1	Revision 1
2	Variations of Radon emanation coefficients as a function of physical and mineralogical
3	properties of a suite of naturally-occurring minerals
4	KATHERINE KRUPP, MARK BASKARAN [*] , SARAH J. BROWNLEE
5	Department of Geology, Wayne State University, Detroit, MI-48202
6	
7	*: Corresponding author (Baskaran@wayne.edu)
8	American Mineralogist
9	Revised version
10	21 February 2017
11	
12	
13	
14	
15	
16	
17	
18	

1

19 Abstract

20 The escape rates of radon gas from rocks and minerals are of great relevance to many branches of geoscience and it is thus important to understand the physical and mineralogical 21 properties that control radon emanation rates. Mechanisms of radon loss from minerals have 22 23 direct bearing on the reliability of U-Pb and U-Th-He geochronology. Fourteen minerals from three different mineral groups and with localities spanning three continents were selected for this 24 study. The radon emanation coefficients (REC) for each mineral were measured as a function of 25 grain size, temperature, 238 U and 232 Th activities and total absorbed α -dose, density, and mineral 26 melting temperature. The measured ²³⁸U and ²³²Th activities ranged from 0.01 to 6487 Bg g⁻¹ and 27 from below detection limit to 776 Bq g⁻¹, respectively. The REC values for unheated, pulverized 28 samples ranged from 0.083 to 7.0%, which is comparable to previously reported ranges (except 29 30 for zircon). An inverse correlation between grain size and REC was observed. Full annealing of 31 fission tracks resulted in an overall decrease in REC values, suggesting that nuclear tracks could possibly act as conduits for radon release. While activity, alpha dose, density, and melting 32 temperatures are not strongly correlated with REC values, it was observed that minerals with 33 34 high melting points (≥1400°C) have lower REC values, most likely due to inhibition of radon release by compact crystal-lattice structures. This is the first attempt, to our knowledge, to 35 correlate REC values with melting temperature, and this study reports six minerals for which no 36 REC values have been previously reported. 37

38

39

40

Keywords: Radon emanation, REC, metamict minerals, nuclear track annealing, uranium

2

41

INTRODUCTION

42	The studies of radon emanation rates from soils, rocks, and minerals have a wide range of
43	applications in many branches of geosciences. The escape of radon from rocks and minerals
44	is of importance to geological dating, where it can limit the reliability of U-Pb
45	geochronology (e.g., Heaman and LeCheminant 2000; Corfu 2012; Goa et al. 2014). Radon
46	concentration gradients observed in air (both interstitial soil and atmospheric air in planetary
47	boundary layers and above) and groundwater are widely used as tracers in order to predict
48	earthquakes, locate subsurface uranium ore and hydrocarbon deposits, and study atmospheric
49	transport (Garver and Baskaran 2004; Nazaroff 1992; Levinson et al. 1982; Fleischer and
50	Mogrocampero 1985; Wakita et al. 1991; Fleischer and Turner 1984; Tanner 1964, 1980; Liu
51	et al. 1984; Kritz et al. 1993; Baskaran 2016). Radon is also used as a tracer for quantifying
52	the rate of gas exchange across the air-sea interface (Broecker et al. 1967; Baskaran, 2016).
53	Furthermore, the inhalation of radon and its progeny poses a radiation health hazard, as radon
54	was classified as a human carcinogen (in the same carcinogen group as tobacco smoke,
55	asbestos, and benzene) in 1988 by the International Commission on Radiation Protection
56	(IARC; WHO, 2009). For these reasons, it is important to understand the physical and
57	geological factors that affect radon release rates from rocks, minerals, and soils.
58	During the alpha decay of 226 Ra, both an α -particle with a range of $\sim 10,000$ nm in solids
59	and an energetic ²²² Rn recoil nucleus are produced. With a recoil energy of 85 keV and a
60	recoil distance of ~40 nm (e.g., Amin and Rama 1986: 35 nm in clays, 95 nm in water and
61	64,000 nm in air), the recoil nucleus of ²²² Rn can collide with other atoms in a mineral's
62	crystal lattice structure and alter their arrangement (Semkow 1990). In minerals where the
63	radiation dose exceeds $\sim 10^{16} \alpha$ -decay events mg ⁻¹ , the mineral is reported to undergo a

3

radiation-induced transition from the crystalline to amorphous state (Murakami et al. 1991; 64 Weber et al. 1994). The degree of internal radiation damage to the mineral structure by recoil 65 and fission tracks can affect a mineral's radon emanation coefficient (REC, also known as 66 coefficient of emanation, escape ratio, escape-to-production ratio, and percent emanation), 67 which is the ratio of radon emitted to radon produced within the mineral. These nuclear 68 69 tracks can become interconnected and increase the internal surface area of the mineral, promoting further escape of radon atoms. Radon atoms, upon formation from the decay of 70 ²²⁶Ra and located primarily within recoil distance, migrate either 1) from the edge of a 71 72 mineral grain into pore space or pore water, 2) deeper into the mineral grain, 3) into an adjacent grain, or 4) into pore space by indirect or penetration recoil (Semkow 1991). The 40 73 nm recoil distance of radon atoms implies that only those ²²⁶Ra atoms that lie extremely close 74 to the surface (within 100 nm) can contribute directly to radon emanation. However, if there 75 are large internal surface areas formed from weathering, corrosion from chemical reactions, 76 or intensive fracturing on a microscopic scale, then, a fraction of radon atoms located within 77 deeper regions of the mineral could undergo emanation from the grain. It is therefore 78 important to study the escape of radon gas as a function of specific physical properties which 79 could impact the extent of its recoil range and diffusion, including radiation damage, mineral 80 density and melting point. 81

A large body of REC values of minerals and soils has been published. However, there are only a few naturally occurring minerals for which REC values are available. Of the 3000+ naturally-occurring minerals, it appears that REC values are available for less than 50 minerals (e.g. Turekian et al. 1977; Nazaroff 1992; Garver and Baskaran 2004; Sakoda et al. 2011; Malczewski and Dziurowicz 2015; Eakin et al. 2016). The purpose of this study is to

87	determine how the radon emanation rates of individual minerals are influenced by 1) grain
88	size, 2) nuclear track annealing, 3) ²²⁶ Ra concentration and alpha dose, and 4) melting point
89	and density. It is hypothesized that REC values should be inversely correlated to grain size,
90	should decrease with nuclear track annealing, alpha dose, and be inversely related with both
91	melting point and density. This is the first attempt, to our knowledge, to study the
92	relationship between radon emanation and melting temperatures of minerals. Furthermore,
93	this study includes six minerals that have never been used for REC studies and thus contains
94	their first reported REC values.
95	MATERIALS AND METHODS
96	Fourteen minerals from three different mineral groups (10 silicates, 3 oxides, and 1
97	phosphate) with localities spanning three different continents were selected for this study.
98	The location, specific gravity, geologic age, and chemical and mineralogical description of
99	all samples are given in Table 1. The specific gravity of the mineral samples ranged from
100	2.54 – 11.0 (silicates: 2.54 – 5.3; oxides: 4.3 – 11.0; phosphate: 2.9 – 3.5), and the melting
101	temperatures ranged from 1100 - 2827°C (silicates: 1100 -2200°C; oxides: 1356 - 2827°C;
102	phosphate: 1600°C). The estimated age of the mineral samples based on their source
103	formations ranged from 1050-1400 Ma, with the exception of two zircon samples from
104	different locations (Malawi, Africa zircon: 730 \pm 20 Ma; Mud Tank, Australia zircon: 732 \pm
105	5 Ma). A single large crystal of each of the mineral samples was crushed and sieved into
106	designated grain size fractions. To study radon emanation rate as a function of grain size,
107	three unheated zircon specimens from different localities were crushed and sieved into four
108	grain size fractions (<63, 63-125, 125-250, and 250-500 μ m; these samples were prepared
109	and used in a previous study by Eakin et al. (2016)). In order to study radon emanation as a

5

. . . .

