REVISION 1 1 2 TITLE: Bond Valence and Bond Energy 3 4 Barry R. Bickmore, Owen Craven, Matthew C. F. Wander, Hannah Checketts, Joshua Whitmer, 5 Christopher Shurtleff, David Yeates, Kiersten Ernstrom, Charles Andros, and Hannah Thompson 6 7 Department of Geological Sciences, Brigham Young University, Provo, UT 84602, U.S.A. 8 E-mail: barry bickmore@byu.edu 9 10 11 ABSTRACT 12 The relationship between bond valence and structural energy has never been fully 13 explored, although a number of predictive models have assumed some simple relationship 14 between the two. Some of these models relate energy only to bond valence, while others also 15 take into account other factors, such as bond character. We examined periodic trends in bond 16 dissociation energies as a function of their ionicity, covalency, and metallicity, defined in terms 17 of the electronegativity values of the atoms involved. A statistical model was optimized to 18 describe these trends, allowing us to generate rough bond energy vs. bond valence curves. The 19 shapes of these curves vary dramatically as a function of bond character, and are strongly 20 influenced by the lone-pair bond-weakening effect. The curve shapes can be used to rationalize 21 a number of chemical trends, including the preferred structures of compounds with different 22 bond types, the prevalence of peroxide and persulfide minerals, preferred bond lengths in oxides, 23 and the p K_a values of (hydr)oxy-acids. The last is perhaps the most important, because some 24 25 valence-based acidity models are in current use, despite the fact that some aspects of their rationale are unclear. 26 27 28 29

INTRODUCTION

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

The bond-valence model (BVM) is a standard tool in inorganic chemistry for rationalizing known structures and vetting proposed structures. The fact that the BVM can distinguish between more or less probable structures implies that there must be some systematic relationship between bond valence and structural energy, but the nature of that relationship has proven elusive. Even so, it is fairly common to simply assume a particular form of the relationship. For example, some schemes for relating energy and stability to bond valence implicitly include the assumption that the energy for a given bond valence is invariant across bond types. The Structure Prediction Diagnostic Software (SPuDS) uses deviations from ideal bond-valence sums to calculate a "global instability index," which has been successfully used to predict the most stable geometries of compounds with the perovskite structure (Lufaso and Woodward, 2001). Multi-Site Complexation (MUSIC) is a popular type of surface complexation model in which the acidity constants (p K_a values) for oxide surface groups are fixed using a quantitative structure activity relationship (QSAR) that relates pK_a values solely to deviations from the ideal sums incident to surface oxygen atoms (Hiemstra et al 1996). Others have challenged the idea that energy cost for a given bond-valence deviation is consistent across bond types. Adams and coworkers (Adams and Rao, 2009; 2014), for example, developed a molecular mechanics force field in which energy cost was assumed to be proportional to the square of bond-valence deviation, but the scaling factors were different between bond types. Wander and Bickmore (2016) created a very accurate, valence-based potential energy model for the Al-Si-H-O system, which required differing, and non-linear bond valence-energy relationships for various bond types. Bickmore and coworkers (2004; 2006a;

1 2006b) showed that the MUSIC model would be more accurate if pK_a estimates were made by 2 taking into account both bond character (ionicity vs. covalency) and bond valence considerations. However, the relationship between pK_a values and bond character was much 3 more pronounced for species with low coordination numbers for the central cation. 4 That bond valence cannot be the only consideration for predicting reaction energies 5 6 should have been obvious from the start, given that Pauling's (1932) calibration of his 7 electronegativity scale was based on the fact that single (1.0 v.u.) bonds of different types have widely disparate dissociation energies. For example, the bond dissociation energy of the 8 covalently bonded F_{2(g)} is 158.67 kJ/mol, while more metallically bonded Cs_{2(g)} has a bond 9 10 dissociation energy of 43.919 kJ/mol, and the ionically bonded $CsF_{(g)}$ has a dissociation energy of 517.1 kJ/mol. All three of these molecules are held together with a single bond, but their bond 11 12 dissociation energies vary by more than a factor of 10 (Wander et al., 2015). 13 We suggest that bond dissociation energies (also called "bond energies") like these represent the simplest point to begin working out the main features of the relationship between 14 15 bond valence and energy. That is, if we can collect examples where both the bond valence and bond energy are known, we can begin to see if they can be rationalized in terms of periodic 16 trends related to bond character. Clearly, other considerations (e.g., steric effects and bond angle 17 strain) affect reaction energies, but simple bond energy additivity schemes have a very long 18 history, and work well enough that they have often been included in introductory college 19 20 chemistry textbooks (Pauling, 1960; Atkins and Jones, 2008). Essentially, dissociation 21 enthalpies of molecules are distributed among their bonds to obtain individual bond energies for 22 a given bond type and bond order (valence). It turns out that these individual bond energies are 23 fairly consistent among species, making it possible to approximate the thermodynamic energy of

any compound as the sum of the energies of its constituent bonds. In this way, rough estimates
 of reaction energies can be obtained.

In this paper, we use previously tabulated bond dissociation energies of molecules and atomization energies of simple solids to map out the relationship between bond valence, bond character, and bond energy. We show that the curve shapes, in particular, for plots of bond dissociation energy vs. bond valence vary dramatically for different types of bonds, and these shapes are very useful for rationalizing a number of mineralogical/chemical trends. Finally, we show that the curve shapes may help us solve some long-standing conundrums regarding valence-based empirical models used to predict acidity.

