January 24, 2017, REVISION 2 1 Phillipsite and Al-tobermorite mineral cements produced through 2 low temperature water-rock reactions in Roman marine concrete 3 Marie D. Jackson¹, Sean R. Mulcahy², Heng Chen³, Yao Li⁴, Qinfei Li⁵, Piergiulio 4 Cappelletti⁶, Hans-Rudolf Wenk⁷ 5 ¹Department of Geology and Geophysics, University of Utah, Salt Lake City, Utah 84112, USA 6 ²Geology Department, Western Washington University, Bellingham, Washington 98225, USA 7 8 ³School of Materials Science and Engineering, Southeast University, Nanjing 211189, People's 9 Republic of China ⁴Center for Advancing Materials Performance from the Nanoscale (CAMP-Nano), Xi'an 10 11 Jiaotong University, Xi'an 710049, People's Republic of China ⁵School of Transportation Science and Engineering, Harbin Institute of Technology, 12 13 Harbin 150090, People's Republic of China ⁶Dipartimento di Scienze della Terra, dell'Ambiente e delle Risorse (DiSTAR), Università degli 14 15 Studi di Napoli Federico II, Naples I-80134, Italy 16 ⁷Department of Earth and Planetary Sciences, University of California, Berkeley, California 17 94720, USA 18 ABSTRACT 19 Pozzolanic reaction of volcanic ash with hydrated lime is thought to dominate the cementing 20 fabric and durability of 2000-year-old Roman harbor concrete. Pliny the Elder, however, in first 21 century CE emphasized rock-like cementitious processes involving volcanic ash (pulvis) "that as 22 soon as it comes into contact with the waves of the sea and is submerged becomes a single stone 23 mass (fierem unum lapidem), impregnable to the waves and every day stronger" (Naturalis

24 Historia 35.166). Pozzolanic crystallization of Al-tobermorite, a rare, hydrothermal, calcium-25 silicate-hydrate mineral with cation exchange capabilities, has been previously recognized in 26 relict lime clasts of the concrete. Synchrotron-based X-ray microdiffraction maps of cementitious 27 microstructures in Baianus Sinus and Portus Neronis submarine breakwaters and a Portus 28 Cosanus subaerial pier now reveal that Al-tobermorite also occurs in the leached perimeters of 29 feldspar fragments, zeolitized pumice vesicles, and *in situ* phillipsite fabrics in relict pores. 30 Production of alkaline pore fluids through dissolution-precipitation, cation-exchange and/or 31 carbonation reactions with Campi Flegrei ash components, similar to processes in altered 32 trachytic and basaltic tuffs, created multiple pathways to post-pozzolanic phillipsite and Al-33 tobermorite crystallization at ambient seawater and surface temperatures. Long term chemical 34 resilience of the concrete evidently relied on water-rock interactions, as Pliny the Elder inferred. 35 Raman spectroscopic analyses of *Baianus Sinus* Al-tobermorite in diverse microstructural environments indicate a cross-linked structure with Al³⁺ substitution for Si⁴⁺ in Q³ tetrahedral 36 sites, and suggest coupled $[A1^{3+}+Na^{+}]$ substitution and potential for cation exchange. The mineral 37 38 fabrics provide a geoarchaeological prototype for developing cementitious processes through low 39 temperature rock-fluid interactions, subsequent to an initial phase of reaction with lime that 40 defines the activity of natural pozzolans. These processes have relevance to carbonation 41 reactions in storage reservoirs for CO_2 in pyroclastic rocks, production of alkali-activated mineral 42 cements in maritime concretes, and regenerative cementitious resilience in waste encapsulations 43 using natural volcanic pozzolans. 44 Keywords: phillipsite, Al-tobermorite, Roman concrete, natural pozzolan, water-rock reaction 45

47

INTRODUCTION

48	Roman marine concrete structures, composed of a volcanic ash-hydrated lime mortar that
49	binds conglomeratic tuff or carbonate rock aggregate (caementa), have remained intact and
50	coherent for 2000 years, either fully immersed in seawater or partially immersed in shoreline
51	environments (Brandon et al. 2014). The extraordinary longevity of the concrete seems to result
52	from the long-term durability of poorly-crystalline, calcium-aluminum-silicate-hydrate (C-A-S-H
53	binder) in the cementing matrix of the mortar (Jackson et al. 2013a), the sequestration of chloride
54	and sulfate ions in discrete crystalline microstructures (Jackson et al. 2012) and, as reported here,
55	pervasive crystallization of zeolite and Al-tobermorite mineral cements in pumice clasts,
56	dissolved feldspar crystal fragments and relict voids of the cementing matrix (Fig. 1f, g, h, j)
57	The mortar of Roman marine concrete is considered the prototype of modern concretes
58	that partially replace Portland cement with natural pozzolan to reduce CO ₂ emissions and
59	produce resilient C-A-S-H binder (Snellings et al. 2012). Ancient Roman concretes also have C-
60	A-S-H binder, but it was produced through reaction of seawater, lime (CaO) calcined from
61	limestone, and zeolitized volcanic ash, mainly from Campi Flegrei volcano (Fig. 2) (Stanislao et
62	al. 2013; Jackson et al. 2013a; 2014). C-A-S-H is the poorly crystalline analog of Al-tobermorite,
63	a rare, layered, calcium-silicate hydrate mineral composed of aluminosilicate chains bounded by
64	an interlayer region and a calcium oxide sheet (e.g. Komarneni and Roy 1983; Taylor 1992;
65	Richardson 2014; Myers et al. 2015a). Al-tobermorite does not occur in conventional concretes
66	but occurs routinely in the relict lime clasts of Roman marine concrete (Jackson 2014) and,
67	occasionally, in hydrothermally altered volcanic rocks (Figs. 3, 4). Al-tobermorite also occurs as
68	an alteration product at the cement-rock interface of toxic and nuclear waste repositories (e.g.
69	Gaucher and Blanc 2006; Lalan et al. 2016). Tobermorite group minerals have a basal interlayer

70	spacing of ~ 11 Å and an orthorhombic sub-cell symmetry with the general formula,
71	$Ca_{4+x}(Al_ySi_{6-y}) O_{15+2x-y} \cdot 5H_2O$, where x=1 and y=2 (Biagioni et al. 2015). Most geological
72	occurrences have Al ³⁺ substitution for Si ⁴⁺ in tetrahedral sites, and the generalized mineral
73	formula, {[Ca ₄ (Si _{5.5} Al _{0.5} O ₁₇ H ₂)] Ca _{0.2} ·Na _{0.1} ·4H ₂ O (Taylor 1992)}, contains sodium and
74	potassium as interlayer cations (Figs. 3b, 4b). Substitution of Al ³⁺ for Si ⁴⁺ in Al-tobermorite
75	synthesized at 80-240 °C also produces ion-exchange behavior for certain radionuclides and
76	heavy metals as interlayer cations (Komarneni and Roy 1983; Komarneni et al. 1987; Trotignon
77	et al. 2007; Coleman et al. 2014). The crystals could prove useful in cementitious barriers and for
78	nuclear and hazardous waste treatment and disposal if they could be produced in sufficient
79	quantities at low temperature and, potentially, through regenerative, in situ cementitious
80	processes over long periods of time.
81	Natural pozzolans are siliceous and aluminous earth materials, such as volcanic rock,
82	zeolite minerals, opaline chert and shale, and diatomaceous earths. They form part of a broader
83	class of supplemental cementitious materials (SCMs), such as fly ash, a waste product from coal-
84	fired power plants, now incorporated in environmentally-friendly cement and concrete
85	technologies (Lothenbach et al. 2011). Pozzolans are defined as materials "which, in themselves,
86	possess little or no cementitious value but which will, in finely divided form and in the presence
87	of water, react chemically with calcium hydroxide (portlandite, Ca(OH) ₂) to form compounds
88	possessing cementitious properties" (Mehta 1987). Pozzolanic activity is measured through
89	various chemical tests, which determine a material's reactivity with portlandite and the rate at
90	which it binds $Ca(OH)_2$ in the presence of water (Massazza 2004), as well as mechanical tests,
91	which measure compressive strength over 28 days, for example, as a means to predict long term
92	performance (ASTM-C618 2012). When finely ground these natural or artificial pozzolanic

93	materials are mixed with Portland cement to produce a blended cement paste that binds largely
94	inert sand- and gravel-sized aggregates. Blended cement pastes generally have a more refined
95	pore structure, increased chemical resistance to the ingress and deleterious action of aggressive
96	solutions, such as seawater, and to expansive alkali-silica reactions associated with reactive
97	aggregates that degrade concretes worldwide (e.g. Massazza 2004; Mehta and Monteiro 2015, p.
98	169–172), as compared with ordinary Portland cement paste. Although reliable large-scale
99	production of concretes with natural pozzolans has not been fully mastered relative to those with
100	SCMs such as fly ash, recent reductions in fly ash production and availability are now driving
101	new interest in volcanic rock pozzolans (e.g. Celik et al. 2014; Cai et al. 2016).
102	The life cycle of Roman harbor concretes structures is about two orders of magnitude
103	greater than Portland-type cement seawater concretes. Cement-based concretes are designed to
104	hydrate quickly and maintain durability through a general absence of long term cementitious
105	evolution or solubility. In maritime environments, however, the concrete commonly begins to
106	decay after a few decades due, in part, to corrosion of steel reinforcement (Mehta 1990). The
107	steel reinforcement counterattacks the relative low tensile strength and ductility of the concrete
108	and, therefore, is a structural requirement. Although concretes with pozzolanic blended cements
109	generally have reduced calcium hydroxide content relative to conventional concretes with
110	Portland cement alone, the presence of calcium hydroxide as free portlandite may persist for long
111	periods of time depending on the wt % addition of SCM (Goñl et al. 2005). Highly alkaline pore
112	solutions may thus persist indefinitely and, in the absence of chloride ions in solution, the
113	protective film on steel remains stable as long as solution $pH \ge 11.5$ (Mehta and Monteiro 2014,
114	p. 179). Interaction of seawater with marine concrete corrodes steel, however, and also may
115	produce expansive reactions with calcium hydroxide (Massazza 1985). By contrast, portlandite is

116	rapidly consumed in Roman pyroclastic rock concrete reproductions, and there is no steel
117	reinforcement in the ancient structures; the volcanic ash mortars show greater ductility and bind
118	a conglomeratic rock framework that reinforces the concrete at the structural scale (Brune et al.
119	2013; Jackson 2014; Jackson et al. 2014). Roman marine concrete structures throughout the
120	Mediterranean region contain reactive, alkaline, fine sand- to gravel-sized, pumiceous ash
121	aggregate, commonly with zeolite textures, and the massive harbor structures have been left open
122	to seawater ingress for two millennia. Although pozzolanic processes in the ancient concrete
123	have been described (Jackson et al. 2013a), little is known about post-pozzolanic cementitious
124	processes that could benefit chemical resilience long after calcium hydroxide was fully
125	consumed through pozzolanic reaction with the volcanic ash aggregate.
126	Vitruvius, a Roman architect and engineer writing about 30 BCE, described this
127	pozzolanic reaction and the "latent" heat released when tuff, pumiceous ash, and lime (CaO)
128	(tofus, pulvis, and calyx) from the Campi Flegrei and Vesuvius volcanic districts "come into one
129	mixture and suddenly take up water and cohere together" (de Architectura 2.6.1-4) (Table A1).
130	An adiabatic model of exothermic heat evolved during hydration of lime and production of
131	pozzolanic C-A-S-H binder in a 10 m ² by 6 m tall <i>Baianus Sinus</i> breakwater in the Bay of
132	Pozzuoli, Italy (Fig. 2, location 4), indicates that elevated temperatures, 65-95 °C, persisted for
133	2-3 years (Jackson et al. 2013a). In partially dissolved relict lime clasts, crystallization of Al-
134	tobermorite associated with C-A-S-H likely accompanied this pozzolanic phase of reaction,
135	which apparently terminated early in the history of the maritime concrete structures. In a Roman
136	concrete breakwater reproduction, for example, portlandite was fully consumed after 5 years of
137	hydration in seawater (Oleson et al. 2006; Gotti et al. 2008; Jackson 2014), similar to other
138	experimental seawater concretes with volcanic ash aggregates (Massazza 1985).

