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Abstract: 13 
Many plagioclase phenocrysts from volcanic and plutonic rocks display quite complex 14 
chemical and textural zoning patterns. Understanding the zoning patterns and variety of 15 
crystal populations holds clues to the processes and time scales that lead to the formation of 16 
the igneous rocks. However, in addition to a 'true' natural complexity of the crystal 17 
population, the large variety of plagioclase types can be partly artifacts of the use of two-18 
dimensional (2D) petrographic thin sections and random cuts of three-dimensional (3D) 19 
plagioclase crystals. Thus, the identification of the true number of plagioclase populations, 20 
and the decision of which are 'representative' crystal sections to be used for detailed trace 21 
element and isotope analysis is not obvious and tends to be subjective. 22 
Here we approach this problem with a series of numerical simulations and statistical analyses 23 
of a variety of plagioclase crystals zoned in 3D. We analyze the effect of increasing 24 
complexity of zoning based on 2D chemical maps (e.g. backscattered electron images, BSE). 25 
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We first analyze the random sections of single crystals, and then study the effect of mixing of 26 
different crystal populations in the samples. By quantifying the similarity of the 27 
compositional histogram of about one hundred 2D plagioclase sections it is possible to 28 
identify the so-called reference and ideal sections that are representative of the real 3D crystal 29 
populations. These section types allow filtering out the random-cut effects and explain more 30 
than 90% of the plagioclase compositional data of a given sample. Our method allows the 31 
identification of the main crystal populations and representative crystals that can then be used 32 
for a more robust interpretation of magmatic processes and time scales. 33 
 34 
Keyword: Crystal zoning; Plagioclase; pattern recognition; Modeling; Random cuts; 35 
  36 
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Introduction 37 
    The compositional and textural features of plagioclase from igneous rocks have been 38 
investigated for a long time, first using its optical properties and the petrographic microscope 39 
(e.g., Hibbard, 1995; Shelley, 1993), and more recently using a combined approach of 40 
scanning electron microscope (e.g., Ginibre et al., 2002), electron and ion microprobes (e.g., 41 
Blundy and Shimizu, 1991; Singer et al., 1995), rim-to-core analysis (e.g. Bouvet De 42 
Maisonneuve et al., 2012; Neill et al., 2015), cathodoluminescence studies (e.g. Higgins et al., 43 
2015), and in situ microdrilling for isotopes (Davidson et al., 2001). Feldspar studies have 44 
provided critical clues about the magmatic processes (e.g. magma mixing, assimilation, 45 
fractionation, magma ascent, crystal recycling; e.g. Anderson, 1984; Feeley and Dungan, 46 
1996; Landi et al., 2004; Streck, 2008) and their associated time scales (e.g., Costa et al., 47 
2003; Druitt et al., 2012; Stelten et al., 2015; Zellmer et al., 1999). However, a common 48 
observation of all of these studies is the extreme variety and the chemical and textural 49 
complexity of the plagioclase crystals, including those of open degassing volcanoes such as 50 
Stromboli, Etna, Llaima, or Mayon  (Bouvet De Maisonneuve et al., 2012; Landi et al., 2004; 51 
Nicotra and Viccaro, 2012), e.g. the example from Mayon shown in Fig.1 that we will discuss 52 
in detail below. The variety of plagioclase phenocrysts makes it very difficult to establish how 53 
many crystal populations are present in the deposit, and to objectively decide whether there 54 
are any phenocryst section that can be considered as 'representative' of a population and thus 55 
used to derive conclusions about the processes from electron or ion microprobe data (e.g., 56 
Singer et al., 1995).  57 
    The variety and complexity of plagioclase textures and zoning can reflect the large number 58 
of processes and variables that affect its stability (e.g. Yoder et al., 1957), but may also partly 59 
be the result that we typically study them using 2D petrographic thin sections that are derived 60 
from a set of randomly cut 3D crystals. The 3D to 2D conversion of the crystals can 61 
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significantly affect their shape (e.g. Higgins, 1994) but also produce an artificial variety of 62 
zoning patterns and increase the apparent number of crystal populations (Pearce, 1984; 63 
Wallace and Bergantz, 2004).  Wallace and Bergantz (2002) proposed a methodology to 64 
correlate between different crystals using 1 dimensional (1D) traverses by doing a wavelet 65 
analysis of the anorthite (An = 100 x Ca/[Ca+Na]) content. They designed a new crystal 66 
phylogeny analysis that showed how different crystals in the same deposits could be related, 67 
and shared a larger portion of their history going from core to rim. Later Wallace and 68 
Bergantz (2005) recognized the effects of random cuts and proposed a methodology to correct 69 
for them, although also acknowledged that loss of information by random cuts missing the 70 
inner parts of the crystals is unavoidable. 71 
    In this paper, we take a complementary approach by analyzing the 2D compositional 72 
features of plagioclase based on BSE images (e.g. An histograms of 2D plagioclase sections; 73 
e.g. Cashman and Blundy, 2013). Given the ease with which the BSE images of a large 74 
number of crystals can be gathered, it is possible to obtain a large statistical dataset that can 75 
be used to characterize the deposits and the crystals. Numerical simulation of 2D crystal 76 
sections in thin section may allow understanding the 3D crystals and magma processes in a 77 
similar manner to the quantification of crystal size distribution studies (Higgins, 1994; 78 
Morgan and Jerram, 2006), olivine and pyroxene zoning patterns and time scales (Pearce, 79 
1984; Shea et al., 2015). However, such analysis for complexly zoned crystals like 80 
plagioclase is basically not available. 81 
    We first present numerical simulations of 3D plagioclase zoned crystals, which we use to 82 
quantify the effect of the 3D-to-2D conversion using compositional maps. We show how it is 83 
possible to define some special sections that are fully representative of the 3D crystals by 84 
quantifying the similarity between the different 2D sections. We apply these numerical 85 
models to a variety of zoning patterns and mixed crystal populations and demonstrate how 86 
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our approach can retrieve the original true populations and explain > 90% of the 87 
compositional data for the samples.  88 