110	function of nuclear track annealing, four minerals were tested in addition to the zircon
111	samples from three localities, which were selected due to their relatively high concentration
112	of uranium and thorium (Table 1). The 125-250 μ m size fractions were heated to 25
113	(unheated), 200, 300, 400, 600, and 800°C for 6 hours. Seven additional minerals were
114	chosen to represent a broad range of melting points and were pulverized to $<125 \ \mu m$.
115	Activities of ²³⁸ U and ²³² Th
116	The activities of ²³⁸ U and ²³² Th in the mineral grains were determined from the
117	measurements of their progeny, ²²⁶ Ra and ²²⁸ Ra, respectively, using a high-purity germanium
118	well detector coupled to a Canberra DSA-LX multi-channel analyzer, assuming secular
119	equilibrium between the parents and their progeny. This ultra-low background Ge detector

Bq g⁻¹, equal to 0.6 dpm in 10-g sample and with a dpm/cpm ratio of ~25, we get 40 counts
with an error of 16%). Approximately 0.5 to 10 g of each size fraction, weighed to a
precision of 0.1 mg, was placed in a 10 ml graduated counting vial. Radium-226 was
measured using the 352 keV (²¹⁴Pb) and 609 keV (²¹⁴Bi) gamma energy peaks, ²²⁸Ra was

assayed using the 338 keV and 911 keV via ²²⁸Ac gamma energy peaks, and both of their 125 mean activities were calculated. The activity obtained by two different gamma-ray lines for 126 both 226 Ra and 228 Ra agreed within 1σ . Typical resolution (full-width at half-maximum) was 127 \sim 1.3 keV at 46 keV and \sim 2.2 keV at 1.33 MeV. The detector was calibrated with IAEA solid 128 standards (RGU-1 and RGTh-1) for various geometries. The self-absorption corrections for 129 130 the energy of interest were found to be negligible as evidenced by measurements of several standard reference materials and the close agreement between ²²⁶Ra obtained using 352 keV 131 (²¹⁴Pb) and 609 keV (²¹⁴Bi). This was verified by the measurements of ²¹⁰Po in an aliquot of 132

6

sample by dissolving and measuring by alpha spectrometry, under the assumption that ²¹⁰Po, 133 ²¹⁰Pb, and ²²⁶Ra are in secular equilibrium, as expected in any mineral older than 150 years. 134 The total absorbed alpha dose (Δ , α -decays mg⁻¹) was calculated based on activities of each 135 mineral sample using the following equation (Garver and Baskaran 2004): 136

137
$$\Delta = 8N_1 [e^{\lambda_1 t} - 1] + 7N_2 [e^{\lambda_2 t} - 1] + 6N_3 [e^{\lambda_3 t} - 1]$$
(1)

where t is the geologic age of each mineral, N_1 , N_2 , and N_3 are the atoms mg⁻¹ of ²³⁸U, ²³⁵U, and 138 ²³²Th, respectively, and λ_1 , λ_2 , and λ_3 are the decay constants (years⁻¹) for these respective 139 140 isotopes. This calculation assumes 1) a closed system (no loss or gain of parent or daughter other than by radioactive decay) and 2) N₂=N₁/137.88 based on the natural abundances of 238 U and 141 ²³⁵U. 142

143

Radon emanation rate determination

Sample masses were aliquoted based on ²³⁸U activities and ranged from 0.5-40 g. All 144 samples were sealed off in a polyethylene vessel for three weeks in order to ensure steady state 145 conditions between ²²⁶Ra and ²²²Rn (and its progeny) prior to measurement in the radon detector. 146 The concentration of radon gas emission was measured using the RAD 7 Electronic Radon 147 Detector (Durridge Company, Inc.) which has a calibration accuracy of \pm 5% (Figure 1). The 148 RAD 7 is a solid state alpha detector with a 0.7 liter internal sample cell volume. This instrument 149 150 detects alpha particles released during radioactive decay and uses a semiconducting material to 151 translate the energy into an electrical signal. The instrument records a spectrum of isotopic 152 abundance based on each isotope's characteristic alpha decay energy (in MeV). The continuous 153 monitoring feature provides statistically precise readings, and its ability to distinguish between "new radon" and "old radon" (via ²¹⁸Po versus ²¹⁴Po detection) prevents from any buildup 154

7

contaminating measurements in closed system setups. This setup consisted of a closed-loop 155 system where the air pumped from the machine was passed through vinyl tubing to the sample 156 157 vessel, followed by a series of filters and desiccators, and then back to the machine for counting (Figure 1). The relative humidity within the system, which is continually monitored by the RAD 158 7, was maintained below 10% at all times, and the continuous flow rate of air by the built-in air 159 pump was 1 liter/minute. Cycle and recycle times varied between sets of mineral samples in 160 order to account for large differences in ²³⁸U activity. Cycles ranged from 30 to 60 minutes, and 161 the total run time ranged from 24-72 hours. Once uploaded to RAD 7 data acquisition and 162 analysis software (Capture, Durridge Company, Inc.), the default spill factors and sensitivities 163 164 were replaced with specific values determined by each machine's calibration to increase the 165 accuracy of the results. Background-subtracted radon measurements for each sample were used to calculate the REC value (%) based on the following equation: 166

167
$$REC = \frac{E}{N_{222}} * 100\%$$
 (2)

where N_{222} is the number of ²²²Rn atoms produced via ²²⁶Ra and *E* is the ²²²Rn emission rate (²²²Rn atoms released per minute of RAD 7 run time), and is given by the following equation:

170
$$E = \frac{C}{\lambda_{222}} * \frac{v}{10^3}$$
(3)

where *C* is radon concentration per unit volume of air (Bq m⁻³), *v* is flow rate (L min⁻¹), and λ_{222} is the decay constant for ²²²Rn (s⁻¹) (Malczewski and Dziurowicz 2015).

173

8

RESULTS

176 Variations in ²³⁸U, ²³²Th activity, and total absorbed alpha dose

The measured ²³⁸U and ²³²Th activities are listed in Table 1. Uranium-238 activities range 177 from 0.010 to 6487 Bq g⁻¹ while ²³²Th activities range from below detection limit (BDL) to 776 178 Bq g^{-1} . The activities of the zircon minerals ranged from 0.388 to 80.3 Bq g^{-1} of ²³⁸U, which is 179 within the wide range of activities reported for zircon minerals (~ 0.01 to > 250 Bq g⁻¹) (Eakin et 180 al. 2016). Thorium-232 activities for the zircons ranged from 0.235 to 39.6 Bq g^{-1} , which is 181 slightly higher than previously reported values (~0.002 to ~20 Bg g⁻¹) (Eakin et al. 2016; 182 Heaman and Parrish 1991). Thorite, euxenite, uraninite, and betafite had the highest activities 183 $(^{238}\text{U} \text{ range} = 121 \text{ to } 6487 \text{ Bg g}^{-1}; ^{232}\text{Th range} = 53 \text{ to } 776 \text{ Bg g}^{-1})$. The remaining seven minerals 184 (hornblende, apatite, augite, microcline, albite, quartz, and olivine) had the lowest activities (²³⁸U 185 range = 0.010 to 1.52 Bq g^{-1} ; ²³²Th range: BDL to 1.08 Bq g^{-1}). Note that most common 186 minerals (e.g. feldspar, quartz, and hornblende) have very low ²³⁸U and ²³²Th concentrations 187 (Table 1, 2). No earlier published data was found on the uranium or thorium activities of 188 euxenite, betafite, augite, microcline, albite, or olivine, and thus no comparison is possible. The 189 calculated total absorbed alpha dose for the sample set ranged from 0.0036 to 2300×10^{15} decays 190 mg⁻¹ (Table 1). The corresponding values for silicates ranged from 0.0036 to 215 $\times 10^{15}$, oxides 191 ranged from 217 to 2300 $\times 10^{15}$, and the phosphate was 0.480 $\times 10^{15}$ decays mg⁻¹ (Table 1). Due to 192 193 the overall similarity in geologic ages across the sample set, variations in alpha dose are primarily a result of variations in ²³⁸U and ²³²Th activities. The oxides have the three largest 194 alpha dose values, and also have the three highest ²³⁸U activities. 195