139	Roman natural scientists, Seneca (4 BCE–64 CE) and Pliny the Elder (70–79 CE), used
140	geologic analogs to explain the longer term cohesion of the maritime concretes, beyond that
141	observed by Vitruvius (Table A1). Pliny called upon the natural capacity of alkaline volcanic ash
142	to react with water, quickly promote lithification, and, by analogy, produce rock-like qualities of
143	endurance in marine concrete: "as soon as [volcanic ash (pulvis)] comes into contact with the
144	waves of the sea and is submerged becomes a single stone mass (fierem unum lapidem),
145	impregnable to the waves and every day stronger" (Naturalis Historia 35.166). The volcanic
146	rock-fluid interactions inferred by Seneca and Pliny are recorded by authigenic mineral textures
147	in the pumiceous mortar fabric of submarine and subaerial marine concrete structures. These
148	occur in the dissolved perimeter of feldspar crystals (Fig. 1g), pores of the cementing matrix
149	(Fig. 1b), and pumice vesicles (Fig. 1j).
150	To investigate these rock-like cementitious processes we compare electron probe
151	microanalysis compositions of phillipsite, a potassic, sodic, and/or calcic zeolite, and Al-
152	tobermorite that formed in the volcanic deposits that Romans used as aggregates with analogous
153	crystals that formed in the marine concrete (Figs. 3, 4). We map Roman cementitious
154	microstructures with synchroton-based X-ray microdiffraction (Figs. 5-9) to describe in situ
155	zeolite and Al-tobermorite textures in the Portus Cosanus subaerial pier and the Baianus Sinus
156	and Portus Neronis submarine breakwaters (Fig. 2). We then use Raman spectroscopy to identify
157	bonding environments in Baianus Sinus Al-tobermorite from a variety of crystallization
158	environments. Comparison of these spectra with those previously determined for ideal
159	tobermorite give a qualitative measure of the role of aluminum in a cross-linked crystal structure
160	(Figs. 10–12). The integrated results provide new insights into the low temperature
161	crystallization and stability of phillipsite and Al-tobermorite in alkaline aqueous environments

162 and illustrate the beneficial role of authigenic mineral cycling in construction materials with

163 natural volcanic pozzolan over very long service lives.

164

MATERIALS AND ANALYTICAL METHODS

165 Roman harbor concrete structures were constructed from about 55 BCE to 115 CE, and

166 cored by the ROMACONS drilling program from 2002 to 2006 (Brandon et al. 2014). The

167 conglomeratic concrete cores contain about 40-45 volume% zeolitized tuff coarse aggregate, and

168 55–60 volume% pumiceous volcanic ash-hydrated lime mortar. The marine concrete is exposed

169 sub-aerially at Portus Cosanus (PCO.03.01), Orbetello, (42.4079° N, 11.2933° E), and

170 submerged in seawater at *Baianus Sinus* (BAI.06.03), Bay of Pozzuoli, (40.8228° N, 14.0885°

171 E), Portus Neronis (ANZ.02.01), Anzio, (41.4432° N, 12.6314° E) and Portus Traianus

172 (PTR.02.02), Ostia (41.7785° N, 12.2520° E).

173 Electron Probe Microanalysis (EPMA)

174 Samples were analyzed with a Cameca SX-51 electron microprobe equipped with five

175 wavelength dispersive spectrometers using a 15 keV accelerating voltage, a 10 nA beam current,

and a 1-2 µm beam diameter. Counting time was 10 s on peak and background for all elements.

177 Major element compositions of phillipsite and clusters of $1-5 \,\mu m$ Al-tobermorite were acquired

178 from polished thin sections of tuffs and mortars prepared according to hydrophobic

179 specifications. New determinations of phillipsite compositions in Campi Flegrei Bacoli Tuff

180 (BT) and Neapolitan Yellow Tuff (NYT) deposits and of phillipsite and Al-tobermorite

181 compositions in the marine mortars are compared with previously published compositions (Figs.

182 3, 4; Tables 1, 2, S1). The BT sample comes from an unidentified quarry near Fondi di Baia, at

about 40.80° N, 14.07° E; the NYT samples come from outcrops in Naples at 40.89° N, 14.18° E.

184 To account for potential Na and K loss and/or Si and Al gain, a time dependent intensity

185 calibration was also applied to these elements using the software Probe for EPMA (e.g., Meier et 186 al. 2011). Oxygen and water content were calculated by stoichiometry. Uncertainties in the 187 weight percent oxides were determined by counting statistics and propagated through the 188 calculation of formula units (Giaramita and Day 1990). The fine grain size of Al-tobermorite 189 contributed to lower wt % oxide measurements. Analyses with wt% oxide totals < 80 (with H₂O 190 calculated by stoichiometry) and low atoms per formula unit were omitted from Table 2. Areas 191 with visible traces of calcium carbonate crystals were not analyzed. Plotting coordinates for 192 ternary diagrams were calculated from the mineral formulas of phillipsite and Al-tobermorite. 193 The Si-D_{0.25}Al_{0.50}Si_{0.50} – M_{0.50}Al_{0.50}Si_{0.50} molecular proportions were calculated as Si = Si – Al; 194 $D_{0.25}Al_{0.50}Si_{0.50} = 2(2Al(Ca + Mg + Ba + Sr)))/((Na + K) + 2(Ca + Mg + Ba + Sr)); M = 2(Al(Na + Mg + Ba + Sr)))$ 195 (Na + K)/((Na + K)+2(Ca + Mg + Ba + Sr)), where D and M refer to divalent and monovalent 196 cations, respectively (Deer et al. 2004; Gatta et al. 2010). The plotting coordinates of other 197 ternary diagrams are based on molecular proportions as defined at the apices of a given diagram. 198 Synchroton based X-Ray Microdiffraction 199 Crystalline phases in Portus Cosanus and Baianus Sinus cementitious microstructures 200 were determined at Advanced Light Source beamline 12.3.2 at Lawrence Berkeley National

201 Laboratory (Tamura et al. 2009) with microdiffraction and microfluoresence analyses (Figs. 5–

8). Polished thin sections were prepared using superglue adhesive, studied with petrographic

203 methods, and then detached from the glass slide by soaking in nitromethane. The 0.3 mm thick

204 mortar slice was then mounted on adhesive tape and loaded in transmission mode into the beam,

with the detector tilted at $30^{\circ} - 39^{\circ}$ to the incident beam. A monochromatic X-ray beam of 8 or

10 KeV was focused to a 2 by 5 μ m² diameter spot size. A Pilatus 1M area detector placed at 150

207 mm recorded Debye rings diffracted by crystalline phases. Debye rings at successive d-spacing

reflections were integrated radially for 2 θ , 3° up to 54°, over an arch segment around the cone of diffraction of up to 76° to create intensity versus d-spacing plots. These are shown as q, $2\pi/d$ spacing, to increase readability of low d-spacing reflections.

- 211 Scanning Electron Microscopy (SEM)
- 212 Compositional high resolution energy dispersive X-ray spectroscopy (EDS) elemental
- 213 maps of the same Portus Cosanus and Baianus Sinus microstructures were obtained with a
- 214 Bruker Xflash 5060F Silicon Drift Detector (SDD) on a Zeiss Merlin Compact Scanning
- 215 Electron Microscope (SEM) at the Bruker Laboratories in Berlin, Germany (Figs. 7, 9). Element
- 216 concentrations are displayed by quantitative mapping (QMap) in normalized mass% using the
- 217 PB-ZAF quantification method. Element distributions are shown in false color display from
- 218 black to blue, green, yellow to red, with the highest mass% concentration. Noise was removed by
- adjusting the maximum intensity threshold for each element. The analyses utilized high voltage,
- 220 8 KeV, resolution of 379 nm per pixel, and 196 μs residence time (Fig. 7b, c), 197 nm per pixel,
- 221 88 μs (Fig. 7f, g), and 10 KeV, 388 nm per pixel, 312 μs (Fig. 7k–n). Backscattered (BSE)
- images of tuffs and mortars (Figs. 1b-d, f-j, 6, 7a-c, 8a-c, 9a, b) were acquired with the Zeiss
- 223 EVOMA10 Scanning Electron Microscope at the UC Berkeley Department of Earth and
- 224 Planetary Sciences. A secondary electron image (Fig. 1e) of Surtsey tuff from a 1979 drill core
- 225 was acquired by J. G. Moore in 1979 using an ARL-EMX microprobe at the U. S. Geological
- 226 Survey, Menlo Park, California.
- 227 Raman spectroscopy
- Raman spectra obtained through a confocal microscope is correlated with crystals in
 cementitious microstructures previously analyzed with X-ray microdiffraction in *Baianus Sinus* relict lime clasts, pumice clasts, and relict voids (Figs. 10–12, Table 3). A JYHoriba LabRAM

231	spectrometer at the Department of Chemical Engineering, UC Berkeley, was used in
232	backscattering configuration, with HeNe laser (632.8 nm) excitation line, power at \sim 5 mW, and
233	through an 100X confocal microscope (aperture= 0.8; laser spot size $<1\mu$ m). The spectra
234	evaluate the nearest neighbor bonding environments of the silicate tetrahedron via oxygen
235	corresponding to Q^n (<i>m</i> Si (or Al)), where Q^n silicate tetrahedra are connected via <i>n</i> bridging
236	oxygens to $m \operatorname{Si}^{4+}$ (or Al^{3+}). Bands at 1074, 1086, etc. indicate C–O stretching in calcite and
237	vaterite (Black et al. 2007, Wehrmeister et al. 2009). No Raman spectra exist for 11Å Al-
238	tobermorite and C-A-S-H in published literature. We therefore compare Roman syntheses of Al-
239	tobermorite and C-A-S-H spectra with spectra of laboratory syntheses of 11Å tobermorite
240	without aluminum, geologic 11Å tobermorite from Crestmore, California, and laboratory C-S-H
241	with calcium/silica=0.8 to 0.83 referenced in previous NMR studies (Kirkpatrick et al. 1997;
242	Richardson et al. 2010; Black 2009; Jackson et al. 2013a, b).
243	CEMENTING FABRICS
244	Lithification of volcanic ash to form tuffaceous rock is one of the principal processes
244 245	Lithification of volcanic ash to form tuffaceous rock is one of the principal processes through which a volcano consolidates and stabilizes its deposits. Diagenetic and hydrothermal
245	through which a volcano consolidates and stabilizes its deposits. Diagenetic and hydrothermal
245 246	through which a volcano consolidates and stabilizes its deposits. Diagenetic and hydrothermal interaction of surface, ground, or seawater with volcanic ash components – glass, crystals, and
245 246 247	through which a volcano consolidates and stabilizes its deposits. Diagenetic and hydrothermal interaction of surface, ground, or seawater with volcanic ash components – glass, crystals, and lithic fragments – produces a sequence of authigenic crystalline phases that cement loose tephra
245 246 247 248	through which a volcano consolidates and stabilizes its deposits. Diagenetic and hydrothermal interaction of surface, ground, or seawater with volcanic ash components – glass, crystals, and lithic fragments – produces a sequence of authigenic crystalline phases that cement loose tephra to form tuff (e.g. Hay and Iijima 1968; Jakobsson and Moore 1986). In the Neapolitan Yellow
 245 246 247 248 249 	through which a volcano consolidates and stabilizes its deposits. Diagenetic and hydrothermal interaction of surface, ground, or seawater with volcanic ash components – glass, crystals, and lithic fragments – produces a sequence of authigenic crystalline phases that cement loose tephra to form tuff (e.g. Hay and Iijima 1968; Jakobsson and Moore 1986). In the Neapolitan Yellow Tuff (NYT), 14.9 ± 0.4 ka (Fedele et al. 2011), phillipsite and chabazite, a zeolite with more
 245 246 247 248 249 250 	through which a volcano consolidates and stabilizes its deposits. Diagenetic and hydrothermal interaction of surface, ground, or seawater with volcanic ash components – glass, crystals, and lithic fragments – produces a sequence of authigenic crystalline phases that cement loose tephra to form tuff (e.g. Hay and Iijima 1968; Jakobsson and Moore 1986). In the Neapolitan Yellow Tuff (NYT), 14.9 ± 0.4 ka (Fedele et al. 2011), phillipsite and chabazite, a zeolite with more calcic compositions (de Gennaro et al. 2000), formed from alkaline hydrothermal solutions

authigenic minerals in alkali-rich trachytic to phonolitic Campi Flegrei deposits selected by Roman engineers for marine concrete are mainly zeolites (de Gennaro et al. 2000; Jackson 2014). Indeed, phillipsite in the vesicles of pumice clasts in the mortars mainly has intermediate silica compositions that are similar to phillipsite from NYT and Bacoli Tuff (BT), 8.6 ± 0.6 ka (Fedele et al. 2011); these are shown, for example, by most *Portus Neronis* phillipsite compositions (Figs. 3a, 4a; Tables 1, S1).

