1	Revision 1
2	
3	Structural characterization of marine nano-quartz in chalk and flint from North
4	Sea Tertiary chalk reservoirs for oil and gas
5	
6	VICTOR A. DRITS ¹ , JØRGEN SKIBSTED ² , OLGA V. DORZHIEVA ^{1,3} , ANTHONY E.
7	FALLICK ⁴ and HOLGERLINDGREEN ⁵
8	
9	
10	
11	^{1.} Geological Institute, Russian Academy of Science, Pyzhevsky per D7, 119017, Moscow, Russia
12	^{2.} Department of Chemistry and Interdisciplinary Nanoscience Center (iNANO), Aarhus University,
13	DK-8000 Gustav Wieds Vej 14, Aarhus C, Denmark
14	^{3.} Institute of Ore Geology, Petrography, Mineralogy and Geochemistry, Russian Academy of
15	Science, Staromonetny per D35, 119017, Moscow, Russia
16	^{4.} Scottish Universities Environmental Research Centre, Rankine Avenue, East Kilbride,
17	GlasgowG75 0QF, Scotland
18	^{5.} Geological Survey of Denmark and Greenland, Øster Voldgade 10, DK-1350, Copenhagen K,
19	Denmark

2

21

Abstract

22	A new type of quartz, a nano-quartz consisting of spherical particles, is assumed to have
23	formed by crystallization in the sea during sedimentation of the chalk in the North Sea and to have
24	remained largely intact during burial diagenesis. The presence and nature of this nano-quartz have
25	not been identified until recently, despite the fact that this quartz is the type present in the Upper
26	Cretaceous-Danian chalk reservoir for oil and gas in the North Sea, both in the flint and as dispersed
27	particles. In the present work detailed structural analysis of the nano-quartz has been carried out by
28	X-ray diffraction, solid-state ²⁹ Si and ²⁷ Al MAS NMR, thermal analysis including water release, IR-
29	absorption spectroscopy, and elemental analysis supplemented with analysis of oxygen isotope
30	composition. It is found that ^{IV} Al substitutes for Si and that ^{VI} Al probably is bonded to hydroxyls on
31	the particle surface of the nano-quartz structures. The charge compensation of tetrahedral Al^{3+} , in
32	addition to its conventional way of compensation by formation of the local structural arrangement
33	$[AlO_4/M^+]^o$ defects (M ⁺ = H ⁺ , Na, K, Li), can occur at the expense of the OH ⁻ group coordinating
34	one of the four tetrahedral Si ⁴⁺ nearest to the Al ³⁺ tetrahedron. The most significant feature of the
35	North Sea nano-quartz deduced in the present investigation is the presence of $[4H]_{Si}$ defects, also
36	known as hydrogarnet defects. This defect is present in up to 5% of the tetrahedral sites, whereas
37	$\mathrm{Al}^{3^{+}}$ occupies less than 1% of the tetrahedral sites. Two types of distribution of the [4H] _{Si} defects
38	were determined. In one of them the $[4H]_{Si}$ defects aggregates parallel to the (0001) plane to form
39	platelets as cracks with hydroxylated surfaces on both sides. The second type of $[4H]_{Si}$ defect
40	occurs in the form of isolated tetrahedral vacant sites. The formation of the aggregated $[4H]_{Si}$
41	platelets lying in the (0001) plane mostly increases the c parameters of the structure whereas the
42	isolated [4H] _{si} defects and K+Na impurities contribute to increasing the a parameters.
43	The remarkable correlation of the positional distribution of the samples revealed from the
44	relationships between a - and c -parameters and between amount of OH ⁻ groups responsible for

45	formation of $[4H]_{Si}$ defects and a - and c -parameters can be considered as evidence for the validity
46	of the structural formulae and, in general, of the main structural features of the studied samples. The
47	unusually high content of [4H] _{Si} defects in the nano-quartz samples may be related to their
48	formation by precipitation in waters of the Danish North Sea.
49	
50	Key words: Nano-quartz structure, nano-quartz formation, hydrogarnet defects, X-ray diffraction,
51	²⁷ Al and ²⁹ Si MAS NMR, IR spectroscopy, thermal water release, δ^{18} O isotope chemistry, elemental
52	analysis.
53	
54	Introduction
55	
56	Quartz is the most abundant mineral on the Earth's surface and it is composed of nearly pure
57	SiO ₂ that gives a strong X-ray diffraction (XRD) powder pattern with sharp <i>hkl</i> reflections. Quartz is
58	usually crystallized during magmatism, metamorphism, hydrothermal reactions or during diagenesis
59	at moderate to high temperatures. Despite the fact that sea water may be supersaturated with respect
60	to quartz crystallization (Millot 1970), this type of crystallization is usually assumed to be too slow
61	at ambient temperature to take place at a significant degree. However, an experimental study has
62	demonstrated that quartz may form at Earth-surface conditions in sea water (Mackenzie and Gees
63	1971). Quartz is present as an accessory mineral in most carbonate rocks, often together with other
64	silica minerals such as opal-CT and opal A. Usually quartz is assumed to have the well-established
65	standard α -quartz structure, i.e., trigonal crystal system with space group P3 ₂ 21 or P3 ₁ 21. We have
66	in detail investigated silica minerals from Danian chalk in six oil wells in the Danish part of the
67	Central Graben in the North Sea, where the only silica mineral present is a new form of quartz
68	composed of nano-size α -quartz spheres. The nano-quartz spheres are dispersed in the chalk matrix,

4

69 however, the flint in bands and nodules contains the same nano-quartz spheres (Jakobsen et al.

70 2000; Lindgreen et al. 2010, 2011). In some wells, the dispersed nano-quartz may constitute up to 71 70% of the chalk (Lindgreen et al. 2010).Quartz-rich layers are generally of low permeability and 72 may act as internal seals for oil in chalk reservoirs (Lindgreen et al. 2010). Current theories assume 73 that flint has formed through synsedimentary and post-depositional dissolution of Si-containing 74 organisms in the chalk followed by migration and precipitation in hollows formed by dissolution of 75 the chalk (Holmes 1965, p. 133-4; Bromley and Ekdale 1986; Clayton 1986; Zijlstra 1987; Madsen 76 and Stemmerik 2010). However, the identical structure of the nano-quartz dispersed in the chalk 77 and of the nano-quartz in the flint has, together with observations of structures in the sediments, 78 formed the basis of a new model for formation of flint in North Sea chalk (Lindgreen et al. 2011): 79 the nano-quartz in the flint, like the nano-quartz in the chalk matrix, has crystallized as nano-size 80 particles in the marine Chalk Sea environment. The colloidal quartz particles have then flocculated 81 and have been deposited on the sea floor mixed with calcitic bioclastic material. The pure flint 82 probably formed during periods when decreased pH in the water column dissolved the calcite 83 coccoliths during sedimentation and the silica was probably remolded after sedimentation 84 (Lindgreen et al. 2011).

85 The unit cell parameters, as determined by X-ray diffraction, for natural quartz may show a 86 variation of up to 0.03%, and there is a trend of increasing cell size with decreasing metamorphic 87 grade (Hurst and Storch 1981). In the North Sea nano-quartz, the unit-cell parameters, sizes of 88 coherent scattering domains (CSDs) and strain values deviate from those of normal α -quartz, the a 89 and c cell parameters being larger by as much as 0.10% (Lindgreen et al. 2011). Substitution, such as Al³⁺ for Si⁴⁺, has been deduced for guartz (Dennen 1966; Dennen and Blackburn 1970), 90 91 however, the substitution was deduced from elemental analysis and cell parameters. Application of 92 high-resolution Electron Paramagnetic Resonance (EPR) spectroscopy to the study of paramagnetic

5

93	defects in a large collection of crystalline quartz samples has shown following centres originating
94	mostly from impurity ions: H, Al, Cu, Ag, Ge, P, Ti, and Fe (Weil 1984). According to the EPR
95	data all Al-associated paramagnetic centres in quartz have shown that Al ³⁺ occurs exclusively at the
96	tetrahedral sites (Weil 1984, 2000; Botis and Pan 2009). Using ab initio calculations at the density
97	functional theory level, Botis and Pan (2009) investigated the nature of the $[AIO_4/M^+]^\circ$ defects
98	(M^+ = H, Li, Na, and K) and showed them to be stable in the α -quartz structure. The [4H] _{Si} defect,
99	the so-called hydrogarnet defect, where vacant tetrahedral sites have 4 adjacent OH ⁻ groups, is a
100	common defect in quartz, especially synthetic quartz (McLaren et al. 1983; Shinoda and Aikawa
101	1993; Cordier et al. 1994; Lin et al. 1994; McConnell et al. 1995; McConnell 1996; Rosa et al.
102	2005; Stalder and Neuser 2013). The [4H] _{Si} defect can cause development of planar defects in quartz
103	in the vacuum and temperature of the electron microscope (McConnell et al. 1995). Rosa et al.
104	(2005) calculated that the $(OH)_4$ group is the thermodynamically most stable water-related defect
105	and suggested that the $(OH)_4$ defects are likely to form platelets lying in the (0001) plane. The
106	objective of the present investigation is a detailed analysis of the nano-quartz by X-ray diffraction,
107	solid-state MAS NMR, IR-absorption spectroscopy, thermal analysis including analysis of water
108	release, and elemental analysis by atomic absorption spectrometry (AAS) in order to reveal the
109	particular structural and crystal-chemical features of flint and dispersed particles of nano-quartz.
110	
111	Materials
112	
113	The chalk matrix and flint from the Tertiary Danian chalk in Danish North Sea were
114	investigated. Cores from the wellsSif-1 and Nana-1 in the Halfdan Field, from well E-5 in the Tyra
115	Field and from well M-10 in the Dan Field have been sampled. Samples taken from two cores in

116 Sif-1, comprising both flint and chalk, are shown in Figure 1.

117	The flint samples were crushed to <0.25 mm in a mortar before investigation, whereas the
118	chalk samples were crushed to $\leq 2 \ \mu m$ before removal of calcite. Preliminary study of the samples
119	allowed a choice of only impurity free samples for the future investigations. One flint sample 5 (Sif-
120	1, 2057.63) (Table 1) was heated to 605°C for two hours and then investigated at room temperature
121	by XRD and NMR to observe the structural effects of the heating.
122	
123	Methods-experimental
124	
125	Removal of calcite
126	The large amounts of calcite in chalk have been removed by dissolution prior to the
127	mineralogical investigations of the non-calcite minerals. The chalk samples were crushed to pass a
128	4 mm sieve. The samples were then added to 200 ml of distilled water, and the calcium carbonate
129	was removed by adding acetic acid while keeping the solution buffered at pH 4.5 to 5. The
130	supernatant was removed by centrifugation and the residues were washed with distilled water to
131	remove excess ions, and air-dried. This buffered dissolution of calcite was applied in order to avoid
132	corrosion or dissolution of the fine-grained non-calcite minerals, such as the clay minerals and
133	nano-quartz. Clay minerals and other mineral impurities were not detected by XRD and carbonates
134	were not present according to DTA-EGA (the CO ₂ evolution curve).
135	
136	Atomic force microscopy
137	Atomic Force Microscopy (AFM) was carried out using a Rasterscope 3000 instrument. Intact
138	rock specimens were small pieces of chalk or flint glued onto gold-coated sample holders. In
139	samples with small amounts of non-calcite minerals these could only be identified and imaged in
140	residues. For such samples, the residues were dispersed ultrasonically in distilled water and the

141	specimens prepared by leaving a drop of the suspension to dry under ambient conditions on a block
142	of highly oriented pyrolytic graphite. AFM was carried out at ambient conditions with the tip
143	running in non-contact mode, a force of 0.175 nN and a scanning speed of 500 nm/s.
144	
145	X-ray diffraction
146	The flint samples were crushed by hand in a mortar to pass a 250 μ m sieve whereas the
147	residual samples were processed after removal of calcite. XRD patterns were obtained using $CoK\alpha$
148	radiation with a Philips PW3040 diffractometer having a vertical goniometer PW3050 with a
149	curved graphite monochromator and a fine-focus tube. Randomly oriented specimens were analyzed
150	using 1° fixed divergence and anti-scatter slits and intensities were measured for 40 s per 0.02 °2 θ
151	step in the range 23–91°20. An internal standard of 5% Si was used.
152	
153	Determination of the unit cell parameters. This procedure included the following steps: (1)
154	calibration of <i>hkl</i> peak positions using those of Si as an internal standard; (2) removal of the
155	contribution of K_{α_2} from each <i>hkl</i> peak mathematically, assuming that profiles of both K_{α_1} and K_{α_2}
156	maxima are described by the same Pearson function which provided a fit with $R_{W_P} < (2-4)$ %; (3)
157	the profile of each individual <i>hkl</i> peak corresponding to K_{α_1} was used to determine its position (2 θ)
158	and d value. The Jade [®] computer program was used for the determination of the unit cell parameters
159	by the least-squares method.
160	
161	Determination of the mean size of coherent scattering domains, CSD's, and microstrains. The
162	effective breadth of each <i>hkl</i> reflection corresponding to K_{α_1} is determined as a ratio of its area to

amplitude. These values were determined for *hkl* reflections of a sample and for those of a flat

)

164 perfectly crystalline Si standard. To a fair approximation the breadth, B, of an experimental

165 reflection is described by the equation (Moore and Reynolds 1997):

166
$$B^2 = \beta^2 + \beta_{st}^2$$
, (1)

167 Where β is the pure, undistorted breadth in degree 2 θ (in radians) and β_{st} is the same quantity for a

168 peak from the crystalline Si standard. A reflection breadth, β , is determined by the influence of two

169 main parameters, having different dependences on θ . One of them β_L is related to the mean size of

170 coherent scattering domains, L, according to the Scherrer equation:

171
$$L = k\lambda/\beta_L \cos\theta , \qquad (2)$$

172 where θ and λ are the angular position of the studied *hkl* reflection and the wave length,

173 respectively.