196

9

197 Radon Emanation Coefficients

198	The radon emanation coefficients for the analyzed mineral samples are given in Table 3.
199	The REC values for different zircon grain-size fractions range from <0.01 to 0.77% (n=11, mean
200	= 0.35%). Note that the lone REC value of 18.2% is an outlier, and is not included in the
201	discussion. The REC values for <63, 63-125, 125-250, and 250-500 μm size fractions range from
202	0.27 to 0.77% (n=2, mean=0.53%), 0.21 to 0.72% (n=3, mean=0.44 %), 0.19 to 0.38 % (n=3,
203	mean=0.31 %), and <0.01 to 0.35 % (n=3, mean=0.18 %), respectively. There is an inverse
204	correlation between grain size and REC in all three zircon minerals. The REC values for the
205	series of minerals heated from 200-800°C range from <0.01 to 0.58 % (n=35, mean = 0.16 %),
206	and specific results are illustrated in Figure 2. The REC values resulting from heated mineral
207	samples were generally highest upon heating to 300 or 400°C, and the lowest rates for all
208	minerals (except euxenite) occurred upon heating to 600 or 800°C (Table 3, Figure 2). The Mud
209	Tank zircon samples are excluded from this statement because all heated samples resulted in
210	REC values of <0.01 %. 0.083 \pm 0.03 at 25°C, 0.061 \pm 0.003 % at 200°C, 0.053 \pm 0.003 % at
211	300° C,, 0.062 ± 0.003 % at 400° C, 0.062 ± 0.003 % at 600° C,, and 0.109 ± 0.003 % at 800° C,

The REC range for a suite of 14 unheated mineral samples of <250µm grain sizes varied 212 from 0.083 to 7.0% (mean=1.67%). This range is comparable to the previously reported range of 213 214 <0.01 to 0.83% from a collection of 47 different studies comprising a total of 75 minerals (both 215 bulk and pulverized); however, the present study includes a set of minerals that have never been 216 measured before and that are expected to have very little radiative damage, which may be 217 responsible for the higher REC values reported (Sakoda et al. 2011). The REC for unheated silicates of <125-250 µm ranged from 0.19 to 7.0% (n=9, mean=1.89%). For oxides, the REC 218 ranged from 0.083 to 0.177% (n=3, mean=0.14%), and the REC value of the phosphate mineral 219

10

220	was found to be $5.4 \pm 0.1\%$. The silicate group produced a wide range of REC values as well as
221	the highest REC values. The oxide group showed a narrow range of low REC values and is
222	composed of minerals with higher ²³⁸ U and ²³² Th activities. Zircon had the lowest REC among
223	all the minerals listed in Table 1, similar to what has been reported elsewhere (Sakoda et al.
224	2011; Garver and Baskaran, 2004; Eakin et al., 2016). Commonly-occurring minerals such as
225	hornblende and quartz with very low 238 U and 232 Th activities have mean REC values of 2.2%
226	and 4.3%, respectively, which are higher than the values reported for uraninite and zircon (Table
227	2, 3). The REC value for quartz ($3.8 \pm 0.5\%$) is similar to the value reported by Sakoda et al.
228	(2010) of 4.6 \pm 0.5%; the measured value for hornblende is lower (0.90 \pm 0.03%) compared to
229	the published value of $3.42 \pm 0.38\%$ (Krishnaswami and Seidemann, 1988); and the value for
230	apatite reported in this study is much higher ($5.4 \pm 0.11\%$) compared to 0.5 and 0.8% from a
231	study by Rama (1990a)) (Table 2). Some of the minerals included in this experiment are known
232	to commonly occur as accessory minerals (euxenite, zircon, and thorite), which exhibit
233	heterogeneous ²²⁶ Ra distribution, leading to variable REC values. However, many of these
234	samples were single crystals and were pulverized and thus, this should not be a factor (unless
235	crushing resulted in breaking along cleavage plane and the heterogeneity is preserved in the
236	crushed grains). The range of reported REC of zircon (both in air and solution) vary over six
237	orders of magnitude, while that of uraninite and thorite vary over five and three orders of
238	magnitude, respectively (Table 2).

239

240

11

242

DISCUSSION

243 A number of factors affect radon emanation rates, including particle size and shape, internal porosity, the extent of radiation damage within the crystalline structure, the type of 244 distribution of impurities and imperfections in the crystal lattice, and the concentration and 245 distribution of ²²⁶Ra (Tanner, 1980; Strong and Levins, 1982; Rama and Moore, 1984; 246 Krishnaswami and Seidemann, 1988; Rama and Moore, 1990a; Garver and Baskaran, 2004; 247 Lawrence et al., 2009; Eakin et al., 2016). For example, in the case of zircon, the effects of 248 alpha-decay damage on zircon were reported to include decrease in density (17%), decrease in 249 250 hardness, decrease in thermal conductivity, increase in adsorbed water, increase in chemical 251 diffusion, and increased susceptibility (Murakami et al., 1991; Weber et al., 1994). Furthermore, release rates of radon outside of a mineral grain also depend on the surrounding medium (air or 252 water; Tanner, 1964). There are heterogeneities in the distribution of uranium isotopes in U-253 254 bearing minerals, where the isotopes are commonly concentrated in certain localized regions of 255 the mineral depending on its mode of formation and whether or not recrystallization occurred (e.g., Sakoda et al., 2010). Furthermore, the progeny of 238 U are likely to lie in the recoil tracks 256 along which the mineral is chemically and structurally ruptured (note that ²³⁸U reside in 257 crystalline material while the progeny (up to ²⁰⁶Pb) will not be). Rama and Moore (1990a) 258 observed large radon emanation coefficients from crystals of apatite, uraninite and monazite and 259 argued that these results provide evidence for existence of micro-crystallinity and associated 260 network of internal gaps (or pores) that are extremely narrow (nm wide) due to extremely low 261 porosity in these minerals and are connected to the surface. From a diffusion study of ²²⁰Rn 262 across nanometer wide holes in common rock minerals, Rama and Moore (1990b) reported that 263 the zones of porosity are circuitous and thus, the effective diffusion length of ²²⁰Rn and ²²²Rn are 264

12

~ 3mm and 30 cm, respectively in granite, compared to the corresponding values in air of 3 cm
 and 3 m, respectively. Different factors that affect radon emanation rates of minerals are
 discussed below.