Model set up and strategy for characterizing and comparing compositional zoning 89 
 90 
    When studying natural samples we do not know a priori how many crystal populations 91 
there are in a given sample, and it is difficult to recognize the artifacts of random sampling, in 92 
particular if crystals are geometrically and compositionally complex. Our approach is to first 93 
construct numerical crystals and perform forward models of their zoning patterns to find 94 
measurable variables and statistical procedures to identify the 2D sections that can be 95 
confidently taken as representative of the 3D crystal populations. We first study various 96 
relationships between populations using simple crystals, which we then make progressively 97 
more complex. Later we use these finding to study mixed crystal populations, first in the 98 
numerical experiments and then in natural samples.  99 
 100 
Strategy: 1D vs. 2D data 101 
 102 

The methods proposed in the literature to group crystals, such as wavelet-based 103 
correlations (Wallace and Bergantz, 2002) and shared characteristic diagrams (Wallace and 104 
Bergantz, 2005) are based on comparison of 1D profiles. However, given the complexity seen 105 
in 2D BSE crystal images, it is not straightforward to decide which 1D profile is 106 
representative of a given 2D section. Moreover, identification of crystal populations becomes 107 
increasingly difficult with increasing degrees of geometric complexity. Thus, we have used 108 
another way to classify plagioclase population based on the area frequency compositional 109 
distribution of 2D plagioclase sections (Cashman and Blundy, 2013). The advantage is that 110 
we have a better overall characterization of the compositional data of the 2D section, but it 111 
has the disadvantage that we lose the spatial information, in particular the core-rim 112 
relationship. This hampers a detailed understanding of the processes that created the zoning 113 
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patterns, but this is not the goal of our contribution. We aim at first identifying the crystal 114 
populations, and later we can turn to detailed core to rim traverses only for representative 115 
sections. Otherwise, given the textural and compositional variability of many natural 116 
plagioclase crystals it is impossible to unambiguously choose the crystal sections that are 117 
representative to do detailed 1D compositional traverses. A crystal population is made of 118 
crystals that have experienced very similar magmatic processes, although in the context of our 119 
analysis a crystal population is defined by those crystals that have them same 2D An (or 120 
greyscale) distribution (within error; see below). Moreover, the fact that the 2D sections are 121 
the result of random cuts already provides a certain degree of information about the core to 122 
rim zoning, because for example, the cores can be undersampled, but the rims are not. A large 123 
number of compositional information from 2D sections of crystals can be obtained from BSE 124 
images calibrated for their gray scale values using a few quantitative analyses and the electron 125 
microprobe (Ginibre et al., 2002). It is nowadays possible to produce BSE images of a full 126 
thin section using SEM under the same analytical conditions so that all plagioclase crystals 127 
can be compared (e.g. Fig. 1). 128 
 129 
Numerical 3D simulation of plagioclase crystals and generation of random 2D sections 130 
    We first constructed a numerical model of a 3D plagioclase crystal with the geometry and 131 
number of faces according to theory (e.g. Deer et al., 1992; Higgins, 1991; Higgins, 2006, Fig. 132 
2) and with five compositional zones using Matlab 2014b software environment (Mathworks, 133 
2014). Note that although plagioclase belongs to the triclinic system (Deer et al., 1992) we 134 
used a reference frame of three perpendicular axes that are parallel to the zoning patterns for 135 
our numerical simulations. We also performed a numerical simulation of a crystal with an 136 
angle of 115° between X and Y axes (close to the theoretical value for anorthite according to 137 
Deer et al, 1992) and we later show that this does not affect our results. We varied the ratios 138 