260 Although Roman marine mortar has a mesoscale pumiceous structure that is analogous to 261 the clastic fabric of Campi Flegrei tuff (Fig. 1f-h), the cementing matrix contains predominantly 262 C-A-S-H binder. In situ dissolution of trachytic glass (Fig. 1f) and alkali feldspar crystal 263 fragments occurred (Fig. 1g), as in the Campi Flegrei tuffs, but the reaction products are not 264 zeolites. Dissolution of an alkali feldspar crystal fragment in the hardened cementing matrix of the Portus Neronis mortar, for example, produced a 100 µm² mold (Fig. 5). Al-tobermorite and 265 266 strätlingite, a hydrated calcium-aluminum phyllosilicate (Ca₂Al₂(SiO₂) (OH)10•2.5(H₂O), with 267 12.5 Å (0001) basal spacing, crystallized along the perimeter of the remnant feldspar crystal. 268 Dissolution evidently raised solution ionic concentrations in the mold, and hydrate precipitation 269 occurred in a leached layer behind the dissolution front (Snellings 2015). Feldspar compositions 270 in the mortars range from potassic (9-12 wt % K₂O, 1-2 wt % Na₂O and CaO) to more sodic (5-271 7 wt % K₂O, 3–5 wt % Na₂O and 1–2 wt % CaO). 272 Vesicles in the perimeter of a pumice clast in the subaerial Portus Cosanus mortar 273 contain deeply etched, 15–20 µm Campi Flegrei phillipsite crystals surrounded by C-A-S-H and

- sub-spherical accumulations of $\sim 5 \ \mu m$ Al-tobermorite (Fig. 1i, locations [1], [2], [3])). These
- 275 microstructures record deep dissolution of Campi Flegrei phillipsite [1], production of
- 276 pozzolanic C-A-S-H and Al-tobermorite [2, 3], and abrupt termination of pozzolanic reaction

277 before the phillipsite was fully consumed. Experimental mixing of portlandite with phillipsite in 278 Neapolitan Yellow Tuff by Mertens et al. (2009) provides insight into these microstructures. 279 Rapid pozzolanic reaction occurred for a few days until thickening of a reaction rim of hydrates 280 covered the external surfaces of the crystals; the reaction then slowed considerably at 10 day's 281 hydration and proceeded through a diffusion controlled process. The Portus Cosanus pumice 282 vesicles evidently record rapid pozzolanic reaction through pH 12–14 pore solutions derived 283 from seawater, calcium hydroxide, and trachytic ash, as Vitruvius described (Table A1), but 284 sealing of the surfaces of the phillipsite crystals by C-A-S-H and Al-tobermorite hydration 285 products prevented further pozzolanic reaction. Remarkably, the center of this vesicle and 286 adjacent vesicles (Fig. 6a, location [4]) contain masses of $<1-2 \mu m$ Al-tobermorite crystals, 287 identified through X-ray microdiffraction. These very fine-grained, irregularly shaped 288 agglomerations of Al-tobermorite, which occur as moderate brown, opaque zones in plane 289 polarized light and cloudy light gray areas in SEM-BSE (Fig. 6b, c), seem to have formed 290 subsequently to the sub-spherical accumulations of coarse-grained, pozzolanic Al-tobermorite. 291 The fine-grained agglomerations of Al-tobermorite in pumice vesicles of the Portus 292 Cosanus, Portus Neronis (Fig. 6b, c) and Baianus Sinus mortars are commonly associated with 293 sub-rounded phillipsite aggregations and etched or frayed alkali feldspar crystal fragments. In 294 Portus Neronis and Baianus Sinus pumice vesicles, Al-tobermorite contains 43.2–47.6 wt% 295 SiO₂. These compositions are more siliceous than those of crystals that formed in relict lime 296 clasts in the same mortar specimens, and they show a greater range of Al₂O₃ and CaO contents 297 (Figs. 3b, 4b, Table 2). Some compositions are nearly identical to Al-tobermorite that 298 crystallized in 15-year-old basaltic tuff of Surtsey volcano, Iceland (Jakobsson and Moore 1986). Na₂O and K₂O at 1.2–3.0 wt% throughout partially balance Al³⁺ substitution for Si⁴⁺ relative to 299

ideal tobermorite (Mitsuda and Taylor 1978; Taylor 1992; Barnes and Scheetz 1991; Komarneni and Roy 1983). These compositions and the fine-grained habit of the crystals suggest a possible post-pozzolanic origin. They may have precipitated from alkaline fluids in more or less closed chemical systems in vesicles, produced through reaction of feldspar crystals, potassic phillipsite, and trachytic glass, which contains up to 12 wt% Na₂O + K₂O and 2–3 wt% CaO (de Gennaro et al. 2000; Fedele et al. 2011).

306 Although one might suppose that all zeolite in the mortars has a geological origin,

307 phillipsite textures in relict voids of the cementing matrix indicate *in situ* crystallization (Fig.

308 1h). X-ray microdiffraction analyses of *Baianus Sinus* mortar show, for example, phillipsite

309 clusters that crystallized on Al-tobermorite plates in the cementing matrix (Jackson et al. 2013b).

310 Compared with most Campi Flegrei phillipsite, the phillipsite that formed in relict pores of the

311 marine mortar has lower silica (SiO₂, 38–45 wt%), higher alumina (Al₂O₃, 28–31 wt%), lower

312 Si/Al (1.3–1.6), and greater calcium (CaO, 7–11 wt%) (Figs. 3a, 4a, Tables 1, S1). In volcanic

deposits and saline lakes, phillipsite crystallizes from pH 8–10 pore fluids (Hay and Iijima 1968;

Taylor and Surdam 1981; de Gennaro et al. 2000, Sheppard and Hay 2001); crystal compositions

315 vary with silica activity, salinity, and alkalinity in the fluid phase. Alumina content in phillipsite

316 increases with higher pH pore fluids, but this pH is substantially lower than that of pozzolanic

317 fluids with pH > 12, which are buffered by calcium hydroxide (Lothenbach et al. 2011).

318 Maps of post-pozzolanic cementitious microstructures

319 Synchrotron-based X-ray microdiffraction maps and high resolution SEM-EDS

- 320 compositional maps of Portus Cosanus and Baianus Sinus microstructures provide further
- 321 insights into diverse pathways for Al-tobermorite crystallization in the Roman mortar fabrics
- 322 (Fig. 7). In the subaerial *Portus Cosanus* pier intermittently exposed to ingress of seawater and

323	meteoric water, Campi Flegrei phillipsite aggregations that line the vesicle surfaces of a pumice
324	clast have a sub-rounded form with 2–3 μ m alteration rims, and/or they are altered to vaterite or
325	calcite; the adjacent chabazite is mainly intact (Figs. 7a-d). Fine-grained agglomerations of 1-2
326	μ m Al-tobermorite occupy the calcium-enriched internal space of the pumice vesicle, along with
327	vaterite, a metastable calcium carbonate (Fig. 8a, b). The Al-tobermorite has large (002)
328	interlayer spacing, 11.41–11.47 Å, indicating substantial Al ³⁺ for Si ⁴⁺ (Barnes and Scheetz 1991)
329	(Fig. 7i (analysis C)). A nearby vesicle, however, has Campi Flegrei chabazite and phillipsite
330	that are more strongly altered to vaterite and calcite (Fig. 7e-h). There, calcium-enriched areas
331	on the SEM-EDS maps correlate with zeolite alteration to vaterite and calcite; no Al-tobermorite
332	is present. Instead, there are occasional strätlingite crystals (Figs. 7i (analysis D); 8c, d). The
333	rounded forms of the phillipsite aggregations (Figs. 7a, 8a), where individual crystal laths have
334	disappeared compared with intact aggregations (Figs. 1h, 9b), suggest possible cation exchange
335	processes. The porous, open, silicate framework of the crystals has a large internal space
336	available for reaction, and repeated cation exchanges occurring along the external surfaces of the
337	laths can decrease the silicate framework, causing the protruding crystals to decompose (Hay
338	1966). The exchangeable cation reactions would have had a strong influence on alkali
339	concentrations and compositions of solutions within the vesicles, and their crystalline
340	precipitates (Mertens et al. 2009). Overall, the microstructures indicate low-temperature, post-
341	pozzolanic reactions involving zeolite in Campi Flegrei pumice within relatively closed chemical
342	systems at the vesicle scale.
343	In Baianus Sinus breakwater continually submerged in seawater for 2000 years, the
344	cementing matrix of the mortar contains relict, submillimeter-sized pores filled with 100–200 μm

345 phillipsite fabrics (Fig. 7j–o). The coarse-grained fabrics formed *in situ*, perhaps associated with

346	alkaline fluids produced by dissolution within a nearby Campi Flegrei vitric tuff clast. SEM-EDS
347	analyses indicate aluminous compositions with 11 wt% potassium and 6 wt% sodium.
348	Hydrocalumite, a platey calcium chloroaluminate ($Ca_2Al(OH)_{6.5}Cl_{0.5}\bullet 3(H_2O)$), filled the center
349	of the relict voids (Fig. 9a, b). Although much of the phillipsite remains intact, areas of higher
350	sodium and sulfur concentrations coincide with X-ray microdiffraction analyses indicating
351	newly-formed cementitious hydrates, mainly ettringite and Al-tobermorite (Fig. 9d, e). Ettringite,
352	a hydrous calcium-aluminum-sulfate (Ca ₆ Al ₂ (SO ₄) ₃ (OH) ₁₂ •26(H ₂ O)), crystallized in zones with
353	higher sulfur concentrations. Al-tobermorite crystallized in narrow zones with higher calcium
354	and lower silica contents. The acicular crystals protrude from the etched surfaces of the
355	phillipsite fabrics into relict pore space (Fig. 1j). This interfacial relationship is illustrated by X-
356	ray microdiffraction patterns showing both phillipsite and Al-tobermorite at the submicron scale
357	(Fig. 9c, d, locations #54, #57). Similar phillipsite and Al-tobermorite mineral assemblages have
358	been described in basaltic tuff at Surtsey volcano, Iceland, at 100 °C fifteen years after eruption
359	(Jakobsson and Moore 1986) (Fig. 1e). The Baianus Sinus microstructures demonstrate that Al-
360	tobermorite crystallization can occur at ambient seawater temperatures, 14-26 °C (Damiani et al.
361	1987), in a highly potassic and sodic system produced through alteration of phillipsite, which
362	itself precipitated in the mortar fabric. The complex mineral textures indicate cycling of low-
363	temperature, post-pozzolanic reactions in pores of the cementing matrix as a response to
364	evolving fluid interactions over time.
365	RAMAN SPECTROSCOPY
366	Raman spectroscopic analyses referenced to previous ²⁹ Si and ²⁷ Al Nuclear Magnetic
367	Resonance (NMR) studies provide insights into the roles of Al ³⁺ , Na ⁺ , and K ⁺ in <i>Baianus Sinus</i>

{Ca ₅ Si ₆ O ₁₇ ·5H ₂ O (Biagioni et al. 2015)}, <i>Baianus Sinus</i> C-A-S-H, and calcium-silicate-hydrate
C-S-H binder (Figs. 10–12). X-ray microdiffraction analyses of Al-tobermorite in relict lime
clasts, pumice clasts, and relict voids show rather uniform patterns, with 11.20-11.24 Å
interlayer spacing, modified mainly by the relative intensity of vaterite and calcite reflections
(Fig. 10a). Raman spectra of the same or adjacent crystals mainly show a 670-671 cm ⁻¹ band
corresponding to symmetrical bending (SB) of $Q^2(0Al)$ linkages of middle chain silicon
tetrahedra (Kirkpatrick et al. 1997; Richardson et al. 2010) (Fig. 10b). A sharp 1111-1112 band
indicates symmetrical stretching (SS) of bridging Q ³ (1Al) linkages (Richardson et al. 2010).
These linkages are shown in NMR study of Baianus Sinus Al-tobermorite in relict lime clasts
(Jackson et al. 2013a, b) (Fig. 12); the \sim 1040–1080 band associated with SS Q ³ (0Al) is,
however, obscured by carbonate bands. A 638–642 band corresponds to SB of $Q^{3}(0A1)$
(Kirkpatrick et al. 1997) and $Q^3(1Al)$. The SB and SS Q^3 bands indicate linkages across the (002)
interlayer, which contains channels for water molecules and exchangeable alkali cations (Tsuji
and Komarneni 1989; Yamazaki and Toraya 2001). A ~840-900 shoulder indicates SS of
Q ¹ (0Al) sites (McMillan and Piriou 1982). A prominent 800–840 maximum not detected in ideal
tobermorite (Fig. 11) may indicate both Al–O stretching and Q ¹ motions of silica and aluminum
against tetrahedral oxygen (McMillan and Piriou 1982).
Roman Al-tobermorite spectra shows substantial variation from the spectra of ideal
tobermorite (Fig. 11, Tobermorite [1],[2]). In ideal tobermorite, SS Q ² linkages assigned to 950-
1010 (Richardson et al. 2010) occur as a broad band centered at 998. There is little band
definition, however, in Roman Al-tobermorite in this region, with the exception of analysis 7
(Fig. 10b), which corresponds to an X-ray microdiffraction site where Al-tobermorite
crystallized in the interfacial zone of <i>in situ</i> phillipsite aggregations (Fig. 9d, location #15). In

392	crystals and glasses of silica-alumina systems, highly condensed aluminate tetrahedra may lead
393	to geometric distortion, loss of vibrational coherence and observed band structure (McMillan and
394	Piriou 1982; McMillan et al. 1982). Substantial $Q^2(1AI)$ relative to $Q^2(0AI)$ occurs in ²⁹ Si and
395	²⁷ Al NMR study of Roman Al-tobermorite in relict lime clasts (Fig. 12), as well as in cross-
396	linked Al-tobermorite synthesized pozzolanically through pozzolanic interaction of NaOH-
397	activated trachytic volcanic rock with calcium hydroxide (Youssef et al. 2010). This suggests
398	that abundant Al^{3+} substitution for Si^{4+} may dampen the expression of the SS $Q^2(0Al)$ linkages,
399	causing loss of the SS Q^2 band, but quantification of these relationships is beyond the scope of
400	this article. SS Q^1 in ideal tobermorite appears as a broad, low intensity band centered at 850.
401	Roman Al-tobermorite, instead, has an asymmetric maximum at 807-840 that leads to a weak
402	shoulder at ~840–900. The shoulder may indicate SS $Q^1(0A1)$, but the maxima composed of
403	806-809, 821-826, and 837-842 bands may indicate a component of Al-O stretching (McMillan
404	and Piriou 1982; McMillan et al. 1982), which occurs at 796–804 and 841 in certain calcium-
405	alumina-silicate crystals (Sharma et al. 1982). NMR studies of sodic and potassic C-A-S-H (C-
406	(N, K-)A-S-H) show increased Q^1 intensity with Na and K content; binding of silica to Na ⁺ and
407	K^{+} rather than Ca^{2+} in the interlayer and the CaO surface leads to more silica dimers, shorter
408	silicate chain lengths, and increased Q^1 (Myers et al. 2015b; L'Hôpital et al. 2016). A +3 ppm
409	shift of Q ³ (1Al) in ²⁹ NMR study of Roman Al-tobermorite (Fig. 11) also suggests a greater
410	proportion of monovalent cations relative to Ca ²⁺ (Myers et al. 2015b). The Al-tobermorite 800–
411	840 maxima may thus correspond to complex $Q^{1}(0A1)$ and $Q^{1}(1A1)$ sites and, perhaps, coupled
412	[Al ³⁺ +Na ⁺] substitution, similar to laboratory syntheses in which tetrahedrally-coordinated Al ³⁺
413	substitutes for Si^{4+} and Cs^{+} selectively exchanges for Na^{+} in the cross-linked (002) interlayer
414	(e.g. Tsuji and Komarneni 1989; Coleman et al. 2014).