174 The second factor, β_{str} , is controlled by microstrains determined by a relative variation of d-

175 spacing $|\Delta d/d|$ at each given θ and depends on θ as:

176
$$\beta_{str} = |\Delta d/d| \tan \theta.$$
 (3)

177 A mutual influence of both factors determines the breadth, β , of the experimental reflection

178 which to a good approximation is related to β_L and β_{str} as:

179
$$\beta^2 = \beta_L^2 + \beta_{str}^2 \,. \tag{4}$$

180 Thus, to determine both a mean size of CSD's and microstrains along a normal to the (*hkl*)

181 plane requires the use of the β values for at least two reflections having two orders of *hkl* indices, for

182 example 100 and 200. Solution of two equations (4) for β_{100} and β_{200} allows calculation of the values

183 of interest.

184

185 Solid-State NMR Spectroscopy

186 Solid-state ²⁷Al and ²⁹Si experiments were performed on Varian Direct-Drive VNMRS-600

187 (14.09 T) and Varian INOVA-400 (9.39 T) spectrometers, respectively. The ²⁷Al MAS NMR

9

188	spectra were acquired with a home-built CP/MAS probe for 4 mm o.d. zirconia (PSZ) rotors, using
189	a pulse width of 0.5 µs and a rf field strength of $\gamma B_1/2\pi = 50$ kHz (i.e. a flip angle $< \pi/6$ for ²⁷ Al, I =
190	5/2, in a solid) to ensure quantitative reliability of the intensities, observed for the ²⁷ Al central
191	transition for sites experiencing different quadrupole couplings. Moreover, ¹ H decoupling ($\gamma B_2/2\pi =$
192	50 kHz), a spinning speed of $v_R = 13.0$ kHz, and a relaxation delay of $2 - 4$ s were employed. The
193	27 Al MAS spectrum of the probe itself with an empty spinning (v _R = 13.0 kHz) PSZ rotor showed a
194	broad resonance of very low intensity. This spectrum was subtracted from the ²⁷ Al MAS spectra of
195	the quartz samples prior to the quantitative evaluation of the observed intensities. The ²⁹ Si MAS and
196	²⁹ Si{ ¹ H}CP/MAS NMR experiments (9.39 T) used a home-built CP/MAS probe for 7mm o.d.
197	rotors and spinning speeds of $v_R = 6000$ Hz and $v_R = 4000$ Hz, respectively, and rf field strengths of
198	$\gamma B_1/2\pi = \gamma B_2/2\pi = 49$ kHz for ²⁹ Si and ¹ H. The single-pulse experiments employed a 45° excitation
199	pulse whereas the CP/MAS experiments used a standard CP rf-pulse sequence with ¹ H TPPM
200	decoupling during acquisition. ²⁹ Si chemical shifts are referenced to an external sample of
201	tetramethylsilane (TMS), while ²⁷ Al chemical shifts are referenced to an external sample of a 1.0 M
202	aqueous solution of $AlCl_3 \cdot 6H_2O$.
203	
204	Elemental composition by Atomic Absorption Spectrometry (AAS)
205	EDAX analysis of dispersed nano-quartz showed that Si is dominant and only minor amounts
206	of Al, Na and K are present in the nano-quartz. Other major elements were not detected in

207 significant amounts except for traces of Ca in the residues because Ca in these samples was present

as adsorbed cations residual from the removal of calcite. Because of the small contents of cations

209 other than Si, total chemical analyses were made using HF-H₃BO₃ dissolution in Teflon vessels

210 (Bernas 1968) followed by AAS determination of dissolved Al, Na and K. The AAS determination,

211 using a Perkin Elmer Analyst 400 spectrometer, is more accurate than the XRF method especially

10

212	for the light elements, Na and Al, and in general when the content of cations is low. The amounts of
213	Al ₂ O ₃ , K ₂ O and Na ₂ O were determined by AAS using nitrous oxide-acetylene flame for Al and air-
214	acetylene flame for Na and K. The absorption standard curve was linear in the ranges 0.5-1.0 ppm
215	found in the solutions for the three elements. The dissolution method of Bernas (1968) results in
216	solutions having a very low ionic strength which is very important for accurate AAS determinations
217	at low concentrations, the matrix effect being minimal. The possible errors in estimation of the
218	weight amounts of Al ₂ O ₃ , Na ₂ O, and K ₂ O varied from 5 to 15%. The large amounts of Si did not
219	allow an accurate determination of Si better than $\pm 1\%$. The flint samples were raw samples and
220	probably had Na^+ from pore water adsorbed, whereas the chalk residue samples were Ca^{2+} -
221	saturated, because the buffered dissolution of the calcite left the solution with Ca^{2+} as the dominant
222	cation. Al was divided into ^{IV} Al and ^{VI} Al based on the ²⁷ Al NMR analyses.
223	
224	Infrared spectroscopy
225	Mid-infrared absorption spectra were obtained at room temperature in transmission mode
226	using a Bruker Vertex 80v FTIR spectrometer, coupled with a Hyperion 1000 microscope using a
227	liquid nitrogen cooled MCT detector and a KBr beamsplitter. 600 scans in a range of 3700-3200
228	cm^{-1} were recorded with a spectral resolution of 2 cm^{-1} . Flint specimens were prepared as both side
229	polished plates with 50 μ m thickness whereas residual specimens were recorded from thin layers of
230	powder where the thickness was not controlled.

Each spectrum was analyzed using the OPUS 7.1 software. Baseline correction was

232 performed automatically by the "Concave Rubberband" OPUS function (number of iterations – 15,

- 233 number of baseline points 64). Smoothing was also carried out automatically (number of
- 234 smoothing points 13). The position of bands was determined by the second derivative and
- 235 decomposition of the partially overlapping bands. For each studied sample 4-6 spectra were

obtained from different parts of the specimen because samples had a certain degree of heterogeneityof density.

238

239 Thermal analysis (DTA-EGA)

240 Thermal analysis was carried out using a Stanton-Redcroft DTA 673-674 instrument with gas 241 outlet to non-dispersive infrared H₂O and CO₂ detectors (Morgan 1977). The sensitivity using 242 infrared detection is very high and makes it possible to quantify carbonates and water release 243 separately (Morgan 1977). The gas (in the present case analytical grade N_2) flowed through an oven 244 with a specially designed outlet at the top and then through first the IR detector for H₂O and then 245 the IR detector for CO₂. Both detectors were measuring the gases at a 1000 ppm scale. Furthermore, 246 flow controllers stabilized the flow at 400ml/min. A run with CuSO₄·5 H₂O was used for calibrating 247 the H_2O release. A flow of analytical grade N_2 was used before each sample run until the baselines 248 for the gases were horizontal, the heating was then initiated at 10°C/min until 1000°C. Peak areas 249 were determined by integration. The overall accuracy of the determinations was about 10% relative. 250 Both H₂O and CO₂ were determined, which is an advantage compared to thermogravimetric 251 analysis where overlap may occur. The analyses showed that carbonates were not present in the flint 252 samples or in the residue samples after dissolution treatment. 253

254 Isotope geochemistry

- δ^{18} O of silica samples was determined by the Macaulay et al. (2000) modification of the laser
- fluorination procedure of Sharp (1990). The precision and accuracy of the measurement of the
- 257 oxygen isotopic composition of the CO₂ are $\pm 0.2\%$ (1 σ) and NBS 28 gives 9.6%; data are reported
- 258 as δ values in % relative to V-SMOW. The samples were vacuum degassed overnight at room

259	temperature to remove labile adsorbed species; higher temperature was not employed to avoid
260	possible loss of structural water and hydroxyl, which may have differentially affected the samples.
261	
262	Results
263	
264	Atomic force microscopy
265	Atomic force microscope images of the two studied samples – a residue from chalk sample 12
266	(Sif-1, 2071.13) and from a flint sample 13 (Sif-1, 2079.34) are shown in Figures 2a and b. Note the
267	similarity in structure: both are composed of nano-size spherical or rounded particles. These
268	features are seen especially well in Figure 2a.
269	
270	X-ray diffraction
271	19 samples were studied using the X-ray diffraction, the list of which is given in Table 1. X-
272	ray diffraction for the region $20-90^{\circ}2\theta$ for a residue sample 12 (Sif-1, 2071.13 m), a flint sample 13
273	(Sif-1, 2079.34 m) and the standard quartz are shown in Figure 3a, b, and c, respectively. The peak
274	height is considerably larger for the standard quartz compared to the two nano-quartz samples,
275	when the standard Si added is used as a reference. The largest discrepancy between the two nano-
276	quartz samples and the standard quartz is observed in the high-angle region $80-82^{\circ}2\theta$, where the
277	sharp 212, 203 and 301 peaks of the standard quartz are strongly different from the broad and
278	poorly resolved peaks of the two nano-quartz samples (Figure 3d). However, the high-angle
279	patterns for the residue nano-quartz and for the flint nano-quartz are very similar. The observed
280	significant broadening of the reflections results from microstrains having high values (Table 1).
281	The quartz from the chalk and flint samples has a three-dimensional periodicity of the lattices
282	and is characterized by having significantly larger a - and c -parameters as compared to those of

283	normal quartz (Table 1). The range of the parameter variation is from 4.9164 Å to 4.9195 Å for the
284	<i>a</i> -parameter, and from 5.4047Å to 5.4097Å for the <i>c</i> -parameter, whereas the standard Merck
285	quartz has an <i>a</i> -parameter of 4.9144Å and a <i>c</i> -parameter of 5.4055 Å (Table 1). Another
286	distinguishing feature is that the quartz in the studied samples consists of much smaller CSD's
287	compared to those of normal quartz (Table 1). The values of L_{100} of the studied quartz vary from 56
288	to 72 nm for the chalk and from 47 to 70 nm for the flint samples (Table 1). The L_{101} values of the
289	quartz also vary within similar intervals: 67-84 nm for the chalk and 56-88nm for the flint samples
290	(Table 1). Note that microstrains have similar values along both studied crystallographic directions
291	(Table 1).
292	The XRD pattern of the sample 5 (Sif-1, 2057.63), which had been heated to 605°C for two
293	hours, was identical to the pattern of the natural sample.
294	
295	MAS NMR
296	14 samples were studied using the ²⁷ Al MAS NMR, the list of which is given in Table 2. The
297	²⁷ Al MAS NMR spectra of three nano-quartz samples are shown in Figure 4. The spectra of
298	
	samples 7 (Sif-1, 2065.0, flint), 10 (Sif-1, 2071.08, chalk) and 17 (Nana-1, 2135.8, flint) are
299	samples 7 (Sif-1, 2065.0, flint), 10 (Sif-1, 2071.08, chalk) and 17 (Nana-1, 2135.8, flint) are dominated by a resonance with a center of gravity at 56 ppm, originating from Al in tetrahedral
299 300	samples 7 (Sif-1, 2065.0, flint), 10 (Sif-1, 2071.08, chalk) and 17 (Nana-1, 2135.8, flint) are dominated by a resonance with a center of gravity at 56 ppm, originating from Al in tetrahedral coordination. The peak falls in the chemical shift range for framework Al(–O–Si) ₄ sites and thus it
299 300 301	samples 7 (Sif-1, 2065.0, flint), 10 (Sif-1, 2071.08, chalk) and 17 (Nana-1, 2135.8, flint) are dominated by a resonance with a center of gravity at 56 ppm, originating from Al in tetrahedral coordination. The peak falls in the chemical shift range for framework Al(–O–Si) ₄ sites and thus it is assigned to Al ³⁺ substituting for Si ⁴⁺ in the tetrahedral sites of the quartz structure, following an
299 300 301 302	samples 7 (Sif-1, 2065.0, flint), 10 (Sif-1, 2071.08, chalk) and 17 (Nana-1, 2135.8, flint) are dominated by a resonance with a center of gravity at 56 ppm, originating from Al in tetrahedral coordination. The peak falls in the chemical shift range for framework Al(–O–Si) ₄ sites and thus it is assigned to Al ³⁺ substituting for Si ⁴⁺ in the tetrahedral sites of the quartz structure, following an earlier ²⁷ Al NMR study of the incorporation of Al ³⁺ guest ions in calcium silicate phases (Skibsted
 299 300 301 302 303 	samples 7 (Sif-1, 2065.0, flint), 10 (Sif-1, 2071.08, chalk) and 17 (Nana-1, 2135.8, flint) are dominated by a resonance with a center of gravity at 56 ppm, originating from Al in tetrahedral coordination. The peak falls in the chemical shift range for framework Al(–O–Si) ₄ sites and thus it is assigned to Al ³⁺ substituting for Si ⁴⁺ in the tetrahedral sites of the quartz structure, following an earlier ²⁷ Al NMR study of the incorporation of Al ³⁺ guest ions in calcium silicate phases (Skibsted et al. 1994). A minor peak at 4 – 5 ppm is also observed for all samples whereas the ²⁷ Al MAS
299 300 301 302 303 304	samples 7 (Sif-1, 2065.0, flint), 10 (Sif-1, 2071.08, chalk) and 17 (Nana-1, 2135.8, flint) are dominated by a resonance with a center of gravity at 56 ppm, originating from Al in tetrahedral coordination. The peak falls in the chemical shift range for framework $Al(-O-Si)_4$ sites and thus it is assigned to Al^{3+} substituting for Si^{4+} in the tetrahedral sites of the quartz structure, following an earlier ²⁷ Al NMR study of the incorporation of Al^{3+} guest ions in calcium silicate phases (Skibsted et al. 1994). A minor peak at $4 - 5$ ppm is also observed for all samples whereas the ²⁷ Al MAS NMR spectrum of the flint sample 7 (Sif-1, 2065.0) in addition includes a small resonance at 14
 299 300 301 302 303 304 305 	samples 7 (Sif-1, 2065.0, flint), 10 (Sif-1, 2071.08, chalk) and 17 (Nana-1, 2135.8, flint) are dominated by a resonance with a center of gravity at 56 ppm, originating from Al in tetrahedral coordination. The peak falls in the chemical shift range for framework Al(–O–Si) ₄ sites and thus it is assigned to Al ³⁺ substituting for Si ⁴⁺ in the tetrahedral sites of the quartz structure, following an earlier ²⁷ Al NMR study of the incorporation of Al ³⁺ guest ions in calcium silicate phases (Skibsted et al. 1994). A minor peak at 4 – 5 ppm is also observed for all samples whereas the ²⁷ Al MAS NMR spectrum of the flint sample 7 (Sif-1, 2065.0) in addition includes a small resonance at 14 ppm. The 4–5 ppm peak has almost the same chemical shift and line shape as observed for

