
 

 1 

Melts, Mush and More: Evidence for the State of Intermediate-to-Silicic Arc Magmatic 1 

Systems 2 

Erik W. Klemetti 3 

Department of Geosciences, Denison University, 100 W. College St., Granville OH 43023, 4 

klemettie@denison.edu 5 

 6 

Abstract 7 

 8 

Understanding the physical state of intermediate-to-silicic arc magmatic systems is necessary for 9 

our petrologic models of these systems. Researchers have generated a plethora of data — 10 

geophysical, geochronological, petrological, theoretical — over the past few decades. These 11 

data have changed how we view arc magmatic systems, leading to a model of crystal mush that 12 

is rejuvenated repeatedly over the lifespan of the magmatic system. However, much of the data is 13 

either circumstantial or incomplete. Paterson et al. (2016; this volume) use a combined set of 14 

textural, geochemical and temporal data to demonstrate the changing physical state of the 15 

Tuolumne Intrusive Complex in California over its ~10 million year history. They offer evidence 16 

for magmatic erosion and recycling, along with the potential for a “surge growth” of the 17 

batholith that allows for significant volumes of magma to exist ephemerally under arc volcanoes.  18 
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What is the state of magma underneath active volcanic arcs? That question has been vexing 22 

petrologists for decades and is fundamental to understanding what petrologic processes are at 23 
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work in arc magmatic systems. Most intermediate-to-silicic arc magmas (henceforth “arc 24 

magma”) are stored 3 kilometers or more beneath the Earth’s surface, so direct observation is 25 

impossible. Instead this question has been approached four main ways: (1) geophysical 26 

inspections of active arcs; (2) mineral geochronology; (3) field observations of plutons and; (4) 27 

thermal and physical modeling of magmatic systems. Each of these four avenues have their own 28 

strengths and shortcomings. Unfortunately, many times the interpretation of these data appear to 29 

be at odds. 30 

 31 

Some overarching observations can be made about what we know of the state of active 32 

intermediate-to-silicic arc magmatic systems: 33 

 34 

Large bodies of highly molten magma are rare: Geophysical observations (such as seismic 35 

tomography) have yielded little evidence for large bodies of fully-molten magma persistently 36 

underneath arc volcanoes. If anything, only small lenses of partial melt are observed at depths of 37 

3-18 kilometers (see Chiarrabba et al, 2000; Stankiewicz et al., 2010; Paulatto et al., 2012). 38 

Detailed studies, such as the iMUSH study at Mount St. Helens, have revealed areas of 39 

potentially partially-molten material in the upper-to-middle crust (Levander et al., 2015; Kiser et 40 

al., 2016). Similarly, geodetic data such as InSAR have shown us that volcanic systems are 41 

regularly inflating and deflating, but these changes might be related to magma movement, 42 

hydrothermal activity or regional fault action (see Pritchard and Simons, 2004; Poland et al., 43 

2006; Parker et al., 2016.) 44 

 45 
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Diverse interactions are preserved in the texture plutonic and volcanic rocks: The high 46 

frequency that mafic enclaves and cognate inclusions are found in both plutonic and volcanic 47 

rocks from arc settings betrays the complex mingling and mixing that must occur (see Platevoet 48 

et al., 1991; Cole et al., 2001; Wiebe et al., 2007; Paterson 2009 among many others). Many of 49 

these textures show the clear sign of liquid-liquid or liquid-mush interacting (e.g., Clynne, 1999; 50 

Coombs et al., 2002; Wiebe et al., 2001, Wiebe and Hawkins, 2015), confirming that portions of 51 

all large plutonic bodies were likely simultaneously liquid for some period of time. 52 

 53 

Intermediate-to-silicic arc magmas are amalgams of crystals from a variety sources: Mineral 54 

geochronology studies such as U-Th/U-Pb dating of zircon and Ra-Th dating of plagioclase 55 

feldspar (see Cooper, 2015) have added temporal constrain to the subvolcanic magmatic bodies. 56 

Crystal cargo for arc magmas are a complex assemblage of pheno-, ante- and xenocrysts 57 

collected from active liquid, crystal mush and the host rock that is variably recycled during the 58 

lifetime of the magmatic system (e.g., Bacon and Lowenstern, 2005; Miller et al., 2007; 59 

Claiborne et al., 2010; Ruprecht et al., 2012; Walker et al., 2012; Klemetti and Clynne, 2014; 60 