415	SB Q^2 in ideal tobermorite and C-S-H is assigned to 650–680 (Kirkpatrick et al. 1997,
416	Richardson et al. 2010; Black 2009). The absence of the 670–671 band in Al-tobermorite
417	associated with phillipsite alteration in relict voids where qualitative EDS analyses indicate high
418	alumina (Figs. 7j-n, 9e), suggests that condensed aluminate tetrahedra could contribute to loss of
419	the silicate band structure (McMillan and Piriou 1982; McMillan et al. 1982), as for SS Q ² . SB of
420	Q ³ linkages in ideal tobermorite is assigned to 620 (Kirkpatrick et al. 1997), apparently based on
421	a metasilicate band group at 1050, 980, and 650 and vibrational similarities with a SiO_2 -CaAl ₂ O ₄
422	glass series (McMillan et al. 1982). The 638-642 band in Roman Al-tobermorite could therefore
423	correspond to SB Q ³ (0Al) and Q ³ (1Al), associated with SS Q3 vibrations at 1111 and obscured
424	at 1080. ²⁷ Al NMR of crystals from relict lime clasts records these tetrahedral Q ³ (1Al) linkages
425	through a peak at 57.70 ppm (Jackson et al. 2013a, b). Distortions of AlO ₄ tetrahedral bond
426	lengths and complexities in Al-O coordination in Roman Al-tobermorite in relict lime clasts are
427	indicated by NEXAFS spectra, where a tetrahedral 1566.7 absorption edge broadens to an
428	octahedral 1571.0 eV absorption edge. These complexities may also be recorded by ²⁷ Al NMR,
429	which has a weak octahedrally-coordinated Al_2O_6 component at 10.88 ppm (Jackson et al.
430	2013a, b). Components of both Al-O stretching and complex motions of silica and aluminum
431	against tetrahedral oxygen may therefore occur at the Raman 443 and the 800-840 maxima
432	(McMillan and Piriou 1982; McMillan et al. 1982). It is not clear how these spectra might record
433	possible octahedrally-coordinated Al^{3+} substitution for Ca^{2+} within the interlayer of the crystals
434	(Abdolhosseini Qomi et al. 2012).
435	Baianus Sinus C-A-S-H shows rather uniform Raman spectra over a diverse range of
436	cementitious microstructures (Fig. 11). A broad band centered at 668 corresponds to
437	symmetrical bending (SB) of $Q^2(0Al)$, and could also include SB of $Q^2(1Al)$, given the

438	tetrahedral aluminum 1566.7 absorption edge recorded by NEXAFS spectra of C-A-S-H in relict
439	lime clasts (Jackson et al. 2013a). SS Q ² linkages occur as a broad band centered at 994. Spectra
440	indicating SS $Q^{3}(0Al)$ and a cross-linked structure at ~1040–1080 band are, however, obscured
441	by carbonate bands.
442	AUTHIGENIC MINERAL CYCLING
443	Alteration of tephra deposits occurs when interstitial water becomes modified through
444	hydrolysis or dissolution of volcanic ash components. These reactions release hydroxyl ions, and
445	the solution becomes more alkaline and enriched in Na, K, Ca and Si along its flow path.
446	Zeolites crystallize when the cation to hydrogen ion ratio and other ionic activities are relatively
447	high (Sheppard and Hay 2001). Early formed zeolites commonly alter to other zeolites;

448 phillipsite, for example, commonly alters to analcime, and analcime can be replaced by

449 laumontite, K-feldspar, or albite (Hay and Sheppard 2001). Authigenic textures thus record

450 dynamic physico-chemical environments and phase stability relationships over time in open-to-

451 closed hydrologic systems.

452 In Campi Flegrei deposits, post-eruptive hydrolysis and dissolution of trachytic glass in 453 the presence of condensed water vapor generated alkaline fluids from which zeolites originated 454 (Fig. 1b-d) (de Gennaro et al. 1999). Airfall deposits from highly expanded ash clouds with 455 limited water-magma interaction are less zeolitized than hydromagmatic deposits that retain pore 456 water and water vapor, grow zeolite mineral cements, and lithify to form tuff. By first century 457 BCE, Roman engineers had identified the unconsolidated pumiceous ash deposits, or *pozzolana*, 458 as the optimum aggregate (pulvis) for maritime concrete harbor mortars; they used lithified 459 zeolitized tuff deposits as coarse aggregate (*caementa*) in the concrete (Stanislao et al. 2014; 460 Jackson 2014). When they installed the pumiceous ash and lime mortar mixture hydrated with

461	seawater in subaerial and submarine structures, they created a highly alkaline but relatively
462	short-lived pozzolanic system buffered by calcium hydroxide, which produced C-A-S-H and Al-
463	tobermorite at \leq 95 °C in lime clasts (Jackson et al. 2013a). Pozzolanic reaction of Campi
464	Flegrei phillipsite in the perimetral vesicles of pumice clasts in response to infiltration of the
465	high pH fluids also produced C-A-S-H and Al-tobermorite (Fig. 1i, 6a). Rates of reaction may
466	have been on the order of days or weeks, based on experimental mixing of portlandite and
467	distilled water with phillipsite at 40 °C with phillipsite from Neapolitan Yellow Tuff (Mertens et
468	al. 2009). The mortar reaction became diffusion controlled and eventually terminated when C-A-
469	S-H and Al-tobermorite accumulations enveloped the phillipsite aggregations. Consumption of
470	portlandite in the large Roman harbor structures was likely complete within 5-10 years, based on
471	an experimental concrete reproduction (Oleson et al. 2006, Jackson 2014), an adiabatic model of
472	heat evolved in the Baianus Sinus breakwater (Jackson et al. 2013a), and observations of
473	pozzolanic systems with pyroclastic rock pozzolans (Massazza 1985; 2004). This is in contrast to
474	Portland cement concretes which maintain very high pH and alkalinity over the long term, since
475	portlandite saturation and free portlandite in pore fluids persist for extended periods of time.
476	In the post-pozzolanic hydrologic system of the massive Roman concrete structures open
477	to seawater and/or meteoric water ingress, residual components of the pumiceous ash - feldspar
478	crystal fragments, authigenic phillipsite, and trachytic glass – reacted with interstitial fluids at
479	low temperature to produced alkaline pore solutions in diverse components of the mortar fabric.
480	Al-tobermorite (and strätlingite) crystallized in the leached perimeters of Campi Flegrei feldspar
481	fragments (Figs. 1g, 5) and in pumice vesicles in response to dissolution or decomposition of
482	Campi Flegrei phillipsite (and chabazite) (Figs. 6, 7a-i, 8). In situ crystallization of phillipsite
483	occurred in relict pores throughout the cementing matrix (Figs. 1h, 7j–o, 9), apparently at

484 ambient seawater temperatures, 14–28 °C, after exothermic heat evolution through pozzolanic 485 reaction was complete. Al-tobermorite then crystallized in the interfacial zones of these 486 phillipsite fabrics. These crystals resemble those that crystallized from dissolving phillipsite in 487 15-year-old palagonitized basaltic tuff of Surtsey volcano, Iceland, but at 100 °C (Fig. 1e, i). 488 Al-tobermorite is considered to have a hydrothermal origin in geologic occurrences 489 (Claringbull and Hey 1952; Mitsuda and Taylor 1978; Livingstone 1988; Henmi and Kusachi 490 1992; Hoffman and Armbuster 1997; Aguirre et al. 1998) and has been previously produced in 491 laboratory syntheses always at ≥ 80 °C (e.g. Komarneni and Roy 1983). Alkali-activated 492 pozzolanic production of zeolite and Al-tobermorite has been produced in autoclaved aerated 493 concrete, heated at 110–200 °C in 12 hours to 7 days (Grutzeck et al. 2004), and through NaOH-494 activation of trachytic rock aggregate mixed with calcium hydroxide and heated at 150-175 °C 495 for 24 hours (Youssef et al. 2010). Relatively low temperature crystallization of phillipsite and 496 Al-tobermorite has occurred, however, in the pores of Portland cement paste in contact with a 497 claystone interface at 70 °C one year after installation (Lalan et al. 2016). Furthermore, Al-498 tobermorite has been identified throughout a 181 m core drilled through Surtsey in 1979, at 499 temperatures from 25 °C in surficial deposits to 140 °C in hydrothermally-altered tuff (Jakobsson 500 and Moore 1986) (see Fig. 1e). The distinguishing feature of the Roman marine mortar system is 501 to record low temperature processes of authigenic mineral cycling, which involve reaction of 502 volcanic ash components; production of alkaline fluids in microenvironments; precipitation of 503 new minerals, principally phillipsite in these microstructures; and evolving pore solution 504 chemistries that produce Al-tobermorite crystallization in subaerial and submarine structures. 505 Systems that begin as relatively simple states and evolve to states of increasing 506 complexity are a recurrent characteristic of mineral evolution and Earth processes, as well as

507	emerging technologies (Hazen et al. 2008). Vitruvius described the relatively simple mixture of
508	volcanic ash (pulvis), lime (calx) and tuff aggregate (tofus) that cohered pozzolanically in
509	seawater. Pliny the Elder and Seneca called upon geologic analogs to explain concrete resilience
510	after 100-150 years of service life. Advanced analytical techniques now show the complexity of
511	Roman marine concrete technologies, whose initial protocols for developing an effective
512	pozzolanic cementitious system evolved through authigenic mineral cycling to produce
513	cementitious systems with the range of water-rock interactions and longevity of pyroclastic
514	deposits in Earth's upper crust. Roman builders evidently had these objectives in mind when
515	designing the maritime concrete structures (Brandon et al. 2014).
516	The cementing fabrics of Roman concrete breakwaters and piers constructed with
517	volcanic ash mortars provide a well-constrained template for developing cementitious
518	technologies through low temperature rock-fluid interactions, cation-exchange, and carbonation
519	reactions that occur long after an initial phase of reaction with lime that defines the activity of
520	natural pozzolans (Massazza 2004). Some aspects of the Roman post-pozzolanic system have
521	been reproduced by geopolymer-type cementitious systems, where alkali mediated dissolution
522	and precipitation reactions involving little or no calcium occur in aqueous reaction substrates
523	(Provis and Bernal 2014). These systems do not, however, produce on-going beneficial
524	precipitation of cementitious hydrates through evolving alteration of reactive aggregate(s).
525	Coupled dissolution and precipitation processes produced through the reactivity of synthetic
526	calcium (alumino)silicate glasses, basaltic glasses, and borosilicate glasses with aqueous
527	solutions at varying pH (Snellings 2015; Jantzen et al. in press) have a great deal of relevance for
528	gaining further understanding of multiple pathways to low-temperature Al-tobermorite
529	crystallization. This especially concerns variable solution chemistries produced in

530	microenvironments associated with authigenic dissolution of the alkaline components of
531	pozzolanic volcanic ash — alkali feldspar, trachytic glass, and relict zeolite textures.
532	Carbonation of zeolite in the pumice clasts of the subaerial mortar also apparently released
533	alkaline earth elements associated with low-temperature crystallization of Al-tobermorite. The
534	platy and acicular Al-tobermorite crystals, may increase ductility and resistance to fracture
535	(Jackson et al. 2104), possibly leading to the increasing mechanical resilience of these concrete
536	that Pliny observed (and stronger every day (fortiorem cotidie) (Table A1)).