resulting from Portland cement hydration (Andersen et al. 2006) and for dioctahedral Al-rich

307

308	2:1clay minerals (Sanz and Serratosa 1984; Sanz 1990; Takahashi et al. 2008). In the work of
309	Andersen et al. (2006) the origin of the octahedral Al resonance at 5 ppm was investigated in detail
310	for several different samples, using different NMR techniques, and it was finally assigned to
311	nanostructured aluminate species, including Al(OH) $_{6-x}^{3-}$ or O _x Al(OH) $_{6-x}^{-3-x}$ sites, formed on the
312	surface of the C-S-H phase. Following this assignment, and the strong similarity in ²⁷ Al chemical
313	shift and linewidth, the observed ^{VI} Al resonance at $4-5$ ppm (Figure 4) will be ascribed to
314	octahedral Al(OH) ₃ sites formed at the surface of the quartz crystals. The ²⁷ Al MAS NMR spectra
315	allow determination of the relative fractions of aluminum atoms in the different coordination
316	environments as summarized for the samples in Table 2.
317	The ²⁹ Si MAS NMR spectra of the four studied samples – two flint samples 7 (Sif-1, 2065.0)
318	and 17 (Nana-1, 2135.8), the chalk quartz sample 10 (Sif-1, 2071.08), and the commercial quartz
319	(Figure 5) all contain a narrow resonance at -107.4 ± 0.2 ppm, in accordance with the well-known
320	chemical shift for α -quartz (Lippmaa et al. 1980, Spearing and Stebbins 1989) with its crystal
321	structure containing fully condensed SiO_4 tetrahedra (i.e. $Q^4(4Si)$ sites). The line width of the
322	resonance varies around FWHM = 0.60 ppm (sample 10, Sif-1, 2071.08, chalk) for the studied
323	nano-quartz samples whereas it is significantly smaller for the commercial quartz (FWHM = 0.22
324	ppm). Impurity ions in the quartz lattice may distort the nearest SiO ₄ tetrahedra and thereby result in
325	an increased linewidth. Moreover, Si sites near the surface of the crystallites will exhibit some
326	distortion/tension which will contribute to the line width as well. Thus, the significantly smaller line
327	width for the commercial quartz reflects that the crystallites in this sample are much larger than
328	those of the core samples, combined with a smaller fraction of impurity ions in the commercial
329	quartz sample. The crystallites of the nano-quartz samples are rather similar in size, and therefore
330	the variations in line width primarily reflect variations in impurity ions in the crystal lattices. These

results are in agreement with small sizes of CSD's and high values of microstrains which provided a
significant broadening of *hkl* reflections in the XRD pattern of the studied samples.

333 Improved information about the surfaces in the nano-quartz samples is obtained from ²⁹Si{¹H} CP/MAS NMR spectra (Figure 6) acquired using three different CP contact times (τ_{CP} = 334 2.0, 4.0, and 8.0 ms). These spectra only include resonances from Si sites with hydroxyl groups or 335 336 bound water molecules in the near vicinity. The resonance at -107.4 ppm is observed for all nano-337 quartz samples and with increasing intensity on going from a contact time of 2.0 ms to 8.0 ms. The 338 observation of this resonance may reflect that the surface is hydrated or hydroxylated since the 339 resonance originates from $Q^4(4Si)$ sites with structural environments in which Si cations interact 340 directly with hydroxyls or water molecules. Therefore, this resonance most likely originates from 341 hydroxylated surfaces formed by aggregation of empty tetrahedral sites that have four adjacent OH 342 groups bonded to Si in adjacent tetrahedral sites, the [4H]_{Si} hydrogarnet defect (Figure 7) (McLaren 343 et al. 1983; Shinoda and Aikawa 1993; Cordier et al. 1994; Lin et al. 1994; McConnell 1996; de Leeuw et al. 1999; Rosa et al. 2005). The ²⁹Si{¹H} CP/MAS NMR spectra of the nano-quartz 344 345 samples also include a peak at higher frequency which seems to originate from two overlapping 346 resonances, corresponding to a high-frequency shoulder at -97.6 to -98.0 ppm and the most intense 347 component in the range -99.6 to -99.8 ppm for the three nano-quartz samples. Following earlier 348 studies of silica gels and highly siliceous zeolitic framework structures, these resonances reflect the hydroxylated surface and empty tetrahedral sites with OH⁻ bonded to Si⁴⁺. Therefore, the 349 350 resonances at -99.6 to -99.8 and at -97.6 to -98.0 ppm can be assigned to the overlapping peaks 351 from (Si–O)₃–Si*–OH sites which contain the [4H]_{Si} hydrogarnet defects distributed in the form of aggregates (Figure 7) and isolated defects (Figure 8a), respectively. The ²⁹Si{¹H} CP/MAS NMR 352 353 spectra of the studied samples contain also two overlapping peaks located at -94.0 ppm and -91.7 354 ppm both having very low intensity. The highest intensity for the overlapping -91.7 and -94.0 ppm

16

355	resonances is observed for the shortest contact time ($\tau_{CP} = 2.0 \text{ ms}$), indicating that they originate
356	from Si sites in the very near vicinity of H atoms. Following the information derived from the ²⁷ Al
357	MAS NMR spectra of the samples (vide infra), these peaks are ascribed to surface sites of the type
358	(Si-O) ₂ -Si*-(OH) ₂ and (Si-O) ₂ -Si*-OH-OAl, where the latter represents a Q ³ (Al)site where Si is
359	next nearest neighbor to a hydroxylated Al ³⁺ having tetrahedral coordination. The presence of such
360	Al-H defect sites in the studied samples is determined by IR (see below).

361

362 Infrared spectroscopy

363 11 samples (# 2, 3, 5, 7, 8, 9, 12, 14, 17, 18, and 10) were studied by infrared spectroscopy. 364 The characteristic feature of the IR spectra of the studied nano-quartz samples that strongly 365 distinguish them from spectra of natural quartz of different origins is the presence of two most intense and closely located OH absorption bands at 3588 and 3613cm⁻¹ (Figure 9). Individual 366 positions and intensities of these partially overlapping bands were determined by second derivatives 367 368 with a subsequent decomposition procedure (Figure 9). The ratio of intensities for these bands at 3588 and 3613 cm⁻¹ corresponding to the spectra having different integrated intensities of the 369 370 partially overlapping bands is close to 2:1 (Figure 10) showing that the origins of these bands are 371 somehow interrelated. Other diagnostic regions of the IR spectra may also be divided into two groups. One of them contains two wide and weak OH absorption bands at 3378–3381cm⁻¹ and 372 3436-3444 cm⁻¹ whereas the second group in addition contains the third band at 3473 - 3474 cm⁻¹ 373 374 (Figure 9). Unfortunately, it was not possible to obtain a homogeneous and uniform thickness of the 375 specimens of the different samples for the acquisition of the IR spectra. Moreover, intensities of the 376 absorption bands were varied in the IR spectra obtained from different specimens of the same 377 sample. For example, in different spectra of sample 14 (Sif-1, 2088.3) the maximal and minimal intensities of the bands at 3588cm⁻¹ differ from each other by almost five times. However, after 378

normalization of these spectra to that having the highest intensity of the bands at 3588 and 3613 cm⁻¹, intensities and profiles of the other bands having lower frequencies are almost identical or very
similar. It was concluded that the main factor responsible for the observed intensities variation in
the spectra from different parts of the same sample is related to different thicknesses of these parts.
Therefore, intensities of the bands in each spectrum were normalized to that of the band at 3588 cm⁻¹
which was the same in all spectra and equal to 100% in arbitrary units.

- 385
- 386

Thermal analysis (DTA-EGA)

387 14 samples were studied using the thermal analysis, the list of which is given in Table 3 and 388 4. The curves for evolved water (EWA) for all samples have a peak at \sim 570°C (Figure 11) and 389 some have an additional peak at ~360°C (Table 3). Two flint samples, 8 (Sif-1, 2066.3) and 9 (Sif-1, 390 2070.94), have practically identical EWA curves. The H₂O evolution curve for the residue sample 391 12 (Sif-1, 2071.13) has a double peak at 570°C and 650°C (Figure 11). The amount of water 392 released above 300°C during heating varies from 0.30% to 2.1% (Table 3). Usually, DTA curves 393 for quartz have an exothermic peak at 573 °C due to the $\alpha \rightarrow \beta$ transition at this temperature. This 394 peak was not detected in the DTA curves of the nano-quartz samples, despite the fact that this peak 395 usually is very sharp for quartz. This lack of a sharp peak at the $\alpha \rightarrow \beta$ transition temperature 396 probably reflects that the first-order character of the transition is strongly reduced in natural nano-397 size quartz because of the clamping imposed on each grain by the surrounding nano-crystallites 398 (Rias et al. 2001). In addition, one has to take into account that the hydrogarnet defect incorporation 399 in quartz is an endothermic reaction (Rosa et al. 2005) and thus, the hydrogarnet dehydroxylation 400 also should have the same nature. Surface-adsorbed H₂O is released at low temperature, up to 401 200°C. The release of the H₂O at \sim 550°C seen in EWA for the North Sea quartz (Figure 11, Table 402 3) corresponds to the release of OH^- from the $[4H]_{Si}$ defect at 550°C observed by McLaren et al.

403 (1983), but includes also the release of OH^{-} from $Al(OH)_{3}$ at the particle surfaces. OH^{-} groups at the

404 surfaces of silica minerals are released continuously as the temperature increases (Segnit et al.

405 1965).

406

407 Structural formulae

408 The samples contain 0.11–0.73% Al₂O₃, 0.016–0.60% Na₂O and 0–0.22% K₂O (Table 2, these values were estimated with relative errors 5–15%). According to the 27 Al MAS NMR spectra. 409 410 each sample contains tetrahedral and octahedral Al sites (Table 2). The results of thermal analysis 411 showed that the weight content of H₂O released from the samples heated from 300 to 560-600°C varies from 0.30% to 2.10% with relative errors of 10% or lower (Table 3). According to the ²⁷Al 412 413 MAS NMR data, each sample can be considered as a physical mixture of two phases: bulk nano-414 quartz incorporating tetrahedral Al sites and an Al(OH)₃ phase with octahedrally coordinated Al 415 formed at the surface of nano-crystals of quartz. In the general form, the structural formula may be 416 presented as:

- .
- 417 $Na_{\alpha}K_{\beta}(Si_{(1-\Box y-\gamma)}{}^{IV}Al_{\gamma})O_{2-x}OH_{x}$

418 The total molar amount of Al was calculated using the ratio of corresponding weight amount of Al₂O₃ to its molar weight, whereas the amount of ^{IV}Al and ^{VI}Al were determined using the total 419 molecular amount of Al and the ^{IV}Al/^{VI}Al molar ratio from the ²⁷Al MAS NMR spectrum of the 420 421 sample. Na_q and K_β are molar amounts of Na and K in the sample, OH_x is equal to the difference 422 between the total molar amount of OH groups in the sample and that related to the molar amount of ^{VI}Al corresponding to Al(OH)₃. The value of OH_x consists of two parts, one of which compensates 423 the extra positive charge of Na, K, ^{IV}Al which is equal to $|(Na_{\alpha} + K_{\beta}) - {}^{IV}Al_{\gamma}| = |m|$, and the other 424 part that is equal to $OH_v = OH_{x^-} |m|$. The number of vacant tetrahedra is $\Box_v = OH_v/4$. In the formula 425

426 the total negative charge (4 - 3x) is equal to that of the positive charge if the amount of Si is $(1 - \Box_y)$

427 –γ).