11 METHODS

To map the relationship between bond valence, bond character, and bond energy, we gathered as much bond dissociation energy data as possible, for cases in which bond valence could be inferred. Bond character was estimated with Pauling electronegativity values. One of our goals was to produce approximate bond dissociation energy vs. bond valence curves for any given type of bond, but a given bond type typically only occurs with a limited range of values. Therefore, we utilized periodic trends with respect to bond valence and bond character, to overcome gaps, via interpolation, in the data set. This procedure might come with a penalty in terms of quantitative accuracy, but has the advantage of shedding light on the nature of those periodic trends.

Bond Energy

Bond energy (E_b) was approximated using tabulated experimental bond dissociation enthalpy values for molecules, and atomization energies for simple solids (Sanderson, 1976;

- 1983; Gillespie and Popelier, 2001; Luo, 2007; Batsanov and Batsanov, 2012). Bond 1 2 dissociation enthalpy data were collected for diatomic molecules, as well as averaged values for specific bond types, such as C-O single and C=O double bonds, which vary somewhat among 3 compounds. Atomization energies were collected for simple solids having only one or two types 4 5 of atoms and a single bond type. Only compounds in which minimal polyhedral distortion was present were used, to ensure that all bonds were of approximately the same valence. To obtain 6 approximate average E_b values for the solids, we divided atomization energies by the number of 7 cations per formula unit and the coordination number of the cations. 8 **Bond Valence** 9 10 The bonds for which E_b values were tabulated were classified according to their bond 11 v.u., 0.75 v.u., 1.0 v.u., 2.0 v.u., and 3.0 v.u. 12
 - valence (s_{ij}) values, to form groups with s_{ij} equal to 0.17 v.u., 0.25 v.u., 0.33 v.u., 0.50 v.u., 0.67 v.u., 0.75 v.u., 1.0 v.u., 2.0 v.u., and 3.0 v.u.

 The s_{ij} values for the diatomic molecules were obtained by assuming the valence sum rule was obeyed. That is, we assumed each atom was valence saturated, and we only chose molecules with atoms having compatible valences. For example, we used data for the NaCl_(g), Na_{2(g)}, and Cl_{2(g)} molecules, because we could assume a 1.0 v.u. bond in each case, but did not use data for the NaO_(g) molecule, because Na is monovalent, while O is divalent. In the case of a molecule like MgO_(g), we assumed a double bond (2.0 v.u.) because both atoms are divalent. However, in cases where quadrivalent atoms were involved (e.g., Si_{2(g)}), a triple bond (3.0 v.u.) was assumed. (Trends in their E_b values follow those of triple bonds very closely.)

 The averaged E_b values (those for a single type of bond averaged over a number of species) were tabulated with an associated bond order, so we simply used that bond order as s_{ij} in

14

15

16

17

18

19

20

21

22

23

those cases.

- For the simple solids, s_{ij} was estimated using the valence sum rule, taking the atomic
- 2 valences of the cations divided by their coordination numbers.

Bond Character

3

- 4 Bond character (ionicity, covalency, and metallicity) was estimated using the Pauling
- 5 electronegativity values of the bonding atoms. To estimate the amount of ionic character in the
- bond, we used Equation 1 (Pauling, 1960), where I_b is the fraction ionic character of the bond
- 7 (between 0 and 1), and each χ value is the electronegativity of one of the two bonding atoms.

$$8 I_b = 1 - e^{-0.25(\chi_1 - \chi_2)^2} (1)$$

- 9 An I_b value of 1 signifies a hypothetical, purely ionic bond, while $I_b = 0$ denotes a bond with
- 10 purely covalent and/or metallic character. The metallic or covalent bond character was estimated
- using the average electronegativity of the two bonding atoms ($\langle \chi \rangle$). High average
- electronegativity values ($\langle \chi \rangle \approx 4.0$) signify the most covalent bonds, while low average
- electronegativity values ($\langle \chi \rangle \approx 0.7$) signify the most metallic bonds. Together, the I_b and $\langle \chi \rangle$
- values place each bond in a continuum with the most ionic, covalent, and metallic bonds serving
- as end members. This is a variation of the quantitative van Arkel-Ketelaar triangle proposed by
- 16 Jensen (1995).

17

Periodic Trends

- Periodic trends in E_b were described in three dimensions as a function of I_b and $\langle \chi \rangle$. The
- trends were characterized by fitting plane equations to the data. First, the bonds were separated
- into groups, according to s_{ij} . We then used least-squares regression to simultaneously fit a set of
- 21 two intersecting planes to predict E_b values for each s_{ij} group. (The reason for choosing two

- planes, rather than some other number, is that this adequately captured the dominant trends.)
- 2 The predicted value chosen for each data point corresponded to whichever plane equation gave
- 3 the lower E_b estimate. Given that there were not enough data points in some of the s_{ii} groups
- 4 (especially those with $s_{ij} < 1$ v.u., obtained from atomization energies) to constrain both planes,
- 5 we forced the slopes and intercepts of the plane equations to conform to linear or quadratic
- trends with respect to s_{ij} . Thus, the plane equations for all valence groups were optimized
- 7 simultaneously.

13

14

15

16

17

18

19

20

21

The resultant plane equations were then used to create hypothetical E_b vs. s_{ij} plots for

9 individual bond types. In addition, we used the plane equations to produce E_b vs. I_b plots for

bonds of a given valence, with one of the bonded elements held constant (e.g., 1 v.u. bonds

between O and a range of other elements). The 95% confidence interval for the regression was

calculated using all of the data across all the valence groups.

