1	REVISION 1
2	An improved clinopyroxene-based hygrometer for Etnean magmas and implications for
3	eruption triggering mechanisms
4	CRISTINA PERINELLI ¹ , SILVIO MOLLO ^{1,2,*} , MARIO GAETA ¹ , SERENA PIA DE
5	CRISTOFARO ³ , DANILO M. PALLADINO ¹ , PIETRO ARMIENTI ⁴ , PIERGIORGIO
6	SCARLATO ² , KEITH D. PUTIRKA ⁵
7	
8	¹ Dipartimento di Scienze della Terra, Sapienza-Università di Roma, P.le Aldo Moro 5, 00185 Roma,
9	Italy
10	² Istituto Nazionale di Geofisica e Vulcanologia, Via di Vigna Murata 605, 00143 Roma, Italy
11	³ Dipartimento di Scienze della Terra, Università degli Studi di Torino, Via Valperga Caluso 35,
12	10125 Torino, Italy
13	⁴ Dipartimento di Scienze della Terra, Università degli Studi di Pisa, Via S. Maria 53, 56126 Pisa,
14	Italy
15	⁵ Department of Earth and Environmental Sciences, California State University, Fresno, 2576 E. San
16	Ramon Avenue, MS/ST25, Fresno, CA 93740-8039, USA
17	
18	THIS MANUSCRIPT IS A LETTER SUBMITTED TO AMERICAN MINERALOGIST
19	
20	*Corresponding author:
21	Silvio Mollo
22	Istituto Nazionale di Geofisica e Vulcanologia
23	Via di Vigna Murata 605
24	00143 ROMA - ITALY
25	office tel.: +39 0651860674
26	fax :+39 0651860507

27 e-mail: silvio.mollo@ingv.it

28	Abstract
29	We have refined the clinopyroxene-based hygrometer published by Armienti et al. (2013)
30	for a better quantitative understanding of the role of H ₂ O in the differentiation of Etnean magmas.
31	The original calibration dataset has been significantly improved by including a number of
32	experimental clinopyroxene compositions that closely reproduce those found in natural Etnean
33	products. In order to verify the accuracy of the model, some randomly selected experimental
34	clinopyroxene compositions external to the calibration dataset have been used as test data. Through
35	a statistic algorithm based on the Mallows' Cp criterion, we also check that all model parameters do
36	not cause data overfitting, or systematic error.
37	The application of the refined hygrometer to the Mt. Etna 2011-2013 lava fountains
38	indicates that most of the decreases in H ₂ O content occur at $P < 100$ MPa, in agreement with melt
39	inclusion data suggesting abundant H ₂ O degassing at shallow crustal levels during magma ascent in
40	the conduit and eruption to the surface.
41	
42	Keywords: Mt. Etna; clinopyroxene; hygrometer; H ₂ O content.
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	

54 Introduction

55 The plumbing system of Mt. Etna volcano (Sicily, Italy) has a multifaceted geometry 56 (Bozzano et al. 2013), variable in space and time and consisting of storage zones at different depths, 57 where primitive magmas, containing different H₂O contents, undergo fractional crystallization, 58 degassing, and mixing processes (e.g., Armienti et al. 2004; Corsaro et al. 2013). For example, the 59 explosive activity of the volcano is ascribed to gas-rich magmas and/or fluxes of abundant volatiles 60 from the deeper portions of Mt. Etna plumbing system, i.e. ~20 km depth (Ferlito et al. 2008; 61 Ferlito and Lanzafame 2010). In this scenario, volcanic eruptions are fed by the upward migration 62 of hot, fluid-saturated, poorly dense, and highly buoyant magmas from depth, with implications for 63 mineral and melt compositions, degree of crystallization, magma ascent velocity and type of 64 eruption (Armienti et al. 2007; Kamenetsky et al. 2007; Ferlito et al. 2011, 2014; Collins et al. 65 2009; Lanzafame et al. 2013; Fornaciai et al. 2015; Mollo et al. 2015a; 2015b).

66 Melt inclusions in olivine crystals provide a record of volatile contents ranging from 0.5-3.5 67 wt.% H₂O and 0.02-0.25 wt.% CO₂ for Mt. Etna magmas, translating to 25-400 MPa of entrapment 68 (Métrich et al. 2004). Within this pressure range, the differentiation process and the effect of 69 variable magmatic H₂O concentrations have been explored using hydrous partial crystallization 70 experiments showing as the plumbing system is characterized by the continuous supply of deeper, 71 primitive magmas that crystallize by decompression and degassing during ascent to the surface 72 (Métrich and Rutherford 1998; Mollo et al. 2015a; Vetere et al. 2015). For the deeper portions of the plumbing system, Armienti et al. (2013) modelled the P-T-H₂O-CO₂ path of fluid-73 74 undersaturated magmas feeding some important eruptions, finding that the clinopyroxene liquidus is 75 constrained to fall between 500-900 MPa, 1,100-1,180 °C, 3-4 wt% H₂O, 0.23-0.31 wt.% CO₂. In 76 order to estimate the melt-H₂O content of Etnean magmas, Armienti et al. (2013) calibrated an 77 empirical clinopyroxene-based hygrometer:

79 wt.% H₂O =
$$(a\text{DiHd} + b\text{EnFs} + c\text{CaTs} + d\text{Jd} + e\text{CaTi} + fP + gT^{-1})/K$$
 (1)

80

81 where DiHd = diopside + hedenbergite, EnFs = enstatite + ferrosilite, CaTs = Ca-Tschermak, Jd =82 jadeite, CaTi = CaTi-Tschermak (see Putirka 1999, and below), a = 19.45, b = -0.62, c = 8.39, d =83 49.33, e = -86.02, f = -0.37, g = -0.37, K = 3.92, P is in GPa and T is in °C. The calibration dataset 84 is comprised of experiments on Etnean magmas (e.g., Dolfi and Trigila 1983) or magmas similar in 85 composition and selected from the LEPR database (http://lepr.ofmresearch.org); see Supplementary 86 Data Table 1S for further details. Notably, as stated in Armienti et al. (2013), the application of Eqn. 87 (1) is restricted only to clinopyroxenes in equilibrium with trachybasaltic and hawaiitic melts, for 88 which the regression model has a relatively low standard error of estimate (SEE = ± 0.5).

89 However, considering the compositional variability of natural Etnean clinopyroxenes, it is 90 worth noting that ~50% of phenocrysts exhibit Hd contents higher than 0.14 (Supplementary Data 91 Fig. 1S), and such compositions are only weakly represented in the original calibration dataset of 92 the regression model. Furthermore, Eqn. (1) does not successfully predict the melt-H₂O content in 93 equilibrium with clinopyroxenes from recent experiments on Etnean trachybasalts (De Cristofaro 94 2014; Mollo et al. 2015a; Vetere et al. 2015) and early experiments (Métrich and Rutherford 1998) 95 inadvertently omitted from the original calibration dataset (Supplementary Data Fig. 2S). As a 96 consequence, most H₂O concentrations predicted by Eqn. (1) not only fall far from a one-to-one line 97 (Supplementary Data Fig. 2S) when comparing measured vs. predicted H₂O contents, but predicted and measured concentrations are actually negatively correlated with intercept equals to -0.1 (R² = 98 99 0.03; SEE = ± 1.16).

100 To improve the ability to predict H_2O contents, and extend the Armienti et al. (2013) model 101 to a broader range of melt and clinopyroxene compositions, we have refined the original regression 102 model, to include new experimental data. These have the effect of significantly reducing model 103 uncertainties when the model is applied to natural Etnean volcanic products.

105 Component calculation, calibration dataset and regression strategy

106 Clinopyroxene components were calculated using procedures reported in Putirka et al. 107 (1996) and modified in Putirka (1999); see Supplementary Data Table 1S for further details.

108 The clinopyroxene compositions experimentally derived by Métrich and Rutherford (1998), 109 De Cristofaro (2014), Mollo et al. (2015a) and Vetere et al. (2015) have been added to the original 110 calibration dataset of Armienti et al (2013). These clinopyroxenes were equilibrated upon H_2O -111 undersaturated and H₂O-saturated conditions with Etnean melts (basalt to trachybasalt to basaltic 112 trachyandesite to trachyandesite) containing H_2O contents in the range 1-5 wt.% (Supplementary 113 Data Table 1S). The experiments were conducted at P = 27-800 MPa, T = 1,000-1,175 °C, and fO_2 114 = QFM (quartz-fayalite-magnetite)-NNO+2 (nickel-nickel oxide) buffering conditions, respectively. 115 These experimental conditions are consistent with those estimated for the crystallization of natural 116 clinopyroxene phenocrysts from the Moho transition zone (Giacomoni et al. 2016; Armienti et al. 117 2007; 2013) to the shallowest part of the volcanic conduit of Mt. Etna volcano (Giacomoni et al. 118 2014; Mollo et al. 2015b).

119 In order to test the predictive power of the refined empirical hygrometer, we have 120 recalibrated the regression model after subtracting ~20% of clinopyroxene compositions from the 121 calibration dataset, for use as test data (see the test dataset in the Supplementary Data Table 1S). 122 The clinopyroxene compositions were randomly selected and the entire test procedure was 123 performed a second time. Through an algorithm based on the Mallows' Cp statistic (see 124 Supplementary Data Table 2S for further details), we have performed systematic permutations of 125 the independent variables to test whether all the terms in the predictive model are helpful in 126 describing the variance of the calibration dataset, or they simply reduce the total degrees of freedom 127 without describing data variance (Hair et al. 1995). The independent variables used for 128 permutations were DiHd, EnFs, CaTs, Jd, CaTi, P, and T (Supplementary Data Table 2S).