428

429 Oxygen isotopic composition

The oxygen isotopic composition of 14 studied samples (Table 5) shows δ^{18} O values of 24.9 430 to 29.4‰. Whilst the δ^{18} O value for sample 18at the most shallow depth (1963.52 m in Well M-10) 431 is the highest reported (29.4‰), and the two lowest measured δ^{18} O values (identical at 24.9‰) are at 432 433 the greatest depths (respectively 2794.3 and 2826.84m in Rigs-1), see Figure 12, we do not argue 434 that there is convincing evidence for either a systematic, or indeed stepwise, trend with depth: ten δ^{18} O values within a narrow depth range of 2057.63 to 2135.8m have an analytically significant 435 δ^{18} O variation of 2.5% (26.4 to 28.9). Whilst the details of the δ^{18} O variations (e.g. with age and 436 syndepositional characteristics such as temperature, water δ^{18} O etc; and/or with post-depositional 437 438 effects) will likely prove informative, such consideration is beyond the remit of this paper, and so 439 we focus rather on first-order interpretation. The overall mean of the 13 measured δ^{18} O values is 27.5±2.6‰ (1 σ), and excluding the three 440 441 extreme values (see Figure 12) the ten remaining average to $27.8\pm0.9\%$. These values are similar to 442 those for primary marine silica (26.6 to 27.7% for purified material) precipitated in the South Oman 443 Salt Basin at the Precambrian/Cambrian boundary (Ramseyer et al. 2013). Using the quartz-water 444 oxygen isotope fractionation calibration suggested by Matsuhisa et al. (1979), the argument is not 445 significantly affected if the amorphous silica calibration of Kita et al. (1985) is substituted, and using an estimated seawater δ^{18} O of -1.2‰ on a deglaciated Earth (see Jaffres et al. (2007) for a 446 detailed review of seawater δ^{18} O), then the temperature estimated from 27.8±0.9‰ is 48.5±4°C. 447

448 The $\pm 4^{\circ}$ C estimate of precision arises solely from propagation of the $\pm 0.9\%$ 1 σ spread on measured

449 silica δ^{18} O. On the question of accuracy, we note that a 1‰ decrease in the assumed seawater δ^{18} O

450	would result in a temperature decrease of 4.8°C and that there is also an unquantified error arising
451	from the assumed oxygen isotope equilibrium calibration. There are also issues on whether the
452	measured silica δ^{18} O was established at the time of precipitation or during a subsequent oxygen
453	isotope exchange process. Notwithstanding all of these concerns, the best-estimate of several tens of
454	degrees Celsius (as opposed to estimates different by an order of magnitude, say) does not seem
455	unreasonable at all for the Tertiary sea.
456	
457	Discussion
458	
459	Identification of the weak hydrogen absorption bands in the IR spectra
460	Defects related to [4H] _{si} hydrogarnet defects. The absorption bands at 3585 cm ⁻¹ were
461	observed in the IR spectra of synthetic and natural quartz, amethyst (Kats 1962; Chakraborty and
462	Lehmann 1976; Paterson 1982; Stalder and Konzett 2012; Stalder and Neuser 2013) and
463	chalcedony (Frondel 1982). This band is assigned to the hydrous defect generated by substitution of
464	Si ⁴⁺ by 4H ⁺ and is referred to as the[4H] _{Si} or hydrogarnet defect. The highest intensity band is
465	observed at 3588 cm ⁻¹ for all studied samples (Figure 9) showing that this defect plays the decisive
466	role among all hydrogen defects in their structures. Application of first-principle calculations to
467	investigate the atomic geometries and thermodynamic properties of water-related defects in α -
468	quartz showed that the $[4H]_{Si}$ defect is thermodynamically most stable and aggregates to form
469	platelets in the form of micro-cracks with hydroxylated surfaces on both their sides (Lin et al. 1994;
470	McConnell et al. 1995; McConnell 1996; de Leeuw et al. 1999; Rosa et al. 2005). The origin of the
471	other strong absorption band at 3613cm ⁻¹ in the IR spectra is not assigned in the literature although a
472	weak band at 3615cm ⁻¹ together with a strong band at 3585 cm ⁻¹ was observed in the spectra of
473	amethyst (Kats 1962) and chalcedony (Frondel 1982). One possible origin of the band at 3613cm ⁻¹

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press.

(DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am-2017-5992

474	is that the nano-quartz structure along with aggregation of $[4H]_{Si}$ defects forming a hydroxylated
475	surface contains isolated [4H] _{Si} defects (Figure 8a). According to calculations of Rosa et al. (2005)
476	the formation of planar defects under thermodynamic equilibrium conditions is energetically more
477	favorable than that of isolated $[4H]_{Si}$ defects. However, the formation of nano-quartz probably
478	occurred under non-equilibrium conditions which may be favorable for the formation of isolated
479	defects. Thus, the bands at 3588and 3613 cm ⁻¹ may correspond to the platelet and isolated $[4H]_{Si}$
480	defects, respectively. In this case, one has to assume that for isolated defects hydrogen bond lengths
481	between H and O atoms should on average be longer as compared with those in the platelet defects
482	providing the higher frequency for the isolated defects. The linear relationship between intensities
483	of the absorption bands at 3588 and 3613 cm ⁻¹ observed for samples having different thicknesses
484	can be considered as indirect evidence of their similar origin (Figure 10).
485	In general, these results are in agreement with the interpretation of the structural
486	imperfections in nano-quartz samples obtained from the ${}^{29}Si{}^{1}H{}CP/MAS NMR$ spectra (Figure 6).
487	Indeed, the clear observation of the resonance at -107.4 ppm at different CP contact times is in
488	accordance with the presence of $[4H]_{Si}$ defect sites, whereas the appearance of the resonance at -
489	97.67 to -98.0 ppm shows that Si cations interact directly with the hydroxyls on the surface formed
490	by hydrogarnet defects. The presence of two intense bands in the IR spectra is in agreement with
491	two resonance peaks at -97.6 to -98.0 ppm and at -99.6 to -99.8 ppm, observed in the
492	²⁹ Si{ ¹ H}CP/MAS NMR spectra of the nano-quartz samples. Both resonances originate from sites of
493	the type (Si–O) ₃ –Si*–OH and are ascribed to Si neighboring the [4H] _{Si} defects. The resonance at -
494	97.6 to -98.0 ppm is clearly broader than the -99.6 to -99.8 ppm peak and it is tentatively assigned
495	to the aggregated [4H] _{si} defects as a result of its larger linewidth and its shift towards higher
496	frequency, the latter being expected for the more open structure around the aggregated defects as
497	compared to the isolated defects. Thus, the narrow peak at lowest frequency (-99.6 to -99.8 ppm) is

498 ascribed to isolated $[4H]_{Si}$ defects. As will be shown below, these results are in accordance with 499 those following from the relationships between the *a* and *c* unit-cell parameters as well as between 500 the OH_y content and the unit-cell parameters. However, the assignment of the overlapping $(Si-O)_{3}$ -501 Si*–OH peaks is not unambiguous and will require further ²⁹Si{¹H}CP/MAS NMR experiments, 502 e.g. on quartz samples where there is a clear distinction between aggregated and isolated $[4H]_{Si}$ 503 defect sites.

504

505 The IR region related with Al-H defects. The characteristic feature of the IR spectra of natural quartz is the presence of a strong absorption triplet at 3310 cm⁻¹, 3374cm⁻¹ and 3440cm⁻¹ 506 507 (Kats 1962; Bambauer 1963; Brown and Kahan 1975; Aines and Rossman 1984) which were assigned to coupled substitutions Si^{4+} for $Al^{3+} + H^+$ forming so called Al-H defects. Based on the 508 orientation of the O-H vectors coordinated to tetrahedralAl³⁺ cations, Kats (1962) concluded that 509 510 there are two types of Al-H defects where one is related to the 3310cm⁻¹ band and the other to the 511 pair of 3374 cm⁻¹ and 3440 cm⁻¹ bands. The first type of Al–H defects results from H⁺ bound between the two non-equivalent oxygen atoms in the Al³⁺tetrahedron and the 3374 and 3440cm⁻¹ 512 pair arises from OH⁻ group in the Al³⁺ tetrahedron with O-H vectors pointing into the c axis 513 514 "channel" forming an angle 75° with the c axis. Stalder and Konzett (2012) and Stalder and Neuser 515 (2013) investigated OH defects in detrital quartz grains and identified also the absorption triplet at 3310 cm⁻¹, 3378cm⁻¹ and 3430cm⁻¹. In the IR spectra of the studied samples, the absorption band at 516 517 3378 cm⁻¹ corresponding to an Al–H defect is partially overlapped with an absorption band at 3384 cm⁻¹ of Na related to an OH defect (Aines and Rossmann 1984). Positions of the sharp bands, at 518 3440 and 3330cm⁻¹, are clearly distinguishable and according to Chakraborty and Lehman (1976) 519 the 3440cm⁻¹band should correspond to H⁺ bonded directly to Si⁴⁺ whereas the band at 3430 cm⁻ 520 521 ¹corresponds to an Al–H defect. In different IR spectra of the studied samples two wide bands at

23

3430 and 3440 cm⁻¹appear with different occurrence probability and the resulting position of the
overlapping bands varied from 3436 to 3444 cm⁻¹ (Figure 9). Finally, according to Muller and
Koch-Muller (2009) and Baron et al. (2015) the Li-specific OH absorption band is located at 3480
cm⁻¹ and 3483 cm⁻¹, respectively. Therefore, the origin of the very weak band at 3473–3474 cm⁻¹
occasionally observed in the studied spectra probably has the same origin.

527

528 The relationship between the nature and location of the charge-compensation ions and 529 the features of the IR spectra. Aluminum is the most common trace element in natural and 530 synthetic quartz samples and other impurity elements (e.g. H, Na, Li, K) are incorporated in quartz structures to compensate the negative charge originating from substitution of Si⁴⁺ by Al³⁺in the 531 532 tetrahedral sites of the quartz framework. The charge compensation usually takes place by formation of local structural arrangements, $[AIO_4/M^+]^\circ$ defects ($M^+ = H^+$, Na^+ , Li^+ , and K^+), which 533 534 according to Botis and Pan (2009) are stable in the quartz structure. Therefore, in natural quartz 535 tetrahedral Al stands generally in an approximately stoichiometric relation to the content of (OH) 536 and trace alkalis (Botis and Pan 2009). 537 The analysis of the IR spectra of the studied samples shows some unusual relationships 538 between IR particular features and location of the cation compensators. To demonstrate this, let us consider at first the relationship between the amount of tetrahedral Al³⁺cations, C_{Al}, and the total 539 content of Na⁺ and K⁺, $C_{(Na+K)}$, in the structural formulae (Figure 13, Table 4). All samples can be 540 divided into three groups: in one of them $C_{Al} > C_{(Na+K)}$, in the other $C_{Al} < C_{(Na+K)}$, and in the last one 541 $C_{Al} = C_{(Na+K)}$ (Figure 13). In sample 19 (E-5, 2078.74) of the first group the content of $C_{(Na+K)}$ is 542 negligible (0.0003) in comparison to that of C_{A1} (0.0030). One could expect that the IR spectrum of 543 544 the sample would contain strong absorption bands corresponding to Al-H defects. In contrast, the intensity modulations observed in the diagnostic region (3200–3500 cm⁻¹) of the spectrum can 545

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press.

(DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am-2017-5992

546	hardly be distinguished from the background. To explain the observed inconsistency, one has to
547	take into account that some of the studied samples contain local structural fragments in which a
548	negative charge generated by substitution of Si^{4+} for Al^{3+} is compensated by hydration of Si^{4+}
549	placed in the second coordination sphere of ^{IV} Al (Figure 8b). Therefore, the IR spectrum of sample
550	19 (E-5, 2078.74) does not contain absorption bands related to Al-H defects. This way of local
551	charge compensation assists the interpretation of particular features in the IR spectra of samples 9
552	(Sif-1, 2070.94) and 18 (M-10, 1963.52), both of which have almost the same amounts of $^{\rm IV}$ Al and
553	(Na + K), respectively, equal to 0.0019 and 0.0028 for the first and 0.0018 and 0.0026 for the
554	second sample (Table 4). In contrast, the IR spectra of the samples differ from each other by the
555	distribution of intensities of the absorption bands in their diagnostic regions. The IR spectrum of
556	sample 18 (M-10, 1963.52) is quite similar to that of sample 19 (E-5, 2078.74) because the
557	intensities of the bands in the diagnostic region are negligibly small. In contrast, the characteristic
558	absorption bands at 3378 and 3440 cm ⁻¹ are clearly distinguishable in the spectrum of sample 9 (Sif-
559	1, 2070.94) (Figure 9). To explain these observations, one has to take into account, that according to
560	Botis and Pan (2009) the structure of both samples contains local $[AlO_4/(Na + K)]^{\circ}$ defects and that
561	the amount of these should be equal to the content of (Na + K) in each sample. In the compared
562	samples the tetrahedral Al^{3+} cations, whose amount is equal to $C_{Al} - C_{(Na+K)}$, may have different local
563	positions. In sample 18 (M-10, 1963.52) the charge compensation most probably took place
564	according to the local environment shown in Figure 8 where an OH ⁻ group coordinated one of the
565	four tetrahedral Si ⁴⁺ closely located to the Al ³⁺ tetrahedron. Therefore, the diagnostic region of the
566	IR spectrum of sample 18 (M-10, 1963.52) is similar to that of sample 19 (E-5, 2078.74) (Figure 8).
567	In contrast, in samples 9 (Sif-1, 2070.94) and 14 (Sif-1, 2088.3) the negative charge originating
568	from the tetrahedral Al ³⁺ cations remaining after formation of electroneutral structural arrangements

569	$[AIO_4/Na^+]^o$ were compensated by formation of Al–H defects. As a result, in the IR spectra of both
570	samples the absorption bands corresponding to Al-H defects are observed (Figure 9).
571	Interpretation of the IR spectra of the flint samples is not always unambiguous. As mentioned
572	earlier, for determination of the chemical composition of these samples, raw material was used and
573	probably some amount of Na was adsorbed from the pore water. Because of this uncertainty, the
574	influence on IR effects of a high concentration of NaOH + KOH in some of the studied samples
575	was not unequivocally solved within the frame of this study.
576	
577	Unit cell parameters of nano-quartz samples as indicators of their main structural
578	imperfections.
579	Comparison of the unit cell parameters of nano-quartz and well crystallized quartz. The
580	main feature of the nano-quartz is that tetrahedral vacancies constitute up to 0.03 per 2 anions,
581	whereas Al^{3+} occupies less than 0.006 per 2 anions of the tetrahedral sites (Table 4) and OH^{-}
582	amounts to up to 0.112 per 2 anions. The tetrahedral vacancies with 4OH ⁻ anions adjacent are
583	therefore for the nano-quartz the most significant deviation from the ideal formula for α -quartz and
584	the main contributors to the deviation of the unit cell parameters from those of well-crystallized
585	natural quartz. The cell dimensions of the nano-quartz from the chalk and the flint are significantly
586	larger (4.9164 to 4.9195 Å for the <i>a</i> -parameter and from 5.4047 to 5.4097 Å for the <i>c</i> -parameter,
587	Table 1) than the dimensions of natural and synthetic quartz being $4.9121 - 4.9149$ Å for the <i>a</i> cell
588	parameter and from $5.4038 - 5.4054$ Å for the <i>c</i> cell parameter (Table 6) (Cohen and Sumner 1958;
589	Afanas'eva et al. 1960; Hurst and Storch 1981). The presence of tetrahedral vacancies and Al ³⁺ ions
590	replacing Si ⁴⁺ should result indistinct (Si–O) ₃ –Si*–OH and (Si–O) ₃ –Si*–O–Al resonances in the
591	single-pulse ²⁹ Si MAS NMR spectra (Figure 5). ²⁹ Si spin-lattice relaxation times of $T1 = 3000 -$
592	4000 s have been reported for forα-quartz at ambient temperature (Spearing et al. 1992), implying

the single-pulse ²⁹Si MAS NMR spectra in Figure 5 only detects a very small fraction of the total

593

594	intensity (15 - 19%), considering the actual experimental conditions (45° excitation pulse, 300 s
595	relaxation delay). Thus, the absence of clear resonances from ²⁹ Sineighbouring the defects in nano-
596	quartz is tentatively ascribed to very long relaxation times for these sites. However, the resonances
597	from the [4H] _{Si} defects, (Si–O) ₃ –Si*–OH sites, are clearly seen at -97.6 to -99.8 ppm in the
598	29 Si{ 1 H} CP/MAS NMR spectra, reflecting the fact that the intensity in these experiments are
599	dependent on the ¹ H spin-lattice relaxation which is generally orders of magnitude faster than the
600	²⁹ Si spin-lattice relaxation for silicate minerals (Skibsted et al. 1995).
601	
602	Space orientation of platelets formed by aggregated [4H] _{Si} defects. As was mentioned,
603	McLaren et al. (1983) suggested that hydrogen is incorporated in the wet quartz structure as $[4H]_{Si}$
604	defects. On heating these defects migrated toward each other to form clusters. According to the
605	TEM experiments of McLaren et al. (1983), the increase in temperature transformed the aggregated
606	[4H] _{Si} defects into bubbles of high pressure water fluid lying on dislocation loops with Burgers
607	vector b=a/3 (11 $\overline{2}$ 0) parallel to the (0 $\overline{1}$ 10)or(10 $\overline{1}$ 0)planes. This model was partly reconsidered by
608	Lin et al. (1994), McConnell et al. (1995) and McConnell (1996) who supposed that at a high [4H] _{St}
609	concentration in wet quartz these defects segregate to form planar precipitate rafts or platelets lying
610	in the $(0\overline{1}10)$ plane (Figure 7). In contrast, the simulation results of de Leeuw et al. (1999) showed
611	that aggregation of $[4H]_{Si}$ defects forming the (0001) OH surface is more stable than those forming
612	the (10 $\overline{1}0$), (10 $\overline{1}1$), and (10 $\overline{1}\overline{1}$) OH surfaces. Rosa et al. (2005) also analyzed thermodynamic
613	properties of a quartz containing platelets of $[4H]_{Si}$ defects lying in the (0110) plane and found that
614	platelets lying in this plane are less stable than the platelets in the (0001) plane (Figure 14).
615	Moreover, Rosa et al. (2005) considered the influence of dilation of the lattice parameters a and c
616	on the structural and energetic properties of the platelet defects. It was found that for the atomic

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press.

(DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am-2017-5992

27

617 configuration in which the platelets lie in the (0001) plane, relaxation of the *a* parameter has 618 negligible effect on the formation energies and the geometry. In contrast, the final most stable 619 atomic geometry was accompanied by increasing the c-parameter. At the same time, these authors 620 emphasized that their calculations were carried out assuming thermodynamic equilibrium. 621 Therefore, they do not discard the possibility that the $(0\overline{1}10)$ platelets may be kinetically stabilized. 622 It seems plausible that the studied nano-quartz samples were formed in thermodynamically non-623 equilibrium conditions. The results obtained by MAS NMR and IR spectroscopic methods in this 624 work are in agreement with the presence of hydroxylated surfaces formed by the aggregated [4H]_{si} 625 defects but their space orientation in nano-quartz remains uncertain. To solve this problem one has 626 to take into account that the size of the $[4H]_{Si}$ structural unit is larger than the SiO₄ unit. Therefore, 627 it is likely that the replacement of Si by 4H in the same oxygen framework should provide 628 preferential expansion of the lattice along the normal to the platelets formed by aggregated [4H]_{Si} 629 defects, that is either to the (0001) or $(0\overline{1}10)$ planes.

630

631 **Relationships between** *a***- and** *c***-parameters.** The *a*- and *c*-parameters of most samples 632 follow a linear interdependence, but the positions of some of the samples deviate significantly from 633 the linear regression (Figure 15). However, the positional distribution of these samples has some 634 particularly interesting features. The most remarkable one is that the positions for about 50% of the 635 samples (all of which are flints) are located along the grey line almost parallel to the c axis (i.e. the 636 abscissa) from sample 3 (Rigs-1, 2826.84) having lower c value to sample 7 (Sif-1, 2065.0) having 637 higher c value (Figure 15). These samples have practically the same a values, from 4.9169 Å 638 (sample 3) to 4.9171 Å (sample 7) (Table 1, Figure 15). In contrast, the c values for this set of samples increase from 5.4047 Å to 5.4071 Å, that is by up to 0.0024 Å. Similarly, samples 18 (M-639 640 10, 1963.52) and 11 (Sif-1, 2071.11) have almost the same a value (4.9164 and 4.9166 Å) whereas

641	the c value of the parameter of sample 11 (5.4072 Å) is higher than that of sample 18 (5.4059 Å) by
642	0.0013Å (Table 1, Figure 15). Among the samples deviating strongly from the linear regression is
643	sample 10 (Sif-1, 2071.08) which is also unusual with respect to its cation composition. According
644	to the chemical formula of sample 10, the content of $(Na + K) (0.0145)$ is 3 to 10 times higher than
645	those in other samples (Table 4). The high content of (Na + K) cations, which are located into
646	channels of the quartz structure, strongly increases the <i>a</i> -parameter value of the sample (Afanas'eva
647	et al. 1960). For this reason the position of sample 10 falls far from those of the other samples (Figure
648	15).
649	For idealized equilibrium conditions the formation of platelets lying parallel to the (0001)
650	plane should increase only the <i>c</i> -parameter. The tendency of increasing <i>a</i> -parameter observed in
651	Figure 15 may be due to the following: first, possible isolated [4H] _{Si} defects should increase the cell
652	volume homogeneously in different crystallographic directions. On the other hand, different
653	contents and distributions of structural defects related to tetrahedral Al^{3+} , H^+ , Na^+ , and K^+
654	impurities have different influence on the unit cell parameters. Nevertheless, the regularities in the
655	relationships between the a- and c-parameters, observed in Figure 15, can be considered as
656	independent evidence that the planar defects of hydrogen atoms in the nano-quartz are parallel to
657	the (0001) plane. Knowledge of the space orientation of the aggregated $[4H]_{Si}$ defects, the presence
658	of two strong absorption bands at 3588 and 3613 cm ⁻¹ and the relationship between their intensities
659	(2:1) allows us to assume that these two bands correspond to two different types of $[4H]_{Si}$ defects in
660	a nano-quartz structure. In one type, aggregated $[4H]_{Si}$ defects form OH surfaces parallel to (0001)
661	plane (Figure 14) whereas in the second type the [4H] _{Si} defects is probably represented by
662	individual hydrogarnet defects (Figure 8a).
663	

29

664	Direct evidence of decisive and selective influence of [4H] _{Si} defects on the unit cell
665	parameters of nano-quartz. The origin of the main regularities between the <i>a</i> and <i>c</i> parameters of
666	the unit cells of the studied samples becomes more clear from the analysis of the relationships
667	between the unit cell parameters and amounts of OH^{-} groups, designated OH_{y} , forming $[4H]_{Si}$
668	defects (Tables 1 and 4). At first let us consider some features observed between the <i>a</i> -parameters
669	and the OH_y values. As can be seen in Figure 16a for the majority of the samples, the <i>a</i> -parameter
670	values are almost independent of the OH _y . Indeed, the <i>a</i> -parameter of a subset of samples 3, 8, 13, 7
671	and 14 varies in the very narrow interval from 4.9169 to 4.9172 Å, whereas the OH_y values increase
672	from 0.0152 to 0.0699 (Tables 1, 4, Figure 16a). In contrast, as can be seen in Figure 16b for the
673	same set of samples, values of the c -parameter increase significantly from 5.4047 to 5.4071 Å. This
674	means, first, that the higher the OH_y value the higher value of the <i>c</i> -parameter and, second, that
675	most probably the majority of $[4H]_{Si}$ defects were formed as aggregated platelets parallel to the
676	(0001) plane. These conclusions are in agreement with the relationship between the a - and c -
677	parameters for the samples according to which the increase of the c -parameter may occur at the
678	same time as values of the <i>a</i> -parameter are within error (Figure 15). Similarly, the mutual
679	relationship between the unit cell parameters and the OH _y values is observed for the pair of the
680	samples 18 and 11 whose <i>a</i> -parameters are almost the same (4.9164 and 4.9166 Å) whereas the
681	content of OH_y in sample 11 (0.0565) is higher than that (0.0460) in sample 18 (Figure 16a). In
682	agreement with the regularity mentioned above, the c -parameter of sample 18 (5.4059 Å) is lower
683	than that of sample 11 (5.4072 Å) (Figure 16b).
684	The amount of OH_y may also control the <i>c</i> -parameter for the nano-quartz samples having
685	different values of the <i>a</i> -parameter. For example, samples 18 and 8 have different <i>a</i> -parameters
686	(4.9164 and 4.9171 Å), close amounts of OH_y (0.0460 and 0.0408) and identical c values (5.4059

and 5.4058 Å) (Figure 15). The difference between the *a*-parameters in these samples is due to a