537

IMPLICATIONS

538 That in situ production of alkaline pore fluids derived from low-temperature interactions 539 of seawater-derived fluids with components of trachytic Campi Flegrei pumiceous ash drives 540 zeolite and Al-tobermorite crystallization in Roman marine concrete is a surprising discovery, 541 since 1) laboratory Al-tobermorite syntheses have not been produced at ambient temperatures, 542 and 2) release of alkali cations from rock aggregate in Portland cement concrete generally 543 produces expansive alkali-silica gels that degrade structural concretes worldwide. By contrast, 544 the alkaline fluids in Roman subaerial and submarine concrete piers and breakwaters produce 545 precipitation of phillipsite and Al-tobermorite mineral cements that refine pore space, enhance 546 bonding in pumice clasts and sequester alkali cations, principally sodium and potassium. 547 Roman marine concretes can provide guidelines for the optimal selection of natural 548 volcanic pozzolans that have the potential to produce of regenerative cementitious resilience 549 through long term crystallization of zeolite, Al-tobermorite, and strätlingite mineral cements. The cross-linked structure and Al³⁺ bonding environments of the Roman Al-tobermorite crystals, 550 551 recorded by Raman spectra through a range of cementitious microstructures and crystallization pathways, provide clues to creating new pathways for cation-change in high performance 552

553	concretes. Furthermore, the chemical and mechanical resilience of the marine concrete provides
554	keys to understanding dynamic mineral cements in young, oceanic pyroclastic deposits, as at
555	Surtsey (Jakobsson and Moore 1986), the seismic response of a volcanic edifice, as in deep
556	Campi Flegrei deposits (Vanorio and Kanitpanyacharoen 2015), and carbon mineralization
557	reactions, as occur in porous basaltic storage reservoirs for anthropogenic CO ₂ (Matter et al.
558	2016). Roman prototypes for brine-based concretes could conserve freshwater resources,
559	generate multiple low temperature pathways to pozzolanic and post-pozzolanic Al-tobermorite
560	sorbents with coupled Al ³⁺ and exchangeable alkali cation sites, and extend applications of
561	natural volcanic pozzolans to environmentally-friendly, alkali-activated structural concretes and
562	cementitious barriers for waste encapsulations.
563	ACKNOWLEDGMENTS
564	We extend special thanks to M. Patzschke, Bruker Laboratories, Berlin, and to N. Tamura and
564 565	We extend special thanks to M. Patzschke, Bruker Laboratories, Berlin, and to N. Tamura and M. Kunz, Advanced Light Source (ALS) beamline 12.3.2, for assistance with the coupled
565	M. Kunz, Advanced Light Source (ALS) beamline 12.3.2, for assistance with the coupled
565 566	M. Kunz, Advanced Light Source (ALS) beamline 12.3.2, for assistance with the coupled compositional and X-ray microdiffraction maps of <i>Portus Cosanus</i> and <i>Baianus Sinus</i>
565 566 567	M. Kunz, Advanced Light Source (ALS) beamline 12.3.2, for assistance with the coupled compositional and X-ray microdiffraction maps of <i>Portus Cosanus</i> and <i>Baianus Sinus</i> microstructures. T. Teague and C. Carraro, U. C. Berkeley, provided analytical support. J. G.
565 566 567 568	M. Kunz, Advanced Light Source (ALS) beamline 12.3.2, for assistance with the coupled compositional and X-ray microdiffraction maps of <i>Portus Cosanus</i> and <i>Baianus Sinus</i> microstructures. T. Teague and C. Carraro, U. C. Berkeley, provided analytical support. J. G. Moore, U. S. Geological Survey, shared valuable perspectives on Surtsey deposits. J. P. Oleson,
565 566 567 568 569	 M. Kunz, Advanced Light Source (ALS) beamline 12.3.2, for assistance with the coupled compositional and X-ray microdiffraction maps of <i>Portus Cosanus</i> and <i>Baianus Sinus</i> microstructures. T. Teague and C. Carraro, U. C. Berkeley, provided analytical support. J. G. Moore, U. S. Geological Survey, shared valuable perspectives on Surtsey deposits. J. P. Oleson, C. Brandon, and R. L. Holhfelder of the ROMACONS program drilled the cores of the harbor
565 566 567 568 569 570	M. Kunz, Advanced Light Source (ALS) beamline 12.3.2, for assistance with the coupled compositional and X-ray microdiffraction maps of <i>Portus Cosanus</i> and <i>Baianus Sinus</i> microstructures. T. Teague and C. Carraro, U. C. Berkeley, provided analytical support. J. G. Moore, U. S. Geological Survey, shared valuable perspectives on Surtsey deposits. J. P. Oleson, C. Brandon, and R. L. Holhfelder of the ROMACONS program drilled the cores of the harbor concrete structures with support from CTG Italcementi, Bergamo, Italy. Data acquired at ALS
565 566 567 568 569 570 571	M. Kunz, Advanced Light Source (ALS) beamline 12.3.2, for assistance with the coupled compositional and X-ray microdiffraction maps of <i>Portus Cosanus</i> and <i>Baianus Sinus</i> microstructures. T. Teague and C. Carraro, U. C. Berkeley, provided analytical support. J. G. Moore, U. S. Geological Survey, shared valuable perspectives on Surtsey deposits. J. P. Oleson, C. Brandon, and R. L. Holhfelder of the ROMACONS program drilled the cores of the harbor concrete structures with support from CTG Italcementi, Bergamo, Italy. Data acquired at ALS beamlime 12.3.2. at Lawrence Berkeley Laboratories were supported by the Director of the
565 566 567 568 569 570 571 572	M. Kunz, Advanced Light Source (ALS) beamline 12.3.2, for assistance with the coupled compositional and X-ray microdiffraction maps of <i>Portus Cosanus</i> and <i>Baianus Sinus</i> microstructures. T. Teague and C. Carraro, U. C. Berkeley, provided analytical support. J. G. Moore, U. S. Geological Survey, shared valuable perspectives on Surtsey deposits. J. P. Oleson, C. Brandon, and R. L. Holhfelder of the ROMACONS program drilled the cores of the harbor concrete structures with support from CTG Italcementi, Bergamo, Italy. Data acquired at ALS beamlime 12.3.2. at Lawrence Berkeley Laboratories were supported by the Director of the Office of Science, Department of Energy, under Contract No. DE-AC02-05CH11231.

576	REFERENCES CITED
577	Abdolhosseini Qomi, M.J., Ulm, FJ., and Pellenq, R.JM. (2012) Evidence on the Dual Nature
578	of Aluminum in the Calcium-Silicate-Hydrates Based on Atomistic Simulations. Journal
579	of the American Ceramic Society 95[3], 1128–1137.
580	Aguirre, L., Dominguez-Bell, S., Morata, D., and Winke, O. (1998) An occurrence of
581	tobermorite in Tertiary basalts from Patagonia, Chile. Canadian Mineralogist, 36, 1149-
582	1155.
583	ASTM (2015) Standard specification for coal fly ash and raw or natural pozzolan for use in
584	concrete (C618-12a), ASTM International, West Conshohocken, PA. www.astm.org.
585	Barnes, M.W., and Scheetz, B.E. (1991) The chemistry of Al-tobermorite and its coexisting
586	phases at 175 °C. In B.E. Scheetz, A.G. Landers, I. Oder, and H. Jennings, Eds.,
587	Specialty cements with advanced properties, 179, 243-271. Material Research Society
588	Symposium Proceedings, Warrendale, Pennsylvania.
589	Behrens, G., Kuhn, L.T., Ubic, R., and Heuer, A.H. (1995) Raman spectra of vateritic calcium
590	carbonate. Spectroscopy Letters, 28[6], 983–995.
591	Biagioni, C., Merlino, S., and Bonaccorsi, E. (2015) The tobermorite supergroup: A new
592	nomenclature. Mineralogical Magazine, 79[2], 485-495.
593	Black, L. (2009) Raman spectroscopy of cementitious materials. Spectroscopic Properties
594	Inorganic Organometric Compounds, 40, 72–127.
595	Black, L., Breen, C., Yarwood, J., Garbev, K., Stemmerman, P., and Gasharova, B. (2007)
596	Structural Features of C-S-H(I) and Its Carbonation in Air-A Raman Spectroscopic
597	Study. Part II: Carbonated Phases. Journal of the American Ceramic Society, 90, 908-
598	917.

- 599 Brandon, C., Hohlfelder, R.L., Jackson, M.D., and Oleson, J.P. (2014) Building for Eternity:
- 600 The History and Technology of Roman Concrete Engineering in the Sea. Oxbow Books,601 Oxford, 327 p.
- Brune, P.F., Ingraffea, A.R., Jackson, M.D., and Perucchio, R. (2013) The fracture toughness of
- an Imperial Roman mortar. Engineering Fracture Mechanics, 102, 65–76.
- 604 Cai, G., Noguchi, T., Degée, H., Zhao, J., and Kitagaki, R. (2016) Environmental Science and
- 605 Pollution Research, 23, 7220–7243.
- 606 Celik, K., Jackson, M.D., Mancio, M., Meral, C., Emwas, A.M., Mehta, P.K., and Monteiro,
- 607 P.J.M. (2014) High-volume natural volcanic pozzolan and limestone powder as partial
- 608 replacements for Portland cement in self-compacting and sustainable concrete. Cement
- and Concrete Composites, 45, 136–147.
- 610 Claringbull, G.F., and Hey, M. (1952) A re-examination of tobermorite. Mineralogical
 611 Magazine, 29, 960–962.
- 612 Coleman, N.J., Li, Q., and Raza, A. (2014) Synthesis, structure and performance of calcium
- silicate ion exchangers from recycled container glass, Physicochemical Problems in
 Mineral Processing, 50, 5–16.
- 615 Deer, W.A., Howie, R.A., Wise, W.S., and Zussman, J. (2004) Rock-forming minerals. Vol. 4B,
- 616 Framework silicates: silica minerals, feldspathoids and the zeolites, London, Geological617 Society of London.
- de Gennaro, M., Cappelletti, P., Langella, A., Perrotta, A., and Scarpati, C. (2000) Genesis of
- 619 zeolites in the Neapolitan Yellow Tuff: Geological, volcanological and mineralogical
- 620 evidence. Contributions to Mineralogy and Petrology, 139, 17–35.

- de Gennaro, M., Incoronato, A., Mastrolorenzo, G., Adabbo, M., and Spina, G. (1999)
- 622 Depositional mechanisms and alteration processes in different types of pyroclastic
- 623 deposits from Campi Flegrei volcanic field (Southern Italy). Journal of Volcanological
- and Geothermal Research, 91, 303–320.
- Damiani, V. Baudo, R. De Rosa, S., De Simone, R., Ferretti, O., Izzo, G., and Serena, F. (1987)
- 626 A case study: Bay of Pozzuoli (Gulf of Naples, Italy). Hydrobiologia, 149, 201–211.
- 627 Fedele, L., Insinga, D.D., Calvert, A.T., Morra, V., Perrotta, A., and Scarpati, C. (2011)
- 628 40Ar/39Ar dating of tuff vents in the Campi Flegrei caldera, southern Italy. Bulletin of
- 629 Volcanology 73, 1323–1336.
- 630 Frost, R.L., Tran, T.H., Rintoul, L., and Kristol, J. (1998) Raman microscopy of dickite,
- 631 kaolinite, and their intercalates. Analyst, 123, 611–616.
- Gatta, G.D., Cappelletti, P., and Langella, A. (2010) Crystal chemistry of phillipsites from the
 Neapolitan Yellow Tuff. European Journal of Mineralogy, 22, 779 –786.
- Gaucher, E.C., and Blanc, P. (2006) Cement/clay interactions A review: Experiments, natural
 analogues, and modeling. Waste Management 26, 776–788.
- Giaramita, M.J., and Day, H.W. (1990) Error propagation in calculations of structural formulas.
 American Mineralogist, 75, 170–182.
- 638 Goñl, S., Lorenzo, M.P., Guerrero, A., and Hernández, M.S. (2005) Calcium hydroxide
- 639 saturation factors in the pore solution of hydrated portland cement fly ash paste. Journal
- of the American Ceramic Society, 79[4], 1041–1046.
- 641 Gotti, E., Oleson, J. P., Bottalico, L., Brandon, C., Cucitore, R., and Hohlfelder, R.L. (2008) A
- 642 comparison of the chemical and engineering characteristics of ancient Roman hydraulic
- 643 concrete with a modern reproduction of Vitruvian hydraulic concrete. Archaeometry, 50,

Gualtieri, A.F. (2000) Accuracy of XRPD OPA using the combined Rietveld-RIR method.

644576–590.

645

646 Locality: Vallerano, Rome, Italy. Journal of Applied Crystallography, 33, 267–278. 647 Hay, R.L. (1966) Zeolite and zeolite reactions in sedimentary rocks. Geological Society of 648 America Special Paper 85. 649 Hay, R.L., and Iijima, A. (1968) Nature and origin of palagonite tuffs of the Honolulu group on 650 Oahu, Hawaii. Geological Society of America Memoir, 116, 331-376. 651 Hay, R.L., and Sheppard, R.A. (2001) Occurrence of zeolites in sedimentary rocks: an overview. 652 Reviews in Mineralogy and Geochemistry, 45, 217–234. 653 Hazen, R.M., Papineau, D., Bleeker, W., Downs, R.T., Ferry, J.M., McCoy, T.J., Sverjensky, 654 D.A., and Yang, H. (2008) Mineral Evolution. Americn Mineralogist, 93, 1693–1720. 655 Henmi, C., and Kusachi, I. (1992) Clinotobermorite, Ca₅Si₆(O, OH)₁₈5H₂O, a new mineral from 656 Fuka, Okayama Prefecture, Japan. Mineralogical Magazine, 56, 353–358. 657 Hoffman, C., and Armbruster, T. (1997) Clinotobermorite, Ca₅[Si₃O₈(OH)]₂₄H₂O, a natural C-S-658 H(I) type cement mineral: Determination of the substructure. Zeitschrift für 659 Kristallographie, 212, 864–873. 660 Jackson, M.D. (2014) Seawater Concretes and their Material Characteristics. In J. P. Oleson, Ed., 661 Building for Eternity: the History and Technology of Roman Concrete Engineering in the 662 Sea, p. 141–187, Oxbow Books, Oxford. 663 Jackson, M.D., Chae, S.R., Mulcahy, S.R., Meral, C., Taylor, R., Li, P., Emwas, A.H., Moon, J., 664 Yoon, S., Vola, G., Wenk, H.-R., and Monteiro, P.J.M. (2013a) Unlocking the secrets of 665 Al-tobermorite in Roman seawater concrete. American Mineralogist, 98, 1669–1687.