129

130 **Results**

6

131 Refinement of the empirical hygrometer of Armienti et al. (2013) by multiple linear 132 regression yields:

133

134 wt.% H₂O =
$$a$$
DiHd + b EnFs + c CaTs + d Jd + e CaTi + f InP + gT + k (2)

135

where a = 39.60, b = 29.48, c = 41.76, d = 39.58, e = 0.44, f = 0.14, g = -0.01, k = -27.53, P is in 136 137 MPa and T is in °C (see Table 3S and the downloadable Excel spreadsheet submitted online as 138 supplementary material). There is a very good alignment between measured and predicted H_2O 139 values (Fig. 1a). The standard error of estimate of Eqn. (2) is 0.45 wt.% H₂O and is comparable to 140 that (SEE = ± 0.5 wt.% H₂O) of the model of Armienti et al. (2013); this magnitude of error also 141 compares well to the errors of other hygrometers reported in literature (SEE = $\pm 1.1, \pm 0.32, \pm 0.75$, 142 and ± 0.32 for the model of Putirka 2008, Lange et al. 2009, Mollo et al. 2015c, Waters and Lange 143 2015, respectively).

144 As a test of Eqn. (2), we predict H_2O contents for clinopyroxene compositions that are not 145 part of the calibration dataset (namely test datasets I and II reported in Fig. 1b). Results from the 146 regression analysis indicate that the hygrometer successfully reproduces the H₂O content of the Etnean melts in equilibrium with the experimentally-derived clinopyroxene crystals (Fig. 1b). We 147 find that R² and SEE for predicted vs. measured regression lines obtained by these test datasets 148 149 evidence precision and accuracy that are comparable to the calibration error (Fig. 1b).

150 The Mallows' Cp statistic indicates that (1) no systematic overestimates or underestimates 151 were due to mis-calibration of Eqn. (2) as the result of data overfitting (Supplementary Data Fig. 152 3S) and (2) the overall use of the independent variables ensures the lowest mean squared error 153 (MSE) with respect to all possible regression fits obtained by permuting the independent variables 154 (Supplementary Data Figure 4S).

155 When hygrometric models are calibrated using empirical data from hydrous experiments, a 156 key question is: given anhydrous compositions from natural rocks, how do we know whether the Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld

7

157 accidental use of these input data yield near-zero H_2O contents, so that the hygrometer may be 158 correctly applied? Mollo et al. (2010, 2013a, 2013b) conducted anhydrous experiments on different 159 Etnean trachybasaltic melts at atmospheric pressure, 1,000-1,100 °C, and QFM-NNO+1.5 buffer. 160 These anhydrous compositions are not part of the calibration dataset of Eqn. (2) and, therefore, can 161 be used as test data (Supplementary Data Table 4S). The hygrometer predicts H_2O contents of 0.3-162 0.5 wt.% and most of them fall somewhere within the uncertainty of the model (SEE = ± 0.45). 163 Despite the fact that clinopyroxene crystals from anhydrous magmas yield non-zero values for H_2O , 164 it is apparent that Eqn. (2) predicts very low H₂O contents that tend to near-zero values. Conversely, 165 for the same anhydrous compositions, the original Eqn. (1) predicts relatively high H₂O contents, in 166 the range 2.1-2.7 wt.%. This great uncertainty is caused by the calibration strategy adopted to derive 167 Eqn. (1), in which the regression line is forced to pass through the origin. The lack of the constant 168 term means that the intercept is equal to zero and, consequently, the mean value of H_2O is not 169 verified when all of the explanatory independent variables take on the value zero. It is interesting to 170 observe that the inclusion of the constant term in Eqn. (2) has the effect to change the signs of the 171 regression coefficients with respect to those of the original Eqn. (1) (Supplementary Data Table 3S). 172 The inspection of the dataset used to calibrate Eqn. (2) shows that, with increasing H₂O, 173 DiHd increases and EnFs decreases. Thus, the EnFs and DiHd regression coefficients are opposite 174 in sign. As the H_2O content increases, there is a trade-off between DiHd and EnFs; at high H_2O 175 contents the equilibrium clinopyroxene has an elevated concentration of Di-Hd, whereas 176 clinopyroxenes equilibrated at low H₂O contents are enriched in En-Fs (Parman et al. 1997). 177 Looking at Eqn. (2), both the EnFs and DiHd regression coefficients are positive in sign, although 178 DiHd increases and EnFs decreases with increasing H₂O and/or temperature. This is a suppression 179 effect that may occur in multiple linear regression analysis (Hair et al. 1995); the sign of one or 180 more regression coefficients changes but this event is not necessary related to the high correlation 181 of two independent variables. In fact, the Mallows' Cp statistic excludes that Eqn. (2) is suffering 182 from multicollinearity, evidencing as the selected independent variables minimize the value of MSE Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld

and successfully describe the variance of the calibration dataset (Supplementary Data Figs. 3S and4S).