688	high amount of K^+ (0.0010) in the total amount of alkaline cations (0.0022) in sample 8 relative to
689	the content of the Na ⁺ cations in sample 18 (0.0018). Moreover, in sample 8 $C_{(K+Na)} > C_{Al}$ whereas
690	$C_{Al} > C_{(Na+K)}$ in sample 18 (Table 4). Therefore, the high amount of KOH and NaOH structural units
691	located in the structural channels causes the higher value of the <i>a</i> -parameter in sample 8 in
692	comparison with that of sample 18. However, similar values for OH _y in these samples result in
693	almost the same values of their c-parameters (Figure 16b). The results described are in agreement
694	with the interrelations between the <i>a</i> - and <i>c</i> -parameters of samples 8 and 18 (Figure 15).
695	An even more remarkable selective influence of $[4H]_{Si}$ defects on the <i>a</i> and <i>c</i> unit cell
696	parameters for nano-quartz is seen from the comparison of the unit cell parameters and chemical
697	composition of samples 12 and 10. As mentioned previously these samples differ from each other
698	by the amounts of alkaline cations ($C_{(K+Na)} = 0.0020$ and 0.0120) and tetrahedral Al ³⁺ cations
699	(0.0024 and 0.0060). As a result, the <i>a</i> -parameter of sample 10 (4.9195 Å) is higher than that of
700	sample 12 (4.9186 Å) (Figure 16a). However, a similar content of $OH_y(0.1118 \text{ and } 0.0959)$ and,
701	thus, vacant tetrahedral sites in samples 12 and 10 (0.0279 and 0.0240) results in similar values of
702	their <i>c</i> -parameters (Figure 16b).
703	To summarize the observed correlations between the unit cell parameters, the amount of OH_y
704	groups, and the theoretical predictions concerning the orientation of the aggregated platelets can be
705	considered as direct evidence that the amount of water released during heating of the studied
706	samples does correlate with the amount of OH _y groups in the calculated formulae of the samples.
707	This conclusion is not in conflict with the structural features of samples 19 and 18 which do not
708	follow the relationships between the unit cell parameters and the amount of $[4H]_{Si}$ defects found for
709	the other samples. Indeed, these samples contain similar amounts of OH_y (0.0435 and 0.0460) but
710	have different c -parameters (5.4069 and 5.4059 Å). One plausible explanation of the observed
711	deviation may be related to the rather high content of tetrahedral $Al^{3+}(0.0030)$ and the negligible

31

amount of alkaline cations in sample 19 (Table 4). Moreover, the IR spectrum of this sample does

- not contain absorption bands responsible for Al-H defects (Figure 9). This means that the
- tetrahedral Al³⁺ cations in sample 19 are coordinated by only oxygen atoms and excess negative
- 715 charge is compensated by OH hydroxyls each of which coordinates one of the four Si cations
- nearest to the AlO₄ tetrahedron (Figure 8b). Because the volume of the AlO₄ structural unit is larger
- 717 than that of a SiO₄ unit and because the amount of tetrahedral Al^{3+} cations in the structure is
- significant (0.0030), not only the a- (4.9174 Å) but also the c- (5.4069 Å) parameter of sample 19
- are higher than those of sample 18 (4.9164 and 5.4059 Å).

Sample 17 is the only example whose crystal-chemical composition does not correlate with

- the *c*-parameter value. According to the formula, the content of OH_y in sample 17 (0.1040) is
- similar to those in samples 12 (0.1118) and 10 (0.0959) (Figure 15). Therefore, one may expect that
- the *c*-parameters of samples 17, 12, and 10 should have similar values. In contrast, this expectation
- is met only for samples 12 and 10 (c = 5.4096 and 5.4097 Å), whereas the c value for sample 17 is
- much lower and equal to 5.4068 Å. One possible reason for the observed discrepancy is that the
- particles in sample 17 along with the [4H]_{Si} defects contain some amount of water molecules

127 located in small bubbles, released from the sample at relatively high temperature.

728

729 A general remark concerning the formation of nano-quartz

The fact that quartz is almost pure SiO_2 makes an accurate determination of elements other than Si difficult. The amount of structural impurities has previously been estimated based on interpretation rather than on determination, and the correlation between local structural imperfections and unit cell parameters has consequently been beset with uncertainties (Hurst and Storch 1981).

735	In the present investigation of the nano-quartz the application of XRD, IR, and ²⁹ Si and ²⁷ Al
736	MAS NMR together with thermal analysis of released H ₂ O and elemental analysis by AAS makes it
737	possible to characterize the nano-quartz structure much more accurately. The main feature of the
738	structure is that tetrahedral vacancies constitute up to 5% of the tetrahedral sites or up to 0.03 per 2
739	anions, whereas Al^{3+} occupies less than 1% of the tetrahedral sites or up to 0.006 per 2 anions
740	(Table 4). OH ⁻ amounts up to 0.0112 per 2 anions. The tetrahedral vacancies with 4 OH ⁻ anions
741	adjacent are therefore, for the nano-quartz, the most significant deviation from the ideal formula for
742	α-quartz.
743	Laboratory experiments have shown that quartz can be synthesized from sea water at room
744	temperature (Mackenzie and Gees 1971). The new model for the formation of nano-quartz in flint
745	and as nano-quartz particles dispersed in the chalk during sedimentation (Lindgreen et al. 2011;
746	Lindgreen and Jakobsen 2012) is in agreement with a low temperature of formation, as inferred
747	from the isotopic data. The quartz dispersed in the chalk and the quartz in the flint have almost
748	identical unit cell parameters, strain values and sizes of CSD's and this demonstrates that the quartz
749	in the chalk and in the flint have formed by the same mechanism (Lindgreen et al. 2011).
750	The formation by crystallization in the sea, the spherical nano-particles and the larger cell
751	dimensions make the North Sea nano-quartz a type of quartz totally different from the well-
752	crystalline quartz of hydrothermal, magmatic or metamorphic origin. This is in agreement with the
753	absence of a sharp $\alpha \rightarrow \beta$ transition exothermic peak in DTA, which is due to the nano-size of the
754	quartz crystals (Rios et al. 2001), whereas normal quartz has been characterized by having a sharp
755	$\alpha \rightarrow \beta$ peak at 573°C (Dawson and Wilburn 1970).
756	
757	Implications

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press.

(DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am-2017-5992

33

758 Quartz is the most abundant mineral on the Earth's surface and is usually characterized and 759 identified from its particle shape, the low-angle part of the XRD pattern and an elemental 760 composition as SiO_2 . As an example, the quartz in the chalk reservoirs of the oil fields of the North 761 Sea has so far been identified and quantified from XRD patterns in the 10-40 °2 θ range. Our 762 application of different methods, allowing us to reveal the finest features at the nano-structural 763 level, has demonstrated that the quartz structure is much more variable than hitherto assumed and 764 that the application of nano-structural methods can discover totally new structures and lead to the 765 understanding of new mechanisms for the formation of quartz at low temperature from biogenic 766 silica, and perhaps eventually reveal specific geochemical conditions in the marine environment 767 resulting in the sedimentary formation of flint. 768 The new form of quartz, the nano-size spherical α -quartz, is the only silica mineral observed 769 in the Danian chalk in the oil well cores investigated. It has previously been concluded that the 770 quartz formed by crystallization in the water column from dissolved radiolarian organisms. The fact 771 that the nano-quartz has significantly larger dimensions compared to normal quartz and that the elemental structure is special in having a significant proportion of ^{IV}Al substituting for Si and of 772 773 [4H]_{si} hydrogarnet defects means that the conditions for formation of this quartz had a strong 774 impact on its structure. The size of the quartz particles makes them effective in packing between 775 coccolithic chalk particles and may cause decreased porosity and permeability in the oil reservoirs, 776 for example contributing to the tight character of the lower part of the Danian Ekofisk Formation. 777 The porous structure of the flint consisting of sedimented quartz spheres makes saturation of the 778 flint with oil during reservoir filling possible and thus reflects the timing of oil migration in the 779 reservoirs (Jakobsen et al. 2014). Investigations should detect this special form of quartz by 780 recording XRD patterns in the high-angle region where the character of this quartz mineral is 781 revealed.

782	
783	Acknowledgements
784	
785	We are grateful to E.V. Pokrovskaya for her help in the Ms preparation. J. Skibsted
786	acknowledges the Carlsberg Foundation for an equipment grant. SUERC is supported by a
787	Consortium of Scottish Universities. V.A. Drits and O. Dorzhieva acknowledge the support of
788	budget project #0135-2016-0010.
789	

35

790 **References cited**

791	Aines, R., and Rossman, G.R. (1984) Water in minerals? A peak in the infrared. Journal of
792	Geophysical Research, 89, 4059-4071.
793	Afanas'eva, N.A., Kamentsev, I.E., and Frank-Kamenetskii, V.A. (1960) Variation of the
794	elementary cell parameters of quartz of different sources. Soviet Crystallography, 4,
795	354-357.
796	Andersen, M.D., Jakobsen, H.J., and Skibsted, J. (2006) A new aluminium-hydrate species in
797	hydrated Portland cements characterized by ²⁷ Al and ²⁹ Si MAS NMR spectroscopy.
798	Cement and Concrete Research, 36, 3–17.
799	Bambauer, H.U. (1963) Merkmale des OH-spectrums alpine quarze (3 µ-Gebiet). Schweizerische
800	Mineralogische und Petrographische Mitteilungen, 43, 259-268.
801	Baron, M.A., Stalder, R., Konzett, J., and Hauzenberger, C.A. (2015) OH-point defects in quartz in
802	B- and Li-bearing systems and their application to pegmatites. Physics and Chemistry
803	of Minerals, 42, 53-62.
804	Beran, A., and Libowitzky, E. (2003) IR spectroscopic characterization of OH defects in mineral
805	phases. Phase Transitions, 76, 1-15.
806	Bernas, B. (1968) A new method for decomposition and comprehensive analysis of silicates by
807	atomic absorption spectroscopy. Analytical Chemistry, 40, 1682-1686.
808	Botis, S.M., and Pan, Y. (2009) Theoretical calculation of $[AlO_4/M^+]^0$ defects in quartz and crystal
809	chemical controls on the uptake of Al. Mineralogical Magazine, 73, 537-550.
810	Brice, J.C. (1980) The lattice constants of a-quartz. Journal of Materials Science, 15, 161-167.
811	Bromley, R.G., and Ekdale, A.A. (1986) Flint and fabric in the European Chalk. In: G.D.G.
812	Sieveking and M.B. Hart, Eds., The Scientific Study of Flint and Chert, 71-82,
813	Cambridge University Press, Cambridge.

814	Brown, R.N., and Kahan, A. (1975) Optical absorption of irradiated quartz in the near IR. Journal of
815	Physics and Chemistry of Solids, 36, 467-476.
816	Chakraborty, D., and Lehmann, G. (1976) Distribution of OH in synthetic and natural quartz
817	crystals. Journal of Solid State Chemistry, 17, 305-311.
818	Clayton, C.J. (1986) The chemical environment of flint formation in Upper Cretaceous chalk. In:
819	G.D.G. Sieveking and M.B. Hart, Eds., The Scientific Study of Flint and Chert, 43-54.
820	Cambridge University Press, Cambridge.
821	Cohen, A.J., and Sumner, G.G. (1958) Relationships among impurity contents, color centers and
822	lattice constants in quartz. American Mineralogist, 43, 58-68.
823	Cordier, P., Weil, J.A., Howarth, D.E., and Doukhan, J.C. (1994) Influence of the (4H) _{Si} defect on
824	dislocation motion in crystalline quartz. European Journal of Mineralogy, 6, 17-22.
825	Dawson, J.B., and Wilburn, F.W. (1970) Silica minerals. In R. C. Mackenzie, Ed., Differential
826	Thermal Analysis, Vol. 1, 477-497. Academic Press, London.
827	Dennen, W.H. (1966) Stoichiometric substitution in natural quartz. Geochimica et Cosmochimica
828	Acta, 30, 1235-1241.
829	Dennen, W.H., and Blackburn, W.H. (1970) Aluminum in quartz as a geothermometer.
830	Contributions to Mineralogy and Petrology, 27, 332-342.
831	Frondel, C. (1982) Structural hydroxyl in chalcedony (Type B quartz). American Mineralogist, 67,
832	1248-1257.
833	Götze, J., Plötze, M., Raupner, T., Hallbauer, D.K., and Bray, C.J. (2004) Trace element
834	incorporation into quartz: A combined study by ICP-MS, electron spin resonance,
835	cathodoluminescence, capillary ion analysis, and gas chromotography. Geochimica et
836	Cosmochimica Acta, 68, 3741-3759.
837	Holmes, A. (1965) Principles of Physical Geology. Thomas Nelson and Sons, London, 2 nd Edition.