 7

between the three dimensions of the crystal (S= shortest dimension, I=intermediate dimension, 139 
and L=longest dimension; (Deer et al., 1992; Higgins, 1991; Higgins, 2006) (Fig.2). Previous 140 
studies showed that the S:I:L of most plagioclase phenocrysts may range from 1:2.8:4, 1:5:8 141 
to 1:5:5 (e.g. Cheng et al., 2014; Higgins, 1994; Morgan and Jerram, 2006) and we tested an 142 
extreme range of shapes from 1:1:2 and 1:2:5 to 1:5:5. In order to simplify the comparisons, 143 
we normalized the lengths using an arbitrary “unit”. The longest dimension of the 144 
plagioclase was fixed to 200 units along the X-axis; then, the intermediate and short 145 
dimensions were computed according to the different shapes along the Y and Z axes. For 146 
example, if the model uses the shape 1:1:2, then the intermediate and shortest axes (Y and Z) 147 
were both set to 100 units (Fig.2).  148 
    The plane used to cut the plagioclase can be described with the formula 149 

                                     ܽ ⋅ ݔ + ܾ ⋅ ݕ + ܿ ⋅ ݖ + ݀ = 0                                 (1) 150 
Where a, b, c are random values ranging from -1 to 1, and d represents a displacement that 151 
takes random values along the longest axis. Different values of a, b, c, d, produce different 2D 152 
zoning patterns (Fig. 2). For this simple crystal with 5 compositional zones (at 10, 30, 50, 70, 153 
and 90 An Mol%) we produced 900 random cuts; 400 random cuts were used for a second 154 
example, more complex and more similar to the natural plagioclase (with compositions 155 
described in later sections). The number of resulting 2D cuts is lower that the number of 156 
random planes because not all planes passed through the crystal (Fig. 3). In addition to the 157 
random cuts, we can characterize the compositional zoning of the 3D crystal by three 158 
perpendicular 2D sections that pass through the principal-center of the crystal; the one parallel 159 
to the X-axis is shown in Figure 2. We call these the ideal sections (ID; see caption of Fig 4 160 
for more details). These three sections have the same area compositional histograms but 161 
different shapes (Fig. 4). 162 
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Characterization of 2D plagioclase zoning patterns and compositional maps  163 
  164 
    The random cuts produce a large variety of zoning patterns (Fig. 3), ranging from 165 
compositionally homogenous sections (e.g. section #4 in Fig. 3) to up to a five-zoned pattern 166 
(e.g. section #9 in Fig. 3). To characterize the 2D sections we used the normalized area 167 
compositional histograms of each section. This means that for each section we calculated the 168 
area with the same composition (i.e. the same An content within a given tolerance, see below) 169 
and normalized it to the total area of the crystal section (Fig. 4). We call the random 170 
individual sections RI where I = 1, 2, 3……Z and Z is the total number of sections. To 171 
characterize the compositional distribution of all 2D random sections from a 3D crystal we 172 
added all the areas of the zones with the same composition from all sections and normalized 173 
them to the total area of the sections.  We call this distribution the 'all random population', 174 
abbreviated as RA. This is an important distribution because it can be used to characterize the 175 
various crystal populations in natural samples for which we do not know a priori the zoning 176 
of the 3D crystal. In the same way, we can calculate the area compositional distribution for 177 
the ID sections (Fig. 4). We found that the compositional distributions of the ID and all RA 178 
for the simple 5 zoned crystal are similar but not identical; typically the compositions of the 179 
rims are over-represented and those of the crystal centers under-represented in the RA 180 
distribution (Fig. 5). This reflects that although all random sections pass through the crystal 181 
rims, some sections miss completely the cores (e.g. off-core sections). This gives a similarity 182 
of about 75 % between the RA and ID distributions (see below for the precise definition of 183 
similarity used) and this difference varies depending on the details of the crystal zoning. 184 
Comparing between 2D sections using the similarity of compositional maps 185 
 186 
    To quantify the difference or similarity between two compositional distributions such as 187 
the RA and ID, we used the technique of histogram intersection, which is used in other fields, 188 
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e.g. in color index (Swain and Ballard, 1991), and also in problems of computer vision (e.g. 189 
Kumar et al., 2012). Given a pair of histograms, in our case RA and ID, each containing 190 
j=1...n bins of An content, the mismatch between the histograms can be defined as the 191 
absolute difference (abs) between the two: 192 