RESULTS AND DISCUSSION

Trends and Interpolation

The predicted E_b values (kJ/mol) for each s_{ij} group are described by two plane equations with the form shown in Eqn. 2. The predicted E_b value is the lower of the two estimates produced by the two plane equations. The coefficients of the plane equations derived by the simultaneous fitting procedure are shown in Table 1. The 95% confidence interval for the regression was $\pm 190 \text{ kJ/mol}$ for the entire data set, although the low-valence groups ($s_{ij} < 1 \text{ v.u.}$) generally exhibited more scatter.

$$22 E_b = aI_b + b\langle \chi \rangle + c (2)$$

- The coefficients (a, b, and c) in Eqn. 2 were forced to conform to linear or quadratic
- 2 equations in s shown in Eqns. 3-5 for Plane 1 (covalent bonds) and Eqns. 6-8 for Plane 2 (ionic
- and metallic bonds). Therefore, the coefficient values shown in Table 1 can be derived from
- 4 Eqns. 3-8, as can the coefficient values for any arbitrary value of s_{ij} .

$$5 a_1 = -136s_{ij}^2 + 657s_{ij} + 11.6 (3)$$

$$6 b_1 = 41.4s_{ij}^2 - 194s_{ij} + 12.1 (4)$$

$$7 c_1 = 592s_{ii} - 23.6 (5)$$

$$8 a_2 = 99.2s_{ij} + 0.904 (6)$$

$$9 b_2 = 294s_{ii} + 14.3 (7)$$

$$10 c_2 = -45.7s_{ii}^2 - 424s_{ij} + 77.0 (8)$$

- The overall shape of the E_b distribution is best illustrated by the 1.0 v.u. bonds, which
- exhibit the most coverage over the entire range of bond types. Fig. 1a shows a 3D scatter plot
- 13 (E_b vs. I_b and $\langle \chi \rangle$) of the 1.0 v.u. data (symbols), along with the two planes from Table 1 fitted to
- the 1.0 v.u. data, forming a hinged-plane shape. Fig. 1b shows a surface plot of the optimized
- planes, providing a more comprehensive view of the general shape of the data distribution. The
- main trends in the data can be described as follows. 1) The lowest E_b single bonds are the most
- metallic. 2) Moving toward the most ionic or covalent bonds, the E_b values rise steeply, but most
- steeply toward the most covalent bonds. 3) Along a certain boundary (the hinge between the
- planes), the E_b values begin to go downward toward the covalent limit.

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

The remaining data and fitted planes are shown in Fig. 2a-d. Although some valence groups exhibit broader coverage of possible bond types than others, and there is considerable scatter in the data, the hinged-plane model appears to essentially capture the trends in the E_b data as a function of bond character. Where data are not available, the model appears to provide reasonable interpolations. This point is more clearly illustrated in Fig. 3, where E_b values are plotted vs. I_b for bonds involving O in each s_{ij} group. In s_{ij} groups for which the most data points exist, the model predictions clearly mimic the trends, and all the data points are within the 95% confidence limit of ± 190 kJ/mol. In the groups for which no data is available for bonds involving O, the E_b predictions are constrained by other types of bonds, providing plausible estimates. We did not include any data for M-O triple (3.0 v.u.) bonds, for instance, because O is divalent, so any such bonds would not meet our selection criteria. However, it is generally agreed that the atoms in $CO_{(g)}$ molecules are linked by a triple bond, and this is supported by both E_b and bond-length data for C-O single, double, and triple bonds (Glockler, 1958). In any case, $E_b = 1077 \text{ kJ/mol}$ for C=O triple bonds (Darwent, 1970), which is reasonably close to the model prediction of 1130 kJ/mol. Similarly, C≡S triple bonds were not included in our calibration set, but the atoms in $CS_{(g)}$ are connected by a C=S triple bond, for which $E_b = 761$ kJ/mol (Darwent, 1970), close to our model-estimated value of 693 kJ/mol. The most striking feature of the plots in Figs. 1-3 is the abrupt downturn in the E_b values moving toward the covalent limit. Sanderson (1976; 1983) identified this as the lone-pair bondweakening effect (hereafter "the lone-pair effect," for the sake of brevity). As the bonds incident to an atom become more covalent, non-bonding valence electrons (lone pairs) coalesce to become more stereoactive, both repelling and weakening the neighboring bonds (Gillespie and

- Hargittai, 1991; Bickmore et al., 2013; Brown, 2014; 2016). This effect is more pronounced for
- 2 low-valence bonds.

E_b vs. s_{ii} Curves and Chemical Trends

Given the large error estimate for our model, on the one hand, it clearly has limited usefulness for accurately predicting E_b for individual bonds. On the other hand, the model does describe broad trends in E_b values for bond types across the periodic table, so it is reasonable to suppose that E_b vs. s_{ij} curves generated from the model equations would at least provide significant insight about the rough shape of the relationship for a given bond type.

Covalent, Ionic, and Metallic Bonds. If so, the shapes of these curves can be used to rationalize a number of chemical trends. Fig. 4a, for instance, plots the predicted E_b vs. s_{ij} curve for N-N bonds, which are highly covalent. The most covalent bond types exhibit a concave-upward shape, which occurs because the lone-pair effect is more effective for lower-valence bonds. Fig. 4b shows the plot for Ba-O bonds, which are strongly ionic. This relationship is characterized by a linear increase in bond energy for very low s_{ij} values (< 0.2 v.u.), followed by a slope break and a more gently rising, convex upward function at higher s_{ij} values. Given these curve shapes, we would expect very covalently bonded compounds to favor fewer, higher- s_{ij} bonds, and very ionically bonded compounds to favor more, lower- s_{ij} bonds. This is, in fact, the case. The most covalent compounds tend to form molecules held together by single, double, or triple bonds. In condensed phases, the molecules are held together by Van der Waals forces or weak hydrogen bonds, resulting in relatively low melting and boiling temperatures. N-N bonds are an excellent example, because $N_{2(g)}$ is very stable, is held together by a triple bond, and condenses only at very low temperatures (< 77 K). Ionic compounds, however, tend to form

