1	Revision 1
2	
3	Formation of phosphorus-rich olivine in Dar al Gani 978 carbonaceous
4	chondrite through fluid-assisted metamorphism
5	
6	YANG LI ¹ , AI-CHENG ZHANG ^{1,2,*} , JIA-NI CHEN ¹ , LI-XIN GU ³ , AND RU-CHENG WANG ¹
7	
8	¹ State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering,
9	Nanjing University, Nanjing 210046, China
10	² Lunar and Planetary Science Institute, Nanjing University, Nanjing 210046, China
11	³ Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
12	*E-mail: <u>aczhang@nju.edu.cn</u>
13	
14	
15	

16

ABSTRACT

Phosphorus-rich olivine ($P_2O_5 > 1$ wt%) is a mineral that has been reported only in a 17 18 few terrestrial and extraterrestrial occurrences. Previous investigations suggest that P-rich olivine mainly forms through rapid crystallization from high-temperature P-rich melts. 19 Here, we report a new occurrence of P-rich olivine in an ungrouped carbonaceous 20 21 chondrite Dar al Gani (DaG) 978. The P-rich olivine in DaG 978 occurs as lath-shaped grains surrounding low-Ca pyroxene and olivine grains. The lath-shaped olivine shows a 22 large variation in P_2O_5 (0–5.5 wt%). The P-rich olivine grains occur in a chondrule 23 24 fragment and is closely associated with chlorapatite, merrillite, FeNi metal, and troilite. 25 Tiny Cr-rich hercynite is present as inclusions within the P-rich olivine. The lath-shaped texture and the association with Cr-rich hercynite indicates that the P-rich olivine in DaG 26 978 formed by replacing low-Ca pyroxene precursor by a P-rich fluid during a thermal 27 event, rather than by crystallization from a high-temperature melt. The large variation of 28 P₂O₅ within olivine grains on micrometer-scale indicates a disequilibrium formation 29 30 process of the P-rich olivine. The occurrence of P-rich olivine in DaG 978 reveals a new formation mechanism of P-rich olivine. 31

32

33

Keywords: phosphorus-rich olivine; fluid-assisted metamorphism; Dar al Gani 978; carbonaceous chondrite

34

INTRODUCTION

35	Olivine is a common mineral in terrestrial igneous rocks and extraterrestrial
36	materials. Most natural olivine grains contain very low concentrations of P_2O_5 due to a
37	low partition coefficient for P between olivine and melt (<0.1, Anderson and Greenland
38	1969; Brunet and Chazot 2001; Milman-Barris 2008; Boesenberg and Hewins 2010).
39	Despite its extreme rarity in nature, several occurrences of P-rich olivine ($P_2O_5 > 1 \text{ wt\%}$)
40	have been reported in a few terrestrial and extraterrestrial samples, with various
41	geological settings. In terrestrial samples, P-rich olivine has been reported in three
42	different settings (Goodrich 1984; Agrell et al. 1998; Tropper et al. 2004; Schneider et al.
43	2013). First, Goodrich (1984) described dendritic P-rich olivine (0.2-2.7 wt% P ₂ O ₅)
44	within silicate inclusions in an iron-carbon alloy from Disko land, West Greenland. It was
45	suggested that this P-rich olivine is a result of rapid crystallization from supersaturated
46	liquids under the chemical condition of high P_2O_5 contents coupled with low SiO ₂
47	contents, low fO ₂ (Goodrich 1984). Second, Agrell et al. (1998) reported P-rich olivine
48	with a P_2O_5 content up to 6.1 wt% from two samples from the Pine Canyon breccia pipe,
49	Utah. The exact formation mechanism of this P-rich olivine remains unknown due to lack
50	of outcrop source of its host rock (Agrell et al. 1998). The authors favored a
51	disequilibrium formation mechanism for the P-rich olivine and interpreted that high P_2O_5
52	content and low silica activity are responsible for the formation of P-rich olivine. The
53	third occurrence of P-rich olivine in terrestrial samples was found in two prehistoric ritual

immolations in Tyro, Austria (Tropper et al. 2004; Schneider et al. 2013). These P-rich olivine grains are closely associated with phosphate minerals, containing up to 23 wt% P_2O_5 . It was suggested that the formation of these P-rich olivine grains are related to partially melting and rapid, non-equilibrium crystallization of the precursor rocks with incorporation of chlorapatite, which supplied the phosphorus (Tropper et al. 2004; Schneider et al. 2013).