ℎܿݐܽ݉ݏ݅ܯ                     = ∑ ܦܫ)ݏܾܽ − )ୀଵܣܴ                                            (2) 193 
    and the normalized  mismatch as: 194 
ܦܫ_ℎܿݐܽ݉ݏ݅ܯ ݀݁ݖ݈݅ܽ݉ݎܰ              ∗ ܣܴ = ∑ ௦(ூೕିோೕ)ೕసభ∑ ୫ୟ୶ (ೕసభ ூೕ,ோೕ) × 100                         (3) 195 
where the max is the largest frequency of each bin in the two histograms. From this, we 196 
defined the similarity between two compositional histograms as (Fig. 6):           197 
ܦܫ_ܵ) ܣܴ_ܦܫ ݕݐ݅ݎ݈ܽ݅݉݅ܵ    ∗ (ܣܴ = 100 − ܦܫ_ℎܿݐܽ݉ݏ݅ܯ ݀݁ݖ݈݅ܽ݉ݎܰ ∗  198 (4)        ܣܴ
For example, the similarity between the RA and the ID distributions (S_ID*RA) for the simple 199 
crystal is about 75 % (Fig. 6). The similarity depends on the number of bins, which in our 200 
case depends in turn on the An range we choose for each bin. Many authors advise that for 201 
real data sets histograms based on 5-20 bins usually suffice, noted by Scott (1979). 202 
Calibration of greyscale of BSE images of plagioclase typically produces An values with a 203 
precision of 1 to 2 mol% (Ginibre et al., 2002). We tested bin sizes of 1, 2, 3 mol% An and 204 
found that the 3 mol% (the number of bins is more than 30) is quite similar to using 1 mol% 205 
(see Supplementary Appendix 1), so we used a bin size of 3 mol% An unless otherwise noted. 206 
We will use the similarity between different sections or groups of sections in this manner for 207 
the rest of the manuscript (e.g. Fig. 6). The uncertainty of the similarity was calculated to be 208 
up to 1 % by assuming a relative analytical uncertainty of 0.5 % on the An content in this 209 
study. 210 
 211 
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Reference and ideal sections 212 
     Using the method we described above, we can calculate the similarity between any section 213 
types and/or between groups of sections. This is the first step to be able to identify ideal or 214 
representative 2D sections and thus different crystal populations in natural samples. For 215 
example, the compositional similarity between the ID and RA distributions can be calculated 216 
to be about 75 % (Fig. 6). The simplest approach to determine the number of crystal 217 
populations and representative sections would be to use directly the ID and RA distribution, 218 
but this is not possible for several reasons. The RA distribution actually does not correspond 219 
to any individual crystal section, so although it characterizes the overall plagioclase 220 
population we still need to identify representative sections. Moreover, although we know 221 
which the ID sections in our numerical experiments are, this is not the case in natural samples. 222 
These problems appear when we want to filter out the random cuts for a single crystal 223 
population, but they become even more apparent when there are multiple crystal populations 224 
rather than a single one. Thus, we have designed a strategy where we first try to filter out the 225 
effects of random cuts using proxies to characterize the RA distribution and the number of 226 
populations, and then we can identify the best 2D sections using more strict criteria and the 227 
ID sections. 228 
    The first step is to calculate the similarity distribution between the overall random 229 
population (RA) and each random section (R1, R2, R3 ...RZ) (named S_RA*R1-RZ; Fig. 7). 230 
We find that it shows one main peak about 70-80% similarity that includes 25% of the 231 
sections (a total of 180 sections out of 745), and another at 30 % similarity that includes about 232 
14% of the sections. Moreover, more than 50% of the random sections have a similarity 233 
(S_RA*R1-RZ) ≥ 70 % with that of the overall population, and thus they could be considered 234 
as a reasonably representative sample of the 3D crystal. A much smaller number of sections 235 
(about 5 %) have a similarity ≥ 90% with the overall random population and we call them the 236 
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reference sections (REF). Thus, we can use the RA distribution to identify individual 237 
reference sections from the overall population. However, this method works if there is only a 238 
single 3D crystal population, but not if there are more, since then the similarity values are 239 
much lower and it is not possible to identify the REF sections although they must exist in data 240 
sample (see detail in the population mixing sections).  241 
    Another way of identifying the reference sections is by calculating the similarity between a 242 
given individual section and all the rest of the random sections (e.g., not using the RA directly; 243 
S_R1*R1-RZ; Fig. 8). The similarity distribution pattern of each individual section and the 244 
rest is quite variable, but it is apparent that reference sections are more abundant for 245 
similarities ≥ 70 % (Fig. 8a).  This finding is akin to the effect of random cuts of crystal 246 
shapes, where some characteristic and important shapes, areas, and dimensions are more 247 
frequent because of the geometrical symmetry of the object (e.g., Higgins, 1994). In our case, 248 
it is apparent that even if the cuts were done at random, the compositional histograms of 249 
sections parallel or perpendicular to the main geometry axes have the same compositional 250 
distribution and thus are more frequent to begin with than any other section (Fig. 8b). See 251 
Supplementary Appendix 2 for more details about the method involved in identification of 252 
these sections. We also discuss later how this method can be improved by using thresholds of 253 
similarities. 254 
    Another important group of sections that need to be characterized are the IDs, and we have 255 
calculated the similarity distribution between ID and each individual section (RI) [here called 256 
S_ID*R1-RZ; Fig. 7]. The distribution has a peak at about 20% similarity, which means that 257 
most random sections are quite different from the ID, which reflects the fact that the random 258 
2D cut effect significantly changes the compositional maps, with many sections that are off-259 
center. However, there are more sections with a similarity (S_ID*R1-RZ; Fig. 7) ≥ 90 % to 260 
the ID than to the overall random distribution (S_RA*R1-RZ; Fig. 7). Thus, although the 261 
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random cut effects are important, there are still many 2D sections that are very similar 262 
(S_ID*R1_RZ ≥ 90 %) to the ideal sections. These random sections record the most complete 263 
information and we will also call them ideal sections because they are ≥ 90% similar to the 264 
theoretical ID sections.  265 
    The reference sections (REF) are different from the ideal sections in that they typically do 266 
not record the inner parts of crystals. However, since we do not know a priori how many 267 
crystal populations there are in a given natural dataset, we have to use the method of 268 
calculating the similarity between each random section (Fig. 8). It is apparent that the most 269 
frequent sections for similarities ≥ 90% are the ideal ones (see Supplementary Appendix 2 for 270 
more details). Later we quantify better these relationships using threshold values; here we 271 
wanted to illustrate that it is possible to identify the ID and REF by comparing each 272 
individual section to the rest in a systematic and statistical manner. In typical studies of 273 
plagioclase zoning, petrologists tend to use sections with shapes close to the most classical 274 
shapes of plagioclase, i.e.  rectangular or square. If we do a subsample of the rectangular and 275 
square sections (sides >=5) from our random samples we find that about 36% of those have a 276 
similarity with the ID of 90 % or higher, which means that, in the case of a single crystal 277 
population, the likelihood of choosing an ID section if the shape is rectangular is much higher.   278 
    So far, we have used a crystal with three perpendicular axes, but plagioclase belongs to the 279 
triclinic system and thus one axis at an angle that deviates significantly from 900 from the rest 280 
(Deer et al. 1992). To test whether this has effect on our method we have also done a 281 
simulation with a crystal that has different angles between the axes. The Fig.9 shows the wire-282 
structure of a zoned crystal with an angle of 115 o between two axes that is close to triclinic 283 
system of anorthite plagioclase according to Deer et al. 1992. In total, we produce 900 cuts to 284 
get 714 2D patterns. We still could find that it shows one main peak about 70-80% similarity 285 
that includes 25% of the sections, and another at 35 % similarity that includes about 20% of 286 
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the sections. The ID distribution has a peak at about 20% similarity, and there are more 287 
sections with a similarity ≥ 90 % (Fig.9). The two distributions are similarity to that of three 288 
perpendicular axes model. Thus, the approach described above for the identification of the 289 
different ID and REF sections is still valid. This is because the effects of random cuts are 290 
much larger than the small deviations deriving from the “incorrect” use of three perpendicular 291 
axes. 292 