838	Hurst, V.J., and Storch, S.P. (1981) Regional variation in the cell dimensions of metamorphic
839	quartz. American Mineralogist, 66, 204-212.
840	Jaffres, J.B.D., Shields, G.A., and Wallmann, K. (2007) The oxygen isotope evolution of sea water:
841	A critical review of a long-standing controversy and an improved geological water
842	cycle model for the past 3.4 billion years. Earth-Science Reviews, 83, 83-122.
843	Jakobsen, F., Lindgreen, H., and Springer, N. (2000) Precipitation and flocculation of spherical
844	nano silica in North Sea chalk. Clay Minerals, 35, 175-184.
845	Jakobsen, F., Lindgreen, H., and Nytoft, H.P. (2014) Oil-impregnated flint in Danian chalk in the
846	Tyra field, North Sea Central Graben. Journal of Petroleum Geology, 37, 43-54.
847	Kamentsev, I.Y. (1965) Effect of temperature of crystallization on entry of aluminum into structure
848	of natural quartz. Geochemistry International USSR, 2, 237.
849	Kats, A. (1962) Hydrogen in alpha quartz. Philips Research Reports, 17, 133-279.
850	Kita, I., Tagutchi, S., and Matsubaya, O. (1985) Oxygen isotope fractionation between amorphous
851	silica and water at 34-93°C. Nature, 314, 83-84.
852	de Leeuw, N.H., Higgins, F.M., and Parker, S.C. (1999) Modeling the surface structure and stability
853	of α-quartz. The Journal of Physical Chemistry, 103, 1270-1277.
854	Lin, J.S., Payne, M.C., Heine, V., and McConnell, J.D.C. (1994) Ab initio calculations on (OH) ₄
855	defects in α -quartz. Physics and Chemistry of Minerals, 21, 150-155.
856	Lindgreen, H., Jakobsen, F., and Springer, N. (2010) Nano-size quartz accumulation in reservoir
857	chalk, Ekofisk Formation, South Arne Field, North Sea. Clay Minerals, 45, 171-182.
858	Lindgreen, H., Drits, V.A., Salyn, A.L., Jakobsen, F., and Springer, N. (2011). Formation of flint
859	horizons in North Sea chalk through marine sedimentation of nano-quartz. Clay
860	Minerals, 46, 525-537.

861	Lindgreen, H., and Jakobsen, F. (2012) Marine sedimentation of nano-quartz forming flint in North
862	Sea Danian chalk. Marine and Petroleum Geology, 38, 73-82.
863	Lippmaa, E., Mägi, M., Samoson, A., Engelkhardt, G., and Grimmer, AR. (1980) Structural
864	studies of silicates by solid-state high-resolution ²⁹ Si NMR. Journal of American
865	Chemical Society, 102, 4889-4893.
866	Macaulay, C.I., Fallick, A.E., Haszeldine, R.S., and Graham, C.M. (2000) Methods of laser-based
867	stable isotope measurement applied to diagenetic cements and hydrocarbon reservoir
868	quality. Clay Minerals, 35, 313-322.
869	Mackenzie, F.T., and Gees, R. (1971) Quartz: Synthesis at earth-surface conditions. Science, 173,
870	533-535.
871	Madsen, H.B., and Stemmerik, L. (2010) Diagenesis of flint and porcellanite in the Maastrichtian
872	chalk at Stevns Klint, Denmark. Journal of Sedimentary Research, 80, 578-588.
873	Matsuhisa, Y., Goldsmith, J.R., and Clayton, R.N. (1979) Oxygen isotope fractionation in the
874	system quartz-albite-anorthite-water. Geochimica et Cosmochimica Acta, 43, 1131-
875	1140.
876	McConnell, J.D.C., Lin, J.S., and Heine, V. (1995) The solubility of $[4H]_{Si}$ defects in α -quartz and
877	their role in the formation of molecular water and related weakening on heating.
878	Physics and Chemistry of Minerals, 22, 357-366.
879	McConnell, J.D.C. (1996) Ab initio studies on water related species in quartz and their role in
880	weakening under stress. Phase Transitions, 61, 19-39.
881	McLaren, A.C., Cook, R.F., Hyde, S.T., and Tobin, R.C. (1983) The mechanisms of the formation
882	and growth of water bubbles and associated dislocation loops in synthetic quartz.
883	Physics and Chemistry of Minerals, 9, 79-94.
884	Millot, G. (1970). Geology of Clays. Springer Verlag, London.

885	Moore, D.M., and Reynolds, R.C. (1997) X-ray diffraction and the Identification and Analysis of
886	Clay Minerals. Oxford University Press, Oxford.
887	Morgan, D.J. (1977). Simultaneous DTA-EGA of minerals and natural mineral admixtures. Journal
888	of Thermal Analysis, 12, 245-263.
889	Müller, A., and Koch-Müller, M. (2009) Hydrogen speciation and trace element contents of
890	igneous, hydrothermal and metamorphic quartz from Norway. Mineralogical
891	Magazine, 73, 569-583.
892	Paterson M. (1982) The determination of hydroxyl by infrared absorption in quartz, silicate glasses
893	and similar materials. Bulletin de la Societe Francaise de Minéralogie, 105, 20-29.
894	Ramseyer, K., Amthor, J.E., Matter, A., Pettke, T., Wille, M., and Fallick, A.E. (2013) Primary
895	silica precipitate at the Precambrian/Cambrian boundary in the South Oman Salt
896	Basin, Sultanate of Oman. Marine and Petroleum Geology, 39, 187-197.
897	Rios, S., Salje, E.K.H., and Redfern, S.A.T. (2001) Nanoquartz vs. macroquartz: a study of the
898	$\alpha \leftrightarrow \beta$ phase transition. European Physical Journal B, 20, 75-83.
899	Rosa, A.L., El-Barbary, A.A., Heggie, M.I., and Briddon, P.R. (2005) Structural and
900	thermodynamic properties of water related defects in α -quartz. Physics and Chemistry
901	of Minerals, 32, 323-331.
902	Sanz, J. (1990) Distribution of ions in phyllosilicates by NMR spectroscopy. In: Montano, A.,
903	Burragato, F. Eds. Absorption Spectroscopy in Mineralogy. Elsevier, Amsterdam, pp
904	103-144.
905	Sanz, J., and Serratosa, J.L. (1984) ²⁹ Si and ²⁷ Al high resolution MAS-NMR spectra of
906	phyllosilicates. Journal of the American Chemical Society, 106, 4790-4793.
907	Segnit, E.R., Stevens, T.J., and Jones, J.B. (1965) The role of water in opal. Journal of the
908	Geological Society of Australia, 12, 211-226.

909	Sharp, Z.D. (1990) A laser-based microanalytical method for the in situ determination of oxygen
910	isotope ratios of silicates and oxides. Geochimica et Cosmochimica Acta, 54, 1353-
911	1357.
912	Shinoda, K., and Aikawa, N. (1993) Polarized infrared absorbance spectra of an optically
913	anisotropic crystal: Application to the orientation of the OH ⁻ dipole in quartz. Physics
914	and Chemistry of Minerals, 20, 308-314.
915	Skibsted, J., Jakobsen, H.J., and Hall, C. (1994) Direct observation of aluminium guest ions in the
916	silicate phases of cement minerals by ²⁷ Al MAS NMR spectroscopy. Journal of the
917	Chemical Society Faraday Transactions, 90, 2095 – 2098.
918	Skibsted, J., Hjorth, L., and Jakobsen, H.J. (1995) Quantification of Thaumasite in Cementitious
919	Materials by ²⁹ Si{ ¹ H} Cross-Polarization Magic-Angle Spinning NMR Spectroscopy.
920	Advances in Cement Research, 7, 69–83.
921	Spearing, D.R., and Stebbins, J.F. (1989) The ²⁹ Si NMR shielding tensor in low quartz. American
922	Mineralogist, 74(7-8), 956-959.
923	Spearing, D.R., Farnan, I., and Stebbins, J.F. (1992) Dynamics of the α - β Phase Transitions in
924	Quartz and Cristobalite as Observed by In-Situ High Temperature ²⁹ Si and ¹⁷ O NMR.
925	Physical Chemistry of Minerals 19, 307 – 321.
926	Stalder, R., and Konzett, J. (2012) OH defects in quartz in the system quartz-albite-water and
927	granite-water between 5 and 25 kbar. Physics and Chemistry of Minerals, 39, 817-827.
928	Stalder, R., and Neuser, R.D. (2013) OH-defects in detrital quartz grains: Potential for application
929	as tool for provenance studies and overview over crustal average. Sedimentary
930	Geology, 294, 118-126.

931	Takahashi, T., Kanehashi, K., and Saito, K. (2008) First evidence of multiple octahedral Al sites in
932	Na-montmorillonite by ²⁷ Al multiple quadrupole MAS NMR. Clays and Clay
933	Minerals, 56, 520-525.
934	Tanaka, M., and Makino, Y. (1998) Finite size effects in submicron barium titanate particles.
935	Ferroelectric Letters, 24, 13-23.
936	Zijlstra, H.J.P. (1987) Early diagenetic silica precipitation, in relation to redox boundaries and
937	bacterial metabolism, in Late Cretaceous chalk of the Maastrichtian type locality.
938	Geologieen Mijnbouw, 66, 343-355.
939	Weil J.A. (1975) The aluminum centers in α -quartz. Radiation effects, 26, 261-265.
940	Weil J.A. (1984) A Review of Electron Spin Spectroscopy and Its Application to the Study of
941	Paramagnetic Defects in Crystalline Quartz. Physics and Chemistry of Minerals, 10,
942	149-165.
943	

944	List of figure captions
945	Figure 1: Photos of cores from well Sif-1. Positions of chalk samples 11(Sif-1,2071.11), 12(Sif-1,
946	2071.13) and 10(Sif-1, 2071.08), and flint samples 9(Sif-1, 2070.94) and 13(Sif-1,
947	2079.34).
948	Figure 2: Atomic Force Microscopy images of: (a) sample 12(Sif-1, 2071.13), residue from chalk
949	sample, deposited on highly oriented pyrolytic graphite (HOPG); (b) sample 13(Sif-1,
950	2079.34), flint. Raw sample. Samples have been imaged at room conditions in non-
951	contact mode.
952	Figure 3: X-ray diffraction patterns, using 5% Si as an internal standard andCoKα-radiation; (a):
953	sample 12(Sif-1,2071.13)residue from chalk sample, region $20 - 90$ °2 θ ; (b): sample
954	13(Sif-1, 2079.34), flint; region 20 – 90 °2θ; (c): Quartz standard, Merck, region 20 –
955	90 °20; (d): Region of samples 12(Sif-1, 2071.13) residue from chalk sample, 13(Sif-
956	1, 2079.34), flint and quartz standard, Merck recorded in $80 - 82$ °2 θ interval.
957	Figure 4: ²⁷ Al MAS NMR spectra (14.1 T) of: (a) sample 7(Sif-1, 2065.0), flint; (b) sample 10(Sif-1,
958	2071.08), residue; (c) sample 17(Nana-1, 2135.8), flint. The spectra used a spinning
959	speed of $v_R = 13.0$ kHz, a short excitation pulse (0.5 µs), and a relaxation delay of 2
960	s.The asterisks indicate spinning sidebands.
961	Figure 5: ²⁹ Si MAS NMR spectra of the threenano-quartz samples $(a - c)$ and commercial quartz (d)
962	acquired at 9.4 T employing a spinning speed of $v_R = 6.0$ kHz, a 45° excitation pulse,
963	and a relaxation delay of 300s. (a) sample7(Sif-1, 2065.0), flint; (b) sample 10(Sif-1,
964	2071.08), chalk; and (c) sample 17(Nana-1, 2135.8), flint.
965	Figure 6: ²⁹ Si{ ¹ H} CP/MAS NMR spectra (9.4 T) of the three samples $(a - c)$ obtained with a
966	spinning frequency of $v_R = 4.0$ kHz, a 4-s relaxation delay and CP contact times

967	of τ_{CP} = 2.0 ms(left), 4.0 ms (middle), and 8.0 ms (right). (a) sample7(Sif-1, 2065.0),
968	flint; (b) sample 10(Sif-1, 2071.08), chalk; and (c) sample 17(Nana-1, 2135.8), flint.
969	Figure 7: Platelets of the aggregated [4H] _{si} defects parallel to the ($0\overline{1}010$) plane (modified from
970	Lin et al., 1993).
971	Figure 8: Idealized structural fragments of a quartz structure in which (a) a SiO ₄ tetrahedron is
972	replaced by a vacant tetrahedron coordinated by 40H groups; and (b) tetrahedral Si ⁴⁺
973	is replaced by Al ³⁺ and excess of negative charge is compensated by OH ⁻ group
974	coordinated one of the four Si ⁴⁺ tetrahedra nearest to the Al ³⁺ tetrahedron. Three
975	potentially possible positions for OH ⁻ are shown by double circles.
976	Figure 9: Infrared spectra of single pieces of specimens. Random orientation.
977	Figure 10:Relationship between the maxima of the absorption bands at 3588 and 3613cm ⁻¹ .
978	Figure 11: Differential thermal analysis (ΔT) with infrared determination of evolved H ₂ O; (a)
979	sample 12 (Sif-1, 2071.13) residue from chalk sample; (b) sample 13 (Sif-1, 2079.34),
980	flint.
981	Figure 12: Oxygen isotope composition vs. depth of sample.
982	Figure 13: Relationship between the contents of mol ^{IV} Al and mol(K+Na).
983	Figure 14: The idealized configuration of the hydrogarnet defects forming an OH surface parallel to
984	the (0001) plane of the quartz structure. O atoms are white circles, positions of Si
985	atoms and OH hydroxyls are marked in the figure.
986	Figure 15: Relationship between the a and c unit cell parameters of the studied samples. The almost
987	horizontal thin grey line joins positions of the samples having identical or very similar
988	values of the <i>a</i> parameter.
989	Figure 16: Relationships between the amounts of OH_y and the unit cell a (a) and c (b) parameters.