Two types of occurrences of P-rich olivine have been reported in extraterrestrial 60 samples (Buseck 1977; Buseck and Clark 1984; Wasson 1999; Sonzogni et al. 2009; 61 Fowler-Gerace and Tait 2015; Wang et al. 2007). One is P-rich olivine (2-32 wt% P₂O₅) 62 in pallasite meteorites (Buseck 1977; Buseck and Clark 1984; Wasson 1999; Sonzogni et 63 al. 2009; Fowler-Gerace and Tait 2015). Buseck (1977) suggested that the formation of 64 65 P-rich olivine in pallasite meteorites should be due to replacement reaction with adjunct phosphates below the solidus. Recently, however, Fowler-Gerace and Tait (2015) 66 proposed that the P-rich olivine in pallasite formed by extremely rapid crystallization 67 from a melt. The other extraterrestrial P-rich olivine $(0.2-3.9 \text{ wt}\% P_2O_5)$ was described in 68 the altered opaque assemblages from the Ningqiang carbonaceous chondrite (Wang et al. 69 70 2007). Wang et al. (2007) inferred that this P-rich olivine might have formed by non-equilibrium reaction between P-bearing molten metal and olivine crystals during 71 72 rapid cooling. In summary, most of the natural P-rich olivine grains seems to be due to 73 rapid crystallization from high-P and low-Si melts, although the olivine from the Pine

Canyon breccia pipe, Utah might have a different origin. This scenario was enhanced
recently by the experimental investigation by Boesenberg and Hewins (2010) on P-rich
olivine and by Fowler-Gerace and Tait (2015). The latter excluded the subsolidus origin
of P-rich olivine in pallasite (Buseck 1977).
Dar al Gani (DaG) 978 is a type 3 ungrouped carbonaceous chondrite found in Libya
in 1999 (Russell et al. 2003). Choe et al. (2010) briefly reported its petrography,
mineralogy, bulk oxygen isotope compositions, and bulk chemistry. Zhang and Yurimoto

(2013) reported the detailed petrographic and mineralogical features of this chondrite. They reveal that DaG 978 has experienced both thermal metamorphism and metasomatism, namely fluid-assisted metamorphism. Recently, we observed that some of the lath-shaped olivine grains in DaG 978 contain up to $5.5 \text{ wt}\% P_2O_5$. In this study, we report the detailed texture and mineral chemistry of P-rich olivine in DaG 978, and discuss its formation mechanism and implications.

87

ANALYTICAL METHODS

In this study, we observe the petrographic textures of the olivine in DaG 978 by using a scanning electron microscope (SEM) at Purple Mountain Observatory (Hitachi S-3400N II) and a SEM at Nanjing University (JSM 6490), both located in Nanjing, China. Both of the two SEM instruments were operated at an accelerating voltage of 15 kV.

93	The mineral chemistry of olivine and its associated minerals was mainly determined
94	by using an electron probe micro-analyzer (EPMA) at Nanjing University (JEOL 8100).
95	The operating conditions were 15 kV accelerating voltage, 50 nA beam current, and a
96	beam size of $\sim 2~\mu m$. The following natural and synthetic standards were used for
97	quantitative analyses: fayalite for Si, Fe, and Mn; forsterite for Mg; fluorapatite for P;
98	hornblende for Na, K, Al, Ca, and Ti; and Cr ₂ O ₃ for Cr. Since fluorapatite contains
99	volatile element F, which is sensitive to electron beams, P is the only element measured
100	for the fluorapatite standard. A Pb ₅ (PO ₄) ₃ Cl standard was used as a secondary standard
101	for P. Various peak-counting times were used for different elements; 10 s for Fe, Mg, Si,
102	Na, and K; 60 s for Ca, Ti, Al, Mn, Cr; 150 s for P. Detection limits in olivine and
103	pyroxene are: 20 ppm for CaO and P ₂ O ₅ ; 30 ppm for Al ₂ O ₃ ; 50 ppm for MnO and Cr ₂ O ₃ ;
104	60 ppm for TiO ₂ and Na ₂ O; 70 ppm for MgO; 90 ppm for SiO ₂ and K ₂ O; and 180 ppm for
105	FeO. All data were reduced with the ZAF procedure for the JEOL microprobe. The SEM
106	X-ray elemental mapping was performed to reveal the distribution of P and other
107	elements among different minerals. Mineral compositions for a few fine-grained minerals
108	associated with P-rich olivine were determined by using a silicon-drift-detector (SDD)
109	energy dispersive spectrometer (EDS) installed on a Zeiss Supra 55 Field-Emission-Gun
110	(FEG) SEM at Nanjing University. The accelerating voltage is 10 kV. Instrument default
111	standards were used for calculating the contents of major elements in the fine-grained
112	minerals.