Models with complex crystal zoning patterns 293 
     294 
    Natural plagioclase crystals are however often more complex that the five-zone crystal 295 
simulation (Fig. 2) we have used so far (e.g. Ginibre et al. 2002). Thus, we also generated 296 
three other types of 3D crystals (Fig. 10): Type A with patterns of An values that generally 297 
increase from rim to core with oscillatory zoning and fine variations of less than 5% An, Type 298 
B with large and abrupt An changes between core and rim, and Type C which combines the 299 
zoning characteristics of the previous two types. Calculation of the similarity properties for 300 
the 3 types of crystals shows that they can be treated in the same manner as the simpler crystal, 301 
although in detail the similarity thresholds for the identification of the reference and ideal 302 
sections are somewhat different (Fig. 10). The similarity histogram of RA and each individual 303 
random section has main peaks at 70-90% similarity for crystals of Type A, at 70-80% 304 
similarity for those of Type B, and at 80-90% similarity for those of Type C, whereas the 305 
similarities of ID and each random section have also high frequency for all crystal zoning 306 
types at similarity ≥90 % (Fig. 10). 307 
    To further refine our approach to find the reference and ideal sections we need to do an 308 
additional step that is critical when we are dealing with multiple crystal populations (e.g. for 309 
cases of magma mingling). We first calculate the similarity between each random section, and 310 
then we calculate the similarity between the section that has the largest number of section 311 
pairs with a minimum similarity threshold, starting from 50 up to 100%, with that of the RA 312 
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distribution (please see Supplementary Appendix 2 for a step by step description of this 313 
approach). We determine where this similarity is at a maximum (Fig. 11). By doing this we 314 
find that for example, for Type A crystals we have a similarity ≥ 90 % between some random 315 
sections and the RA for a similarity threshold between 70-80 % (Fig. 11a). This means that 316 
these random sections can be taken as representatives of the Reference sections and thus used 317 
to characterize one crystal population. Note that this threshold is also higher than the mean 318 
threshold, which provides additional constraints to identify the appropriate threshold value. 319 
Different zoning types give slightly different thresholds, but at about 80% threshold, the 320 
sections are all ≥90 % similar to the RA and thus can be used to identify the reference section. 321 
Similar relations can be used to identify the ideal sections (Fig. 11b) but these require higher 322 
thresholds at 90-100%. Finally, we also did a Monte Carlo simulation where we tested up to 323 
1200 3D crystals with different An zoning patterns. We found that our inferences of similarity 324 
thresholds at 70-80%, and 90-100% are robust and able to identify the Reference and Ideal 325 
sections, respectively, independent of the type of zoning (Fig. 12).  326 