268

269 **REC variations in water and air**

270 The release rates of radon outside of a mineral grain depend on the surrounding medium 271 (air or water; Tanner, 1964). Radon emanation coefficients obtained in air can be compared to 272 the REC values for the same set of mineral aliquots obtained in water (Eakin et al. 2016) (Table 273 2). The REC values in water are distinctively higher than that in air (Table 2). Higher values of REC in water are likely due to the presence of water in pore spaces (note that the size of a water 274 275 molecule is 0.29 nm), which increases the probability that radon atoms will terminate their recoil 276 paths in those spaces due to a shorter stopping distance in water than in air, thus augmenting the direct-recoil fraction. This indicates that radon atoms emanating in air are much more likely to be 277 278 embedded into adjacent grains.

While minerals such uraninite containing very high ²³⁸U concentrations can become 279 280 amorphous (metamict) due to self-irradiation by decaying actinides, minerals such as zircon (and monazite with high ²³²Th concentrations) have remarkable stability, although residual atomic 281 displacement damage produced by alpha recoil atoms could accelerate the actinide dissolution 282 affecting the distribution of ²²⁶Ra and thereby the release rates of radon. Radon emanation 283 coefficients as high as 12.1% and 23% for the much shorter-lived ²²⁰Rn (Barretto, 1973) have 284 285 been reported, although, in general, the radon emanation coefficients for zircon are much lower (e.g., Eakin et al., 2016). Due to this high REC value, we speculate that the effect of radiation 286

13

287	damage is to form a mosaic of channels in which water may be introduced to increase the direct-
288	recoil fraction, or along which the mineral may be altered resulting in potential increase in the
289	indirect-recoil and diffusion fractions. It is also documented that recoil tracks are responsible for
290	a portion of the preferential removal of 234 U by water entering through these recoil tracks and
291	healing of such tracks by heating could diminish the release of nuclides such as 234 U and 226 Ra
292	(e.g. Fleischer 1982) which also result in the increase in radon release rates.

293

294 **REC values as a function of grain size**

When the grain size is smaller than radon recoil distance, almost all of the radon released 295 from recoil will escape the grain. The contribution of radon escape from solid state diffusion 296 297 (assuming that there is preferential diffusion through nanopores or recoil/alpha nuclear tracks or radiation damage inside a grain) is expected to be small due to diffusion length (= $\sqrt{D\tau}$) where 298 D_s is diffusion coefficient of ²²²Rn in solids, $10^{-25} - 10^{-27}$ m² s⁻¹, summarized in Baskaran, 2016) 299 and τ is mean-life of ²²²Rn (5.51 d)) is ~ 0.02-0.2 nm. The recoil length of radon atoms is 30-300 50nm and hence radon emanation by recoil is in effect a surface phenomenon (upper 50 nm) 301 (Semkow 1991; Malczewski and Dziurowicz 2015). If the volume of the surface layer of a 302 303 mineral grain is $\sim 0.01\%$ of the total volume, the mean grain size for each fraction tested in this study would result in ²²²Rn escape by recoil to be less than ~0.0001%. However, a consistent 304 inverse relationship was observed between REC and grain size, where REC values increase with 305 decreasing grain size and thus larger surface area per volume (Table 3). This implies that recoil 306 rather than diffusion is responsible for the majority of radon escape from the samples. The 307

14

fraction of radon emitted as a result of recoil can be related to the grain size of homogeneous,
spherical, defect-free grains is given by (Giletti and Kulp 1954):

310
$$F_r = \frac{3}{4} \frac{R}{r_o} - \frac{1}{16} \left(\frac{R}{r_o}\right)^3 for \ 2r_o \ge R$$
 (4)

where F_r is the fraction of radon atoms emitted due to recoil, R is recoil range, and r_o is the radius 311 of the grain. From equation (4), the fraction of radon atoms emitted as a function of grain size for 312 313 a recoil range of 50 nm yields an inverse relationship between surface area and the radon emanation rate. However, such a relationship is not commonly reported, primarily because no 314 315 study has been conducted with grain sizes in the range of $0.05 - 1 \,\mu\text{m}$. For example, REC from a 316 30 cm x 30 cm x 30 cm cube of granite was reported to be the same as that for a 1-2 mm granite 317 sample (Amin and Rama 1986). Two hypotheses have been proposed to account for the discrepancy between expected and measured radon emanation rates: 1) heterogeneous ²²⁶Ra 318 319 distribution, or 2) a network of nanopores aiding in gas transport within the mineral (Rama and 320 Moore 1984). These nanopores would increase the internal surface area of the mineral, allowing 321 for a higher amount of radon diffusion, resulting in greater emanation in smaller grains due to 322 higher surface area to volume ratios. Furthermore, the zones of nano-porosity have been 323 suggested to form a network that connects to the grain boundary (Rama and Moore 1990). In low-temperature-formation minerals such as quartz and feldspars, the submicronic porosity is 324 325 reported to be 10-20% while in amphiboles, the entire inner area is leaky and hence radon escape 326 is expected to be higher (Rama and Moore, 1990b). Thus, the radon emanation could depend on the fraction of submicronic porosity (fractional volume of mineral exhibiting submicronic 327 328 porosity) since the zones of submicron porosity are reported to run both along grain boundaries and across the grains (Rama and Moore 1990b). In order to account for the concentration of 329

15

²²⁶Ra at grain boundaries, the fraction of radon atoms emitted by recoil (F_{uniform}) is given by
(Morawska and Phillips 1993):

332
$$F_{uniform} = 0.5 * (1 + \frac{R}{d})$$
 (5)

where d is the diameter of the mineral grain. The range of grain diameters used in this study
produced an F value approximating 0.5 for each size fraction (note that the variations in
calculated REC values remain more or else constant for grain sizes of 63 and 500 µm), which
would produce a constant REC value for the samples tested. Therefore, another mechanism such
as nanopores or radiation damage which could increase the surface area to volume ratio with
decreasing grain size compared to a defect-free grain must be responsible for the REC values
reported in this study

340

REC values as a function of temperature

It is known that alpha recoil tracks anneal much more readily than fission tracks when a 342 343 mineral is subjected to elevated temperatures. Hasheminezhad and Durrani (1983) determined that 100% annealing of alpha tracks in biotite occurred at a finite temperature, with activation 344 energy of 1.4 eV. The corresponding activation energy for fission tracks is much higher, and 345 thus, a much higher temperature is required for complete annealing (Hasheminezhad and Durrani 346 1983). In our study, in five of the seven heated minerals, an increase in REC between 300 and 347 400°C is observed which may correspond to complete annealing of α -recoil tracks. It was 348 349 demonstrated that the heating of zircon minerals over an extended period of time (>24 h) can change the crystal structure through annealing of α -recoil and fission tracks (Yamada et al. 350

351	1995). The network of interconnected fission and α -recoil tracks in uranium and thorium-bearing
352	minerals is proposed to result in the formation of channels serving as conduits for ²²² Rn gas
353	escape. Partial annealing of all the tracks (at low temperatures, mostly α -recoil tracks) may
354	temporarily relieve "congestion" (analogous to a traffic jam) which could lead to higher REC
355	values prior to full fission track annealing. However, Eakin et al. (2016) also reported decrease in
356	REC with partial annealing in one of the three zircon samples studied. Garver and Baskaran
357	(2004) showed that for monazite, zircon, and uraninite, the REC values followed the trend:
358	200° C > 100° C > 600° C. In the case of zircon, the least amount of variation in the REC value
359	was reported at different degrees of heating (Garver and Baskaran 2004, Eakin et al. 2016). From
360	the differences in the amount of radon released from a zircon sample heated twice (with a time
361	gap of about a month) at 975°C for 48 hours, Eakin et al. (2016) suggested that diffusion
362	parameters are changed due to annealing of radiation damage. When the heating temperature
363	approaches the total annealing temperature, the nuclear track-induced channels are likely
364	removed, resulting in lower REC values. The REC value of Mud Tank zircon, upon any degree
365	of heating, was <0.01%, perhaps due to the low activity of the mineral and lack of significantly
366	interconnected fission tracks. The euxenite sample lacked any trend in REC values with an
367	increase in temperature. Euxenite, a complex uranium yttrium oxide with many substitution sites
368	within its chemical formula (termed the "trash can mineral") is likely influenced by other
369	chemical or physical properties from the higher concentrations of other elements present which
370	are affecting the radon emanation rates. Furthermore, complete recrystallization of euxenite
371	could occur at much greater than 1000°C at laboratory conditions and timescales and therefore
372	the degree of annealing for each sample likely varied, especially if any minerals experienced

17

long term annealing by geothermal events in the natural environment, independent of laboratoryannealing (Murakami et al. 1991).