- network solids, held together by a larger number of low- s_{ij} bonds. BaO_(s), for example, has
- 2 octahedrally coordinated atoms connected by ~0.33 v.u. bonds, and the liquid-phase boiling
- 3 temperature is 2270 K. Fig. 4c shows the curve for Cu-Cu bonds, which are metallic. The curve
- 4 initially goes up at low s_{ij} , but then flattens and even goes downward at high s_{ij} . Once again, this
- 5 curve shape would favor the formation of a network solid held together by low s_{ij} bonds, and a
- 6 high boiling point. In fact, $Cu_{(s)}$ has 12-coordinated atoms, connected by ~0.17 v.u. bonds, and
- 7 the liquid phase has a boiling point of 2833 K (Straumanis and Yu, 1969; Weir et al., 1971;
- 8 Greenwood and Earnshaw, 1997; Haynes, 2016).

10

11

12

13

14

15

16

17

18

19

Bonds With Oxygen. The E_b vs. s_{ij} curves for oxides are of particular interest for mineralogists and geochemists (Bunker and Casey, 2016), so they are a good choice to examine in more detail. Fig. 5a shows the curves for an arbitrary series of M-O bonds (where M is a cation) with $0 < I_b < 0.9$. The most covalent bonds (low I_b), once again, have a concave upward shape, whereas the most ionic bonds linearly increase at low M-O bond valence (s_{MO}), and then above a certain point (the intersection of the two planes) exhibit a convex upward shape. Bonds with intermediate I_b values have a concave upward shape at low s_{MO} (although their curvature is less than those for the most covalent bonds), and a convex upward shape above the plane intersection point. The plane intersection point occurs at systematically lower s_{MO} values the more ionic the bond. The locations of the intersection points ($s_{MO,break}$) as a function of I_b are described by Eqn. 9.

$$s_{MO,break} = -8.71I_b^3 + 23.0I_b^2 - 20.8I_b + 6.69$$
 (9)

The import of these curves can more easily be seen in Fig. 5b, where E_b/s_{MO} is plotted vs. s_{MO} . The optimal s_{MO} value for a given bond type should be where E_b/s_{MO} is maximized, at least to the extent that other factors do not come into play. In all cases, there is a local maximum at

- s_{MO,break}, but extrapolation of our curves to s_{MO} = 0 v.u. would cause E_b/s_{MO} to go to infinity.
 Obviously, this is impossible, because s_{MO} = 0 v.u. would, by definition, have E_b = 0 kJ/mol.
- 3 Still, the data we used to calibrate our model included bond valence values as low as 0.17 v.u.,
- 4 which is where we have truncated the curves in Figs. 5a and 5b. It appears, therefore, that the
- 5 upturn in E_b/s_{MO} at low s_{MO} is probably real, even if it cannot be extrapolated with any
- 6 confidence to s_{MO} values lower than 0.17 v.u.
- For the most ionic bonds shown in Fig. 5b ($I_b > 0.6$), the E_b/s_{MO} values at $s_{MO} = 0.17$ v.u.
- 8 are higher than those at $s_{MO,break}$. We expect, therefore, the optimal s_{MO} values for these bonds to
- 9 be at or lower than $s_{MO,break}$, and probably controlled largely by O-O distances.
- For the most covalent bonds, such as O-O ($I_b = 0$), E_b/s_{MO} values continue to rise with
- 11 s_{MO} , with no slope break until above 3 v.u. In these cases, therefore, we expect the optimal s_{MO}
- values to be limited by the bond-valence sums incident to the atoms involved. That is, the bonds
- will adopt as high s_{MO} values as possible, given the valence sum limitations.
- 14 Clearly, the shapes of the E_b/s_{MO} vs. s_{MO} curves in Fig. 5b imply that the optimal s_{MO}
- values for bonds involving O should be less than $s_{MO,break}$ for both the most ionic, and the most
- 16 covalent, bonds. However, the shapes of the E_b/s_{MO} vs. s_{MO} curves for M-O bonds with
- intermediate covalency/ionicity imply that the optimal s_{MO} values should be very similar to
- 18 $s_{MO,break}$. These implications can be tested by referring to Brown and Skowron's (1990)
- definition of "Lewis acid strength" (L_A) for cations. The cation valences are divided by their
- average observed coordination numbers in oxide crystal structures to obtain L_A . A cation L_A
- 21 value thus has units of v.u., and serves as an expectation value for the valence of bonds between
- that cation and O. Brown and Skowron (1990) found that the L_A values of main-group cations in
- 23 their highest oxidation states were highly correlated with cation electronegativity. In Fig. 6, we