Multiple crystal populations 327 
 328 

The next level of complexity is to be able to identify the reference and ideal sections for 329 
mixed crystal populations. We designed a numerical experiment were we first generated 50-330 
50 mixtures of two crystal populations involving three different scenarios (Fig. 13): (1) two 331 
crystal populations with different An core compositions but the same rim compositions, as 332 
representative of mafic-silicic magma interactions (e.g. Feeley and Dungan, 1996); the 333 
similarity between these two populations is relatively low, about 15 % (Fig. 13 a,d,g). (2) two 334 
populations with a similar An compositional range but different zoning patterns; they have a 335 
higher similarity of about 30% (Fig. 13 b,e,h). (3) two crystal populations where one of the 336 
two started to grow at a later time, and thus it shares the same more recent history but is 337 
missing the earlier one (Fig. 13 c,f,i). In this last scenario, the two populations have the 338 
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highest similarity of about 60%. The more similar the two crystal populations are before the 339 
mixing, the harder it will be to identify and separate them.  340 

We find that the similarity histograms for the three mixing scenarios (Fig. 13 g,h,i) are 341 
quite different from those of single crystal populations only affected by the random cut effect 342 
(e.g. Fig. 10). Most notably the maximum of similarity tends to reach much lower values (Fig. 343 
13 g,h,i). In these examples it is apparent that the similarity information of the 2D crystal 344 
sections and the RA reflects the combination of both the cut effect and the mixing of the two 345 
populations. In effect, the overall RA that we might measure in a natural sample is a 346 
“weighted average” that is the result of mixing the RA of each individual population (Fig. 13 347 
g,h,i).  348 

To identify the two crystal populations we calculated the similarities between the different 349 
sections and we focused only on those with a similarity threshold around 80 % (as suggested 350 
by Fig. 11). We then calculated the similarity of these sections with the overall RA for each of 351 
the scenarios and found low similarities ranging from 46 to 77 % (Fig. 14 a,c,e). This means 352 
that there has to be other reference sections in the population that would explain the full 353 
dataset. Thus, we removed from the pool the sections with a given similarity threshold 354 
( e.g. >80 %) to the first reference section, and chose another section with a threshold around 355 
80% and calculated whether the similarity with the overall population increased by mixing 356 
them in different proportions. We keep doing this using least squares minimization between 357 
the RA distributions and that of mixing different sections in different proportions. Once we 358 
found that the overall similarity increased to >90 % (Fig. 14 a,c,e) we stopped, and we 359 
considered that we were able to explain >90% of the overall compositional distribution of the 360 
plagioclase.  361 

For the three scenarios above we were able to obtain similarities of the two reference 362 
sections and the RA of each scenario between 92 and 95 % (Fig. 14 b,d,f). This approach 363 
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worked for the reference sections as well as for the ideal sections. We also tested the effect of 364 
varying proportions of mixing ratios between two crystal populations (e.g., 10-90, 70-30) 365 
using scenario two (Fig. 15). We found that using the same approach of reference/ideal 366 
sections and least squares minimization we are still able to recover the two populations. 367 
However, when the proportion of one population gets close to 90% or more it becomes more 368 
difficult to identify any other, until it becomes eventually undetectable. An example of 369 
application of our approach to mixed crystal populations from a lava of Mayon volcanoes can 370 
be found in Supplementary Appendix 3. 371 

How many crystals are needed to represent a given sample 372 
    A related important question when studying natural crystals is how many random sections 373 
are needed to characterize the population(s) and build a reliable RA distribution. We used the 374 
Type C plagioclase (see Section 6) as the sample test. We made 400 random cuts and 375 
calculated their RA (RA400). We then compared their similarity to an increasing amount of 376 
random sections, randomly extracting 10 of them (RA10) until 300 (RA300). Because of the 377 
large variability of the RA when we sample a small number of sections at random (e.g. RA10; 378 
Fig. 16a), we calculated their RA multiple times, and thus their similarity also varies (Fig. 379 
14b). We found that within about 60-100 random picks of random sections we characterize 380 
the full variability (Fig. 16b). Moreover, we find that the similarity between the distributions 381 
obtained from 80 (RA80) to 100 (RA100) random sections with that of the 400 sections (RA400) 382 
is consistently higher than 95%, and thus we conservatively suggest that 100 random 2D 383 
sections are enough to represent RA of the entire crystal population. 384 
 385 
 386 
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Implications for identification of plagioclase populations and representative crystal 387 
sections 388 