185 The calibration bounds of the experimental dataset represent the most important limitation 186 for models derived by regression analysis of empirical data (cf. Putirka 2008). For example, Mollo et al. (2015c) evidenced as their K-feldspar-liquid hygrometer specific to trachy-phonolitic 187 188 compositions is affected by errors of estimate up to 11.5 wt.% H₂O when rhyolitic compositions are 189 used as input data. To assess the extent of this limitation, we have tested Eqn. (2) using 190 experimental clinopyroxenes in equilibrium with trachy-phonolitic melts (P = 50-300 MPa, T =191 725-950 °C, $H_2O = 5-9$ wt.%, and $fO_2 = NNO+1-NNO+2$; data from Fabbrizio and Carroll, 2008 192 and Masotta et al. 2013; Supplementary Data Table 5S) and calc-alkaline melts from basalt to 193 and esite (P = 0.1-200 MPa, T = 965-1,075 °C, $H_2O = 0-6.7$ wt.%, and $fO_2 = QFM-NNO+1.5$; data 194 from Sisson and Grove 1993a, 1993b and Mollo et al. 2012; Supplementary Data Table 5S). In 195 these experiments, crystals of clinopyroxene + K-feldspar and crystals of clinopyroxene + 196 plagioclase coprecipitated from the trachy-phonolitic liquids and calk-alkaline liquids, respectively. 197 This makes possible to compare the ability prediction of Eqn. (2) with that of the K-feldspar-liquid 198 hygrometer of Mollo et al. (2015a) and the most recent plagioclase-liquid hygrometer of Waters and 199 Lange (2015). The K-feldspar-liquid hygrometer has an average deviation of ±0.30 wt.% H₂O that 200 is much better than that of ± 1.29 wt.% H₂O measured for Eqn. (2). One possible explanation is that, 201 at low pressure conditions (\leq 300 MPa), trachy-phonolitic melts crystallize at temperatures (725-202 950 °C) much lower than those measured for trachybasaltic magmas from Mt. Etna volcano (965-203 10,75 °C). Thus, the application of Eqn. (2) to trachy-phonolites requires an extrapolation in terms 204 of the temperature variable and, consequently, the predictive power of the hygrometer is weak for 205 these products. Conversely, the plagioclase-liquid hygrometer has an average deviation of ± 1.30 206 wt.% H₂O, being only slightly lower than that of ± 1.61 wt.% H₂O recovered for Eqn. (2). These 207 comparable ability predictions seem also to suggest that the two hygrometers can be confidently

208 used to estimate the H_2O contents of calc-alkaline magmas with compositions from basalt to 209 and esite.

210

211 Implications

212 The new data and methods presented in this study allow to document the degassing events 213 that likely accompanied, and perhaps even triggered, the 2011-2013 eruptive sequences at Mt. Etna. 214 During the January 2011 - April 2013 paroxysmal sequence at Mt. Etna, the New South East Crater 215 of the volcano was characterized by several episodes of lava fountaining (Behncke et al. 2014; 216 Viccaro et al. 2015). Scoria clasts from these events were rapidly quenched at the contact with the 217 atmosphere, preserving the original mineral textures and compositions (Mollo et al., 2015b) and 218 clinopyroxene phenocrysts (Supplementary Data Table 6S) are well constrained by the 219 experimental dataset used in this study to refine the hygrometer of Armienti et al. (2013).

The crystallization path of magma feeding lava fountains has been estimated by Mollo et al. 220 221 (2015b), using the compositions of clinopyroxenes phenocrysts and matrix glass from scoria clasts 222 as input data for the thermobarometric models of Putirka (2008). The estimates of Mollo et al. 223 (2015b) are plotted in Fig. 2b showing as the saturation temperature of clinopyroxene progressively 224 decreases from ~1,150 to ~1,050 °C along a decompression path from ~800 to ~0.1 MPa. 225 Considering these *P*-*T* constrains, we have used the natural clinopyroxene compositions as input 226 data for the original hygrometer of Armienti et al. (2013) and the refined hygrometer presented in 227 this study. The precision of the original hygrometer of Armienti et al. (2013) is not very high 228 showing scattered H₂O estimates and no clear correlation with the pressure decrease during magma 229 upward migration (Fig. 2c). But the refined hygrometer instead indicates that melt- H_2O 230 concentrations progressively decrease from ~ 4.5 to ~ 1.5 wt% as pressure decreases (Fig. 2d). We 231 find that H₂O contents begin to decrease at P < 400 MPa and that most of the H₂O loss occurs at P 232 < 100 MPa. These findings are consistent with, but better quantify, independent melt inclusion data 233 that indicate H₂O degassing at shallow crustal levels (Métrich et al., 2004; Spilliaert et al. 2006;