Pack et al., 2016). 61 

 62 

These magmas are incrementally emplaced and ephemerally eruptable but mostly long-lived 63 

mushes: Studies of zircon at plutonic systems exposed the incremental nature of pluton 64 

emplacement, where large magmatic systems might take millions of years to be formed through 65 

multitudes of magmatic pulses (starting with Reid et al., 1997 and Glazner et al., 2004). Looking 66 

across all mineral geochronology datasets, Cooper and Kent (2014) demonstrated that for many 67 
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arc volcanoes, magma is only briefly in an eruptable state — that is, with low enough viscosity 68 

to allow eruption.  69 

 70 

The combination these observations has lead to the now ubiquitous “crystal mush," a body of 71 

mainly crystals with low percent melt (<30%?) that can reside for long periods under an arc 72 

volcano before rejuvenation that may lead to eruption. The duration of construction, the timing 73 

of rejuvenation and the percent of the entire magmatic system involved is unclear and likely 74 

varies across different arc volcanic systems. However, these data support the geophysical 75 

evidence that magma under arc volcanoes is not in the form of large, long-lived fully-molten 76 

bodies (see Reid and Coath, 2000; Vazquez and Reid, 2002; Claiborne et al., 2010; Klemetti and 77 

Clynne, 2014; Deering et al., 2016; Eddy et al., 2016.) 78 

 79 

Although the petrologic and temporal evidence support abundant crystal recycling within a 80 

relatively viscous magma mush, physical models have yet to agree if this is possible. Glazner 81 

(2014) argues that the high viscosity of these liquids would prevent processes that require 82 

turbulent flow (such as sedimentary-like structures) as the Reynolds number is too small. 83 

However, Annen (2009) suggested that a high rate of magma emplacement can allow for larger 84 

magma bodies to exist for brief periods. Bergantz et al. (2015) suggest a “mixing bowl” within 85 

magma bodies where heating from new injections permits for more turbulent-like flow behavior 86 

(and crystal recycling). 87 

 88 

Ideally, combining the different lines of petrologic, textural and temporal data could offer the 89 

cohesion to the interpretation of all these observations and allow for more robust inputs for 90 
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physical models. Paterson et al. (2016, this volume) present a fount of information from the 91 

Tuolumne Intrusive Complex (TIC) in the Sierra Nevada of California. By combining detailed 92 

field observations, compositional data (whole rock and mineralogical) for each magmatic pulses 93 

and lobes of the TIC and zircon geochronology, they have documented what they think is the 94 

physical state of the TIC magmatic body as each successive pulse of magma intruded. 95 

 96 

Paterson et al. (2016) identify features that they interpret as magmatic erosion and recycling 97 

during the emplacement and growth of the TIC. These evidence include highly variable contact 98 

types between different petrologic units and magmatic structures bounded by schlieren within the 99 

TIC that exhibit truncation and erosive features. Additionally, complex compositional 100 

relationships are found in xenoliths, cognate inclusions and mafic enclaves that are abundant in 101 

the TIC, supporting the idea that magmas in varying states of solidification were eroded and 102 

recycled during new intrusions. They argue that these features betray the sediment-like behavior 103 

of crystals in a silicic mush. 104 

 105 

Beyond these textural observations, Paterson et al. (2016) bring in a temporal and compositional 106 

argument for recycling of older magmatic material. Antecrystic zircon that are temporally 107 

correlated with older intrusions within the TIC are common in the younger magma bodies. They 108 

observe changes in zircon populations, with the proportion of antecrystic zircon increasing 109 

within each successive pulse of magma. Additionally, mixed populations of major phases such as 110 

amphibole and potassium feldspar from different TIC magmatic pulses of major phasesare found 111 

combined at hand-sample scale. 112 

 113 
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Their interpretation is not one of a profusion of small intrusions across the 10 million year 114 

history of the TIC, but rather periods of 0.5-1.5 million years where significant volumes of the 115 

magma body was hypersolidus. This could be considered a “surge growth” of the batholith rather 116 

than “incremental growth,” where the thermal state of the magmatic system waxes and wanes as 117 

each new pulse intrudes the previous batch, creating a dynamic magma body during “surges” of 118 

magma emplacement. 119 

 120 

Overall, Paterson et al. (2016) suggest that between 35-55% of the original plutonic material has 121 

been recycled into newer batches of magma as they intruded. When considering the volume of 122 

such magmatic bodies (>10,000 km3), that is a remarkable amount of crystals and liquid that 123 

become incorporated into the latter intrusions. In order to remobilize these crystals, Paterson et 124 

al. (2016) invoke the buoyancy of younger, hotter intrusions into cooling crystal mush, 125 

avalanches along solidification boundaries and localized convection in the magma body. 126 

 127 

The question of the state of intermediate-to-silicic arc magmatic systems is far from resolved. 128 

The apparent disconnect between the models of such viscous mushes and the field, temporal and 129 

composition data has yet to be resolved. Further studies like Paterson et al. (2016) are needed at 130 

a wide variety of plutons across locations and compositions to collect the rich and deep datasets 131 

required to interpret the features and patterns in arc plutonic bodies. Until then, we will have 132 

tantalizing and sometimes contradictory evidence and models for the physical state of magmatic 133 

bodies under arc volcanoes. 134 

 135 
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