375

REC values as a function of U-Th concentration and alpha dose

The minerals in this study show an R^2 value of 0.53 (polynomial fit) for REC versus 377 activity concentrations of ²³⁸U and 0.49 for REC versus alpha dose, indicating a weak linear 378 relationship between REC and both parameters (Figure 3, Figure 4). There is no relationship 379 between REC and the activity of ²³⁸U, ²³²Th, or alpha dose in a recent study by Eakin et al. 380 (2016) on zircons; however, an inverse relationship was observed between REC and radiation 381 382 dose by Malczewski and Dziurowicz (2015). Variations in mineral composition and lattice structure will likely affect radon emanation along with radiation dose. For example, the uraninite 383 sample in the Malczewski and Dziurowicz study (2015) had the highest ²³⁸U activity and 384 radiation dose but the lowest REC value, similar to this study. The authors proposed that due to 385 uraninite's simple and compact oxide structure, this mineral is essentially dose-independent. All 386 of the oxides in this study produced low REC values despite their high ²³⁸U concentrations. 387 Silicates have more complex crystal lattice structures, and also exhibited a higher variability of 388 REC despite lower activity, further suggesting the influence of mineral structure and 389 390 composition on radon emanation rates (Figures 3, 4).

391

REC dependence on melting point and density

18

The melting point and density of a mineral depends on the covalent bonding energy and 393 394 the lattice arrangement of atoms within that mineral. It is anticipated that those minerals with high melting point and density will likely have lower radon emanation coefficients. Based on the 395 396 variability of REC with activity, alpha dose, and nuclear track annealment, it is likely that the 397 physical structure of a mineral is influential in the degree of radon emanation. A mineral's density and melting point are directly related, as both parameters are based on how tightly-398 399 packed the atoms of the mineral are. A more compact internal mineral structure should inhibit 400 the mobility of radon atoms and thus lower emanation rates. Figure 5 and Figure 6 show the REC 401 versus density and melting point for the minerals in this study. Neither parameter correlates significantly with REC ($R^2=0.17$ for REC versus density; $R^2=0.044$). Minerals with similar 402 403 densities but a wide range of activity concentrations show a correspondingly wide range of REC 404 values, which span over three orders of magnitude (Table 1, 3; Figure 5). This variability is reduced at the lowest and highest extents of density (the uraninite sample has the highest density 405 406 and lowest REC value, and the mineral samples with densities of <2 showed relatively high REC values). When REC is compared to minerals with melting points of 1400°C and higher, the R^2 407 value increases to 0.52 (with the exclusion of betafite, $R^2=0.77$), indicating a much stronger 408 409 correlation (Figure 6). It is thus proposed that minerals with lower melting points (and densities) are prone to more variable lattice structures by radiative damage or other physical defects, 410 resulting in a wider range of REC values, whereas higher density minerals such as uraninite 411 412 exhibit REC values that are more strongly controlled and limited by their physical structure.

413

19

415

IMPLICATIONS

Understanding the physical and mineralogical processes which control radon emanation 416 from minerals is essential to obtain reliable ²³⁸U-²⁰⁶Pb and U-He ages on individual minerals. 417 Furthermore, the results presented in this article are important and relevant for understanding the 418 mechanism of ²²²Rn loss from different minerals and have potential implications for the 419 discordant ages obtained from ²⁰⁶Pb/²²⁸U-²⁰⁷Pb/²³⁵U-²⁰⁸Pb/²³²Th pairs. Furthermore, the radon 420 release rate from continents/ocean surface has direct bearing on the production of rates of ²¹⁰Pb 421 from the decay of ²¹⁰Pb and hence applications of ²¹⁰Pb and ²²²Rn as atmospheric circulation 422 tracers require a thorough understanding of the factors that control the release rates of ²²²Rn 423 from soils and minerals. 424

The presented results indicate that specific factors such as grain size, heating, and melting 425 426 point can have a direct bearing on the amount of radon released. In addition, nanopores or radiative damage in minerals can amplify the relationship between REC emanation and grain 427 428 size. Radiation damage promotes the release of radon due to an increased internal surface area of 429 minerals. Here we propose that partial annealing of fission tracks can increase radon emanation rates by relieving congestion within crystal lattices, while full annealing decreases emanation 430 rates by eliminating pathways for radon release. The results of this study indicate that high 431 432 density minerals produce the lowest REC values and low density minerals produce higher REC values; however, the trend is not consistently observed and thus other chemical and physical 433 434 properties complicate this relationship. Minerals with higher melting points ($\geq 1400^{\circ}$ C) are inversely related to REC values, as expected based on mineral density. Minerals with a lower 435 melting point and density are prone to greater chemical and physical variability, and for these 436 437 reasons, REC values are also subject to a greater degree of variability.

20

438	Radon isotopes that have longer half-lives have a higher probability of being lost before
439	decaying to their progeny, so we expect longer half-lives to equate to higher REC values, and
440	following from linear diffusion theory, it is anticipated that the REC for ²¹⁹ Rn, ²²⁰ Rn and ²²² Rn
441	will be in rough proportion to the square root of their half-lives (i.e., 1.0:3.7:290). Significant
442	deviations from these expected values could aid in probing the heterogeneity in the distribution
443	of their precursors (²²³ Ra, ²²⁴ Ra and ²²⁶ Ra, respectively). Therefore, our future studies are
444	focused in understanding the factors and processes that cause variations in the RECs values for
445	²¹⁹ Rn and ²²⁰ Rn.

446

447

448 Acknowledgements: This work was performed as an undergraduate research project supported
449 by an REU in NSF grant (OCE-1237059, PI: MB). We thank the two anonymous reviewers for
450 their insightful reviews.

451

21

453 **References**

454 Amin, B.S., and Rama (1986) Using radon as probe for investigating characteristics of fractures

- 455 in crystalline minerals. Nuclear Instruments and Methods in Physics Research, B17, 527-456 529.
- Broecker, W.S., Li, Y.H., and Cromwell, J. (1967) Radium-226 and radon-222 concentration
 in Atlantic and Pacific oceans. Science, 158, 1307-1310.
- 459 Baskaran, M. (2016) Mechanisms of radon emanation and long-term radon flux studies. In:

460 Radon: A Tracer for Geological, Geophysical and Geochemical Studies -Baskaran –

- 461 August 2016 (Book DOI: 10.1007/978-3-319-21329-3; ISBN: 978-3-319-21328-6;
- 462 Springer, Switzerland.
- 463 Corfu, F. (2012) A century of U-Pb geochronology: the long quest towards concordance.
- 464 Geological Society of America Bulletin, 125, 33-47.
- Eakin, M., Brownlee, S.J., Baskaran, M., and Barbero, L. (2016) Mechanisms of radon loss from
 zircon: microstructural controls on emanation and diffusion. Geochemica et
- 467 Cosmochimica Acta, 184, 212-226.
- Fleischer, R. L. (1982) Nature of alpha-recoil damage evidence from preferential solution
 effects. Nuclear Tracks and Radiation Measurements, 6, 35-42.
- Fleischer, R.L., and Turner, L.G. (1984) Correlations of radon and carbon isotopic measurements
 with petroleum and natural-gas at cement, Oklahoma. Geophysics, 49, 810-817.