10

Collins et al. 2009). The predicted H₂O contents add important context in that the immediate eruption triggering mechanisms likely began at depths equivalent to 400 MPa pressures, and were accelerated as magmas migrated to very shallow depths at P < 100 MPa (cf. Rutherford 2008; Gonnermann and Manga 2012; Rutherford and Hill 1993; Toramaru et al., 2008; Applegarth et al. 2013; see also Supplementary Data Magma Dynamics).

239

240 Acknowledgements

This work is a part of the master thesis of S.P. De Cristofaro that was supported by HP-HT laboratory of Sapienza - University of Rome. We kindly thank M. Serracino for assistance during electron microprobe analysis. P. Scarlato and S. Mollo acknowledge MIUR project - Premiale NORTh (New hORizons of the Technology applied to experimental researches and geophysical and volcanological monitoring) and EPOS (European Observing System Infrastructure project). We express our gratitude to I. Swainson for his editorial guidance. We are grateful to M. Hamada and two anonymous reviewers for their helpful and constructive suggestions.

248

249 **References**

- Applegarth, L.J., Tuffen, H., James, M.R., Pinkerton, H., Cashman, K.V. (2013) Direct
 observations of degassing-induced crystallization in basalts. Geology, 41, 243–246.
- 252 Armienti, P., Tonarini, S., D'Orazio, M. and Innocenti, F. (2004) Genesis and evolution of Mount
- Etna alkaline lavas: Petrological and Sr-Nd-B isotope constraints. Periodico di Mineralogia, 73,
 254 29-52.
- Armienti, P., Tonarini, S., Innocenti, F. and D'Orazio, M. (2007) Mount Etna pyroxene as tracer of
- 256 petrogenetic processes and dynamics of the feeding system, in: Beccaluva L. Bianchini G. and
- 257 Wilson M. (Eds.), Cenozoic Volcanism in the Mediterranean Area. Geological Society of
- America Special Papers, 418, 265-276.

- 259 Armienti, P., Perinelli, C. and Putirka, K.D. (2013) A new model to estimate deep-level magma
- ascent rates, with applications to Mt. Etna (Sicily, Italy). Journal of Petrology, 54, 795-813.
- 261 Behncke, B., Branca, S., Corsaro, R.A., De Beni, E., Miraglia, L. and Proietti, C. (2014) The 2011-
- 262 2012 summit activity of Mount Etna: Birth, growth and products of the new SE crater. Journal
- of Volcanology and Geothermal Research, 270, 10-21.
- Bozzano, F., Gaeta, M., Lenti, L., Martino, S., Paciello, A., Palladino, D.M. and G. Sottili (2013)
- 265 Modeling the effects of eruptive and seismic activities on flank instability at Mount Etna, Italy.
- Journal of Geophysical Research: Solid Earth, 118, 1–22, doi:10.1002/jgrb.50377.
- 267 Collins, S.J., Pyle, D.M. and Maclennan, J. (2009) Melt inclusions track pre-eruption storage and
- 268 dehydratation of magmas at Etna. Geology, 6, 571–574.
- Corsaro, R.A., Di Renzo, V., Distefano, S., Miraglia, L. and Civetta, L. (2013) Relationship
 between petrologic processes in the plumbing system of Mt. Etna and the dynamics of the
 eastern flank from 1995 to 2005. Journal of Volcanology and Geothermal Research, 251, 75-89.
- 272 De Cristofaro, S.P. (2014) Water effect on the clinopyroxene compositions: insight from high
- pressure experiments on hawaiitic magma of Mt. Etna. Sapienza- University of Rome,unpublished master thesis.
- Dolfi, D. and Trigila, R. (1983) Clinopyroxene solid solutions and water in magmas: results in the
 system phonolitic tephrite-H₂O. Mineralogical Magazine, 47, 347-351.
- 277 Fabbrizio, A. and Carroll, M. (2008) Experimental constraints on the differentiation process and
- pre-eruptive conditions in the magmatic system of Phlegraean Fields (Naples, Italy). Journal of
- Volcanology and Geothermal Research, 171, 88–102. DOI:10.1016/j.jvolgeores.2007.11.002
- 280 Ferlito, C. and Lanzafame, G. (2010) The role of supercritical fluids in the potassium enrichment of
- 281 magmas at Mount Etna volcano (Italy). Lithos, 119, 642–650.
- 282 Ferlito, C., Viccaro, M. and Cristofolini, R. (2008) Volatile-induced magma differentiation in the
- 283 plumbing system of Mt. Etna volcano (Italy): evidence from glass in tephra of the 2001 eruption.
- Bulletin of Volcanology, 70, 455–473.

