1 Revision 2

2	Microtexture investigation of amblygonite-montebrasite series with lacroixite:
3	Characteristics and formation process in pegmatites
4	
5	Yohei Shirose *,1 and Seiichiro Uehara
6	
7	Department of Earth and Planetary Sciences, Faculty of Sciences, Kyushu University,
8	Fukuoka 819-0395, Japan
9	
10	* E-mail: shirose.yohei.6n@kyoto-u.ac.jp
11	
12	Abstract
13	
14	Amblygonite-montebrasite series and lacroixite from Nagatare Li-Cs-Ta (LCT) pegmatite,
15	Fukuoka Prefecture, Japan, were investigated by powder X-ray diffraction (XRD), electron

¹ Present address: The Kyoto University Museum, Kyoto University, Kyoto 606-8501, Japan

16	microprobe analyses, and transmission electron microscope (TEM)/scanning transmission
17	electron microscope (STEM) analyses. Scattered patchy or lamellar lacroixite was
18	contained in montebrasite and amblygonite in all observed specimens. TEM/STEM
19	observations revealed that the patchy and lamellar texture comprised lacroixite and low
20	fluorine montebrasite having same crystal orientations as that of host montebrasite and the
21	boundaries corresponded to well-developed {110} planes. The observed microtexture was
22	newly discovered, and it is an important evidence of the exsolution process. In XRD
23	experiments conducted at high temperature, the unit cell parameters of amblygonite were
24	closer to that of monoclinic structures such as lacroixite with increasing temperature.
25	Results suggested that scattered patches or lamellae of lacroixite were exsolution textures
26	from a high-temperature phase.
27	Montebrasite and amblygonite specimens from other localities involved varying
28	textures corresponding to their occurrence. The amblygonite-montebrasite series from
29	petalite-bearing pegmatite included low to high lacroixite contents and that from
30	lower-temperature pegmatite with spodumene either did not possess or involved low
31	lacroixite contents. Gem-quality montebrasite from drusy vugs formed at low temperature

32 did not include any exsolution texture or lacroixite. The variety of texture of the

33 amblygonite-montebrasite series indicated in this study generated new possibilities as the 34 indicator of pegmatite-forming process. 35 Keywords: Amblygonite-montebrasite series; lacroixite; exsolution; Nagatare pegmatite; 36 TEM 37 38 Introduction 39 40 The amblygonite-montebrasite series is widely considered to be primary phosphates 41 occurring in Li-Cs-Ta enriched (LCT) (Černý and Ercit 2005) pegmatites and topaz-bearing granites (e.g., Černá et al. 1973; London et al. 2001). The chemical 42 43 compositions correspond to a solid solution of LiAl(PO₄)F (amblygonite) and 44 $LiAl(PO_4)(OH)$ (montebrasite) with triclinic symmetry (C-1). Extant studies investigated 45 the changes in mineralogical properties corresponding to the F/(F+OH) ratio and also 46 indirectly examined quantitative determinations of the F/(F+OH) ratio with respect to 47 mineralogical properties such as optical properties, XRD patterns, unit cell parameters, and Raman spectra (e.g., Černá et al. 1973; Kallio 1978; Greiner and Bloss 1987; Groat et al. 48 49 1990, 2003; Rondeau et al. 2006). Despite a complete solid solution, previous studies have

50	not documented the amblygonite end member. Moreover, the amblygonite-montebrasite
51	series from pegmatites generally contain intermediate amounts of fluorine. This is restricted
52	by the fluorine contents of pegmatite-forming melts based on the partitioning of fluorine
53	between the amblygonite-montebrasite series and melt (London et al. 2001). Hydrothermal
54	alteration of the primary amblygonite-montebrasite series to various secondary phosphates
55	during the late stages of pegmatite formation was reported in a few pegmatites (London and
56	Burt 1982; Baldwin et al. 2000; Galliski et al. 2012; Shirose and Uehara 2014). In these
57	situations, secondary montebrasite is also produced along the fractures and cleavages in the
58	primary amblygonite-montebrasite series. Secondary montebrasite indicates lower fluorine
59	contents and higher interference color under a polarized microscope when compared with
60	the corresponding properties of the primary amblygonite-montebrasite series (London and
61	Burt 1982; Shirose and Uehara 2014). Typically, the amblygonite-montebrasite series has
62	fine textures with lacroixite, NaAl(PO ₄)F with monoclinic symmetry ($C2/c$). Prior research
63	discredited a species reported as "natromontebrasite," (Na,Li)Al(PO ₄)(OH,F) and indicated
64	that it comprises a mixture of OH-rich amblygonite and lacroixite with subordinate
65	amounts of wardite (Fransolet 1989; Fransolet et al. 2007). Groat et al. (1990) refined the
66	crystal structure of the amblygonite-montebrasite series using a C-centered cell, and the

67	findings revealed that the pseudomonoclinic structure was topologically identical to the
68	monoclinic structure of titanite group minerals including lacroixite. The study also pointed
69	out that it was not possible to substitute the amblygonite-montebrasite series with sodium
70	or calcium owing to crystal structure restrictions. In several cases, amblygonite-
71	montebrasite crystals contain sodium components in the form of a fine lacroixite
72	intergrowth. However, the formation process of the amblygonite-montebrasite series with
73	patchy lacroixite is not clear. Although there are possibilities of exsolution, hydrothermal
74	alteration textures, or simultaneous intergrowth, further detailed studies are required to
75	understand crystallographic relationships between the amblygonite-montebrasite series and
76	lacroixite. Thus, the present study examined the amblygonite-montebrasite series with
77	lacroixite from an LCT pegmatite in Nagatare, Fukuoka Prefecture, Japan, using powder
78	X-ray diffraction (XRD) experiments at room temperature and high temperatures, electron
79	microprobe analyses (EPMA), and transmission electron microscope (TEM)/scanning
80	transmission electron microscope (STEM) observations. The study described the
81	crystallographic relationship between the amblygonite-montebrasite series and lacroixite
82	and discussed the formation processes of their intergrowth textures. Furthermore, XRD and
83	EPMA were used to investigate the amblygonite-montebrasite series from different

84 occurrences with specimens from other localities.

85

86

Geological background of Nagatare pegmatite

87

88 In the North part of the Kyushu region in Japan, Cretaceous granitoids are widely exposed 89 and intrude into Sangun metamorphic rocks. The Nagatare pegmatite is a Li-Cs-Ta 90 enriched (LCT) (Černý and Ercit 2005) pegmatite that is located at Nagatare in the western 91 area of Fukuoka City, Fukuoka Prefecture. The pegmatite is derived from Sawara granite 92 (100-80 Ma) that intrudes into the Itoshima granodiorite (115-70 Ma) (Karakida et al. 93 1994). Outcrops of barren and beryl-bearing pegmatites exist around a Li-enriched dyke 94 from the Nagatare coast to Mt. Nagatare. These Li-mineral deficient pegmatites often occur 95 with aplites. The pegmatites are 5-20 m in width with a dyke-shaped body and are 96 concordant with the lamination structures of the Sawara granite. The Li-enriched pegmatite 97 of Mt. Nagatare was mined for lithium in the middle of the 20th century. Some amount of 98 the ores mined was stockpiled, although only a very small amount of remaining lithium 99 ores currently exists. The body of the Li-enriched pegmatite was classified to several zones 100 based on mineral paragenesis and inner texture. The Li-enriched pegmatite contains rare