    The large variety of compositional and textural features of many plagioclase crystals from 389 
igneous rocks can be party explained by the effects of 2D random cuts of 3D plagioclase 390 
crystals. Using the compositional histogram of 2D sections of many plagioclase crystals and 391 
statistical analyses based on the compositional similarity between the different sections it is 392 
possible to account for the effects of the random cuts and separate them from the effects of 393 
the presence of different crystal populations. With our method, we can identify the different 394 
crystal populations that are at least 90 % similar and the proportions of the different 395 
populations. The identification of the different populations by using reference and ideal 396 
sections removes the problem of a subjective choice of sections and allows studing the crystal 397 
sections that are more representative of the samples. These can be further studied using 398 
detailed electron microprobe, ion microprobe and/or microdrilling of isotopes, which should 399 
lead to a much more robust understanding of magmatic processes based on plagioclase crystal 400 
records. 401 
 402 
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Figure captions 515 
 516 
Figure 1. Composite BSE image of a thin section from a basaltic andesite lava of an eruption 517 
of Mayon (Philippines). Note the large variety of zoning and textures of the plagioclase 518 
phenocrysts. Similarly, complex plagioclase crystals are found in many other igneous rocks. 519 
The BSE image of the thin section was acquired using a JEOL JSM-7800F Scanning Electron 520 
Microscope (SEM) of the Asian School of the Environment (Nanyang Technological 521 
University). In total, we collected 660 individual BSE images that were collated to build a 522 
whole thin section image, with a resolution of 8089*5563 pixels after the SEM run 12 hours. 523 
Image mosaic was obtained using the same contrast and brightness when we were taking BSE 524 
images using the Aztec software from Oxford. The thin section contains about 750 525 
plagioclase phenocrysts (crystals larger than 250 μm in the shortest dimension). 526 
 527 
Figure 2. Wire-structure representation of zoned 3D plagioclase crystal, with different colors 528 
representing different compositions and the three perpendicular geometric axes. Two-529 
dimensional (2D) cuts of the crystal in different orientations and locations as occurs during 530 
the making of petrographic thin sections will produce different 2D images. Three planes go 531 
through the center and are perpendicular to one of the main geometric axes (e.g. section 1). 532 
These have the most complete zoning information of the 3D crystal and are called ideal 533 
sections (ID). Many others will occur at random locations and miss part of the information 534 
(section 2). Please note that the different apparent shapes of section #2 in the 3D and 2D 535 
views are just due to the angle of view, they have actually the same shape. 536 
 537 
Figure 3. Example of the variety of 2D zoning patterns and shapes produced from 100 538 
random cuts through the 3D crystal shown in Figure 2. Blank means the planes do not go 539 
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through the crystal. 2D sections with black underline are the ideal sections, those with the red 540 
dots underlines are the reference sections (see details in the text). Based on these patterns, we 541 
can calculate compositional maps distribution of each section and that of all the sections. 542 
 543 
Figure 4. Examples of histograms of compositional distributions of 2D sections akin to those 544 
that would be obtained from BSE images that were calibrated for the anorthite content (An %). 545 
(a) Distribution of a random section (R1); (b) Distribution of one ideal section (the three ideal 546 
sections have the same distribution, ID); (c) composite distribution obtained from adding the 547 
histograms of all random sections (RA) shown in Figure 3. Note that the ID = Ideal sections 548 
are perpendicular to one of the geometric axes of the crystal. This is the most representative 549 
of the 3D crystal. It is known in the models but can't be measured and is therefore unknown in 550 
natural samples. RI (1...Z) = Individual random section. It can be measured and thus it is 551 
known in natural samples. RA = All random sections 'combined'. It can be calculated from 552 
natural samples. REF = Reference sections. Individual random sections with a similarity 553 
higher than 90% with the RA. They can be determined from natural samples.  554 
 555 
Figure 5. Comparison of histograms obtained from adding the histograms of all the random 556 
sections (RA) with that of the ideal sections (ID) for crystals with different shapes. Note how 557 
the RA distribution underestimates the core compositions and overestimates the rims because 558 
the random cut effect might miss the cores but not the rims. The range of crystal shapes we 559 
have explored do not significantly affect the relation between the RA and ID distribution. The 560 
numbers in the upper right corner of each graph are the different aspect values of the crystals. 561 
 562 
Figure 6. Example of calculation of similarity between ID and RA distributions of An (using 563 
1-2-2 shape and 3 mol% as the An for each bin). Note that there is a similarity of 74 % (or a 564 
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mismatch of 26 %) between the two distributions, implying that using all the random sections 565 
as a whole we can have a first order idea (e.g. 74 % similarity) of the ID distribution for a 566 
single crystal population. See details in text about how to calculate the similarity. The exact 567 
relations between the ID and RA distributions depends on the style of zoning (see text for 568 
other examples). 569 
 570 
Figure 7. Similarity of the ID and RA distributions with each individual random section. 571 
Note that how the similarity distribution with the RA has two main peaks although it is only 572 
one crystal, and that of the ID has mainly one peak. The sections with a similarity ≥ 90% with 573 
the RA are called reference sections (REF), and those with a similarity ≥ 90% with the ID are 574 
called ideal sections. Vertical dotted line marks the 90% similarity. 575 