- 666 Jackson, M.D., and Kosso, K. (2013) *Scientia* in republican era stone and concrete masonry. in J.
- 667 R. Evans, Ed., A Companion to the Archaeology of the Roman Republic, 1st edition, p.
- 668 268-284, Blackwell Publishing Ltd., New York.
- Jackson, M.D., Moon, J., Gotti, E., Taylor, R., Chae, S.R., Kunz, M., Emwas, A-H., Meral, C.,
- 670 Guttman, P., Levitz, P., Wenk, H.-R., and Monteiro, P.J.M. (2013b)
- 671 Material and elastic properties of Al-tobermorite in ancient Roman seawater concrete.
- Journal of the American Ceramic Society, 96[8], 2598–2606.
- Jackson, M.D., Landis, E.N., Brune, P.B., Vitti, M., Chen, H., Li, Q., Kunz, M., Wenk, H.-R.,
- 674 Monteiro, P.J.M., and Ingraffea, A.R. (2014) Mechanical Resilience and Cementitious
- 675 Processes in Imperial Roman Architectural Mortar. Proceedings National Academy
- 676 Sciences, 111, 18485–18489.
- 577 Jackson, M.D., Vola, G., Všianský, D., Oleson, J.P., Scheetz, B., Brandon, C., and Hohlfelder,
- 678 R.L. (2012) Cement microstructures and durability in ancient Roman seawater concretes.
- 679 In J. Valek, C. Groot, J. Hughes, Eds. Historic Mortars, Characteristics and Tests, p. 49–
- 680 76, Springer RILEM, Berlin.
- 581 Jakobsson, S., and Moore, J.G. (1986) Hydrothermal minerals and alteration rates at Surtsey
- 682 volcano, Iceland. Geological Society of America Bulletin, 97, 648–659.
- 583 Jantzen, C.M., Crawford, C.L., Trivelpiece, C., Pareizs, J.M., and Picket, J.B. (in press)
- 684 Accelerated Leach Testing of GLASS (ALTGLASS): II. Mineralization of Hydrogels by
- 685 Leachate Strong Bases. International Journal of Applied Glass Science (SRNL-STI-2014686 00381).
- Komarneni, S., and Roy, D. (1983) Tobermorites: A new family of cation exchangers. Science,
 221, 647-648.

689	Komarneni, S., Breval, E., Miyake, M., and Roy, R. (1987) Cation exchange properties of
690	(Al+Na)-substitutes synthetic tobermorites . Clays and Clay Minerals, 35, 385–390.
691	Kirkpatrick, R.J., Yarger, J.L., McMillan, P.F., Yu, P., and Cong, X. (1997) Raman spectroscopy
692	of C-S-H, tobermorite, and jennite. Advances in Cement Based Materials, 5, 93-99.
693	Lalan, P., Dauzères, A., DeWindt, L., Bartier, D., Sammaljärvi, J., Barnichon, JD., Techer, I.,
694	and Detilleux, V. (2016) Impact of a 70 °C temperature on an ordinary Portland cement
695	paste/claystone interface: An in situ experiment. Cement and Concrete Research, 83,
696	164–178.
697	L'Hôpital, E.L., Lothenbach, B., Scrivener, K., and Kulik, D.A. (2016) Alkali uptake in calcium
698	alumina silicate hydrate (C-A-S-H). Cement and Concrete Research, 85, 122–136.
699	Livingstone, A. (1988) Reyerite, tobermorite, calcian analcime and bytownite from amygdules in
700	Skye basalt. Mineralogical Magazine, 52, 711–713.
701	Lothenbach, B., Scrivener, K., and Hooton, R.D. (2011) Supplementary cementitious materials.
702	Cement and Concrete Research, 41, 217–229.
703	Marra, F., Jackson, M.D., Deocampo, D., and Ventura, G. (2009) Large mafic eruptions at Alban
704	Hills Volcanic District (Central Italy). Journal of Volcanic and Geothermal Research,
705	179, 217–232.
706	Massazza, F. (1985) Concrete resistance to seawater and marine environment. Il Cemento, 82,
707	26–85.
708	Massazza, F. (2004) Pozzolana and pozzolanic cements. In P. C. Hewlett, P.C., Lea's Chemistry
709	of Cement and Concrete, 4 th edition, p. 471-602, Elsevier, Oxford.
710	Matter, J.M., Stute, M., Snæbjörnsdottir, S., Ó. Oelkers, E. H., Gislason, S. R., Aradottir, E.S.,
711	Sigfusson, B., Gunnarsson, I., Sigurdardottir, H., Gunnlaugsson, E., Axelsson, G.,

712	Alfredsson, H.A., Wolff-Boenisch, D., Mesfin, K., Fernandez de la Reguera Taya, D.,
713	Hall, J., Dideriksen, K., and Broecker, W.S. (2016) Rapid carbon mineralization for
714	permanent disposal of anthropogenic carbon dioxide emissions. Science, 352, 1312-
715	1314.
716	McMillan, P., and Piriou, B. (1982) The structures and vibrational spectra of crystals and glasses
717	in the silica-alumina system. Journal of Non-Crystalline Solids, 53, 279–298.
718	McMillan, P., Piriou, B., and Navrotsky, A. (1982) A Raman spectroscopic study of glasses
719	along the joins silica-calcium aluminate, silica-sodium aluminate, and silica-potassium
720	aluminate. Geochimica and Cosmochimica Acta, 46, 2021–2037.
721	Mehta, P.K. (1987) Natural Pozzolans: Supplementary cementing materials for concrete.
722	CANMET Special Publication, 86, 1–33.
723	Mehta, P.K. (1990) Concrete in the Marine Environment. Elsevier, Oxford.
724	Mehta, P., and Monteiro, P.J.M. (2015) Concrete: Microstructure, Properties, and Materials. 4th
725	Edition. McGraw Hill, New York.
726	Meier, D.C., Davis, J.M., and Vicenzi, E.P. (2011) An examination of kernite
727	(Na ₂ B ₄ O ₆ (OH) ₂ •3H ₂ O) using x-ray and electron spectroscopies: Quantitative microanalysis
728	of a hydrated low-Z mineral. Microscopy and Microanalysis, 17, 718–727.
729	Mertens, G., Snellings, R., Van Balen, K., Bicer-Simsir, B., Verlooy, P., and Elsen, J. (2009)
730	Pozzolanic reactions of common natural zeolites with lime and factors affecting their
731	reactivity. Cement and Concrete Research, 39, 233-240.
732	Merlino, S., Bonaccorsi, E., and Armbruster, T. (2001) The real structure of 11Å tobermorite:
733	normal and anomalous forms, OD character and polytypic modifications. European
734	Journal of Mineralogy, 13, 577–590.

- Mitsuda, T., and Taylor, H.F.W. (1978) Normal and anomalous tobermorites. Mineralogical
 Magazine, 42, 229–235.
- Myers, R.P., L'Hôpital, E., Provis, J.L., and Lothenbach, B. (2015a) Effect of temperature and
 aluminium on calcium (alumino)silicate hydrate chemistry under equilibrium conditions.
- 739 Cement and Concrete Research, 68, 83–93.
- 740 Myers, R.P., L'Hôpital, E., Provis, J.L., and Lothenbach, B. (2015b) Composition-solubility-
- 741 structure relationships in calcium (alkali) aluminosilicate hydrate (C-(N, K-)A-S-H).
- 742 Dalton Transactions, DOI: 10.1039/c5dt01124h.
- 743 Oleson, J.P. (2014) Ancient literary sources concerned with Roman concrete technology. In J. P.
- 744 Oleson, Ed., Building for Eternity, p. 11–36, Oxbow Books, Oxford.
- 745 Oleson, J.P., Bottalico, L., Brandon, C, Cucitore, R., Gotti E., and Hohlfelder R.L. (2006),
- Reproducing a Roman maritime concrete structure with Vitruvian pozzolanic concrete.
 Journal of Roman Archaeology, 19, 29–52.
- Passaglia, E., Vezzalini, G., and Carnevali, R. (1990) Diagenetic chabazites and phillipsites in
 Italy: crystal chemistry and genesis. European Journal of Mineralogy, 2, 827–839.
- 750 Provis, J.L., and Bernal, S.A. (2014) Geopolymers and related alkali-activated construction
- 751 materials. Annual Reviews of Material Research, 44, 299–327.
- 752 Richardson, I.G. (2014) Model structures for C-(A)-S-H(I). Acta Crystallographica, B70, 903–
- *753 923*.
- Richardson, I.G., Skibsted, J., Black, L., and Kirkpatrick, R.L. (2010) Characterisation of cement
 hydrate phases by TEM, NMR and Raman spectroscopy. Advances in Cement Research,
 22, 233–248.
- 757 Sharma, S.K., Simons, B., and Yoder, H.S. (1982) Raman study of anorthite, calcium

- 758 Tschermak's pyroxene, and gehlenite in crystalline and glassy states. American
- 759 Mineralogist, 68, 1113–1125.
- 760 Sheppard, R.A., and Hay, R.L. (2001) Formation of zeolites in open hydrologic systems.
- 761 Reviews in Mineralogy and Geochemistry, 45, 261–276.
- 762 Stanislao, C., Rispoli, C., Vola, G., Cappelletti, P., Morra, V., and de Gennaro, M. (2011)
- 763 Contribution to the Knowledge of Ancient Roman Seawater Concretes. Phlegrean
- 764 Pozzolan Adopted in the Construction of the Harbour at Soli-Pompeiopolis (Mersin,
- Turkey). Periodico di Mineralogia, 80, 471–488.
- 766 Snellings, R. (2015) Surface chemistry of calcium aluminosilicate glasses. Journal of the
- American Ceramic Society, 98[1], 303–314.
- Snellings, R., Mertens, G., and Elsen, J. (2012) Supplemental cementitious materials. Reviews
 Mineralogy Geochemistry, 74, 211–278.
- 770 Tamura, N., Kunz, M., Chen, K., Celestre, R.S., MacDowell, A.A., and Warwick, T. (2009) A
- Superbend X-Ray Microdiffraction Beamline at the Advanced Light Source. Material
 Science and Engineering A, 524, 28.
- Taylor, H.F.W. (1992) Tobermorite, jennite, and cement gel. Zeitschrift für Kristallographie,
 202, 41–50.
- Taylor, M.W., and Surdam, R.C. (1981) Zeolite reactions in the tuffaceous sediments at Teels
 March, Nevada. Clays and Clay Minerals, 29[5], 314–352.
- 777 Trotignon, L., Devallois, V., Peycelon, H., Tiffreau, C., and Bourbon, X. (2007) Predicting the
- 778Long Term Durability of Concrete Engineered Barriers in a Geological Repository for
- Radioactive Waste. Physics and Chemistry of the Earth, Parts A/B/C, 32 [1–7] 259–74.