101	element minerals such as "lepidolite" (polylithionite-trilithionite), Li-bearing tourmaline,
102	petalite, montebrasite, amblygonite, and pollucite (e.g., Shibata 1934; Kuwano and Hikita
103	1967). Studies have reinvestigated the minerals of the Nagatare pegmatite including
104	"lepidolite" (Kataoka and Uehara 2000), tourmaline (Shirose and Uehara 2013), the
105	amblygonite-montebrasite series (Shirose and Uehara 2014), and other rare minerals such
106	as bismuth minerals (Uehara and Shirose 2013). These rare minerals and lithium minerals
107	occurred in the intermediate to core zone of the Li-enriched pegmatite.
108	
109	Analytical methods
110	
111	Eleven specimens of the amblygonite-montebrasite series used in the present study were
112	collected from old ore deposits in the Nagatare pegmatite. These specimens correspond to
113	the specimens used for a description of secondary phosphates (Shirose and Uehara 2014).
114	Furthermore, specimens for comparison from other five pegmatite localities were analyzed.
115	Eight specimens from five localities were used and included the Myokenzan pegmatite,
116	Tanco pegmatite, Varuträsk pegmatite, Havey pegmatite, and Minas Gerais. Powder XRD
117	data at room temperature were collected using a Bruker AXS M18XHF22-SRA

118	diffractometer that utilized monochromatized $\text{Cu}\textsc{K}\alpha$ radiation generated at 40 kV and 50
119	mA. The powders were prepared by grinding thin chips of the amblygonite-montebrasite
120	series crystals within a few centimeters in length. Fluorine contents for the amblygonite-
121	montebrasite series were estimated from bulk powder XRD patterns for all the specimens
122	using Kallio's method (1978), and the average value of four equations used four reflections
123	in the range of 46° and 56° 2θ CuKa. The fluorine contents herein mean the bulk fluorine
124	contents of the amblygonite-montebrasite series without the effects of other inclusion
125	minerals. The powder XRD patterns simultaneously provided the lacroixite contents of
126	amblygonite-montebrasite crystals based on a whole-powder-pattern fitting method using a
127	Rigaku PDXL software. The amblygonite specimen from the Nagatare pegmatite with an
128	internal chemical composition in the amblygonite-montebrasite series was heated from
129	50 °C to 700 °C, and the XRD patterns were measured in situ. The experiments were
130	performed by a RIGAKU Ultima IV diffractometer with CuKa radiation generated at 40 kV
131	and 40 mA. The heating condition was set at 10 $^{\circ}C/min$ by a thermocouple under vacuum
132	and was measured after holding at the target temperature for 10 min by the RIGAKU
133	Ultima IV high temperature attachment. The unit cell parameters of the amblygonite
134	specimen heated from 50 °C to 700 °C were calculated with Rietveld refinement in a

135	Rigaku PDXL software. Chemical analyses of polished thin sections were performed with a
136	JEOL JXA8530F electron microprobe equipped with a wavelength dispersive X-ray
137	spectrometer (WDS). Quantitative analyses were performed at an accelerating voltage of 15
138	kV, a beam current of 2 nA, and a probe diameter range of 5–15 $\mu m.$ The standard materials
139	corresponded to fluorphlogopite (for FK α), spodumene (for AlK α), KTiOPO ₄ (for PK α),
140	albite (for NaK α), diopside (CaK α), and almandine (for FeK α). The ZAF method was used
141	for data correction. The $\mathrm{Li}_2\mathrm{O}$ and $\mathrm{H}_2\mathrm{O}$ contents were calculated from stoichiometry. The
142	chemical composition of lacroixite involved analytical problems owing to its small
143	diameter and beam damage. The EPMA observations of texture were also performed via
144	backscattered electron (BSE) images, X-ray mapping images, and quantitative analyses
145	with an energy dispersive X-ray spectrometer. Thin sections of montebrasite with lacroixite
146	were ion-milled with Ar^+ ions using a GATAN Model 691 Precision Ion Polishing System
147	such that they were electron transparent. TEM/STEM observations of the specimens were
148	performed using a JEOL JEM-ARM200F operated at 200 kV. These instruments were
149	located at the Ultramicroscopy Research Center in Kyushu University.
150	

151

Results

152

153 Sample description and optical observation

155	Eleven specimens of the amblygonite-montebrasite series were collected from old ore
156	deposits in the Nagatare pegmatite (Table 1). The sample numbers are listed with the
157	analysis results in Table 1. Montebrasite and amblygonite from the Nagatare pegmatite
158	typically occur as large subhedral to euhedral blocky crystals with lepidolite, Li-bearing
159	tourmaline, and petalite included in quartz and albite (Fig. 1a; Table 1). Small dendritic
160	crystals of montebrasite are also contained within K-feldspar (Fig. 1b; Table 1). The
161	crystals are colorless, milky white, or light salmon in color and possess a vitreous luster.
162	The amblygonite-montebrasite series contains various alteration minerals including
163	fluorapatite, crandallite, goyazite, waylandite, wardite, viitaniemiite, morinite, muscovite,
164	lepidolite, and cookeite (Shirose and Uehara 2014). They were associated with lacroixite,
165	quartz, and topaz. Moreover, tantalite-(Mn), microlite, and minor bismuth were observed as
166	inclusions. Furthermore, eight specimens from five localities were used and included the
167	Myokenzan pegmatite, Tanco pegmatite, Varuträsk pegmatite, Havey pegmatite, and Minas
168	Gerais (Table 1). The montebrasite from the Myokenzan pegmatite, Tanco pegmatite,

169	Varuträsk pegmatite, and Havey pegmatite correspond to the blocky crystals that are
170	colorless, milky white, or light salmon in color (Figs. 1c, d, e; Table 1). The montebrasite
171	from Minas Gerais was clear yellow and transparent (Fig. 1f; Table 1). Examinations using
172	a polarizing microscope indicated that the montebrasite and amblygonite from the Nagatare
173	pegmatite were mostly cloudy owing to very fine inclusions and micro pores (Figs. 2a, b).
174	Polysynthetic twins were also observed in the specimens, and twins like tartan were
175	occasionally formed in the crystals (Fig. 2b). Secondary veined montebrasite with
176	extremely low fluorine contents had a higher interference color (Fig. 2c). This texture was
177	reported by London and Burt (1982) and Shirose and Uehara (2014). The secondary low
178	fluorine montebrasite was formed by hydrothermal alterations. The montebrasite from the
179	Myokenzan pegmatite, Tanco pegmatite, Varuträsk pegmatite, and Havey pegmatite also
180	included fine inclusions and polysynthetic twins as observed under the polarizing
181	microscope. In contrast, the montebrasite from Minas Gerais had clear crystal without fine
182	inclusions and involved no polysynthetic twins (Fig. 2d).

- 183
- 184 **XRD experiment at room temperature**
- 185

186	The fluorine contents of the amblygonite-montebrasite series from the Nagatare pegmatite
187	were estimated from bulk powder XRD patterns and corresponded to $F/(F+OH) = 0.40-$
188	0.59 (Table 1), which was consistent with the common value of the amblygonite-
189	montebrasite series in natural occurrences. The value led to a concentration of 1.4–2.0 wt%
190	fluorine in the pegmatite melt using the partition coefficient for fluorine between the
191	amblygonite-montebrasite series and a pegmatite melt (London et al. 2001). Lacroixite
192	contents of the amblygonite-montebrasite crystals from the Nagatare pegmatite were
193	estimated from powder XRD patterns, and their values were in the range of 0.3–5.8 wt%
194	(Table 1). The lacroixite contents of the amblygonite-montebrasite series positively
195	correlated to the fluorine contents of the amblygonite-montebrasite series (Table 1). The
196	values of F/(F+OH) of the amblygonite-montebrasite series from other localities were in
197	the range of 0.13–0.49, and the lacroixite contents were in the range of 0–6.0 wt% (Table
198	1).
199	

- 200 Chemical analyses and microtextures
- 201
- 202 The fluorine contents in the amblygonite-montebrasite series as measured by EPMA-WDS