 576 
Figure 8. Similarity plots between each random section and the rest and identification of the 577 
reference and ideal sections. (a) It can be seen that there is a large range of similarity values 578 
and distributions but (b) the sections with highest frequency and similarity between 70% and 579 
100% correspond with the reference section, and (c) those with the highest frequency and 580 
similarity (≥ 90%) correspond to the ideal sections.  581 
 582 
Figure 9. (a) Wire-structure of a zoned crystal with an angle of 115 o between two axes and 583 
thus close to triclinic system of anothite plagioclase (Deer et al., 1992). (b)  Similarity of the 584 
ID and RA distributions with each individual random section. Note that the relations between 585 
the different sections are the same for this crystal and those that have three perpendicular axes 586 
and which we have used for the rest of simulations. This means that our approach is also valid 587 
for triclinic crystals. 588 
 589 
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 590 
Figure 10. Three different types (A, B, C) of complexly zoned 3D plagioclase models (a 591 
through c), 1D traverses through the ideal sections (d through f), frequency histograms of An 592 
for their corresponding RA sections (g through i), and similarity calculations between the 593 
random sections and the ID and RA (j through l). Note that in the similarity histogram for all 594 
three types of plagioclase (j through l) between the RA with all individual section which has a 595 
peak similarity ≥ 70-80%, and the similarity histogram of ID with all individual section has a 596 
lot of sections with similarity ≥ 90%. Vertical dashed red line is the mean of the similarity of 597 
the S_RA*R1-RZ. See text for more discussion. 598 
 599 
Figure 11. Relationship between the similarity threshold and the similarity between the RA 600 
and the ID sections for the three types of plagioclase zoning. The figures (a, c, e) show that it 601 
is possible to identify the REF sections by choosing a similarity threshold of 80% for the 602 
three kinds of zoned crystals. In a similar manner the b, d, f show that the ID sections can be 603 
determined by choosing > 90% of similarity threshold for most zoned crystals. See text and 604 
Suppl. Appendix 2 for more details and discussion. 605 
 606 
Figure 12.  Monte Carlo experiments (repeated 1200 times) that show that the method to find 607 
the reference and ideal sections works for a large variety of crystal zoning types to obtain a 608 
similarity better than 90%. 609 
 610 
Figure 13. Compositional and similarity relationships produced by mixing two different 611 
crystal populations at 50-50. The similarity between the two populations increases from 15 % 612 
to 59 %. The more similar the two populations are, the more difficult it is to uniquely identify 613 
and distinguish them. Panels (a), (b), and (c), are the 3D plagioclase we used; Panels (d), (e), 614 
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(f) are 1D profiles through the center of the crystals; Blue line in (g), (h), (i) correspond to the 615 
RA of population 1; Green line correspond to the RA of population 2, and red bar correspond 616 
to the RA of two mixed populations. Note that here we used lines and dots rather than bars in 617 
the histograms for a better visualization of the fits. Yellow bar in (j), (k) and (i) are the 618 
distribution of similarities; red dotted line is the mean of the similarity. 619 
 620 
Figure 14. Examples of fits of compositional histogram distributions for the three mixing 621 
scenarios (1, 2, 3) shown in Fig. 13. Note how the distribution of the known RA (line with 622 
dots and light green, red, and blue colors extracted from Fig. 13) can be reproduced to a high 623 
similarity (S_RA*REF1REF2 >90 %) when we use two references sections as opposed to 624 
only one section (S_RA*REF1) [left hand side panels (a), (c), (e)]. We can also reproduce 625 
very well the ideal sections [Right hand panels (b), (d), (f)]. Note that some lines may be 626 
hidden behind others. See text for more discussion. Note that here we used lines and dots 627 
rather than bars in the histograms for a better visualization of the fits. 628 
 629 
Figure 15. Example of varying mixing proportion of the two populations from scenario 2 [90-630 
10, panels (a),(c),(e); 70-30, panels (b), (d), (f)]. Please compare with the 50-50 proportion 631 
shown in Fig. 14. It is still possible to find the reference and ideal sections of the two 632 
populations, although when one population becomes less than about 10% it becomes 633 
increasingly difficult. See text for more discussion. RA1, RA2 and RA are the RA of 634 
population 1, population 2 and two mixed populations respectively; REF1, REF2 is the REF 635 
of population 1, population 2 respectively; REF1REF2 are equal to 0.9*REF1+0.1*REF2 or 636 
0.7*REF1+0.3*REF2; ID of P1, ID of P2 are the ID of population 1 and population2; ID1 and 637 
ID2 are the almost ideal sections of population 1 and population 2. Note that here we used 638 
lines and dots rather than bars in the histograms for a better visualization of the fits. 639 
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 640 
Figure 16. Simulation aimed at calculating how many crystals we need to determine properly 641 
the correct distribution of RA. (a) Relationship between number of crystals and the similarity 642 
of RA of these number of crystals and RA of 375 crystals; (b) assumsing 10 crystals are used 643 
to calculate the RA, how many times should be used to determine the real distribution of 644 
similarities between RA of 10 crystals and 375 crystals. See text for more discussion. 645 



	  
	  
	  
	  
Figure	  1	  



	  
	  
	  
Figure	  2	  



	  
	  
	  
Figure	  3	  



	  
Figure	  4	  



	  
Figure	  5	  



Figure 6



	  
	  
	  
Figure	  7	  



	  
	  
Figure	  8	  



	  
	  

	  
Figure	  9	  



(a) (b) (c)

0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100

±0.34% ±0.01% ±0.48%

Figure 10



	  
	  
Figure	  11	  



	  
	  
Figure	  12	  



Figure 13



	  
	  
Figure	  14	  



Figure 15



	  
Figure	  16	  


	Article File
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Figure 8
	Figure 9
	Figure 10
	Figure 11
	Figure 12
	Figure 13
	Figure 14
	Figure 15
	Figure 16