780	Tsuji, M., and Komarneni, S. (1989) Alkali metal ion exchange selectivity of Al-substituted
781	tobermorite. Journal of Material Research, 4, 698-703.
782	Vanorio, T., and Kanitpanyacharoen, W. (2015) Rock physics of fibrous rocks akin to Roman
783	concrete explains uplifts at Campi Flegrei caldera. Science, 349, 617-621.
784	Yamazaki, S., and Toraya, H. (2001) Determination of positions of zeolitic calcium atoms and
785	water molecules in hydrothermally formed aluminum-substituted tobermorite-1.1 nm
786	using synchrotron radiation. Journal of the American Ceramic Society, 84, 2685–2690.
787	Youssef, H., Ibrahim, D., Komarneni, S., and Mackenzie, K.J.D. (2010) Synthesis of 11Å Al-
788	substituted tobermorite from trachyte rock by hydrothermal treatment. Ceramics
789	International, 36, 203–209.
790	Wehrmeister, U., Soldati, A.L., Jacob, D.E., Häger, T., and Hofmeister, W. (2010) Raman
791	spectroscopy of synthetic, geological and biological vaterite a Raman spectroscopic
792	study. Journal of Raman Spectroscopy, 41, 193–201.
793	FIGURE CAPTIONS
794	Figure 1. Authigenic mineral textures in tuff deposits and Roman marine mortar. Scanning
795	electron microscopy backscattered electron (SEM-BSE) images. a, Portus Cosanus pier,
796	Orbetello, Italy (credit, J. P. Oleson) (Fig. 2). b, Bacoli tuff (BT), pumice clast. c, d, Neapolitan
797	Yellow Tuff (NYT), dissolving alkali feldspar, phillipsite and chabazite textures. e, Surtsey tuff,
798	Iceland, 1979 drill core, dissolving phillipsite and associated Al-tobermorite, 37.0 m, 100 $^{\circ}$ C
799	(credit, J. G. Moore). f, Portus Cosanus, pumice clast with dissolved glass. g, Portus Neronis,
800	Anzio, Italy, dissolving alkali feldspar (see also Fig. 5). h, Portus Cosanus, phillipsite textures. i,
801	Portus Cosanus, dissolving Campi Flegrei phillipsite [1], pozzolanic C-A-S-H binder [2] and Al-

- 802 tobermorite [3] (see Fig. 7i for X-ray microdiffraction patterns). j, Portus Baianus, Pozzuoli,
- 803 Italy, dissolving *in situ* phillipsite and associated Al-tobermorite (Fig. 9).
- 804 Figure 2. Ancient Roman concrete harbors and ROMACONS project drill sites, green circles: 1
- 805 Portus Cosanus, 2 Portus Traianus, 3 Portus Neronis, 4 Baianus Sinus. Volcanic districts, red
- 806 triangles (after Jackson et al. 2013a).
- 807 Figure 3. Compositions of phillipsite and Al-tobermorite in Roman marine mortars and geologic
- deposits. Electron probe microanalyses (EPMA), as molecular proportions (Tables 1, 2, S1). a,
- 809 Phillipsite, published compositions from [1] Passaglia et al. 1990; [2] de Gennaro et al. 2000; [3]
- 810 Gatta et al. 2010; [4] Jakobsson and Moore 1986. b, Al-tobermorite, various geologic deposits
- 811 (after [5] Jackson et al. 2013a). [6] Aguirre et al. 1998, Claringbull and Hey 1952; [7]
- Livingstone 1988; [8] Henmi and Kusachi 1992; [9, 10] Hoffman and Armbuster 1997; Merlino
- et al. 2001; [11] Mitsuda and Taylor 1978. Roman crystals have Al/(Si+Al) = 0.10-0.16 and
- 814 Ca/(Si+Al) = 0.45–0.69. Sodium and potassium range from 1–3 weight%. ANZ, *Portus Neronis*;
- 815 BAI, Baianus Sinus; PCO, Portus Cosanus; NYT, Neapolitan Yellow Tuff; BT, Bacoli Tuff.
- 816 Figure 4. Compositions of phillipsite and Al-tobermorite in Roman marine mortars and geologic
- 817 deposits. Electron probe microanalyses (EPMA), as molecular proportions (Tables 1, 2, S1). a,
- 818 Phillipsite, Ca+Mg-Na-K, see Fig. 2 for references to published compositions. Phillipsite
- 819 compositions in relict voids of *Portus Traianus* mortar, Ostia, Italy, are similar to phillipsite in
- 820 Tufo Lionato (TL) tuff coarse aggregate, erupted at 366±5 ka from Alban Hills volcano (Marra
- et al. 2009). b, Al-tobermorite, Si-Ca-Na+K, various geologic deposits (after [5] Jackson et al.
- 822 2013a). The most silicic compositions are similar to Al-tobermorite in Surtsey basaltic tuff,
- 823 Iceland (Jakobsson and Moore 1986). Tobermorite is not observed in NYT, BT, and TL, but
- 824 occurs in deeper Campi Flegrei deposits (Vanorio and Kanitpanyacharoen 2015).
This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am-2017-5993CCBY

825	Figure 5. Dissolution in Portus Neronis mortar and associated crystalline cementitious phases,
826	strätlingite and Al-tobermorite in the interfacial perimeter. a, In situ dissolution of a alkali
827	feldspar crystal fragment produced a 100 μ m ² dissolution mold in the already hardened
828	cementing matrix, petrographic image. b, X-ray diffraction patterns for cementitious minerals in
829	the interfacial zone of the partially dissolved alkali feldspar single crystal (F) determined through
830	X-ray microdiffraction include strätlingite (S), Al-tobermorite (T), and calcite (C), only weak
831	reflections of the feldspar single crystal are shown by the monochromatic X-ray beam; q is
832	calculated as $2\pi/d$ -spacing.
833	Figure 6. Images of Al-tobermorite and zeolite in pumice clasts. a, Portus Cosanus, Portus
834	Cosanus, dissolving Campi Flegrei phillipsite [1], pozzolanic C-A-S-H binder [2] and Al-
835	tobermorite [3], and later accumulations of very fine grained Al-tobermorite [4]. b, Portus
836	Neronis, examples of EPMA analyses in Portus Neronis mortar pumice clasts, with partially
837	dissolved alkali feldspar, relict geologic phillipsite, and associated Al-tobermorite in vesicles.
838	Figure 7. Comparison of microstructures showing Al-tobermorite crystallization in association
839	with zeolite alteration. a-h, Portus Cosanus, pumice clast. j-o, Baianus Sinus, relict pores in the
840	cementing matrix. SEM BSE images, energy dispersive X-ray (SEM-EDS) spectroscopy maps
841	and X-ray microdiffraction maps (see Figs. 8, 9 for details). i, X-ray microdiffraction patterns,
842	Portus Cosanus pumice clast: early Al-tobermorite (A, Fig. 1j, location [1]), later Al-tobermorite
843	(B, Fig. 1j, in vesicle near [1], C, Fig. 8b, location #66) and strätlingite (D, Fig. 8d, location #06).
844	Reference Al-tobermorite diffraction patterns from [1] Jackson et al. 2013a, Baianus Sinus relict
845	lime clast, [2] Yamazaki and Toraya 2001, Al-tobermorite synthesis; SEM-EDS maps b, c, f, g
846	scaled to red=20 normalized mass% at each point; SEM-EDS maps l-p scaled to red=maximum
847	mass %: Al, 9.5; Si, 24.7; K, 6.7; Na, 18.6; S, 10.2; Cl, 3.7.

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am-2017-5993CCBY

848	Figure 8. Authigenic Al-tobermorite and strätlingite associated with geologic phillipsite and
849	chabazite and in situ vaterite and calcite in a Portus Cosanus pumice clast (Fig. 7a-i). a, c, SEM-
850	BSE images. Note rounded perimeters of phillipsite rosettes (a) and carbonation of chabazite to
851	form calcite (c). b, d, X-ray microdiffraction maps, phillipsite (Phi), Chabazite (Cbz), and in situ
852	Al-tobermorite (Al-tbm), Strätlingite (Strat), Vaterite (Vtr), Calcite (Cal), and an amorphous
853	calcium carbonate phase. Asterisk (*) represents spotty Debye ring patterns indicative of crystals
854	too coarse (> 3 μ m) to produce regular diffraction rings with the monochromatic X-ray beam.
855	Fig. 7i analyses: (b) Al-tobermorite (C), #66, with strong vaterite pattern; (d) strätlingite (D),
856	#06, with weak vaterite pattern.
857	Figure 9. Authigenic mineral syntheses in relict voids of the cementing matrix, submarine
858	Baianus Sinus mortar (Fig. 7j-n). a, b, SEM-BSE images showing relict pores with in situ
859	crystalline textures. c, Diffraction patterns for Roman phillipsite and Al-tobermorite in (d) and
860	phillipsite in a Baianus Sinus pumice vesicle compared with Campi Flegrei (Gatta et al. 2010)
861	and Alban Hills phillipsite (Gualtieri et al. 2000). d, X-ray microdiffraction map, including Fig.
862	7n, showing in situ phillipsite (Phi), Al-tobermorite (Al-tbm), Ettringite (Ett), Vaterite (Vtr),
863	Calcite (Cal), Unknown (U). Asterisk (*) represents spotty Debye ring patterns indicative of
864	crystals too coarse (> 3 μ m) to produce regular diffraction rings with the monochromatic X-ray
865	beam. Fig. 10 X-ray diffraction patterns for Al-tobermorite at sites (6) BAIZ_63, and (7)
866	BAIZ_15 (Fig. 8d, #63 and #15), and Raman spectra for Al-tobermorite at sites (6) BAIZ_19, (7)
867	BAIZ_17 (Fig. 9d, near #59). e, SEM-EDS maps, silicon (Si), aluminum (Al), sodium (Na) and
868	sulfur (S) concentrations normalized to 20 mass% (red).
869	Figure 10. X-ray microdiffraction patterns and Raman spectra for Al-tobermorite in diverse
870	microstructural environments in Baianus Sinus mortar: relict lime clasts, pumice clasts and relict

- 871 voids. a, Al-tobermorite X-ray microdiffraction patterns from relict lime clasts, sites (1) LLP_24,
- 872 (2) SPH3_28, (3) PM_L233; pumice clasts, sites (4) PM_P19, (5) PM_17; relict voids: sites (6)
- BAIZ_63, (7) BAIZ_15 (see Fig. 9d, #63, #15). b, Al-tobermorite Raman spectra from the same
- or nearby crystals in the same microstructures: relict lime clasts: sites (1) LLP_15, (2) SPH3_29,
- 875 (**3**) PL_1; pumice clasts, sites (**4**) PL_4, (**5**) PL_5; relict voids: sites (**6**) BAIZ_19, (**7**) BAIZ_17
- 876 (see Fig. 9d, near #59). Raman spectra for calcite and vaterite (Behrens et al. 1995,
- 877 Wehermeister et al. 2010).
- 878 Figure 11. Raman spectra of Baianus Sinus C-A-S-H binder and Al-tobermorite, compared with
- 879 calcium-silicate-hydrate (C-S-H) binder and ideal tobermorite. Inferred Q³ linkages are shown in
- italics. Published compositions from [1] Kirkpatrick et al. 1997; [2] <u>http://rruff.info/Tobermorite</u>
- 881 R060147). Bands at 1074 and 1086 indicate C–O stretching in calcite (C) and vaterite (V).
- 882 Figure 12. ²⁹Si Nuclear magnetic resonance (NMR) of Al-tobermorite in *Baianus Sinus* relict

883 lime clasts (after Jackson et al. 2013b).

884

TABLES

Table 1. Phillipsite compositions measured by EPMA. Formulas were calculated on the basis of

886 16 oxygen and H2O by stoichiometry. Uncertainties in the weight percent oxides were 887 determined from the counting statistics and propagated through the calculation to the number of

888 formula units (Giaramita and Day 1990).

889 Table 2. Al-tobermorite compositions measured by EPMA. Formulas calculated on the basis of

890 18[O, (OH) and total H₂O was calculated by stoichiometry. Uncertainties in the weight percent

- 891 oxides were determined from the counting statistics and propagated through the calculation to
- the number of formula units (Giaramita and Day 1990).

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am-2017-5993CCBY

893	Table 3. Assignments of Raman frequency shifts to silicate and aluminate linkages in Baianus
894	Sinus C-A-S-H and Al-tobermorite compared with previous studies of C-S-H and tobermorite.
895	Table A1. Roman texts describing the geologic materials and cementitious processes of marine
896	concrete (Oleson 2014). Increasing complexity in Roman construction durability and
897	architectural design through invention, technology transfer, and competitive selection is
898	described explicitly by Vitruvius in de Architectura (2.1.2, 2.1.7). Historical intervals of
899	accelerated late Republican era innovations in construction engineering produced the resilient
900	and rock-like Roman harbor concrete structures (Jackson and Kosso 2013; Brandon et al. 2014).
901	Table S1. Phillipsite compositions measured by EPMA. Formulas were calculated on the basis
902	of 16 oxygen and H_2O by stoichiometry. Uncertainties in the weight percent oxides were
903	determined from the counting statistics and propagated through the calculation to the number of
904	formula units following (Giaramita and Day 1990).
905	

906

907

Figure 1

Figure 5 b а Strätlingite, Al-tobermorite Feldspar **Dissolution mold** 20 µm

Calcite (**C**) Strätlingite (**S**) Al-tobermorite (**T**) Alkali feldspar crystal fragment (**F**)

Normalized intensity

Figure 7

С

66	65	64	63	62	61	60	59	58	57	56
AJ-Tbm Vtr	Al-Tbm Vtr	Al-Tbm Vtr	Phi	Phi	Phi	Phi	Vtr	Vtr	Vtr*	+
55	54	53	52	51	50	49	48	47	46	45
Al-Tbm Vtr	Al-Tbm Vtr	Al-Tbm Vtr	Vtr	Vtr Phi	Vtr Phi	Cbz*	Cbz*	Cbz*	Vtr* Calc	Calc
44	43	42	41	40	39	38	37	36	35	34
Al-Tbm Vtr	Al-Tbm Vtr	Al-Tbm Vtr	Vtr	Vtr	Vtr	Cbz*	Cbz*	Cbz*	Cbz*	Cbz*
33	32	31	30	29	28	27	26	25	24	23
Al-Tbm Vtr	Al-Tom Vtr	AI-Tbm Vtr	Al-Tbm Vtr	Vtr	Vtr	Cbz*	Cbz*	Cbz*	Cbz*	Cbz*
22	21	20	19	18	17	16	15	14	13	12
Al-Tbm Vtr	Al-Tbm Vtr	Al-Tbm Vtr	Al-Tbm Vtr	Al-Tbm Vtr	Vtr	Cbz*	Cbz*	Cbz*	Cbz*	Cbz*
11	10	9	8	7	6	5	4	3	2	- d
Al-Tbm Vtr	Al-Tbm Cbz*	Cbz*	Cbz*	Cbz						

abazite Chabazite, Calcity Strätlingite 20 um

d

72	71	70	69	68	67	66	65
Vtr	Cbz Vtr*	Cbz	Vtr	Vtr	Vtr	Vtr Phi	Amorph
64	63	62	61	60	59	58	57
Amorph Vtr	Amorph Vtr	Cbz* Calc*	Cbz*	Vtr Calc	Vtr* Calc	Vtr	Calc
56	55	54	53	52	51	50	49
Vtr	Vtr	Cbz*	Cbz*	Cbz* Calc	Calc Cbz*	Calc	Phi Calc
48	47	46	45	44	43	42	41
Vtr Cbz	Vtr Calc	Amorph	Cbz*	Cbz*	Strat* Calc	Strat* Cbz	Arag
40	39	38	37	36	35	34	33
Vtr	Amorph	Amorph	-	Cbz*	Calc	Calc Cbz*	Calc
32	31	30	29	28	27	26	25
Vtr	Cbz* Vtr	+	Amorph	Phi	Phi Vtr	Phi	Calc Phi
24	23	22	21	20	19	18	17
Cbz*	Cbz*	Phi	Phi	Vtr	Amorph Vtr	Vtr	Calc
16	15	14	13	12	11	10	9
Cbz* Calc	Phi Cbz*	Phi Cbz*	Phi Vtr*	Vtr	Vtr	Vtr	Vtr U
8	7	6	5	4	3	2	1
Cbz* Calc	Cbz" Calc	Strat* Vtr*	Phi Calc, Vtr*	Phi	Vtr	Cbz*	Cbz