- Ferlito, C., Viccaro, M., Nicotra, E. and Cristofolini, R. (2011) Regimes of magma recharge on the
 eruptive behaviour during the period 2001–2005 at Mt. Etna volcano. Bulletin of Volcanology,
 74 (2), 533–543.
- 288 Ferlito, C., Massimo, C., Lanzafame, G. and Giacomoni, P.P. (2014) The volatile flushing triggers
- eruptions at open conduit volcanoes: evidence from Mount Etna volcano (Italy). Lithos, 184–
 187, 447–455.
- 291 Fornaciai, A., Perinelli, C., Armienti P. and Favalli, M. (2015). Crystal size distributions of
- 292 plagioclase in lavas from the July–August 2001 Mount Etna eruption. Bulletin of Volcanology,
 293 77, 1-15.
- Giacomoni, P.P., Ferlito, C., Coltorti, M., Bonadiman, C. and Lanzafame, G. (2014) Plagioclase as
 archive of magma ascent dynamics on "open conduit" volcanoes: the 2001–2006 eruptive
 period at Mount Etna. Earth-Sciences Reviews, 138, 371–393.
- 297 Giacomoni, P.P., Coltorti, M., Bryce, J.G., Fahnestock, M.F. and Guitreau, M. (2016) Mt. Etna
- 298 plumbing system revealed by combined compositional, thermobarometric and textural studies in
- clinopyroxene. Contributions to Mineralogy and Petrology, 171:34.
- 300 Gonnermann, H.M. and Manga, M. (2012) Magma ascent in the volcanic conduit. In: Fagents, S.A.,
- Gregg, T.K.P., Lopez, R.C. (Eds.), Modelling Volcanic Processes: The Physics and
 Mathematics of Volcanism. Cambridge University Press, 55–84.
- Hair, Jr. J.F., Anderson, R.E., Tatham, R.L., Black, W.C. (1995) Multivariate Data Analysis. 3rd ed.
- 304 Macmillan, New York, 742.
- 305 Kamenetsky, V.S., Pompilio, M., Métrich N., Sobolev, A.V., Kuzmin, D.V. and Thomas, R. (2007)
- Arrival of extremely volatile-rich high-Mg magmas changes explosivity of Mount Etna.
 Geology, 35, 255-258.
- Lange, R.A., Frey, H.M. and Jakob, H. (2009) A thermodynamic model for the plagioclase-liquid
- 309 hygrometer/thermometer. American. Mineralogy, 94, 494–506.

- 310 Lanzafame, G., Mollo, S., Iezzi, G., Ferlito, C. and Ventura, G. (2013) Unraveling the solidification
- 311 path of a pahoehoe "cicirara" lava from Mount Etna volcano. Bulletin of Volcanology, 75, 1-16.
- 312 Masotta, M., Mollo, S., Freda, C., Gaeta, M. and Moore, G. (2013) Clinopyroxene-liquid
- 313 thermometers and barometers specific to alkaline differentiated magmas, Contributions to
- 314 Mineralogy and Petrology, 166, 1545-15-61, DOI: 10.1007/s00410-013-0927-9.
- 315 Métrich, N. and Rutherford, M.J. (1998) Low pressure crystallization paths of H₂O-saturated
- basaltic-hawaitic melts from Mt Etna: Implications for open-system degassing of basaltic
 volcanoes. Geochimica et Cosmochimica Acta, 62, 1195-1205.
- 318 Métrich, N., Allard, P., Spilliaert, N., Andronico, D. and Burton, M. (2004) 2001 flank eruption of
- the alkali- and volatile-rich primitive basalt responsible for Mount Etna's evolution in the last
- three decades. Earth and Planetary Science Letters, 228, 1-17.
- 321 Mollo, S., Del Gaudio, P., Ventura, G., Iezzi, G., Scarlato, P. (2010) Dependence of clinopyroxene
- 322 composition on cooling rate in basaltic magmas: Implications for thermobarometry. Lithos, 118,
- 323 302-312, DOI:10.1016/j.lithos.2010.05.006.
- 324 Mollo, S., Misiti, V., Scarlato, P., Soligo, M. (2012) The role of cooling rate in the origin of high
- temperature phases at the chilled margin of magmatic intrusions, Chemical Geology, 322-323,
 28-46, DOI:10.1016/j.chemgeo.2012.05.029.
- Mollo, S., Blundy, J., Scarlato, P., Iezzi, G., Langone, A. (2013a) The partitioning of trace elements
 between clinopyroxene and trachybasaltic melt during rapid cooling and crystal growth.
- 329 Contributions to Mineralogy and Petrology, 166, 1633-1654, DOI: 10.1007/s00410-013-0946-6.
- 330 Mollo, S., Putirka, K., Misiti, V., Soligo, M., Scarlato, P. (2013b) A new test for equilibrium based
- 331 on clinopyroxene-melt pairs: Clues on the solidification temperatures of Etnean alkaline melts at
- 332 post-eruptive conditions, Chemical Geology, 352, 92-100, DOI:
- 333 10.1016/j.chemgeo.2013.05.026.
- 334 Mollo, S., Giacomoni, P.P., Coltorti, M., Ferlito, C., Iezzi G. and Scarlato, P. (2015a)
- 335 Reconstruction of magmatic variables governing recent Etnean eruptions: constraints from Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld

- mineral chemistry and P-T-fO2-H2O modelling. Lithos, 212-215, 311-320, DOI:
 10.1016/j.lithos.2014.11.020.
- 338 Mollo, S., Giacomoni, P.P., Andronico, D. and Scarlato, P. (2015b) Clinopyroxene and
- titanomagnetite cation redistributions at Mt. Etna volcano (Sicily, Italy): Footprints of the final
- 340 solidification history of lava fountains and lava flows. Chemical Geology, 406, 45-54, DOI:
- 341 10.1016/j.chemgeo.2015.04.017.
- 342 Mollo, S., Masotta, M., Forni, F., Bachmann, O., De Astis, G., Moore, G. and Scarlato, P. (2015c)
- 343 A K-feldspar-liquid hygrometer specific to alkaline differentiated magmas. Chemical Geology,
- 344 392, 1-8, DOI: 10.1016/j.chemgeo.2014.11.010.
- Parman, S. W., Dann, J. C., Grove, T. L., and DeWit M. J. (1997) Emplacement conditions of
 komatiite magmas from the 3.49 Ga Komati Formation, Barberton Greenstone Belt, South
 Africa. Earth and Planetary Science Letters 150, 303-323.
- Putirka, K. (1999) Clinopyroxene-liquid equilibrium to 100 kbar and 2450 K. Contribution to
 Mineralogy and Petrology, 135, 151–163.
- 350 Putirka, K. (2008) Thermometers and barometers for volcanic systems. In: Putirka K, Tepley F
- 351 (eds) Minerals, inclusions and volcanic processes, vol. 69, Reviews in mineralogy and
- 352 geochemistry. Mineralogical Society of America, Chantilly, VA, USA, 61–120.
- Putirka, K., Johnson, M., Kinzler, R. and Walker, D. (1996) Thermobarometry of mafic igneous
 rocks based on clinopyroxene-liquid equilibria, 0–30 kbar. Contribution to Mineralogy and
 Petrology, 123, 92–108.
- Rutherford, M.J. (2008) Magma ascent rates. Review in Mineralogy and Geochemistry, 69, 241–
 271.
- 358 Rutherford, M.J. and Hill, P.M. (1993) Magma ascent rates from amphibole breakdown:
- 359 experiments and the 1980–1986 Mount St. Helens eruptions. Journal of Geophysical Research,
- 360 98, 19667–19685.

- Sisson, T.W., Grove, T.L. (1993a) Experimental investigations of the role of H2O in calc-alkaline
 differentiation and subduction zone magmatism. Contribution to Mineralogy and Petrology, 113,
 143-166.
- 364 Sisson, T.W., Grove, T.L. (1993b) Temperatures and H2O contents of low MgO high-alumina
- basalts. Contribution to Mineralogy and Petrology, 113, 167-184.
- 366 Spilliaert, N., Allard, P., Métrich, N. and Sobolev, A.V. (2006) Melt inclusion record of the
- 367 conditions of ascent, degassing, and extrusion of volatile-rich alkali basalt feeding the powerful
- 368 2002 flank eruption of Mount Etna (Italy). Journal of Geophysical Research, 111, B04203.
- 369 Toramaru, A., Noguchi, S., Oyoshihara, S., and Tsune, A. (2008) MND (microlite number density)
- 370 water exolution rate meter. Journal of Volcanology and Geothermal Research, 175, 156-167.
- 371 Vetere, F., Mollo, S., Giacomoni, P.P., Iezzi, G., Coltorti, M., Ferlito, C., Holtz, F., Perugini, D. and
- Scarlato, P. (2015) Experimental constraints on the origin of pahoehoe "cicirara" lavas at Mt.
 Etna Volcano (Sicily, Italy). Bulletin of Volcanology, in press, DOI: 10.1007/s00445-0150931-1.
- Viccaro, M., Calcagno, R., Garozzo, I., Giuffrida, M. and Nicotra, E. (2015) Continuous magma
 recharge at Mt. Etna during the 2011-2013 period controls the style of volcanic activity and
 compositions of erupted lavas. Mineralogy and Petrology, 109, 67-83.
- Waters, L. E. and Lange, R. A. (2015) An updated calibration of the plagioclase-liquid hygrometerthermometer applicable to basalts through rhyolites. American Mineralogist, 100, 21722184.