plot the L_A values of a number of these cations (Brown, 2002) vs. the I_b values of the respective 1 2 M-O bonds. For comparison, we also plot the calculated $s_{MO,break}$ values for bonds with a range of I_b values, and as expected, $s_{MO,break}$ is higher than L_A for the most ionic ($I_b > 0.77$) and covalent 3 $(I_b < 0.6)$ bonds, but closely corresponds to L_A for intermediate bonds. 4 **Peroxide and Persulfide Minerals.** The curves in Fig. 5 can also readily be used to 5 explain why, for instance, there are so few peroxide minerals. There are only two known 6 7 peroxide minerals, studtite and metastudtite, which are uranyl peroxides that form due to radiolysis of water (Deliens and Piret, 1983). Peroxides have O-O single bonds, but Fig. 5b 8 shows that O-O bonds ($I_b = 0$) of 1.0 v.u. have much lower E_b/s_{MO} values than more ionic M-O 9 10 bonds. In fact, O-O bonds cannot begin to compete with the more ionic bonds, except at ~2.0 v.u. Therefore, in nature O almost always occurs as zero-valent $(O_{2(g)})$ or as divalent (O^{2-}) in 11 oxides, but almost never as univalent (O¹⁻) in peroxides. 12 Some persulfide minerals like pyrite (FeS₂) are relatively common, in contrast, and the E_h 13 vs. s_{MS} and E_b/s_{MS} vs. s_{MS} curves in Figs. 7a and 7b show why that is to be expected. E_b/s_{MS} 14 values for S-S single bonds ($I_b = 0$, $s_{MS} = 1.0$ v.u.) are much more competitive with those of more 15 ionic M-S bonds, than the E_b/s_{MS} values of O-O single bonds are with those of more ionic M-O 16 17 bonds. (Hydr)oxy-acid Dissociation Constants. Oxide-water interfacial chemistry is important 18 in a number of scientific fields, not least the fate and transport of contaminants in subsurface 19 environments (Stumm, 1992). It is typical to treat the equilibria between oxide surfaces and 20 21 aqueous species via surface complexation models (SCMs). These involve equilibrium constants 22 for reactions between surface functional groups and aqueous species, for which the near-surface activities of ionic species are corrected from the bulk using various electrostatic models to 23

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

account for charge build-up at the interface. One pervasive problem with SCMs is that surfaces usually have a variety of functional groups, the type, number, and spatial distribution of which cannot easily be characterized. Furthermore, the interfacial charge build-up tends to smear out the equilibrium response of the different surface functional groups during titration, so that their response is difficult to differentiate in the macroscopic data. As a result, while SCMs nominally provide molecular-scale interpretations of titration data, such interpretations are fundamentally non-unique (Westall and Hohl, 1980) Hiemstra and coworkers (1989; 1996) have developed the Multi-Site Complexation (MUSIC) model to provide estimates of some of the most influential parameters in SCMs of oxides, providing more rigid constraints on their molecular-scale interpretations. These influential parameters include the types and spatial densities of oxide surface functional groups, and their pK_a values. The acidity estimates are based on a quantitative structure-activity relationship (QSAR) that relies solely on the deviation of the oxygen bond valence sums from the ideal 2.0 v.u. in the conjugate bases of (hydr)oxy-acid solution monomers. The MUSIC model has been widely used, largely because it has no well-developed competitors, but several groups have provided some strong criticisms of the model, which are summarized by Bickmore (2014). The following is a list of criticisms relevant to this discussion. First, the MUSIC acidity OSAR is calibrated on solution monomers in particular dissociation states, but not others. Because the bond-valence analysis of the monomers employs idealized geometries, application to multiple acid dissociations of a molecule can result in wildly inaccurate p K_a estimates. For example, the QSAR can relatively accurately estimate the p K_a value for the first acid dissociation of silicic acid (Si(OH)₄), but not the second. Given that the relationship is subsequently applied to variable-charge surfaces, this is a potential problem. It is

worth noting, however, that among the solution monomers this is a critical problem for oxy-acids 1 like silicic acid. but not so much for hydroxy-acids like Fe³⁺•6H₂O (Bickmore et al., 2004: 2 2006a; 2006b; Bickmore, 2014). (Here we refer to acids in which –OH groups dissociate as oxy-3 acids, and those in which –OH₂ groups dissociate as hydroxy-acids.) 4 Second, when the QSAR has been applied to surfaces, in some cases idealized cation 5 coordination structures have been employed, but in others polyhedral distortion has been taken 6 into account using bond lengths from bulk crystal structures. But if these kinds of distortions are 7 8 sometimes important, then bond relaxation at solid surfaces should be taken into account, as well. Bickmore and coworkers (2004; 2006a; 2006b) found that accurate p K_a estimates for oxyacid solution monomers require bond relaxation to be taken into account across multiple acid 10 11 dissociations, and they accomplished this by referring to DFT-calculated gas-phase geometries of the conjugate bases. However, they also found that idealized geometries, in which all M-O 12 bonds are assumed to have the same valence, work as well or better than calculated, distorted 13 structures for the hydroxy-acids. 14 Third, the conceptual foundation of the MUSIC approach is the assumptions that acidity 15 is related to deviations for ideal valence sums on oxygen atoms, and that a given deviation in v.u. 16 has the same energy cost across bond types, but both of these assumptions are demonstrably 17 flawed. Bickmore and coworkers (2006b; 2009) used ab initio molecular dynamics simulations 18 19 of water and oxy-acids in water to show that, on a time-averaged basis, the valence sums to the oxygen atoms in these species hover very closely around the ideal value of 2.0 v.u., and we have 20 already demonstrated here that dissociation energies vary widely as a function of bond type. If 21 the model is conceptually incorrect, any successes must involve fortuitous cancellation of errors, 22

- which raises questions about how well it can be applied to structures significantly different from
- 2 those included in the calibration set.
- Some of these questions were addressed by Bickmore and coworkers (2006a; 2006b),
- 4 who optimized Eqn. 10 to relatively accurately estimate "intrinsic" (i.e., corrected for simple
- electrostatic effects) pK_a values across multiple dissociations for (hydr)oxy-acid monomers.