44

990	Table	1.XRD	parameters	for	the	unit	cells.
-----	-------	-------	------------	-----	-----	------	--------

991

No	Sample			Depth	$a(\lambda)$	$c(\hat{\lambda})$	cla	V-a.a.c	L, nm	mks	L, nm	mks
INU	Sample			Depui	u(A)	$\mathcal{L}(\mathbf{A})$	<i>c/u</i>	v <i>−u∗u</i> ∗c	h00	h00	h0h	H0h
1	Quartz	Merk<63nm	Standard 2012		4.9144	5.4055	1.0999	113.056	122(10)	0.0005	127(10)	0.0006
2	Rigs-1	White Quartz	R91675	2794.3	4.9164	5.407	1.0998	113.179	57(5)	0.001	92(5)	0.0017
3	Rigs-1	Flint	R9274 f1	2826.84	4.9169	5.4047	1.0992	113.158	50(5)	0.0016	73(5)	0.0019
4	Sif-1	Chalk (7%quartz)	6729r	2051.17	4.9182	5.4089	1.0998	113.303	72(5)	0.0009	84(5)	0.0011
5	Sif-1	Flint	6750f+23pt2	2057.63	4.9176	5.4076	1.0996	113.244	58(5)	0.0011	75(5)	0.0016
6	Sif-1	Chalk (40%quartz)	6750k	2057.65	4.918	5.4082	1.0997	113.278	63(5)	0.0011	75(5)	0.0013
7	Sif-1	Flint Lauer	Sif6774 stk9	2065.0	4.9171	5.4071	1.0997	113.214	53(5)	0.0015	81(5)	0.002
8	Sif-1	Flint Lauer	Sif67792	2066.3	4.9171	5.4058	1.0994	120.980	53(5)	0.0018	73(5)	0.0019
9	Sif-1	Flint	6793'2"x3	2070.94	4.9177	5.4074	1.0996	113.263	58(5)	0.0015	81(5)	0.0017
10	Sif-1	Chalk (29%quartz)	Sif 6793 stk1	2071.08	4.9195	5.4097	1.0997	113.377	56(5)	0.0015	68(5)	0.0017
11	Sif-1	Chalk (66%quartz)	Sif 6793 stk2	2071.11	4.9166	5.4072	1.0998	113.193	59(5)	0.0011	74(5)	0.0012
12	Sif-1	Chalk (24%quartz)	Sif 6793 stk3	2071.13	4.9186	5.4096	1.0998	113.335	56(5)	0.0014	67(5)	0.0015
13	Sif-1	Flint	6820'4"+53	2079.34	4.917	5.4063	1.0995	113.190	60(5)	0.0012	84(5)	0.0017
14	Sif-1	Flint	Sif 6851 a	2088.3	4.9172	5.4068	1.0996	113.212	70(5)	0.0011	88(5)	0.0012
15	Nana-1	Flint	6974'10"	2125.93	4.917	5.4067	1.0996	113.200	64(5)	0.0012	82(5)	0.0015
16	Nana-1	Flint	6990_	2130.55	4.9171	5.4066	1.0996	113.204	57(5)	0.0014	80(5)	0.0018
17	Nana-1	Flint	7007'6"	2135.8	4.9171	5.4068	1.0996	113.207	47(5)	0.0016	56(5)	0.0016
18	M-10	Flint	6442 k4d4	1963.52	4.9164	5.4059	1.0996	113.154	57(5)	0.0014	80(5)	0.0018
19	E-5	Flint	6820 stkaIR	2078.74	4.9174	5.4069	1.1000	113.221	59(5)	0.0012	83(5)	0.0018

992 Errors: *a* and *c*: 0.0004 Å; mks: 0.0003Å

993

45

995 Table 2.Fractions of Al, K and Na determined by atomic absorption spectrometry (AAS), and relative ^{IV}Al and ^{VI}Al distribution determined

996 by ²⁷Al MAS NMR

997

Well	Sample	Depth	Depth '	Sample	AAS	AAS	AAS	NMR	NMR
	no	m			% Al ₂ O ₃	% K ₂ O	% Na ₂ O	^{IV} Al	^{VI} Al
								%Al ₂ O ₃	%Al ₂ O ₃
Rigs-1	2	2794.3	9167.5	Quartz layer	0.15(0.01)	0.013(0.002)	0.054 (0.008)	0.12	0.03
Rigs-1	3	2826.84	9274.41	flint	0.18(0.01)	0	0.043 (0.006)	0.16	0.02
Sif-1	5	2057.63	6750+23pt2	flint	0.14(0.01)	0.150 (0.023)	0.130 (0.013)	0.13	0.01
Sif-1	7	2065.0	6774'6"stk9	flint	0.27(0.01)	0.083(0.002)	0.075 (0.008)	0.22	0.05
Sif-1	8	2066.3	6779'4"	flint	0.19(0.01)	0.098(0.010)	0.076 (0.008)	0.15	0.04
Sif-1	9	2070.94	6793'2"x3	flint	0.33(0.02)	0.038(0.006)	0.094 (0.009)	0.29	0.04
Sif-1	10	2071.08	6793'2"stk1	residue, chalk	0.73(0.04)	0.220 (0.022)	0.600 (0.060)	0.61	0.12
Sif-1	11	2071.11	6793'2"stk2	residue, chalk	0.21(0.01)	0.005(0.001)	0.053 (0.008)	0.18	0.03
Sif-1	12	2071.13	6793'2"stk3	residue, chalk	0.39(0.02)	0.085(0.009)	0.066 (0.007)	0.24	0.15
Sif-1	13	2079.34	6820'4"+53	flint	0.34(0.02)	0.058(0.006)	0.142 (0.014)	0.28	0.06
Sif-1	14	2088.3	6851'6"	flint	0.21(0.01)	0.013(0.002)	0.050 (0.008)	0.15	0.06
Nana-1	17	2135.8	7007'6"	flint	0.11(0.01)	0.033(0.005)	0.086 (0.009)	0.09	0.02
M-10	18	1963.52	6442'k3b4	flint	0.32(0.02)	0	0.113 (0.011)	0.27	0.05
E-5	19	2078.74	6820'1"stkaIR	flint(IR)	0.38(0.02)	0	0.016 (0.002)	0.31	0.07

998

46

Well	No	Depth, m	Depth	Sample	Peak T(°C)	% H ₂ O	Peak T(°C)	% H ₂ O
Rigs-1	2	2794.3	9167.5	Quartzlayer			618	1.2
Rigs-1	3	2826.84	9274.41	flint	379	0.13	603	0.17
Sif-1	5	2057.63	6750+23pt2	flint			560	1.1
Sif-1	7	2065.0	6774'6"stk9	flint			572	1.04
Sif-1	8	2066.3	6779'4"	flint			565, 627	0.77
Sif-1	9	2070.94	6793'2"x3	flint			565	0.73
Sif-1	10	2071.08	6793'2"stk1	residue, chalk			599,697	1.9
Sif-1	11	2071.11	6793'2"stk2	residue, chalk			605, 710	1.05
Sif-1	12	2071.13	6793'2"stk3	residue, chalk			569, 650	2.1
Sif-1	13	2079.34	6820'4"+53	flint			556 (715)*	0.81
Sif-1	14	2088.3	6851'6"	flint			591	1.3
Nana-1	17	2135.8	7007'6"	flint	355	0.2	533	1.7
M-10	18	1963.52	6442'k3b4	flint			597 (760)*	0.87
E-5	19	2078.74	6820'1"stkaIR	flint(IR)			592	0.87

1000 Table 3. Differential thermal and evolved water analysis (DTA-EWA), 200-800°C

1001 * small shoulder; errors: % H₂O – 10%

47

1003	Table 4. Chemical formulaefor the	quartz samples from ²⁷ Al NN	IR. Atomic Absorption S	pectrometry and thermal analysis (EGA)	
1005	Tuble 1. Chemieur formulaefor the	Yuu Z Sumples nom In In	in, monine mosorphon s	peedomeny and mermar analysis (EGT)	

1004

Well	Sample	Depth m	Mol K	Mol Na	Mol ^{IV} Al	Mol ^{VI} Al	Mol Al	Mol Si	Vacancy	Mol O	Mol	Mol	Mol
									tetrahedral		OHy	OH _m	OH(^{VI} Al)*
Rigs-1	2 quartz	2794.3	0.0001	0.0009	0.0012	0.0003	0.0015	0.982	0.0164	1.934	0.0656	0.0002	0.0009
Rigs-1	3 flint	2826.84	0.0000	0.0007	0.0016	0.0002	0.0018	0.995	0.0038	1.985	0.0152	0.0009	0.0006
Sif-1	5 flint	2057.63	0.0016	0.0021	0.0013	0.0001	0.0014	0.984	0.0146	1.942	0.0584	0.0024	0.0003
Sif-1	7 flint	2065.0	0.0009	0.0012	0.0022	0.0005	0.0026	0.984	0.0140	1.944	0.0562	0.0001	0.0015
Sif-1	8 flint	2066.3	0.0010	0.0012	0.0015	0.0004	0.0019	0.988	0.0102	1.959	0.0408	0.0008	0.0012
Sif-1	9 flint	2070.94	0.0004	0.0015	0.0028	0.0004	0.0032	0.988	0.0096	1.962	0.0384	0.0009	0.0012
Sif-1	10 residue	2071.08	0.0023	0.0097	0.0060	0.0012	0.0072	0.969	0.0240	1.904	0.0959	0.0060	0.0035
Sif-1	11 residue	2071.11	0.0001	0.0009	0.0018	0.0003	0.0021	0.984	0.0141	1.943	0.0565	0.0009	0.0009
Sif-1	12 residue	2071.13	0.0009	0.0011	0.0024	0.0015	0.0038	0.970	0.0279	1.888	0.1118	0.0004	0.0044
Sif-1	13 flint	2079.34	0.0006	0.0023	0.0027	0.0006	0.0033	0.986	0.0108	1.957	0.0430	0.0002	0.0018
Sif-1	14 flint	2088.3	0.0001	0.0008	0.0015	0.0006	0.0021	0.981	0.0175	1.930	0.0699	0.0005	0.0018
Nana-1	17 flint	2135.8	0.0004	0.0014	0.0009	0.0002	0.0011	0.973	0.0260	1.896	0.1040	0.0009	0.0006
M-10	18 flint	1963.52	0.0000	0.0018	0.0026	0.0005	0.0031	0.986	0.0115	1.954	0.0460	0.0008	0.0015
E-5	19 flint	2078.74	0.0000	0.0003	0.0030	0.0007	0.0037	0.987	0.0109	1.957	0.0435	0.0028	0.0021

1005 #contains probably layer silicates; *OH assumed to be bonded to ^{VI}A1

1007 Table5. Oxygen isotope data

1008

No	Sample	Depth,	$\delta^{18}O$
		m	(‰V-SMOV)
2	Rigs-1, 9167.5'	2794.3	24.9
3	Rigs-1, 9274.41'	2826.84	24.9
5	Sif-1, 6750 pr.2	2057.63	28.5
7	Sif-1, 6774' stk9	2065	28.3
8	Sif-1, 6779'4"	2066.3	28.4
10	Sif-1, 6793' stk1	2071.08	26.4
11	Sif-1, 6793' stk2	2071.11	26.8
12	Sif-1, 6793' stk3	2071.13	27.6
13	Sif-1, 6820	2079.34	27.9
14	Sif-1, 6851'a	2088.3	26.5
17	Nana-1, 7007'	2135.8	28.9
18	M-10, 6442	1963.52	29.4
19	E-5, 6820	2078.74	28.8

1009

49

	Natural	samples	Synthetic samples		
	a-unit cell parameter	<i>c</i> -unit cell parameter	a-unit cell parameter	<i>c</i> -unit cell parameter	
Present investigation	4.9164-4.9195 Å	5.4047-5.4097 Å			
Anafas'eva et al. (1960)	4.9121-4.9137 Å	5.4038-5.4051 Å			
Cohen and Sumner (1958)	4.9131-4.9138 Å	5.4047-5.4052 Å	4.9132-4.9139 Å	5.4049-5.4052 Å	
Hurst and Storch (1982)	4.9133-4.9140 Å	5.4044-5.4054 Å			
Brice (1980)	4.9126-4.9149 Å		4.9133-4.9145 Å		

1011 Table 6. Ranges for the *a*- and *c*- unit cell parameters compared with literature data.

50 012 2070.94 Scm 2079.34 2071.08 2071.11 2071.13 Scm 013 014 015 Figure 1.

016

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am-2017-5992

042 Figure 3d.

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld

059

060 Figure 7.

60

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld

61

64

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am-2017-5992 66