203	were inhomogeneous, and lower than the value estimated by XRD in a few parts (Tables 1,
204	2, 3, 4). In particular, secondary veined montebrasite that revealed a higher interference
205	color under the polarization microscope involved extremely low fluorine contents (Fig. 2c;
206	Table 2). The maximum value of fluorine contents in each specimen measured by
207	EPMA-WDS approach the value estimated by XRD (Table 1). The inhomogeneous lower
208	values of fluorine contents were caused by hydrothermal alterations. Sodium, calcium, and
209	iron were not detected in the montebrasite and amblygonite with the exception of the case
210	of fine lacroixite contamination in a few analysis spots. In the EPMA observations of
211	textures, montebrasite and amblygonite from the Nagatare pegmatite were partially
212	replaced by various secondary phosphates, crandallite, goyazite, fluorapatite, wardite,
213	morinite, and viitaniemiite among others and involved a veined texture comprising acicular
214	or platy fine crystals (Shirose and Uehara 2014). However, lacroixite exhibited different
215	textures with patchy areas or lamellae up to 10 μ m that were scattered and directionally
216	arranged in montebrasite and amblygonite (Figs. 3a, b). Moreover, lacroixite was contained
217	in all the amblygonite-montebrasite specimens from the Nagatare pegmatite and thereby
218	differed from other Na-phosphates. The patchy lacroixite and secondary minerals
219	correspond to the fine inclusions observed under the polarizing microscope. Secondary

220	veins of low fluorine montebrasite did not possess any lacroixite inside (Figs. 3c, d), and
221	the veins cut the zone of the amblygonite-montebrasite series with lacroixite (Fig. 3c). The
222	low fluorine montebrasite were occasionally fine subhedral crystals associated fluorapatite
223	(Fig. 3d). The textures indicate that lacroixite was formed by a process that was different
224	from a hydrothermal alteration associated with secondary phosphates. The specimens from
225	the Varuträsk and Havey pegmatites exhibited lacroixite patches similar to the specimens
226	from the Nagatare pegmatite. For the specimens from the Myokenzan and Tanco pegmatites,
227	although lacroixite was not distinguishable by the XRD experiments, it was marginally
228	confirmed by the EPMA observations in only mid fluorine specimens (MY13, MY14, and
229	XS109).
230	

231 TEM/STEM observation

232

TEM/STEM analyses were used to observe lacroixite in montebrasite from the Nagatare pegmatite, and it exhibited a bidirectionally developed patchy texture with flat planes on the boundary with montebrasite. Furthermore, lacroixite was associated with low fluorine montebrasite, which also formed nanoscale lamellae within the patch (Figs. 4a, b). The

237	grain boundaries comprised $(1-10)$ and (110) planes. The former developed between the
238	patches and host montebrasite, whereas the latter developed between the lacroixite and low
239	fluorine montebrasite (Fig. 4b). The selected area electron diffraction (SAED) pattern
240	shows that the crystal orientations of lacroixite and host montebrasite were identical (Fig.
241	4c). The doublet spots caused by monoclinic lacroixite ($\gamma = 90^{\circ}$) and triclinic host
242	montebrasite ($\gamma > 90^{\circ}$) were observed in the SAED pattern from the [001] direction of
243	montebrasite (Fig. 4c). The crystal orientations of lacroixite and low fluorine montebrasite
244	were also similar, and the triplet spots of lacroixite, low fluorine montebrasite, and host
245	montebrasite were observed (Fig. 4d). Figure 5 shows the X-ray mapping images obtained
246	via STEM-EDS. Qualitative analyses by STEM-EDS revealed that the montebrasite
247	lamellae had negligible fluorine content. Figure 6 shows a high-resolution image of the
248	lacroixite from the [001] direction and crystal structures of montebrasite and lacroixite.
249	(1–10) and (110) planes comprised arranged AlO ₆ polyhedral chains along the c axis that
250	corresponded to the cleavage planes. TEM/STEM observations indicated crystallographic
251	relationships between patchy lacroixite, patchy low fluorine montebrasite, and host
252	montebrasite.

254 **XRD** experiments at high temperature

256	Changes in unit cell parameters of amblygonite were confirmed in the XRD experiments
257	involving the heating of samples from the Nagatare pegmatite. Increases in temperature
258	resulted in an increase in the b axis with a higher slope when compared with those of the a
259	and <i>c</i> axes with decreases in α , β , and γ values (Fig. 7; Table 5). However, the amblygonite
260	was partially broken down at 600 °C, and anhydrous phosphates were formed. At 700 °C,
261	the amblygonite was completely broken down, and berlinite was formed. The easy
262	breakdown of amblygonite and formation of anhydrous phosphates with increase in
263	temperature was attributed to dehydration in a vacuum dry condition. Experiments in wet
264	condition are required for the validation of properties of the amblygonite-montebrasite
265	series at high temperature. The changes in the unit cell parameters for the montebrasite-
266	amblygonite series at a high temperature was consistent with the behavior at low
267	temperature as indicated by Groat et al. (2003). Due to increases in the temperature, the
268	structure of the amblygonite-montebrasite series was closing to a monoclinic structure such
269	as that of lacroixite. In addition, a high-temperature phase of the amblygonite-montebrasite
270	series and exsolution texture with lacroixite are formed above at least 500 °C.

- 272 Discussion
- 273

271

274 Exsolution process of the amblygonite-montebrasite series and lacroixite

276	The formation process of lacroixite differs from other secondary phosphates formed by
277	hydrothermal alterations because lacroixite was found in all specimens from the Nagatare
278	pegmatite as scattered patches or lamellae embedded in montebrasite and amblygonite (Fig.
279	3; Table 1). The texture of the scattered lacroixite was similar to that of the discredited
280	"natromontebrasite" (Fransolet 1989; Fransolet et al. 2007), and it is a typical texture in the
281	amblygonite-montebrasite series. The fact that secondary montebrasite veins did not
282	contain any lacroixite also supports its different formation process from hydrothermal
283	alterations (Figs. 3c, d). TEM/STEM analyses indicated that lacroixite patches with low
284	fluorine montebrasite lamellae had an identical crystal orientation to the host montebrasite
285	(Fig. 4), and they had a crystallographic relationship with each other. As mentioned in
286	Groat et al. (1990), the crystal structure of the amblygonite-montebrasite series is
287	topologically identical to the lacroixite structure, although sodium could not substitute the

lithium in the amblygonite-montebrasite structure. However, the apparent changes in the unit cell parameters of the amblygonite-montebrasite at high temperatures indicate a possibility of the formation of a solid solution at a high temperature, and reductions in the temperature formed the miscibility gap between lacroixite and the amblygonitemontebrasite series and exsolution textures.

293 Thus, the following exsolution process was estimated. First, a Li-rich 294 high-temperature phase, $((Li,Na)Al(PO_4)(OH,F))$ with C2/c) was formed, and then owing to 295 temperature decreases, the phase was exsolved into high amblygonite-montebrasite lamellae 296 $(LiAl(PO_4)(OH,F))$ with C2/c) and of a mid-temperature phase 297 $((Li,Na)Al(PO_4)(OH,F)$ with C2/c) containing approximately the same amounts of lithium 298 and sodium) (Fig. 8). The host phase subsequently transformed to amblygonite-299 montebrasite (LiAl(PO₄)(OH,F) with C-1), and polysynthetic twins were formed in the 300 amblygonite-montebrasite during this transition. Finally. the lamella of the 301 mid-temperature phase was exsolved into low fluorine montebrasite (LiAl(PO₄)(OH) with 302 C-1) and lacroixite (NaAl(PO₄)F with C2/c). As a result, the amblygonite-montebrasite 303 series involved a patchy or lamellar texture as shown in the EPMA and TEM/STEM 304 observations (Figs. 3, 4, 8). For the formation of the high-temperature phase of the

305 amblygonite-montebrasite series, exceeding the temperature to at least 500 °C based on the

306 results of the high-temperature XRD experiments is necessary (Fig. 7).

