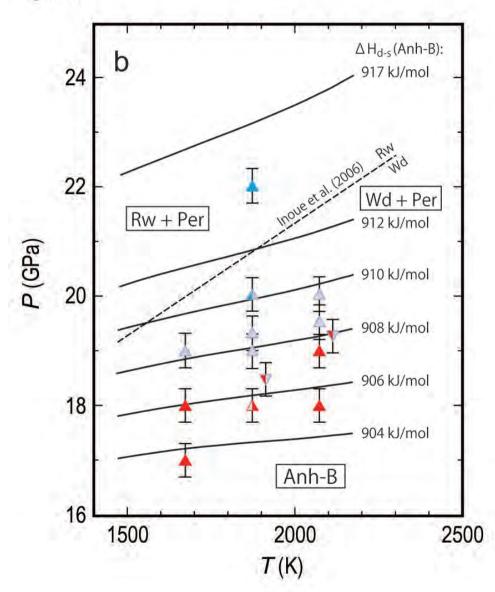
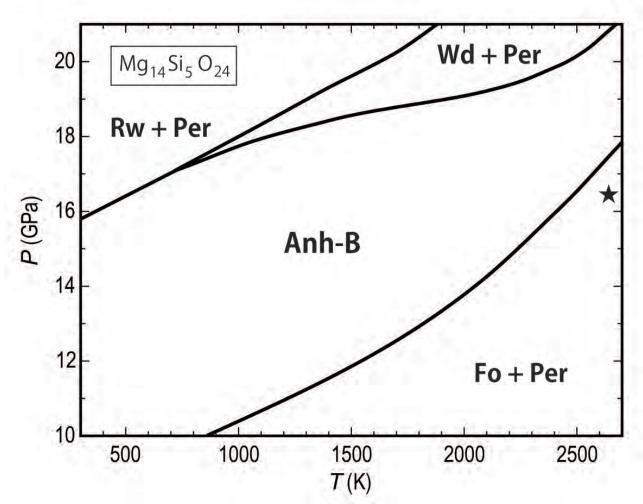
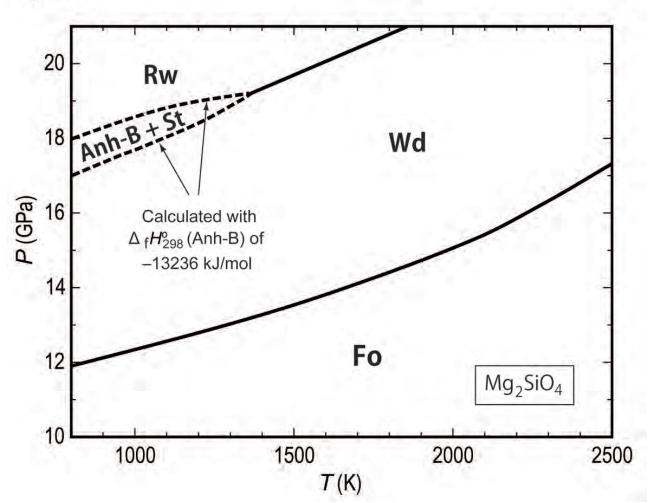




Figure 11

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld

Figure 12