$$6 pK_a = 60.5L_B + \beta I_b + 18.1 (10)$$

- Here, L_B is the Lewis base strength of the oxygen atom in the conjugate base, which is based on
- 8 the valences of incident M-O and strong H-O bonds, I_b is the fraction ionic character (Eqn. 1) of
- 9 the M-O bond, and β is a unitless parameter that is different for molecules with different
- 10 coordination numbers for the central cation. For triangular oxy-acids (e.g., carbonic acid,
- 11 CO(OH)₂), tetrahedral oxy-acids (e.g., silicic acid, Si(OH)₄), and 6-coordinated hydroxy-acids
- 12 (e.g., $Fe^{3+} \cdot 6H_2O$), $\beta = 51.6$, 20.6, and 5.3, respectively.
- This was an encouraging result, and a clear indication that both bond valence and bond
- character must be incorporated in a robust acidity model. Questions remained, however, and it
- was not readily apparent how to apply Eqn. 10 to oxide surface functional groups. After
- discussing these remaining issues, Bickmore (2014) observed that to solve them, "we need to
- better understand the relationship between bond valence and energy."
- In fact, the shapes of the estimated E_b vs. s_{MO} curves for oxides shown in Fig. 5a can be
- 19 used to construct plausible qualitative explanations for the apparent anomalies. For example, the
- 20 bond-valence terms in all the QSARs discussed above seem to depend only on the structure of
- 21 the conjugate base, rather than some difference between the acid and base structures, whereas the
- reaction energy of acid dissociation must, by definition, be due to some difference between the
- 23 two systems. Furthermore, the bond-valence sums incident to all the atoms in several oxy-acids

1 and their conjugate bases remain essentially constant, and close to the ideal values, both before 2 and after dissociation in AIMD simulations (Bickmore et al., 2006b; Bickmore et al., 2009). Even the total valence of each type of bond (M-O and H-O) remains constant. Therefore, we 3 posit that differences in acidity among these species might be partially attributable to energy 4 differences caused by the distortion of the molecule during acid dissociation, coupled with the 5 relative energetic favorability of the distortion due to the shapes of E_b vs. s_{MO} curves (Fig. 5a). 6 7 In the regions of the E_b vs. s_{MO} curves where $s_{MO} < s_{MO,break}$, within which most bonds in condensed phases are expected, the curvature is concave upward, and increases as the bonds 8 9 become more covalent. In the regions where $s_{MO} > s_{MO,break}$, the curves become more convex 10 upward as the bonds become more ionic. Consider a case where there are two 0.5 v.u. bonds 11 incident to an atom, which then distort to 0.7 and 0.3 v.u. If this region of the E_b vs. s_{MO} curve is a straight line, the average E_b value for the two bonds would remain unchanged, but a concave 12 13 upward curve would result in a higher average E_b , and a convex upward curve would result in a lower average E_b . Supposing the bonds in question mostly form in the region where s_{MO} 14 15 $s_{MO,break}$, distortions in the molecule due to acid dissociation would be stabilized to the degree the M-O bonds are covalent. In the region where $s_{MO} > s_{MO,break}$, the distortions would be less 16 destabilized for the more covalent bonds. 17 18 Differences in acidity would also depend on s_{MO} and the coordination number of the central atom, because these would control the region of the E_b vs. s_{MO} curves over which the 19 20 bond distortions occur, and the degree of distortion required by individual bonds in response to 21 an acid dissociation event, respectively. Furthermore, this mechanism might also provide an explanation for why Bickmore and 22 coworkers found that idealized molecular structures could be used for the hydroxy-acid bond-23

valence calculations, but relaxed structures were required for the oxy-acids. That is, the bonds in the hydroxy-acids may occur in more linear regions of the curves where there is little energetic difference between distorted and undistorted forms, and their individual bonds would distort less, because the coordination numbers of their central atoms are higher than those for the oxy-acids.

The shapes of our E_b vs. s_{MO} curves, and thus our proposed mechanism for differences in acidity among (hydr)oxy-acids, are heavily influenced by the lone-pair effect. In fact, our proposed mechanism is consistent with the findings of Lauvergnat et al. (1996), who used valence-bond analysis to show that, for H_nX -H single bonds ($H_nX = H_2N$ to F), the dissociation products of the more covalently bonded compounds undergo an electronic reorganization that stabilizes the H_nX - fragments, and thus lowers the dissociation energy compared to what it would otherwise be, in the absence of the lone-pair effect.

IMPLICATIONS

We conclude with the following implications of our findings.

- Some have assumed a very simple, and usually linear, relationship between bond energy and bond valence, but this would only approximately be the case in a limited range of circumstances (ionic bonds with low valence, or over a very limited range of bond valence and bond character).
- 2. If two similar molecules undergoing the same reaction have similar (e.g., linear) E_b vs. s_{ij} dependencies, then it is likely that a purely structural comparison will produce a reasonable prediction (e.g., comparing bond valences to determine relative p K_a values). However, if one has a significantly different magnitude or

- curvature than the other in the region of reaction, then such a simple comparison is inadequate.
 - 3. In general, the *shapes*, as well as the relative magnitudes, of the complex E_b vs. s_{ij} curves are predictors of important mineralogical/chemical trends, because these determine the relative energetic efficiency with which atomic valences can be satisfied by different combinations of available bond types. However, other factors, such as repulsion between non-bonded atoms and available valence, also come into play.
 - 4. The lone-pair bond-weakening effect is a dominating factor for determining E_b vs. s_{ij} curve shapes, but we have found no discussion of the effect in the mineralogical literature. Certainly this merits a prominent place in any BVM-based theoretical discussions of mineralogy or structural chemistry (c.f., Hawthorne, 2015), because it explains why some types of structures are uncommon in nature. Brown (2011; 2014; 2016) has recently addressed the steric effects of non-bonding valence electrons within the framework of his flux theory of chemical bonding, which is an extension of the ionic model and the BVM. It should be possible to extend it further to encompass the effects on bond energies described here.
 - 5. If QSARs based on bond valence are to be accurate over a broad range of conditions, other factors, such as bond character, must be taken into account.