10 µm

15 µm

		gite	Ettrin	X	teo La VAN			ydroc		b			00		Ilipsite ict Voi	Rel	Cemo matri
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 ALTDm Phi Phi Phi Eff 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 Phi Phi Phi Phi Phi Phi Phi Viz Viz Viz ALTDm Phi	morite e, #54 e, vesicle e, e,	toberm illipsite illipsite mice ve illipsite T [2] illipsite	Al-Phi Phi Phi Phi Phi Phi Phi Phi Phi Phi	2.70 2.68 2.69 2.69 2.39 2.39	3.27 w 2.34 - 2.94 - 2.	67) 4.31) 4.27 7) 4.12 > 4.08 4.09 6) 7 4.12 > 4.09	2 2436 24.98 24.95 5.03	6.0 5.5	6.41 5.34 6.41 5.34	7 16	8.10 8.07	「「「「「「」」	1	ipsite, t Void	Phill	の変化していていた。	30 µm
Al-Tom Phi Al-Tom Phi Al-Tom Phi Phi <t< th=""><th>68</th><th></th><th>66</th><th>65</th><th>64</th><th>-</th><th></th><th></th><th>60</th><th>59</th><th>58</th><th></th><th>56</th><th>55</th><th></th><th>53</th><th>52</th></t<>	68		66	65	64	-			60	59	58		56	55		53	52
	Ett		Phi	Phi	Phi	Al-Thm	-	-	Phi	Al-Tbm	Phi		-	-		Phi	Al-Thm
	51	50	49	48	47	46	45	44	43	42	41	40	39	38	37	36	35
	n Et	Al-1bm U	Phi	Phi	Phi	Al-Tbm	-	Vtr	Vtr	Phi	Phi	Phi	Phi	Phi	Phi	Phi	Phi
	34	33	32	31	30	29	28	27			24	23	22	21	20	19	18
Phí Phi Phi Phí Phí U Phí ⁻ <mark>Vir Al-Tom Vir - Ai-Tom Al-Tom Phi Phi Phi</mark>	Ph	Phi	Phi	Al-Tbm	Al-Tbm	Al-Tbm	-	Vtr		-	Phi	U	Phi*	Phi	Phi	Phi	Phi
<u>1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16</u>	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1
Phí Phí Phí - U Vtr Al-Tom - U Al-Tom Phi	Al-Th	Phi [*]	Al-Tbm	U	-	Al-Tom	Vtr	-	-	-	\sim	U	-	Phi	Phi	Phi	Phi

200 µm

q (Å-1)

			Neapo Yellow		Bacoli T (BRI.05.			Baianus SinusPortus Neronis(06-BAI-03)(ANZ.02.01)			Portus Tr (PTR.0		<i>Trajaı</i> (GF	
		-			Pumice	Void	Pumice	Void		Pumice		Voi	d	Tufe
			1	3					А	В	С			
Weight%	6 Oxide LLD*	±2σ [‡]												
SiO ₂	0.04	0.45	53.1	52.0	58.6	58.8	46.7	39.5	57.3	56.1	60.2	46.0	50.1	49.
TiO ₂	0.19	0.02	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.
AI_2O_3	0.04	0.24	22.3	23.7	20.2	19.3	22.8	27.6	20.9	18.6	20.2	21.4	23.4	20.
Fe_2O_3	0.14	0.08	0.2	0.0	0.0	0.2	0.3	0.0	0.3	0.3	0.0	0.2	0.0	0.
MnO	0.13	0.01	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.2	0.
MgO	0.02	0.01	0.0	0.0	0.0	0.0	0.0	0.0	0.2	0.0	0.0	0.1	0.0	0.
CaO	0.03	0.16	7.6	8.2	1.1	0.4	2.0	10.7	1.3	0.9	1.0	4.8	4.1	4.
Na ₂ O	0.05	0.13	0.8	0.6	3.6	3.8	3.2	1.4	4.0	4.8	4.9	2.0	2.1	1.
K ₂ O	0.03	0.26	7.1	7.7	9.8	10.3	5.1	2.8	7.3	8.0	8.4	7.3	8.5	8.
Sum			91.1	92.2	93.5	92.7	80.2	82.0	91.4	88.7	94.6	81.8	88.4	84.
H_2O^{\dagger}			9.0	9.0	9.2	9.1	8.0	8.0	9.1	8.8	9.4	8.0	8.6	8.
Number	of atoms p		a unit bas	ed on 16O										
		±2σ [‡]												
Si		0.4	5.3	5.2	5.7	5.8	5.2	4.4	5.6	5.7	5.8	5.2	5.2	5.
Ti		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.
Al		0.2	2.6	2.8	2.3	2.2	3.0	3.7	2.4	2.2	2.3	2.8	2.9	2.
Fe ³⁺		0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.
Mn		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.
Mg		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.
Са		0.2	0.8	0.9	0.1	0.0	0.2	1.3	0.1	0.1	0.1	0.6	0.5	0.
Na		0.1	0.2	0.1	0.7	0.7	0.7	0.3	0.8	0.9	0.9	0.4	0.4	0.
К		0.3	0.9	1.0	1.2	1.3	0.7	0.4	0.9	1.0	1.0	1.1	1.1	1.
Sum			9.9	10.0	10.1	10.1	10.0	10.1	10.0	10.1	10.1	10.1	10.1	10.

Table 1. Phillipsite compositions measured by EPMA.

* 3σ lower limit of detection

** Calculated by stoichiometry

† Average absolute analytical uncertainty on the weight percent oxide

‡ Average absolute uncertainty on the number of atoms per formula unit, calculated following Giaramita and Day (1990).

			Baia	nus Sinus (Bay of Poz	zzuoli, RC	MACONS	core BAI.	06.03)	Portus Neronis (Anzio, ROMACONS core ANZ.02.01)						
			Large Li	ne Clast	Pumic	e Clast	Lime	Clast	Void	Pumice Clast		Pumice Clast				
			LLP.1	LLP.2	PL.2	PL.4	PL.7	PL.8	Y.17S		A1	4			A1 6	
Weight%	6 Oxide															
	LLD*	$\pm 2\sigma^{\dagger}$														
SiO ₂	0.06	0.39	40.1	38.4	45.5	47.6	37.9	39.9	39.0	44.2	45.5	45.7	47.5	44.8	43.2	44.6
Al ₂ O ₃	0.03	0.15	6.7	6.2	6.8	6.1	6.7	5.6	5.5	6.9	7.1	7.3	7.4	4.3	4.3	4.4
Fe ₂ O ₃	0.19	0.07	0.0	0.0	0.0	0.0	0.2	0.0	0.0	0.0	0.3	0.3	0.3	0.0	0.0	0.0
MgO	0.02	0.04	0.1	0.2	0.0	0.0	0.3	0.3	0.0	0.1	0.2	0.1	0.2	0.0	0.0	0.0
CaO	0.05	0.49	34.5	32.7	34.1	34.5	32.5	33.4	32.1	29.0	25.8	24.2	23.5	30.2	31.2	31.7
Na ₂ O	0.01	0.10	0.4	1.5	0.4	0.8	1.2	2.1	2.0	0.7	0.6	1.9	0.8	1.4	2.3	1.5
K₂O	0.03	0.09	0.6	1.0	0.8	1.0	0.7	0.6	0.9	1.1	0.9	1.6	1.4	0.4	0.7	0.5
Sum		0.68	82.4	79.9	87.6	89.9	79.5	81.8	79.5	81.9	80.4	81.0	81.2	81.0	81.7	82.7
H₂O ^{**}			12.2	11.7	13.2	13.5	11.7	12.0	11.7	11.8	11.8	11.9	12.1	11.7	11.6	11.8
Number	of atoms	s per fo	rmula unit	based on	18[O, (OH)]										
		$\pm 2\sigma^{\ddagger}$														
Si		0.03	4.9	4.9	5.2	5.3	4.9	5.0	5.0	5.3	5.5	5.5	5.6	5.5	5.3	5.4
Al		0.02	1.0	0.9	0.9	0.8	1.0	0.8	0.8	1.0	1.0	1.0	1.0	0.6	0.6	0.6
Fe ³⁺		0.01	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Mg		0.01	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Ca		0.05	4.6	4.5	4.2	4.1	4.5	4.5	4.4	3.7	3.3	3.1	3.0	3.9	4.1	4.1
Na		0.02	0.1	0.4	0.1	0.2	0.3	0.5	0.5	0.2	0.1	0.4	0.2	0.3	0.5	0.4
к		0.01	0.1	0.2	0.1	0.1	0.1	0.1	0.1	0.2	0.1	0.2	0.2	0.1	0.1	0.1
Sum		0.03	10.7	10.9	10.5	10.5	10.8	10.9	10.9	10.4	10.1	10.3	10.1	10.4	10.7	10.5
Cation ra	atios															
Ca/(Al+S	Si)		0.77	0.77	0.68	0.67	0.76	0.77	0.76	0.59	0.51	0.48	0.45	0.65	0.69	0.68
Al/(Al+Si)		0.16	0.16	0.15	0.13	0.17	0.14	0.14	0.15	0.16	0.16	0.15	0.10	0.10	0.11

* 3σ lower limit of detection

** Calculated by stoichiometry

† Average absolute analytical uncertainty on the weight percent oxide

‡ Average absolute uncertainty on the number of atoms per formula unit, calculated following Giaramita and Day (1990)

	F	Previous Studi	ies	Baianus Sin	Inferred Linkage	
Fre	quency (cm ⁻¹)		Assignment	Frequency	*,†,**	
C-S-H ^{*,†}	11	Å		C-A-S-H		
Ca/Si=0.83	Tober	morite		Ca/(Si+Al)≈0.8 [¶]	11Å Al- Tobermorite	
	*	†				
441–540	421	444	v₂(SiO₄) Internal Deformations	442–451	428–443	_
600–630	604	619	v₄(SiO₄) Symmetric Bending	_	638–642 ⁷	SB Q ³ (0AI) SB Q ³ (1AI)
660–680 ^{*,†,‡,§}	662	665	600–700	668–671	670–671	SB Q ² (0AI) SB Q ² (1AI)
			v ₁ (SiO ₄)		806-809	SS Q ¹ (0AI)
050			Symmetric Stretching		821-826	SS Q ¹ (1AI)
850	_	_	800–1200	—	837–842	SS AI-O ^{**,††}
					(840–900)	
998–1010	988	997		996	(913-1012) ¹	SS Q ² (0AI)
998-1010"	988	997		996	(913-1012)	SS Q ² (1AI)
1040–1114	1058	1032		(1068 vaterite)	1110–1113	SS Q ³ (0AI) ^{‡‡}
1040-1114	1050	1052		(1000 vatente)		SS Q ³ (1AI)
					1228	
			to be determined		1250	
					1297	

Table 3. Assignments of Raman frequency shifts to silicate and aluminate linkages in Baianus Sinus C-A-S-H and
Al-tobermorite compared with previous studies of C-S-H and tobermorite.

* Kirkpatrick et al. 1997

† Richardson et al. 2010

thttp://rruff.info/Tobermorite R060147, Crestmore Quarries, Riverside, CA

§ Black et al. 2007

^{II} Black 2009, 950-1000 cm⁻¹ band is also attributed to anti-symmetric stretching of Q² silicate linkages.

[¶] Jackson et al. 2013

[#] Frost et al. 1998, FT-Raman analysis of kaolinite, 645 band records SS of (SiO₄) tetrahedral units when

the incident laser beam is directed parallel to the c-axis of layered crystals.

¹ Weak bands at 913-918, 934-93, 990-1000, 1000-1012.

†† McMillan and Piriou, 1982

‡‡ Sharma et al. 1982, 655 band in gehlenite reflects vibrational modes of AlO₄ tetrahedra.

§§ Wehrmeister et al. 2010, vaterite and calcite bands obscure silicate stretching