In order to study the micro-texture and chemical features of P-rich olivine and its 113 114 associated minerals using transmission electron microscopy (TEM), we prepared a TEM foil of $7.3 \times 1.7 \,\mu\text{m}$ in area by a focused ion beam (FIB) system. The FIB milling was 115 conducted on a Zeiss Auriga Compact instrument at the Institute of Geology and 116 117 Geophysics, Beijing. A layer of Pt was deposited over the region of interest to protect the 118 surface from ion beam damage during sample preparation processes. After cutting, the TEM foil was lifted out from the bulk sample by using an Omniprobe AutoProbe200 119 micromanipulator and attached to a copper grid. Ion milling was carried out with an 120 accelerating voltage of 30 kV and various beam currents. Final polishing of the thin foil 121 was conducted with 4 kV. The TEM section is approximately 100 nm in thickness. 122 Textural observations and compositional analyses of P-rich olivine and its associated 123 minerals were carried out using a FEI Tecnai F20 TEM instrument. This TEM instrument 124 was accelerated at 200 kV for conventional bright field TEM observations, selected area 125 electron diffraction (SAED), high angle annular dark field (HAADF) observations, and 126 energy dispersive X-ray (EDX) analyses. The instrument default standards were used to 127 calculate the Al/Cr values in Cr-rich hercynite. The latter two observations and analyses 128 were conducted under scanning TEM mode. Elemental mapping under scanning TEM 129 mode, which is controlled by an Oxford Aztec software, was performed to reveal the 130 distribution of elements at given regions. 131

132

RESULTS

133	Olivine is widely present in amoeboid olivine aggregates (AOAs) and
134	ferromagnesian chondrules from the DaG 978 chondrite. The olivine grains in AOA are
135	fine-grained and always enclose Al-rich nodules or metal grains. They are Fe-rich
136	$(Mg#[=Mg/(Mg+Fe) \times 100] = 70-72)$, due to the Fe-Mg inter-diffusion (Zhang and
137	Yurimoto 2013). They contain low concentrations of Al_2O_3 (0.005–0.061 wt%), Cr_2O_3
138	$(0.026-0.044 \text{ wt\%}), \text{TiO}_2 (0.014-0.041 \text{ wt\%}), P_2O_5 (0-0.027 \text{ wt\%}), \text{ and } CaO_2O_2O_2O_2O_2O_2O_2O_2O_2O_2O_2O_2O_2O$
139	(0.018–0.097 wt%). In porphyritic olivine (PO) chondrules in DaG 978, olivine occurs as
140	phenocrysts (>200 μ m in size) and usually contain Mg-rich cores (Mg# = 100) and
141	Fe-rich rims (Mg# = 69). In porphyritic olivine-pyroxene (POP) chondrules, olivine
142	occurs as small, round-shaped grains (usually <100 μm in size) and is enclosed by
143	low-Ca pyroxene. Most of these olivine grains are homogeneous in BSE images and have
144	a limited chemical variation (Mg# = 69–75). The contents of Al ₂ O ₃ (0.005–0.164 wt%),
145	Cr_2O_3 (0.017–0.098 wt%), TiO_2 (0–0.153 wt%), P_2O_5 (0–0.017 wt%), and CaO_3
146	(0.030-0.294 wt%) are generally low in these olivine grains.