ACKNOWLEDGEMENTS

The authors gratefully acknowledge support for this research from the National Science 1 2 Foundation (EAR-1424682) and the College of Physical and Mathematical Sciences undergraduate mentoring program at Brigham Young University. Professor I. D. Brown and an 3 anonymous reviewer provided very helpful comments on the original manuscript. 4 5 6 REFERENCES 7 Adams, S. and Rao, R.P. (2009) Transport pathways for mobile ions in disordered solids from the 8 analysis of energy-scaled bond-valence mismatch landscapes. Physical Chemistry Chemical 9 Physics, 11, 3210-3216. Adams, S. and Rao, R.P. (2014) Understanding ionic conduction and energy storage materials with bond-10 11 valence-based methods. Structure and Bonding, 158, 129-160. 12 Atkins, P. and Jones, L. (2008) Chemical Principles: The Quest for Insight, 925 p. W.H. Freeman, New 13 York. Batsanov, S.S. and Batsanov, A.S. (2012) Introduction to Structural Chemistry, 542 p. Springer, 14 15 Dordrecht. 16 Bickmore, B.R. (2014) Structure and acidity in aqueous solutions and oxide-water interfaces. Structure 17 and Bonding, 158, 191-203. 18 Bickmore, B.R., Rosso, K.M., and Mitchell, S.C. (2006a) Is there hope for multisite complexation 19 modeling? In J. Lützenkirchen, Ed., Surface Complexation Modelling. Elsevier, Amsterdam. 20 Bickmore, B.R., Rosso, K.M., Brown, I.D., and Kerisit, S. (2009) Bond-valence constraints on liquid water structure. Journal of Physical Chemistry, A113, 1847-1857. 21 22 Bickmore, B.R., Tadanier, C.J., Rosso, K.M., Monn, W.D., and Eggett, D.L. (2004) Bond-valence 23 methods for pK_a prediction: Critical reanalysis and a new approach. Geochimica et 24 Cosmochimica Acta, 68, 2025-2042.

- 1 Bickmore, B.R., Rosso, K.M., Tadanier, C.J., Bylaska, E.J., and Doud, D. (2006b) Bond-valence methods
- for pKa prediction. II. Bond-valence, electrostatic, molecular geometry, and solvation effects.
- Geochimica et Cosmochimica Acta, 70, 4057-4071.
- 4 Bickmore, B.R., Wander, M.C.F., Edwards, J., Maurer, J., Shepherd, K., Meyer, E., Johansen, W.J.,
- Frank, R.A., Andros, C., and Davis, M. (2013) Electronic structure effects in the vectorial bond-
- 6 valence model. American Mineralogist, 98, 340-349.
- 7 Brown, I.D. (2002) The Chemical Bond in Inorganic Chemistry: The bond valence model, 278 p. Oxford
- 8 University Press, New York.
- 9 Brown, I.D. (2011) View of lone electron pairs and their role in structural chemistry. Journal of Physical
- 10 Chemistry, A115, 12638-12645.
- Brown, I.D. (2014) Bond valence theory. Structure and Bonding, 158, 11-58.
- Brown, I.D. (2016) Are covalent bonds really directed? American Mineralogist, 101, 531-539.
- 13 Brown, I.D. and Skowron, A. (1990) Electronegativity and Lewis acid strength. Journal of the American
- 14 Chemical Society, 112, 3401-3403.
- Bunker, B.C. and Casey, W.H. (2016) The Aqueous Chemistry of Oxides, 604 p. Oxford University
- Press, New York City.
- Darwent, B.d. (1970) Bond dissociation energies in simple molecules. In: N.B.o. Standards Ed. U.S.
- Government Printing Office, Washington, D. C.
- 19 Deliens, M. and Piret, P. (1983) Metastudtite, UO₄ 2H₂O₂, a new mineral from Shinkolobwe, Shaba,
- Zaire. American Mineralogist, 68, 456-458.
- 21 Gillespie, R.J. and Hargittai, I. (1991) The VSEPR Model of Molecular Geometry, 248 p. Allyn and
- Bacon, Boston.
- 23 Gillespie, R.J. and Popelier, P.L.A. (2001) Chemical Bonding and Molecular Geometry: From Lewis
- 24 Structures to Electron Densities, 268 p. Oxford University Press, Oxford.
- 25 Glockler, G. (1958) Carbon-oxygen bond energies and bond distances. Journal of Physical Chemistry, 62,
- 26 1049-1054.

Greenwood, N. and Earnshaw, A. (1997) Chemistry of the Elements, 1600 p. Butterworth-Heinemann, 1 2 Waltham, MA. 3 Hawthorne, F.C. (2015) Toward theoretical mineralogy: A bond-topological approach. American 4 Mineralogist, 100, 696-713. 5 Haynes, W.M. (2016) Handbook of Chemistry and Physics. CRC Press, Boca Raton. 6 Hiemstra, T., Van Riemsdijk, W.H., and Bolt, G.H. (1989) Multisite proton adsorption modeling at the 7 solid/solution interface of (hydr)oxides: A new approach. I. Model description and evaluation of 8 intrinsic reaction constants. Journal of Colloid and Interface Science, 133, 91-104. 9 Hiemstra, T., Venema, P., and Van Riemsdijk, W.H. (1996) Intrinsic proton affinity of reactive surface 10 groups of metal (hydr)oxides: The bond valence principle. Journal of Colloid and Interface 11 Science, 184, 680-692. 12 Jensen, W.B. (1995) A quantitative van Arkel diagram. Journal of Chemical Education, 72, 395-398. 13 Lauvergnat, D., Maître, P., Hiberty, P.C., and Volatron, F. (1996) Valence Bond Analysis of the Lone 14 Pair Bond Weakening Effect for the X-H Bonds in the Series XH_n = CH₄, NH₃, OH₂, FH. Journal 15 of Physical Chemistry, 100, 6463–6468. 16 Lufaso, M.W. and Woodward, P.M. (2001) Prediction of the crystal structures of perovskites using the software program SPuDS. Acta Crystallographica, B57, 725-738. 17 18 Luo, Y.-R. (2007) Comprehensive Handbook of Chemical Bond Energies, 1657 p. CRC Press, New York. 19 20 Pauling, L. (1932) The nature of the chemical bond. IV. The energy of single bonds and the relative 21 electronegativity of atoms. Journal of the American Chemical Society, 54, 3570-3582. 22 Pauling, L. (1960) The Nature of the Chemical Bond, 644 p. Cornell University Press, Ithaca. 23 Sanderson, R.T. (1976) Chemical Bonds and Bond Energy, 218 p. Academic Press, New York. 24 Sanderson, R.T. (1983) Polar Covalence, 240 p. Academic Press, New York. 25 Straumanis, M.E. and Yu, L.S. (1969) Lattice parameters, densities, expansion coefficients and perfection 26 of structure of Cu and of Cu-In in alpha phase. Acta Crystallographica, A25, 676-682.