Figure captions

Figure 1. (a) The hygrometer presented in this study (R² = 0.79 and SEE = ±0.45) has been recalibrated through the regression analysis of new experimental data that has been combined with the original dataset of Armienti et al. (2013). (b) The refined hygrometer has been tested by experimental compositions external to the calibration dataset (namely test datasets I and II). The Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld

regression fit of these test compositions yields correlation coefficient and standard error of estimate that are comparable to those obtained by the recalibration of the hygrometer. (c) Eqn. (2) has been tested using experimental clinopyroxenes coprecipitated with K-feldspars in equilibrium with trachy-phonolitic melts. (d) Eqn. (2) has been tested using experimental clinopyroxenes coprecipitated with plagioclases in equilibrium with calk-alkaline melts from basalt to andesite.

392

393 Figure 2. (a) Di (diopside) vs. Hd (hedenbergite) diagram showing the compositions of natural 394 clinopyroxene phenocrysts reported by Mollo et al. (2015b) for scoria clasts erupted during 2011-395 2013 lava fountains. (b) Estimates of the magma crystallization conditions performed by Mollo et al. 396 (2015b) using the compositions of clinopyroxene rims and coexisting melts as input data for the 397 thermobarometric models of Putirka (2008). Error bars correspond to ± 25 °C and ± 180 MPa, i.e. the 398 uncertainties of the thermometer and barometer of Putirka (2008). (c) H_2O predictions obtained 399 through the original hygrometer of Armienti et al. (2013) are not very accurate showing scattered 400 estimates and no clear correlation with the pressure decrease during magma upward migration. (d) 401 H₂O predictions obtained through the refined hygrometer from this study show melt-H₂O 402 concentrations that progressively decrease with decreasing pressure. Most of the H_2O decrease 403 occurs at P < 100 MPa, in agreement with independent melt inclusion data (Métrich et al. 2004; 404 Spilliaert et al. 2006; Collins et al. 2009).

405

406 Supplementary Material

407 Figure 1S. Di (diopside) vs. Hd (hedenbergite) diagram showing the compositions of 408 clinopyroxenes from 1) the original calibration dataset of Armienti et al. (2013), 2) the new 409 calibration dataset from this study, and 3) the natural products erupted at Mt. Etna volcano.

410

411 Figure 2S. The clinopyroxene compositions from the new calibration dataset have been used as412 input data for the hygrometer of Armienti et al. (2013). The regression fit of measured vs. predicted

413 H₂O concentrations yields low correlation coefficient ($R^2 = 0.03$) and high standard error of 414 estimate (SEE = ±1.16).

415

Figure 3S. The Cp vs. p diagram shows that the lowest Mallows' Cp value corresponds to the regression fit in which all the independent variables (i.e., DiHd, EnFs, CaTs, Jd, CaTi, P, and T; see also Supplementary Data Table 2S) are considered as predictors for the regression model. No systematic overestimates or underestimates were due to mis-calibration of Eqn. (2) as the result of data overfitting.

421

Figure 4S. The *MSE* vs. p diagram shows that the Mallows' Cp criterion demonstrates as the overall use of the independent variables ensures the lowest mean squared error (*MSE*) for Eqn. (2) with respect to all possible regression fits obtained by permuting the independent variables. The overall use of these independent variables ensures that the refined hygrometer from this study is the best predictive model.

427

429

430 **Table 2S.** Statistical analysis of data.

431

432 **Table 3S.** Regression coefficients.

433

434 **Table 4S.** Anhydrous dataset.

435

436 **Table 5S.** Clinopyroxene-, K-feldspar- and plagioclase-based datasets.

437

438 **Table 6S.** Dataset of 2011-2013 lava fountains.

Hygrometer. Refined clinopyroxene-based hygrometer from this study.

- 442 Magma Dynamics. Applications of the refined clinopyroxene-based hygrometer from this study to
- 443 magma dynamics at Mt. Etna volcano.