Besides the primary olivine in AOAs and chondrules, lath-shaped olivine grains are also observed in DaG 978. The lath-shaped olivine occurs in different textures, surrounding round-shaped olivine, replacing enstatite, or forming aggregates (see Figs. 10d-e and Fig. 14 of Zhang and Yurimoto 2013). Some of these lath-shaped olivine grains contain fine-grained (<1 μ m in width) nepheline inclusions (based on the EDS peaks of Na, K, Al, and Si; Zhang and Yurimoto 2013). The lath-shaped olivine grains

153	are Fe-rich with an Mg# value of 66–72, similar to those of fine-grained olivine in AOAs
154	and chondrules. However, compared with the primary olivine in AOAs and chondrules,
155	the lath-shaped olivine grains contain apparently higher contents of Al_2O_3 (0.018–1.097
156	wt%), Cr ₂ O ₃ (0.036–0.909 wt%), TiO ₂ (0–0.136 wt%), P ₂ O ₅ (0–5.533 wt%), and CaO
157	(0.022–0.763 wt%) (Fig. 1). The molar Cr/Al values generally range in ${\sim}1/2$ 1.
158	Representative compositions of the P-rich olivine are given in Table 1, in comparison
159	with the primary olivine in AOAs and chondrules. The $P_2\mathrm{O}_5$ concentrations of these
160	olivine grains exhibit a negative correlation with the SiO_2 concentrations (Fig. 2). It is
161	noteworthy that olivine grains with high P_2O_5 contents (>1 wt%) usually contain low
162	cation totals (Table 1). Although most of the lath-shaped olivine grains in DaG 978
163	generally contain P2O5 higher than those in primary olivine (Fig. 1), P-rich olivine
164	$(P_2O_5>1$ wt%) is not widely present in DaG 978 and only observed in a ferromagnesian
165	chondrule (named as PC-1) and an adjacent mineral fragment (Figs. 3-4). The the PC-1
166	chondrule mainly consists of round-shaped olivine, low-Ca pyroxene ($En_{83}Fs_{14}Wo_3$ with
167	1.05 wt% Al ₂ O ₃ and 0.38 wt% Cr ₂ O ₃ based on EPMA data, Cr/Al ~1/4), and Na-rich
168	plagioclase (Ab ₇₁ An ₂₉ based on SEM-EDS data). Minor minerals in PC-1 are FeNi metal,
169	troilite, Cr-rich hercynite (Cr/Al ~1 based on SEM-EDS data), chlorapatite, and merrillite
170	(Fig. 3b). The P-rich olivine mainly occurs at the margin of the PC-1 chondrule (Figs.
171	3b–d) and contains up to 2.7 wt% P ₂ O ₅ . In PC-1, the P-rich olivine (<10 μm in size) can
172	be distinguished from the primary olivine, based on their textural difference and whether
173	they contain bright inclusions (Figs. 3b-d). The primary olivine occurs as "clean" and 9

round-shaped grains in BSE images and contains no bright inclusions, whereas the P-rich 174 175 olivine are "dusty" with many tiny bright inclusions and seldom occurs as round-shaped grains. The P-rich olivine has a lath-like shape, although it is not as typical as those 176 described in Zhang and Yurimoto (2013). The P-rich olivine grains enclose primary 177 178 olivine grains and partially replace low-Ca pyroxene grains. One olivine grain adjacent to 179 PC-1 is also P-rich (Fig. 3a), and is the only olivine grain with up to ~ 5 wt% P₂O₅. This 180 grain is probably a remnant of an originally larger fragment (named as PF-1) shown in 181 Fig. 4. However, unfortunately, most part of the original fragment (PF-1) was lost during 182 repolishing the thin section after other measurements. X-ray elemental mapping results before repolishing reveal that a P-rich rim encloses a P-poor core, which apparently 183 184 contains three olivine grains. The boundary between the P-rich rim and the P-poor core is sharp in both the BSE image and elemental X-ray maps. Phosphorus distributes 185 heterogeneously but continuously in the rim (Fig. 4e). However, Cr and Al disperse in the 186 P-rich rim as hot spots (Figs. 4g-h), corresponding to the tiny bright inclusions in the rim 187 (Fig. 4a). 188