472	Fleischer, R.L., and Mogrocampero, A. (1985) Association of subsurface radon changes in
473	Alaska and the northeastern United States with earthquakes. Geochemica et
474	Cosmochimica Acta, 49, 1061-1071.
475	Garver, E., and Baskaran, M. (2004) Effects of heating on the emanation rates of radon-222 from
476	a suite of natural minerals. Applied Radiation and Isotopes, 61, 1477-1485.
477	Giletti, B.J., and Kulp, J.L. (1954) Radon leakage from radioactive minerals. Lamont Geological
478	Observatory Contribution No. 162.
479	Goa, Y., Li, X., Griffin, W.L., O'Reilly, S.Y., and Wang, Y. (2014) Screening criteria for
480	reliable U-Pb geochronology and oxygen isotope analysis in uranium-rich zircons: A case
481	study from the Suzhou A-type granites, SE China. Lithos, 192-195, 180-191.
482	Hasheminezhad, S.R. and Durrani, S.A. (1983) Annealing behavior of alpha-recoil tracks in
483	biotite mica – implications for alpha-recoil dating method. Nuclear Tracks and Radiation
484	Measurements, 7, 141-146.
485	Heaman, L., and Parrish, R. (1991) U-Pb geochronology of accessory minerals. In: Heaman, L.,
486	Ludden, J.N. (eds) Applications of Radiogenic Isotope Systems to Problems in Geology,
487	pp 59-102. Mineralogical Association of Canada, Nepean.
488	Heaman , L.M., and LeCheminant, A.N. (2000) Anomalous U-Pb systematics in mantle-derived
489	baddeleyite xenocrysts from He Bizard: evidence for high temperature radon diffusion?
490	Chemical Geology, 172, 77-93.

491	Krishnaswami, S., and Seidemann, D.E. (1988) Comparative study of ²²² Rn, ⁴⁰ Ar, ³⁹ Ar and ³⁷ Ar
492	leakage from rocks and minerals: implications for the role of nanopores in gas transport
493	through natural silicates. Geochemica et Cosmochimica Acta, 52, 655-658.
494	Kritz, M.A., Rosner, S.W., Kelly, K.K., Loewenstein, M., and Chan, K.R. (1993) Radon
495	measurements in the lower tropical stratosphere: evidence for rapid vertical transport and
496	dehydration of tropospheric air. Journal of Geophysical Research, 98, 8735-8736.
497	Lawrence, C.E., Akber, R.A., Bollhofer, A., and Martin, P. (2009) Radon-222 exhalation from
498	open ground on and around a uranium mine in the wet-dry tropics. Journal of
499	Environmental Radioactivity, 100, 1-8.
500	Levinson, A.A., Bland, C.J., and Lively, R.S. (1982) Exploration for U Ore Deposits, In:
501	Ivanovich, M., Harmon, R.S. (eds) Uranium Series Disequilibrium, pp 351-383.
502	Clarendon Press, Oxford.
503	Lide, D.R., Ed. (1998) CRC Handbook of Chemistry and Physics, 79th ed, CRC Press, Boca
504	Raton, Florida.
505	Lipin, B.R. (1984) Chromite from the Blue Ridge Province of North Carolina. American Journal
506	of Science, 284, 507-529.
507	Liu, S.C., McAffee, J.R., and Cicerone, R.J. (1984) Radon-222 and tropospheric vertical
508	transport. Journal of Geophysical Research, 89, 7291-7297.
509	Malczewski, D., and Dziurowicz, M. (2015) ²²² Rn and ²²⁰ Rn emanations as a function of the
510	absorbed alpha-doses from select metamict minerals. American Mineralogist, 100, 1378-
511	1385.

512	Mazeina, L., Ushakov, S.V., Navrotsky, A., and Boatner, L.A. (2005) Formation enthalpy of
513	ThSiO ₄ and enthalpy of the thorite \rightarrow huttonite phase transition. Geochimica et
514	Cosmochimica Acta, 69, 4675-4683.
515	Médard, E., Schmidt, M.W., Schiano, P., and Ottolini, L. (2005) Melting of amphibole-bearing
516	wehrlites: an experimental study on the origin of ultra-calcic nepheline-normative melts.
517	Journal of Petrology, 47, 481-504.
518	Mezger, K., Essene, E.J., van der Pluijm, B.A., and Halliday, A.N. (1992) U-Pb geochronology
519	of the Grenville Orogen of Ontario and New York: constraints on ancient crustal
520	tectonics. Contributions to Mineralogy and Petrology, 114, 13-26.
521	Morawska, L, and Phillips, C.R. (1993) Dependence of the radon emanation coefficient on
522	radium distribution and internal structure of the material. Geochimica et Cosmochimica
523	Acta, 57, 1783-1797.
524	Murakami, T., Chakoumakos, B.C., Ewing, R.C., Lumpkin G.R., and Weber, W.J. (1991) Alpha-
525	decay event damage in zircon. American Mineralogist, 76, 1510-1532.
526	Nazaroff, W.W. (1992) Radon transport from soil to air. Reviews of Geophysics, 30, 137.
527	Nyman, M.W., Karlstrom, K.E., Kirby, E., and Graubard, C.M. (1994) Mesoproterozoic
528	contractional orogeny in western North America: Evidence from ca. 1.4 Ga Plutons.
529	Geology, 22, 901-904.
530	Opta Minerals Inc. (2015) Zircon Sands: Characteristics. Retrieved from:
531	www.optaminerals.com/Foundry/Zircon-Sand.html.

532	Powell, W.G. (n.d.) Minerals and their physical properties: Igneous rocks and properties [7040
533	lecture 6]. Department of Earth and Environmental Sciences, Brooklyn College,
534	Brooklyn, New York.
535	Rama, and Moore, W.S. (1984) Mechanism of transport of U-Th series radioisotopes from solids
536	into ground water. Geochimica et Cosmochimica Acta, 48, 395-399.
537	Rama and Moore, W.S. (1990a) Micro-cystallinity in radioactive minerals. Nuclear Geophysics,
538	4, 475-478.
539	Rama and Moore, W.S. (1990b) Submicronic porosity in common minerals and emanation of
540	radon. Nuclear Geophysics, 4, 467-473.
541	Sakoda, A., Ishimori, Y., Hanamoto, K., Kataoka, T., Kawabe, A., and Yamaoka, K. (2010)
542	Experimental and modeling studies of grain size and moisture content effects on radon
543	emanation. Radiation Measurements, 45, 204-210.
544	Sakoda, A., Ishimori, Y. and Yamaoka, K. (2011) A comprehensive review of radon emanation
545	measurements for mineral, rock, soil, mill tailing, and fly ash. Applied Radiation and
546	Isotopes, 69, 1422-1435.
547	Semkow, T.M. (1990) Recoil-emanation theory applied to radon release from mineral grains.
548	Geochimica et Cosmochimica Acta, 54, 425-440.
549	Semkow, T.M. (1991) Fractal model of radon emanation from solids. Physical Review Letters,
550	66, 3012-3015.
551	Strong, K.P. and Levins, D.M. (1982) Effect of moisture content on radon emanation from
552	uranium ore and tailings. Health Physics, 42, 27-32.