307	The formation of the miscibility gap was caused by the difference in ion radius
308	between Li^+ and Na^+ , and it was analogous to the exsolution process of alkali feldspars
309	such as perthite. Fransolet (1989) reported that lacroixite could contain minor Li^+ and OH^-
310	with changes in the unit cell parameters. The change was noticeable in the b axis and was
311	similar to that of the amblygonite-montebrasite series under heating conditions in the
312	present study (Fig. 7). The lamellae in TEM/STEM observations comprised low fluorine
313	montebrasite and fluorine-rich lacroixite (Fig. 4), which indicated that the OH ⁻ was suitable
314	for a triclinic structure with Li ⁺ , whereas the F ⁻ was suitable for a monoclinic structure with
315	Na^+ at low temperature (Fig. 8). In addition to the low fluorine environment, a
316	crystallographic restriction caused the low fluorine content of secondary montebrasite
317	formed by a hydrothermal alteration. This was confirmed by the occurrence of low fluorine
318	montebrasite coexisting with fluorapatite or fluorine-rich minerals such as morinite and
319	viitaniemiite (Figs. 3c, d). Though the possibility of exsolution has been emphasized so far,
320	simultaneous intergrowth is also expected to occur in pegmatite-forming conditions like
321	pollucite-analcime solid solution (London 1998). However, the change of grain size along

322	the growth direction was not indicated in patchy lacroixite from the localities in this study.
323	The rapid crystallization condition in the pegmatite formed dendritic montebrasite (Fig. 1b)
324	although the development of patchy lacroixite was not correlated to the oversaturated
325	conditions in the melt forming the pegmatite. The patchy lacroixite in the amblygonite-
326	montebrasite series from the Nagatare pegmatite was formed by the exsolution process.
327	
328	Exsolution texture and occurrence condition
329	
330	The lacroixite contents of the amblygonite-montebrasite series from the Nagatare
331	pegmatite were positively correlated to the fluorine contents (Fig. 9; Table 1), which were
332	controlled by the thermal and chemical environments at pegmatite formation. The lacroixite
333	contents were subdivided into three types, namely high- (5.8-3.3 wt%), mid- (2.7-0.5 wt%),
334	and low-lacroixite (0.3 wt%) types, and they corresponded to large- (60-10 mm), mid- (20-
335	3 mm), and fine-grained (5 mm) amblygonite-montebrasite series, respectively (Fig. 9). In
336	particular, the low-lacroixite type montebrasite exhibited dendritic textures (Fig. 1b), and
337	this indicated that a low-lacroixite type montebrasite was formed in a lower temperature
338	environment with rapid growth under a supercool condition as mentioned by London

339	(2008). The high-lacroixite type with large grain size was formed with slight undercooling
340	and higher temperature condition. These textures and conditions were consistent with the
341	proposed exsolution process model of the amblygonite-montebrasite series and lacroixite
342	that the amblygonite-montebrasite series formed at high temperature could contain sodium
343	(Fig. 8).

344 Lacroixite contents of the amblygonite-montebrasite series could be applied to 345 gain an understanding of primary amblygonite-montebrasite series forming conditions. In 346 addition, the exsolution textures and lacroixite could not be present in the amblygonite-347 montebrasite series formed at low temperature. The formation temperatures of montebrasite 348 and amblygonite from various localities could be roughly estimated from the occurrence of 349 associated Li-aluminosilicate using a phase diagram (London 1984). Low to high lacroixite 350 contents were included in the amblygonite-montebrasite series from the Nagatare 351 pegmatite with petalite as the only Li-aluminosilicate phase, whereas no or low lacroixite 352 were included in the amblygonite-montebrasite series from lower-temperature LCT 353 pegmatites with spodumene as the Myokenzan, Tanco, and Varuträsk pegmatites (Fig, 10). 354 A characteristic property was confirmed for the specimen from Minas Gerais in Brazil 355 wherein the polysynthetic twins and lacroixite were not present in montebrasite (Figs. 1f,

356	2d). This type of montebrasite involved a gem-quality montebrasite from drusy vugs that
357	was formed at a low temperature near hydrothermal conditions. The specimen also
358	exhibited extremely low fluorine contents (Tables 1, 4) and corresponded to the water-clear
359	gem-quality montebrasite with extremely low fluorine contents reported by Černá et al.
360	(1973) and Rondeau et al. (2006). The low fluorine montebrasite was formed below the
361	exsolution and transformation temperature or under the hydrothermal environments.
362	The chemical analysis data and lacroixite contents of the amblygonite-
363	montebrasite series in previous studies were also verified based on the exsolution process
364	model. In some former studies, lacroixite was analyzed together with the amblygonite-
365	montebrasite series without recognition, resulting as sodium contents in chemical analysis.
366	Černá et al. (1973) used wet chemical analyses to analyze montebrasite and amblygonite
367	from various localities, and in particular, specimens from the Tanco pegmatite, and
368	indicated that the sodium contents of the amblygonite-montebrasite series had a positive
369	correlation with fluorine contents. However, the amblygonite-montebrasite series did not
370	contain sodium at room temperature, and Groat et al. (1990) confirmed that the sodium-rich
371	specimens (AF-1 and AF-65) investigated by Černá et al. (1973) contained abundant
372	amounts of lacroixite. Therefore, sodium contents of montebrasite and amblygonite

373	investigated by Černá et al. (1973) could be converted to lacroixite contents. In addition,
374	London et al. (2001) indicated that synthesized montebrasite and amblygonite in
375	haplogranitic melt at 585 °C and 200 MPa of H_2O exhibited positive correlation of sodium
376	and fluorine by EPMA, although natural amblygonite did not contain any detectable
377	sodium. It was considered as a fine lacroixite mixture or high-temperature phase, and it
378	could be converted to lacroixite contents. The converted data set is shown in Figure 11. The
379	positive correlation between lacroixite and fluorine contents was confirmed and consistent
380	with the results of the analyzed specimens in this study (Figs. 10, 11). The quantity of
381	lacroixite in the amblygonite-montebrasite series was restricted by the fluorine contents in
382	addition to formation temperature. High fluorine amblygonite from topaz-bearing granites
383	of Western Europe contained abundant lacroixite (London et al. 2001; Groat et al. 1990),
384	and they were formed under the fluorine-rich environment at the higher temperature. The
385	unit cell parameters of the amblygonite-montebrasite series become close to that of
386	monoclinic structures such as lacroixite with increasing fluorine. Similarly, at high
387	temperature, the fluorine-rich phase prefers sodium owing to monoclinicity. As a result, the
388	lacroixite contents were correlated with the fluorine contents in the amblygonite-
389	montebrasite series (Figs. 10, 11). In conclusion, the amblygonite-montebrasite series had

various amounts of lacroixite and fluorine contents, and their properties were correlated tothe thermal and chemical environments at pegmatite formations.

- 392
- 393
- 394

Implications

395 The results obtained in this study on the amblygonite-montebrasite series from the 396 Nagatare pegmatite revealed that a new microtexture existed in all specimens of subhedral 397 blocky amblygonite-montebrasite and dendritic montebrasite crystals. TEM/STEM 398 analyses were very effective for investigation of micro patches or lamellae in amblygonite 399 and montebrasite hosts, and it revealed that the patches or lamellae had a characteristic 400 microtexture involving nanoscale lamella of lacroixite and a low-fluorine montebrasite. The 401 patchy and lamellar textures are an important evidence of the exsolution process with slow 402 cooling, and a solid solution phase between lacroixite and the amblygonite-montebrasite 403 series at high temperature should be expected in pegmatite-forming process. The texture 404 was not present in some montebrasite from other localities, that is, they were formed at low 405 temperature where a solvus in the lacroixite-amblygonite-montebrasite series would be 406 present. The confirmed diversity of texture in the amblygonite-montebrasite series can be 407 good indicator of pegmatite-forming process. The amblygonite-montebrasite series

408	generally occurs characteristic to pegmatite-forming granitic melts with high-phosphorus
409	contents, derived from the melting of aluminous metasedimentary rocks (e.g., London et al.
410	1999). In the overview of phosphates from pegmatites, the possibility of rapid cooling for
411	the formation of skeletal crystals of the amblygonite-montebrasite series was indicated
412	(London 2008, 2017), while he also pointed out that the nature of the growth of phosphate
413	crystals in pegmatites was almost wholly unstudied. Pegmatitic texture is considered as a
414	consequence of delayed nucleation and rapid growth at large undercooling (e.g., Nabelek et
415	al. 2010), and the formation of dendritic amblygonite-montebrasite series was also
416	considered as the result of rapid cooling. So two stages of cooling could be indicated from
417	this macro and micro textures, where dendritic crystals rapidly crystallized followed by the
418	development of micro lamellae during slow cooling.
419	The variety of texture of the amblygonite-montebrasite series indicated in this
420	study provided new interpretations to the various chemical compositions of the
421	amblygonite-montebrasite series analyzed by Černá et al. (1973). Low-fluorine
422	montebrasite without exsolution texture from miarolitic cavity was formed in the
423	magmatic-hydrothermal transition at a low temperature. "Natromontebrasite", with an
424	intergrowth of lacroixite within the amblygonite-montebrasite series proved by Fransolet