1	Stumm, W. (1992) The Chemistry of the Solid-Water Interface, 428 p. Wiley, New York.
2	Wander, M.C.F. and Bickmore, B.R. (2016) A preliminary valence-multipole potential energy model: Al-
3	Si-H-O system. American Mineralogist, 101, 1862-1872.
4	Wander, M.C.F., Bickmore, B.R., Davis, M., Johansen, W.J., Andros, C., and Lind, L. (2015) The use of
5	cation-cation and anion-anion bonds to augment the bond-valence model. American Mineralogist,
6	100, 148-159.
7	Weir, C.E., Piermarini, G.J., and Block, S. (1971) On the crystal structures of Cs II and Ga II. Journal of
8	Chemical Physics, 54, 2768.
9	Westall, J.C. and Hohl, H. (1980) A comparison of electrostatic models for the oxide/solution interface.
10	Advances in Colloid and Interface Science, 12, 265-294.
11	
12	
13	
14	
15	
16	
10	
17	
18	
19	
19	
20	
21	
22	
22	

5 TABLES

Table 1. The predicted E_b values (kJ/mol) for each s_{ij} group are described by two plane

- equations of the form $E_b = aI_b + b\langle \chi \rangle + c$. The predicted E_b value is the lower of the two
- 8 estimates produced by the two plane equations. Plane 1 describes the more covalent bonds,
- 9 while Plane 2 describes the more ionic and metallic bonds.

	Plane 1			Plane 2		
s _{ij} (v.u.)	а	b	c	а	b	c
0.17	117	-19.0	75.2	17.4	63.3	5.13
0.25	167	-33.7	125	25.7	87.7	-31.7
0.33	216	-47.8	174	34.0	112	-69.3
0.50	306	-74.4	273	50.5	161	-146
0.67	389	-98.6	371	67.0	210	-226
0.75	428	-110	421	75.3	235	-266
1.0	533	-140	569	100	308	-392
2.0	780	-210	1161	199	602	-953
3.0	755	-197	1750	298	895	-1610

1

2

3

4

1 FIGURE CAPTIONS

- Figure 1. a) 3D scatter plot (E_b vs. I_b and $\langle \chi \rangle$) of the 1.0 v.u. data (green symbols), along with
- 3 the two planes (green) from Table 1 fitted to the 1.0 v.u. data, forming a hinged-plane shape. E_b
- 4 is given in kJ/mol. b) Surface plot of the 1.0 v.u. optimized plane equations. The color scale
- 5 represents E_b in kJ/mol.

6

9

13

- Figure 2. Plane fits for the remaining valence groups: a) 0.17 (blue) and 0.33 v.u. (red). b) 0.25
- 8 (pink) and 0.5 v.u. (blue). c) 0.67 (red) and 0.75 v.u. (blue). d) 2.0 (blue) and 3.0 v.u. (pink).
- Figure 3. E_b values are plotted vs. I_b for bonds involving O in each valence group. The markers
- 11 represent the actual data, while the lines of the corresponding colors represent the estimates of
- the plane equations.
- Figure 4. E_b vs. s_{ij} curves for various bond types, generated by our hinged-plane model. The
- blue-shaded band indicates the 95% confidence interval, and the points represent measured bond
- 16 energies. a) N-N ($I_b = 0$, $\langle \chi \rangle = 3.04$). b) Ba-O ($I_b = 0.80$, $\langle \chi \rangle = 2.17$). c) Cu-Cu ($I_b = 0$, $\langle \chi \rangle = 2.17$).
- 17 1.90).
- Figure 5. a) E_b vs. s_{MO} and b) E_b/s_{MO} vs. s_{MO} curves for M-O bonds in the range $0 < I_b < 0.9$,
- 20 where O is in the 0, -1, or -2 oxidation states, and M is a cation or another O atom.

18

- Figure 6. Here the Lewis acidity (L_A) values of a number cations (Brown, 2002) vs. the I_b values
- of the respective M-O bonds. For comparison, we also plot the calculated $s_{MO,break}$ values for
- bonds with a range of I_b values, and as expected, $s_{MO,break}$ is higher than L_A for the most ionic (I_b
- 4 > 0.77) and covalent ($I_b < 0.6$) bonds, but closely corresponds to L_A for intermediate bonds.
- **Figure 7.** a) E_b vs. s_{MS} and b) E_b/s_{MS} vs. s_{MS} curves for M-S bonds in the range $0 < I_b < 0.6$,
- 7 where S is in the 0, -1, or -2 oxidation states, and M is a cation or another S atom.

5





