26

_	-	2
- 5	5	-
	-	-

- 554 Tanner, A.B. (1964) Radon migration in the ground: a review. In: Adams, J.A.S., and Lowder,
- 555 W.M. (eds.) The Natural Radiation Environment, pp161-190. The University of Chicago
- 556 Press, Illinois.
- 557 Tanner, A.B. (1980) Radon migration in the ground: a supplementary review. In: Gessel, T.F.,
- and Lowder, W.M. (Eds.) Natural Radiation Environment III, Symposium Proceedings,
- pp. 5-56. CONF-780422, Springfield, Virginia.
- 560 Thomas Jefferson National Accelerator Facility Office of Science Education. (n.d.) The

s61 element Terbium. Retrieved from: education.jlab.org/itselemental/ele065.html

- Turekian, K.K., Nozaki, Y., and Benninger, L.K. (1977) Geochemistry of atmospheric radon and
 radon products. Annual Review of Earth and Planetary Sciences, 5, 227-255.
- 564 Wakita, H., Igarisha, G., and Notsu, K. (1991) An anomalous radon decrease in groundwater
- prior to an M6.0 earthquake a possible precursor. Geophysical Research Letters, 18,
 629-632.
- Weast, R.C., Ed. (1981) CRC Handbook of Chemistry and Physics, 62nd Edition, CRC Press,
 Boca Raton, Florida.
- 569 WHO (World Health Organization) (2009) WHO handbook on indoor radon a public health
 570 perspective. In: Hajo Z, Ferid S (eds).
- 571 Weber, W.J., Ewing, R.C., and Wang, L.M. (1994) The radiation-induced crystalline-to-
- amorphous transition in zircon. Journal of Materials Research, 9, 688-698.

27

- Xiao, H.Y., Weber, W.J., Zhang, Y., Zu, X.T., and Li, S. (2015) Electronic excitation induced
 amorphization in titanate pyrochlores: an *ab initio* molecular dynamics study. Scientific
 Reports, 5, 1-8.
- 576 Yamada, R., Tagami, T., Nishimura, S., and Ito, H. (1995) Annealing kinetics of fission tracks in

577 zircon – an experimental study. Chemical Geology, 122, 249-258.

28

579 List of Figure Captions

580 Figure 1. RAD 7 experimental set-up. Air is pumped from RAD-7 into the sample vessel in a 581 closed-loop by vinyl tubing, followed by an air filter to prevent mineral grains from migrating

through the system, and a desiccator. Air is then returned into RAD-7 for counting.

583

584 Figure 2: Radon emanation coefficient (%, average value used for plots) as a function of

temperature. The linear fit is given for the full dataset as well as a partial dataset (which excludes

586 REC values at 200° and 300°C). Error bars are included for all data points (not visible in cases

587 when errors are smaller than the symbol size). Mud Tank zircon dataset is not included due to

below detection level of radon emanation upon heating.

Figure 3: A plot of radon emanation coefficient as a function of ²³⁸U activity for all unheated
minerals. Error bars are included for all data points (not visible in cases when errors are smaller
than the symbol size).

Figure 4: A plot of radon emanation coefficient versus total absorbed alpha dose for all unheated
mineral samples. Error bars are included for all data points (not visible in cases when errors are
smaller than the symbol size).

Figure 5. The radon emanation rate as a function of density for all unheated minerals of <250 µm. Error bars are included for all data points (not visible in cases when errors are smaller than the symbol size).

598

599 Figure 6: The radon emanation coefficient as a function of melting point (data in Table 3) for 1)

all unheated minerals (red), 2) mineral samples with melting points \geq 1400°C (blue), and 3) for

601 minerals with melting points \geq 1400°C, excluding betafite (green). There is no significant

602 correlation for the whole sample set, but for minerals with $\geq 1400^{\circ}$ C melting temperature, there

603 is a significant correlation.

29

Mineral	Locality	Chemical Formula	Specific Gravity (Melting Point, °C)	Estimated Age (Ma)	²³⁸ U Activity (Bq g ⁻¹)	²³² Th Activity (Bq g ⁻¹)	Total Alpha Dose $(x10^{15})$ (decays mg ⁻¹)
Euxenite	Chaffee County, Colorado	(Y,Ca,Ce,U,Th)(Nb,Ti,Ta) ₂ O ₆	4.85(1356 ⁵)	ca.1400 ¹⁰	395 ± 2	180 ± 1	217 ± 2
Uraninite	Bancroft, Ontario, Canada	UO ₂	11(2827 ⁴)	ca. 1150 ⁸	6487 ± 49	446 ± 3	2300 ± 29
Betafite	Bancroft, Ontario, Canada	(Ca,U) ₂ (Ti,Nb,Ta) ₂ O ₆ (OH)	4.3(1602 ³)	ca.1150 ⁸	2283 ± 17	53 ± 1	786 ± 17
Thorite	Bancroft, Ontario, Canada	(Th,U)SiO ₄	5.3(1200 ⁶)	ca.1150 ⁸	121 ± 1	776 ± 5	215 ± 3
Zircon	Malawi, Africa Bancroft, Ontario, Canada Mud Tank, Australia	ZrSiO ₄	4.67(2200 ⁷)	730 ± 20^9 1050 ± 12 732 ± 5	8.87 ± 0.07 80.3 ± 0.6 0.388 ± 0.008	$\begin{array}{l} 4.13 \pm 0.10 \\ 39.6 \pm 0.9 \\ 0.235 \pm 0.027 \end{array}$	2.4 ± 0.1 33 ± 1 0.113 ± 0.013
Hornblende	Bancroft, Ontario, Canada	(Ca,Na)2-3(Mg,Fe,Al)5(Si,Al)8O22(OH,F)2	2.9-3.5(1100 ²)	ca. 1200 ⁸	1.52 ±0.01	0.308 ± 0.006	0.61 ± 0.01
Augite	Bancroft, Ontario, Canada	$(Ca,Na)(Mg,Fe^{2+},Al,Fe^{3+},Ti)[(Si,Al)_2O_6]$	3.19-3.56(1400 ¹)	ca. 1200 ⁸	0.069 ± 0.001	0.021 ± 0.001	0.035 ± 0.002
Microcline	Bancroft, Ontario, Canada	KAlSi ₃ O ₈	2.54-2.63(1250 ¹)	ca. 1200 ⁸	0.465 ± 0.004	0.021 ± 0.002	0.17 ± 0.02
Albite	Madawaska, Ontario, Canada	NaAlSi ₃ O ₈	2.76(1100 ¹)	ca. 1200 ⁸	0.0103 ± 0.0003	0.0010 ± 0.0004	0.0039 ± 0.0016
Quartz	Bancroft, Ontario, Canada	SiO ₂	2.65(1600 ¹)	ca. 1200 ⁸	0.0177 ± 0.0005	BDL*	0.00629 ± 0.00025
Olivine (via Dunite)	Jackson county, North Carolina	ounty, North (Fe,Mg) ₂ SiO ₄		1100- 1300 ¹¹	0.010 ± 0.001	BDL	0.00356 ± 0.00050
Apatite	Bancroft, Ontario, Canada	Ca ₅ (PO ₄) ₃ (F,OH,Cl)	2.9-3.5(1600 ¹)	ca. 1200 ⁸	0.64 ± 0.01	1.08 ± 0.01	0.480 ± 0.012

Table 1. Location, specific gravity, melting point, activities of measured ²³⁸U and ²³²Th, and calculated total absorbed alpha dose on a suite of minerals. Uncertainties are propagated from counting statistics.

606 *Below detection limit.

¹Powell, n.d. ²Médard et al., 2005 ³Xiao, 2015 ⁴Lide, 1998; Weast, 1981 ⁵Thomas Jefferson National Accelerator Facility, n.d. ⁶Mazeina et al. 2005 ⁷Opta Minerals Inc. 2015.