425	(1989) and Fransolet et al. (2007), occurred as exsolution products from a high temperature
426	phase. The amblygonite-montebrasite series, enriched in fluxing components such as Li, P,
427	F, and OH, provides important clue to the crystallization of fluxing components in
428	pegmatite-forming melts. In the recent model of pegmatite-forming processes, flux-rich
429	boundary layer in pegmatite-forming melts has important role for giant crystal formation
430	and rare-elements enrichment in pegmatite (e.g., London 2014). Quantification of forming
431	condition requires additional microtexture investigation of the amblygonite-montebrasite
432	series from other localities, involving observations of the lamellar shape, size, and
433	distribution. Synthetic experiments of the lacroixite-amblygonite-montebrasite series and
434	the microtexture observation of the synthetic products for determination of the solvus
435	temperature could establish more quantitative restrictions and provide precise information
436	of thermal and chemical changes in pegmatite.
437	
438	Acknowledgements: We appreciate K. Watanabe for supplying specimens (MY13, 14). We
439	are grateful to D. London for handling the manuscript and many constructive comments.

- 440 We sincerely thank P. Vignola and an anonymous reviewer for their constructive and
- 441 critical comments on this manuscript. This work was supported by JSPS KAKENHI Grant

442	Number 14J03404. The authors thank the Professor Matsumoto Scholarship Fund.
443	
444	References
445	
446	Baldwin, J.R., Hill, P.G., von Knorring, O., and Oliver, G.J.H. (2000) Exotic aluminum
447	phosphates, natromontebrasite, brazilianite, goyazite, gorceixite and crandallite from
448	rare-element pegmatites in Namibia. Mineralogical Magazine, 64, 1147–1164.
449	Černá, I., Černý, P., and Ferguson, R.B. (1973) The fluorine content and some physical
450	properties of the amblygonite-montebrasite minerals. American Mineralogist, 58, 291-
451	301.
452	Černý, P., and Ercit, T.S. (2005) The classification of granitic pegmatites revisited.
453	Canadian Mineralogist, 43, 2005–2026.
454	Fransolet, A.M. (1989) The problem of Na-Li substitution in primary Li-Al phosphates:
455	new data on lacroixite, a relatively widespread mineral. Canadian Mineralogist, 27,
456	211–217.
457	Fransolet, A.M., Fontan, F., and de Parseval, P. (2007) Natromontebrasite, a discredited
458	mineral species. Canadian Mineralogist, 45, 391–396.

459	Galliski, M.Á., Černý, P., Márquez–Zavalía, M.F., and Chapman, R. (2012) An association
460	of secondary Al-Li-Be-Ca-Sr phosphates in the San Elías pegmatite, San Luis,
461	Argentina. Canadian Mineralogist, 50, 933–942.
462	Greiner, D.J., and Bloss, F.D. (1987) Amblygonite-montebrasite optics: Response to (OH ⁻)
463	orientation and rapid estimation of F from 2V. American Mineralogist, 72, 617–624.
464	
465	Groat, L.A., Raudsepp, M., Hawthorne, F.C., Ercit, T.S., Sherriff, B.L., and Hartman, J.S.
466	(1990) The amblygonite-montebrasite series: Characterization by single-crystal
467	structure refinement, infrared spectroscopy, and multinuclear MAS-NMR spectroscopy.
468	American Mineralogist, 75, 992–1008.
469	Groat, L.A., Chakoumakos, B.C., Brouwer, D.H., Hoffman, C.M., Fyfe, C.A., Morell, H.,
470	and Schultz, A.J. (2003) The amblygonite (LiAlPO ₄ F)-montebrasite (LiAlPO ₄ OH)
471	solid solution: A combined powder and single-crystal neutron diffraction and
472	solid-state 6Li MAS, CP MAS, and REDOR NMR study. American Mineralogist, 88,
473	195–210.
474	Kallio, P. (1978) A new X-ray method for the estimation of fluorine content in
475	montebrasites. American Mineralogist, 63, 1249–1251.

28

The rearrand and the range of the range of the range	476	Karakida, Y	<i>I.</i> , Tomita,	S., Shimoyam	a, S., and Ch	ijiwa, K.	(1994)	Geology	of the Fuku	oka
--	-----	-------------	---------------------	--------------	---------------	-----------	--------	---------	-------------	-----

- 477 district, Geological Sheet Map 1:50,000, Fukuoka (14) No. 51, 192 p. Geological
- 478 Survey of Japan, Tokyo (in Japanese with English abstract).
- 479 Kataoka, Y., and Uehara, S. (2000) Lepidolite in a lithium pegmatite from Nagatare,
- 480 Fukuoka Prefecture, Japan. Proceedings of 2000 Annual Meeting of the Mineralogical
- 481 Society of Japan, p. 101. Mineralogical Society of Japan (in Japanese).
- 482 Kuwano, N., and Hikita, T. (1967) Montebrasite from Nagatare, Fukuoka, Japan. Chigaku

483 Kenkyuu (Present "Journal of Geoscience"), 18, 243–245 (in Japanese).

- 484 London, D. (1984) Experimental phase equilibria in the system LiAlSiO₄-SiO₂-H₂O: A
- 485 petrogenetic grid for lithium-rich pegmatites. American Mineralogist, 69, 995–1004.
- 486 London, D. (2008) Pegmatites. The Canadian Mineralogist Special Publication, 10, 368.
- 487 London, D. (2014) A petrologic assessment of internal zonation in granitic pegmatites.
- 488 Lithos, 184-187, 74-104.
- London, D. (2017) Reading pegmatites: What lithium minerals say. Rocks & Minerals, 92,
- 490 144-157.
- 491 London, D., and Burt, D.M. (1982) Alteration of spodumene, montebrasite and lithiophilite
- 492 in pegmatites of the White Picacho District, Arizona. American Mineralogist, 67, 97–

493 113.

494	London, D., Morgan, G.B.VI., and Icenhower, J. (1998) Stability and solubility of pollucite
495	in the granite system at 200 MPa H ₂ O. Canadian Mineralogist, 36, 497–510.
496	London, D., Wolf, M.B., Morgan, G.B.VI, and Gallego Garrido, M. (1999) Experimental
497	silicate-phosphate equilibria in peraluminous granitic magmas, with a case study of the
498	Alburquerque batholith at Tres Arroyos, Badajoz, Spain. Journal of Petrology, 40,
499	215-240.
500	London, D., Morgan, G.B.VI., and Wolf, M.B. (2001) Amblygonite-montebrasite solid
501	solution as monitors of fluorine in evolved granitic and pegmatite melts. American
502	Mineralogist, 86, 225–233.
503	Nabelek, P.I., Whittington, A.G., and Sirbescu, M.C. (2010) The role of H ₂ O in rapid
504	emplacement and crystallization of granite pegmatites: Resolving the paradox of large
505	crystals in highly undercooled melts. Contributions to Mineralogy and Petrology, 160,
506	313–325.
507	Pajunen, A., and Lathi, S.I. (1985) New data on lacroixite, NaAlFPO ₄ . Part II. Crystal
508	structure. American Mineralogist, 70, 849–855.
509	Rondeau, B., Fritsch, E., Lefevre, P., Guiraud, M., Fransolet, A.M., and Lulzac, Y. (2006) A

510	Raman investigation of the amblygonite-montebrasite series. Canadian Mineralogist,
511	44, 1109–1117.
512	Shibata, H. (1934) A lithium pegmatite from Nagatare, Imajyuku, Itoshima, Fukuoka
513	Prefecture, Japan. Journal of the Geological Society Japan, 41, 582-603 (in Japanese).
514	Shirose, Y., and Uehara, S. (2013) Li tourmaline from Nagatare, Fukuoka Prefecture, Japan.
515	Journal of Mineralogical and Petrological Sciences, 108, 238–243.
516	Shirose, Y., and Uehara, S. (2014) Secondary phosphates in montebrasite and amblygonite
517	from Nagatare, Fukuoka Prefecture, Japan. Journal of Mineralogical and Petrological
518	Sciences, 109, 103–108.
519	Uehara, S., and Shirose, Y. (2013) Namibite and hechtsbergite from the Nagatare mine,
520	Fukuoka Prefecture, Japan. Journal of Mineralogical and Petrological Sciences, 108,
521	105–110.
522	
523	Figure captions
524	
525	Figure 1. Appearance and optical photo micrograph of montebrasite and amblygonite. (a)
526	Subhedral amblygonite from the Nagatare pegmatite (sample XN163). (b) Dendritic

527	montebrasite in K-feldspar from the Nagatare pegmatite (sample Ng104). (c) Large blocky
528	montebrasite with quartz from the Myokenzan pegmatite (sample MY12). (d) Small
529	subhedral montebrasite in lepidolite and quartz from the Myokenzan pegmatite (sample
530	MY14). (e) Subhedral blocky montebrasite from the Tanco pegmatite (sample XS109). (f)
531	Transparent montebrasite from Minas Gerais (sample XS110). Amb: amblygonite, Qtz:
532	quartz, Mbr: montebrasite, kfs: K-feldspar, Lpd: lepidolite.
533	
534	Figure 2. (a) Plane-polarized optical photomicrographs of montebrasite that show the
535	cloudy parts and developed cracks (sample XN164). (b) Cross-polarized optical
536	photomicrographs of montebrasite that show the lattice-shaped polysynthetic twins of
537	montebrasite (sample XN164). (c) Cross-polarized optical photomicrographs of the
538	amblygonite-montebrasite series with a vein of secondary low fluorine montebrasite along
539	a fracture (sample XN163). Amb-Mbr: amblygonite-montebrasite series, Mbr ² : secondary
540	montebrasite. (d) Cross-polarized optical photomicrographs of montebrasite that did not
541	show any polysynthetic twins or cloudy parts (sample XS110).
542	

543 Figure 3. Backscattered electron (BSE) images of internal textures in the montebrasite and

544	amblygonite from the Nagatare pegmatite. (a) Scattered lacroixite embedded in
545	montebrasite (sample Ng107). (b) Enlargement of Fig. 3a. The lacroixite exhibits a patchy
546	texture. (c) The vein of secondary low fluorine montebrasite along a fracture did not
547	contain any lacroixite inside (sample XN164). (d) Subhedral fine grains of secondary low
548	fluorine montebrasite with fluorapatite without lacroixite (sample XN165). Lcx: lacroixite,
549	Mbr: montebrasite, Mbr ² : secondary montebrasite, and Fap: fluorapatite.
550	
551	Figure 4. Scanning transmission electron microscope (STEM) bright field/high angle
552	annular dark field (BF/HAADF) images of the lacroixite patch and selected area electron
553	diffraction (SAED) patterns (sample Ng104). (a) STEM BF image from [001] _{Mbr} . (b)
554	STEM HAADF image of the same area as shown in Fig. 4a. Lacroixite exhibits a
555	bidirectionally developed patch texture with flat planes on the boundary with montebrasite,
556	and the lacroixite is associated with low fluorine montebrasite. Boundary planes comprise
557	(110) and highly developed (1–10) planes. (c) SAED patterns from the circle area in Fig. 4b.
558	Patchy lacroixite and host montebrasite exhibited identical crystal orientations. The
559	enlarged image shows the splitting of the spots owing to the difference in unit cell
560	parameters. (d) SAED patterns of lacroixite, low fluorine montebrasite, and host

- 561 montebrasite. The enlarged image shows the triple spots. Mbr: montebrasite, Lcx: lacroixite,
- 562 Low-F Mbr: low fluorine montebrasite.

563

- 564 Figure 5. X-ray images of element distribution map (BF image, $PK\alpha$, $AlK\alpha$, $NaK\alpha$, $FK\alpha$,
- 565 and overlay image of NaK α and FK α).

566

577 Data at low temperatures are based on Groat et al. (2003). The bars indicate standard

578 deviations.

579

580	Figure 8.	Schematic	of	an	exsolution	process	model	in	the	amblygonite-	-montebrasite
-----	-----------	-----------	----	----	------------	---------	-------	----	-----	--------------	---------------

581 series. The right column indicates a change in textures. The dashed lines in the texture

582 models represent the formation of polysynthetic twins.

583

Figure 9. Fluorine contents (apfu) vs. lacroixite contents (wt%) of montebrasite and amblygonite from the Nagatare pegmatite as estimated by the XRD patterns. The values on symbols correspond to grain size. The bars indicate standard deviations.

587

594

Figure 10. Fluorine contents (apfu) vs. lacroixite contents (wt%) of montebrasite and amblygonite as estimated by the XRD patterns in the study. The detailed properties are listed in Table 1. The colors of the symbols correspond to the formation environment; that is, orange: petalite occurrence, bicolor: petalite and spodumene occurrence, yellow: spodumene occurrence, gray: no aluminosilicate or uncertain, and light blue: in cavity. The bars indicate standard deviations.

595	Figure 11. Fluorine contents (apfu) vs. lacroixite contents (wt%) of montebrasite and
596	amblygonite as shown in previous studies. The lacroixite contents are converted from the
597	Na ₂ O contents of montebrasite and amblygonite. The data are based on chemical analyses
598	of montebrasite and amblygonite from various localities (Černá et al. 1973) and
599	montebrasite and amblygonite synthesized at 585 °C and 200 MPa of H_2O (London et al.
600	2001). Colors of symbols are the same as those in Fig. 10.

Table 1. Mineralogical properties of montebrasite and amblygonite specimens.

Comula	0:			Fc	ontents	Lacroixite ^c			
Sample	Size	Habit	Color	Associated minerals ^a	VDDb	E	PMA	contents	
110.	(ciii)				XRD	Av.	Range	(wt%)	
				Nagatare pegmatite, Japa	ın				
XN162	6	Blocky	LS-CL-MW	Qtz, Lpd, Ab	0.58	0.38	0.26–0.51	5.8 (7)	
XN165	2	Blocky	LS-MW	Ab, Qtz	0.55	0.23	0.08-0.42	2.7 (5)	
XN163	4	Blocky	CL-LS-MW	Qtz	0.54	0.47	0.39–0.50	4.8 (5)	
XN160	4	Blocky	CL-MW	(Qtz, Lpd, Ab)	0.53	0.50	0.46-0.56	4.8 (11)	
XN168	0.5	Dendritic	LS-CL-MW	Kfs, Qtz, Lpd, Ab, (Tur)	0.49	0.34	0.20-0.40	2.2 (3)	
XN167	0.3	Blocky	CL-MW	Qtz, Lpd, Ab, Kfs, Tur	0.47	0.42	0.28–0.52	1.9 (2)	
Ng104	0.5	Dendritic	CL-MW	Kfs, Qtz, Lpd, (Ab, Tur)	0.47	0.40	0.32–0.45	0.3 (2)	
XN169	1	Blocky	LS-MW	Ab, (Qtz, Lpd)	0.46	0.39	0.22-0.51	3.8 (3)	
Ng107	4	Blocky	MW	(Qtz, Lpd)	0.44	0.20	0.17–0.23	3.3 (11)	
XN164	2	Blocky	LS-MW	Ab, Ptl, (Lpd)	0.40	0.41	0.26-0.60	3.6 (7)	
XN166	2	Blocky	MW	Qtz, Lpd-Ms, (Ab)	0.40	0.30	0.27–0.32	0.5 (2)	
			Ν	Iyokenzan pegmatite, Jap	an				
MY14	0.6	Blocky	MW-CL	Lpd, Qtz, Ab	0.42	0.40	0.33–0.48	0.0 ^d	
MY13	1	Blocky	LS-MW	Ab, (Tur, Qtz, Lpd)	0.36	0.24	0.14–0.38	0.0 ^d	
MY12	10	Blocky	CL-MW	Qtz	0.25	0.18	0.14–0.23	N.D.	
MY11	10	Blocky	CL-MW	Ab, Qtz	0.18	0.15	0.10-0.17	N.D.	
				Tanco pegmatite, Canada	а				
XS109	6	Blocky	MW	-	0.49	0.35	0.12-0.40	0.0 ^d	
			V	aruträsk pegmatite, Swed	len				
XS113	12	Blocky	CL-MW	-	0.40	0.37	0.27–0.42	1.1 (3)	
				Havey pegmatite, U.S.A.	-				
XS112	12	Blocky	MW	Ab, Qtz	0.29	0.31	0.16–0.39	6.0 (3)	
				Minas Gerais, Brazil					
XS110	2	Blockv	CY	-	0.13	0.14	0.12-0.17	N.D.	