608 ⁸Mezger et al., 1992 ⁹Eakin et al., 2016 ¹⁰Nyman et al., 1994 ¹¹Lipin, 1984.

30

Mineral	Locality	Estimated Age (MA)	Size Fraction (µm)	U-238 (Bq/g)	Th-232 (Bq/g)	Radon Emanation Coefficient (%)	Reference
Uraninite	Wilberforce, Ontario	1000 ± 200	<63	5829 ± 69	376.73 ± 7.32	0.53 ± 0.01	Garver et al. 2004
			1000-2000			0.53 ± 0.01	
	Oklo, Gabon	1968 ± 50	bulk	9465 ± 216	5.1 ± 2	0.000049	Malczewski et al. 2015
	NA	NA	NA	6550	NA	1.9	Rama 1990a
	Bancroft, Ontario	ca. 1150	125-250	6487 ± 49	446 ± 3	0.18 ± 0.001	This study
Zircon	Malawi, Africa	730 ± 20	125-250	8.87 ± 0.07	4.13 ± 0.1	2.21 ± 0.23	Eakin et al. 2016
			125-250			0.37 ± 0.02	This study
	Bancroft, Ontario	1050 ± 12	125-250	80.27 ± 0.58	39.58 ± 0.87	2.11 ± 0.35	Eakin et al. 2016
			125-250			0.19 ± 0.01	This study
	Mud Tank, Australia	732 ± 5	125-250	0.388 ± 0.008	0.235 ± 0.027	1.76 ± 0.64	Eakin et al. 2016
			125-250			0.38 ± 0.2	This study
	Goias, Brazil	2900 ± 200	<63	50.1 ± 0.5	4.6 ± 0.1	1.04 ± 0.01	Garver et al. 2004
			1000-2000			0.47 ± 0.01	
	NA	NA	NA	3.831 ± 2.986	NA	0.01 ± 0.00	Rama 1990a
	NA	NA	NA	NA	NA	0.2 - 4.8	Barretto 1973
	NA	NA	NA	NA	NA	12.1	
Thorite	Tory Hill, Ontario	1000 ± 200	<63	104 ± 2	869 ± 9	5.38 ± 0.08	Garver et al. 2004
	Cardiff Twp, Canada	1250 - 1340	bulk	120 ± 9	1054 ± 22	0.077	Malczewski et al. 2015
	Bancroft, Ontario	ca. 1150	125-250	121 ± 1	776 ± 5	0.60 ± 0.01	This study
Apatite	NA	NA	<5000	0.25 - 0.095	NA	0.5-25	Rama 1990a
	NA	NA	NA	NA	NA	0.8	
	Bancroft, Ontario	1200	<125	0.64 ± 0.01	1.08 ± 0.01	5.4 ± 0.11	This study
Hornblende	NA	NA	212-425	0.0106 ± 0.0005	NA	3.42 ± 0.38	Krishnaswami 1988
	Bancroft, Ontario	1200	<125	1.52 ± 0.01	0.308 ± 0.006	0.90 ± 0.03	This study
Quartz	Austria	NA	250-500	0.800 ± 0.03	NA	4.6 ± 0.5	Sakoda et al. 2010
	Bancroft, Ontario	1200	<125	0.0177 ± 0.0005	BDL	3.8 ± 0.46	This study

609 Table 2. Comparison of the activities of ²³⁸U, ²³²Th, and radon emanation coefficients in different size fractions determined in this study with the values reported in literature.*

610 *Sakoda et al., 2011; Nazaroff, 1992.

611 NA: Not available.

31

Sample	Grain size (µm)	Temperature (°C)	REC (%)	Sample	Grain size (µm)	Temperature (°C)	REC (%)	Sample	Grain size (µm)	Temperature (°C)	REC (%)
Zircon (Malawi)	125-250	25	0.37 ± 0.02	Thorite	125-250	25	0.60 ± 0.01	Hornblende	<125	25	0.90 ± 0.03
		200	0.28 ± 0.02			200	0.36 ± 0.01	Apatite			5.4 ± 0.1
		300	0.29 ± 0.02			300	0.58 ± 0.01	Augite			7.0 ± 0.2
		400	0.47 ± 0.03			400	0.58 ± 0.01	Microcline			1.28 ± 0.03
		600	0.33 ± 0.02			600	0.21 ± 0.01	Albite			$0.35\pm0.76\text{*}$
		800	0.19 ± 0.03			800	0.25 ± 0.01	Quartz			$3.8\pm0.5\texttt{*}$
	<63	25	0.77 ± 0.02	Euxenite	125-250	25	0.083 ± 0.003	Olivine			$2.7\pm0.7\texttt{*}$
	63-125	25	0.40 ± 0.02			200	0.061 ± 0.003				
	250-500	25	0.35 ± 0.02			300	0.053 ± 0.003				
Zircon (Bancroft)	125-250	25	0.19 ± 0.01			400	0.062 ± 0.003				
		200	0.20 ± 0.01			600	0.062 ± 0.003				
		300	0.25 ± 0.01			800	0.109 ± 0.003				
		400	0.13 ± 0.01	Uraninite	125-250	25	0.177 ± 0.001				
		600	0.17 ± 0.01			200	0.102 ± 0.001				
		800	0.044 ± 0.009			300	0.263 ± 0.001				
	<63	25	0.29 ± 0.01			400	0.091 ± 0.001				
	63-125	25	0.21 ± 0.01			600	0.061 ± 0.001				
	250-500	25	0.18 ± 0.01			800	0.038 ± 0.001				
Zircon (Mud Tank)	125-250	25	$0.38\pm0.20\texttt{*}$	Betafite	125-250	25	0.147 ± 0.002				
		200	< 0.01			200	0.073 ± 0.002				
		300	< 0.01			300	0.067 ± 0.002				
		400	< 0.01			400	0.119 ± 0.002				
		600	< 0.01			600	0.068 ± 0.002				
		800	< 0.01			800	0.034 ± 0.001				
	<63	25	18.2 ± 0.4								
	63-125	25	0.72 ± 0.30								
	250-500	25	< 0.01								

613 Table 3. Radon emanation coefficients determined on different grain sizes at different temperatures in a suite of minerals. Uncertainties are propagated from counting statistics.

*high error is due to low radon concentration.

Figure 1

Figure 2: Radon emanation coefficient (%, average value used for plots) as a function of temperature. The linear fit is given for the full dataset as well as a partial dataset (which excludes REC values at 200° and 300°C). Error bars are included for all data points (not visible in cases when errors are smaller than the symbol size). Mud Tank zircon dataset is not included due to below detection level of radon emanation upon heating.

Figure 3: A plot of radon emanation coefficient as a function of ²³⁸U activity for all unheated minerals. Error bars are included for all data points (not visible in cases when errors are smaller than the symbol size).

Figure 4: A plot of radon emanation coefficient versus total absorbed alpha dose for all unheated mineral samples. Error bars are included for all data points (not visible in cases when errors are smaller than the symbol size).

Figure 5: The radon emanation rate as a function of density for all unheated minerals of <250 µm. Error bars are included for all data points (not visible in cases when errors are smaller than the symbol size).

1

Melting Point (°C)

Figure 6: The radon emanation coefficient as a function of melting point (data in Table 3) for 1) all unheated minerals (red), 2) mineral samples with melting points \geq 1400°C (blue), and 3) for minerals with melting points \geq 1400°C, excluding betafite (green). There is no significant correlation for the whole sample set, but for minerals with \geq 1400°C melting temperature, there is a significant correlation.