Notes: LS: light salmon color, CL: colorless, MW: milky white color, CY: clear yellow color. Qtz: quartz, Lpd: lepidolite, The specimens used from the Nagatare pegmatite (XN, Ng) are same as the specimens used by Shirose and Uehara

^a Slightly associated minerals are noted in brackets.

^b F contents were estimated from bulk powder XRD of montebrasite and amblygonite crystals for all the specimens us

^c The value in brackets means analytical error.

^d Lacroixite was not detected by XRD, and marginally confirmed by EPMA observations.

Ab: albite, Kfs: K-feldspar, Tur: Li tourmaline, Ptl: petalite, Ms: muscovite, Av.: average value, N.D.: not detected (2014). The localities of the other specimens used include the following: Myokenzan pegmatite (Ibaraki Prefecture, Japan (MY)

ing Kallio's (1978) method

), Tanco pegmatite (Manitoba, Canada (XS109); Minas Gerais Brazil (XS110)), Havey pegmatite (Maine, U.S.A. (XS112)), and

Varuträsk pegmatite (Västerbotten, Sweden (XS11:

Species Amblygonite		Ambluganita	Montobrooito	Montobrooito	Low-F	Low-F	Lacroix	ite
Species	Ambiygonite	Ambiygonite	Monteprasite	Monteprasite	montebrasite	montebrasite	(n = 2	2)
Sample no	XN160	XN162	Ng104	XN166	XN164	XN165	XN16	3
P_2O_5	47.72	48.64	48.96	48.33	48.88	48.16	45.53	(2)
AI_2O_3	34.53	35.89	35.41	34.61	34.78	35.04	29.42	(0)
CaO	0.00	0.00	0.00	0.02	0.00	0.03	0.38	(3)
FeO	0.01	0.02	0.00	0.00	0.00	0.00		
Li ₂ O*	10.07	10.34	10.33	10.16	10.25	10.19		
Na ₂ O	0.00	0.00	0.00	0.00	0.00	0.01	16.76	(3)
F	7.12	6.67	5.11	3.84	3.40	1.36	10.38	(3)
H ₂ O*	2.70	3.07	3.81	4.31	4.57	5.50	0.58	
O=F	3.00	2.81	2.15	1.62	1.43	0.57	4.37	
Total	99.15	101.83	101.48	99.64	100.45	99.71	98.68	
		Base	d on 5 anions p	fu, O = 4, F + C)H = 1			
Р	1.00	0.99	1.00	1.00	1.00	0.99	1.05	(0)
Al	1.00	1.02	1.00	1.00	0.99	1.01	0.95	(1)
Ca	0.00	0.00	0.00	0.00	0.00	0.00	0.01	(1)
Fe	0.00	0.00	0.00	0.00	0.00	0.00		
Li	1.00	1.00	1.00	1.00	1.00	1.00		
Na	0.00	0.00	0.00	0.00	0.00	0.00	0.89	(1)
F	0.56	0.51	0.39	0.30	0.26	0.10	0.90	(2)
OH	0.44	0.49	0.61	0.70	0.74	0.90	0.10	(2)
Cation sum	3.00	3.01	3.00	3.00	3.00	3.00	2.89	

Table 2. Representative chemical composition of amblygonite, montebrasite, secondary low fluorine montebrasite, and I

Note: Li₂O and H₂O contents were calculated by stoichiometry. The value in brackets means standard deviation.

acroixite from the Nagatare pegmatite as obtained by EPMA analyses.

Table 3. Average chemical composition of amblygonite and montebrasite from the Nagatare pegmatite as indicated by E

Sample no. XN162		62	XN165		XN16	63	XN160		XN168		XN167		Ng104	
n	n 25		22		12	12			21		19		19	
P_2O_5	48.62	(38)	48.13	(47)	48.01	(53)	48.00	(65)	48.78	(33)	48.46	(42)	48.62	(38)
AI_2O_3	35.12	(57)	34.84	(32)	35.00	(29)	34.90	(49)	35.14	(40)	35.59	(31)	35.12	(46)
CaO	0.02	(2)	0.02	(2)	0.02	(2)	0.01	(2)	0.03	(3)	0.02	(2)	0.01	(2)
FeO	0.02	(2)	0.01	(2)	0.01	(1)	0.01	(3)	0.02	(2)	0.01	(2)	0.01	(2)
Li ₂ O*	10.26	(9)	10.17	(7)	10.17	(9)	10.15	(10)	10.29	(6)	10.29	(6)	10.26	(8)
Na ₂ O	0.02	(5)	0.05	(10)	0.03	(3)	0.02	(5)	0.07	(8)	0.02	(3)	0.01	(2)
F	5.01	(120)	2.96	(127)	6.02	(38)	6.49	(37)	4.47	(75)	5.45	(85)	5.27	(39)
H ₂ O*	3.81	(54)	4.73	(60)	3.28	(19)	3.04	(20)	4.08	(35)	3.62	(39)	3.69	(19)
O=F	2.11	(50)	1.25	(53)	2.53	(16)	2.73	(16)	1.88	(31)	2.30	(36)	2.22	(17)
Total	100.77		99.65		100.01		99.90		100.99		101.18		100.77	
								E	Based on	5 anio	ons pfu, O	= 4, F	+ OH = 1	1
Р	1.00	(1)	1.00	(1)	0.99	(0)	1.00	(1)	1.00	(0)	0.99	(1)	1.00	(1)
Al	1.00	(1)	1.00	(1)	1.01	(1)	1.01	(1)	1.00	(1)	1.01	(1)	1.00	(1)
Ca	0.00	(0)	0.00	(0)	0.00	(0)	0.00	(0)	0.00	(0)	0.00	(0)	0.00	(0)
Fe	0.00	(0)	0.00	(0)	0.00	(0)	0.00	(0)	0.00	(0)	0.00	(0)	0.00	(0)
Li	1.00		1.00		1.00		1.00		1.00		1.00		1.00	
Na	0.00	(0)	0.00	(1)	0.00	(0)	0.00	(0)	0.00	(0)	0.00	(0)	0.00	(0)
F	0.38	(9)	0.23	(10)	0.47	(3)	0.50	(3)	0.34	(6)	0.42	(6)	0.40	(3)
OH	0.62	(9)	0.77	(10)	0.53	(3)	0.50	(3)	0.66	(6)	0.58	(6)	0.60	(3)
Cation sum	3.00		3.00		3.01		3.00		3.00		3.01		3.00	

Note: Li₂O and H₂O contents were calculated by stoichiometry. The value in brackets means standard deviation.

EPMA an	alyses	S.								
XN16	69	Ng1	07	XN1	64	XN1	XN166			
16		14		23		13	5			
48.11	(45)	48.09	(41)	48.55	(40)	48.21	(27)			
35.35	(41)	34.99	(42)	35.17	(31)	34.90	(28)			
0.01	(2)	0.02	(2)	0.02	(3)	0.02	(2)			
0.00	(1)	0.02	(2)	0.02	(2)	0.01	(1)			
10.22	(9)	10.17	(8)	10.26	(7)	10.18	(6)			
0.03	(4)	0.00	(0)	0.09	(12)	0.01	(1)			
5.12	(93)	2.64	(21)	5.36	(147)	3.82	(17)			
3.74	(44)	4.88	(11)	3.64	(69)	4.33	(8)			
2.15	(39)	1.11	(9)	2.26	(62)	1.61	(7)			
100.43		99.70		100.86		99.87				
0.99	(0)	0.99	(1)	1.00	(0)	1.00	(0)			
1.01	(1)	1.01	(1)	1.00	(1)	1.00	(0)			
0.00	(0)	0.00	(0)	0.00	(0)	0.00	(0)			
0.00	(0)	0.00	(0)	0.00	(0)	0.00	(0)			
1.00		1.00		1.00		1.00				
0.00	(0)	0.00	(0)	0.00	(1)	0.00	(0)			
0.39	(7)	0.20	(2)	0.41	(11)	0.30	(1)			
0.61	(7)	0.80	(2)	0.59	(11)	0.70	(1)			
3.01		3.00		3.01		3.00				

Table 4. Average chemical composition of the amblygonite and montebrasite (from the Myokenzan, Tanco, Minas Gerais

Sample no.	<u>. My</u>	14	MY	13	MY1	2	MY1	1	XS1	09	XS	113	XS1	12	XS1	10
n	22	2	22	2	19		11		16	6	3	1	15	5	14	ł
P_2O_5	47.95	(47)	47.68	(39)	48.78	(50)	48.63	(36)	48.23	(39)	48.52	(58)	48.52	(44)	48.02	(35)
AI_2O_3	33.83	(31)	33.60	(36)	34.63	(57)	34.75	(36)	34.83	(42)	34.50	(40)	34.47	(48)	34.97	(38)
CaO	0.02	(3)	0.03	(3)	0.02	(2)	0.02	(2)	0.01	(2)	0.02	(2)	0.03	(3)	0.01	(2)
FeO	0.02	(2)	0.02	(3)	0.02	(2)	0.01	(2)	0.02	(2)	0.01	(2)	0.03	(3)	0.03	(3)
Li ₂ O ^a	10.03	(8)	9.97	(7)	10.23	(12)	10.22	(7)	10.17	(8)	10.18	(9)	10.18	(8)	10.16	(7)
Na ₂ O	0.01	(4)	0.00	(0)	0.00	(0)	0.00	(1)	0.00	(0)	0.05	(24)	0.02	(3)	0.00	(1)
F	5.06	(41)	3.08	(92)	2.38	(32)	1.94	(27)	4.53	(81)	4.75	(101)	4.01	(90)	1.86	(18)
H_2O^a	3.65	(21)	4.55	(44)	5.04	(16)	5.24	(13)	3.99	(37)	3.89	(48)	4.23	(40)	5.25	(8)
O=F	2.13	(17)	1.30	(39)	1.00	(13)	0.82	(11)	1.91	(34)	2.00	(43)	1.69	(38)	0.78	(7)
Total	98.45		97.63		100.09		100.00		99.87		99.92		99.79		99.53	
						Ba	ised on 5	anior	ns pfu, (C = 4,	F + OF	1 = 1				
Р	1.01	(0)	1.01	(0)	1.00	(0)	1.00	(0)	1.00	(0)	1.00	(1)	1.00	(1)	0.99	(0)
Al	0.99	(1)	0.99	(1)	0.99	(1)	1.00	(1)	1.00	(1)	0.99	(1)	0.99	(1)	1.01	(1)
Са	0.00	(0)	0.00	(0)	0.00	(0)	0.00	(0)	0.00	(0)	0.00	(0)	0.00	(0)	0.00	(0)
Fe	0.00	(0)	0.00	(0)	0.00	(0)	0.00	(0)	0.00	(0)	0.00	(0)	0.00	(0)	0.00	(0)
Li	1.00		1.00		1.00		1.00		1.00		1.00		1.00		1.00	
Na	0.00	(0)	0.00	(0)	0.00	(0)	0.00	(0)	0.00	(0)	0.00	(1)	0.00	(0)	0.00	(0)
F	0.40	(3)	0.24	(7)	0.18	(2)	0.15	(2)	0.35	(6)	0.37	(8)	0.31	(7)	0.14	(1)
ОН	0.60	(3)	0.76	(7)	0.82	(2)	0.85	(2)	0.65	(6)	0.63	(8)	0.69	(7)	0.86	(1)
Cation sum	3.00		3.00		3.00		3.00		3.00		3.00		3.00		3.00	

Note: Myokenzan pegmatite (Ibaraki Prefecture, Japan (MY); Tanco pegmatite, Manitoba, Canada (XS109); Minas Gerai: ^aLi₂O and H₂O contents were calculated by stoichiometry.

) and Varuträsk pegmatites by EPMA and									
XS114									
17	7								
48.88	(43)								
34.38	(27)								
0.03	(3)								
0.02	(3)								
10.21	(6)								
0.01	(2)								
1.07	(57)								
5.65	(28)								
0.45	(24)								
99.80									
1.01	(0)								
0.99	(1)								
0.00	(0)								
0.00	(0)								
1.00									
0.00	(0)								
0.08	(4)								
0.92	(4)								
3.00									

nalyses

s, Brazil (XS110)), Havey pegmatite (Maine, U.S.A. (XS112)), Varuträsk pegmatite (Västerbotten, Sweden (XS113))

3)). The value in brackets means standard deviatio

Table 5. Unit cell parameters of the amblygonite specimen (sample XN163) heated from 50°C to 700 °C

	Temp. (°C)	a (Å)		b (Å)	c (Å)	α (°)	β (°)	γ (°)	V (Å ³)		
Run1 1 2 4 6	50	6.689	(4)	7.739 (5)	6.968 (5)	90.85 (2)	117.65 (2)	91.27 (2)	319.3		
	100	6.694	(4)	7.745 (5)	6.973 (5)	90.84 (2)	117.65 (2)	91.25 (2)	320.0		
	200	6.698	(6)	7.750 (8)	6.978 (7)	90.84 (3)	117.62 (3)	91.23 (3)	320.7		
	400	6.702	(5)	7.781 (6)	6.992 (5)	90.74 (2)	117.50 (2)	91.14 (2)	323.3		
	600	6.712	(9)	7.812 (11)	7.006 (9)	90.68 (4)	117.34 (4)	91.03 (4)	326.2		
Run2	50	6.692	(5)	7.731 (7)	6.972 (6)	90.83 (2)	117.69 (2)	91.29 (3)	319.2		
	500	6.713	(7)	7.796 (8)	7.004 (7)	90.70 (3)	117.45 (3)	91.12 (3)	325.1		
	500	6.716	(10)	7.799 (12)	7.006 (10)	90.72 (5)	117.45 (4)	91.15 (5)	325.5		
	500	6.713	(6)	7.800 (8)	7.008 (7)	90.77 (3)	117.45 (3)	91.08 (3)	325.5		
	500	6.714	(6)	7.797 (7)	7.006 (6)	90.71 (3)	117.46 (3)	91.10 (3)	325.3		
Run3	50	6.692	(6)	7.738 (7)	6.973 (6)	90.85 (3)	117.67 (2)	91.26 (3)	319.6		
	600	6.719	(9)	7.806 (11)	7.015 (9)	90.78 (5)	117.42 (4)	91.00 (4)	326.4		
	600	6.723	(8)	7.813 (9)	7.008 (8)	90.59 (4)	117.40 (3)	91.08 (3)	326.7		

Note: The value in brackets means standard deviation.

> (4) (4) (5) (4) (7) (5) (6) (8) (6) (5) (5) (8) (7)

ays consult and cite the final, published document. See http://www.minsocam.org or GeoscienceW