A FIB-TEM foil was cut from a region of P-rich olivine in the PC-1 chondrule (Fig. 3c). This foil is composed dominantly of olivine, with minor plagioclase (Fig. 5). Both P-rich olivine and plagioclase contain fine-grained Cr-rich hercynite inclusions (20–160 nm in size; Figs. 5–6). Chlorapatite and merrillite are also detected based on the X-ray mapping results for P, Ca, and Cl (Figs. 7–8). Our EDS analyses under the STEM mode

reveal that some of the olivine grains have a high peak for P while some of the olivine 194 195 grains do not have the peak for P (Fig. 6). The heterogeneous distribution of P in olivine is also supported by the mapping result of P for the olivine grains (Fig. 8). This is 196 consistent with the SEM-EDS mapping result on the P-rich olivine grain shown in Fig. 4. 197 198 It is noteworthy that the olivine grains containing Cr-rich hercynite inclusions have no 199 visible peaks for Cr and Al (Fig. 6). The TEM-EDS analyses show that the Cr-rich hercynite grains have a molar Cr/Al value of $\sim 1/2$. Additionally, no large chemical 200 variation can be observed for the Cr-rich hercynite grains associated with P-rich olivine 201 202 and plagioclase, respectively (Fig. 7).

203

DISCUSSION

204 Chemical features of P-rich olivine in DaG 978

205 Phosphorus-rich olivine is a relatively uncommon phase in both terrestrial and extraterrestrial materials. In this study, the TEM observations indicate that the P-rich 206 olivine is closely associated with fine-grained Ca-phosphate minerals. Therefore, we 207 208 reduced the P₂O₅ contents by assuming that all CaO and some P₂O₅ in EPMA data for P-rich olivine are due to contamination from merrillite (Table 1). The reduced results are 209 210 comparable with the apparent P_2O_5 contents (Table 1), indicating that the high P_2O_5 211 contents in olivine are not due to contamination from Ca-phosphate minerals. This conclusion is well consistent with the qualitative characterization with the TEM-EDS 212

method (Fig. 6). Therefore, the P-rich olivine in DaG 978 represents its new occurrence

214	in nature, rather than a result of contamination from Ca-phosphate minerals.
215	The negative correlation between P and Si in P-rich olivine demonstrates that P
216	incorporates into the crystal structure of olivine by substituting Si, as suggested by all
217	previous investigations (Buseck 1977; Buseck and Clark 1984; Goodrich 1984; Agrell et
218	al. 1998; Wasson 1999; Tropper et al. 2004; Wang et al. 2007; Sonzogni et al. 2009;
219	Boesenberg and Hewins 2010; Schneider et al. 2013; Fowler-Gerace and Tait 2015). Our
220	EPMA results show that P-rich olivine in DaG 978 contains much higher apparent Cr_2O_3
221	and Al_2O_3 values than those in AOAs and chondrules. However, the TEM observations
222	and analyses indicate that the Cr and Al concentrations in P-rich olivine from DaG 978
223	are very low, probably on the same level of olivine in AOAs and chondrules. The
224	apparently high Cr and Al concentrations in P-rich olivine should be due to
225	contaminations from the tiny Cr-rich hercynite inclusions. Therefore, we suggest that the
226	incorporation of P in olivine from DaG 978 is not related to Cr and Al (Milman-Barris et
227	al. 2008; McCanta et al. 2016). Instead, all the P-rich olivine grains in DaG 978 contain
228	low cation totals based on 4 oxygen atoms (Table 1), indicating the presence of cation
229	vacancy. Generally, olivine with higher P2O5 contents contains higher cation vacancies,
230	based on the data for lath-shaped olivine shown in Table 1. This implies that the
231	incorporation of P into olivine crystal structure should be related to the presence of cation
232	vacancy. Therefore, P might incorporate into the crystal structure of olivine through the

substitution $2^{IV}Si^{4+} + 4^{VI}M^{2+} \Leftrightarrow 2^{IV}P^{5+} + 3^{VI}M^{2+} + {}^{VI}[]$, as proposed by Boesenberg and Hewins (2010) based on synthetic experimental P-rich olivine.

Formation mechanism of P-rich olivine in DaG 978

Formation mechanism of P-rich olivine has been discussed in previous 236 investigations on natural and synthetic samples (Goodrich 1984; Agrell et al. 1998; 237 Tropper et al. 2004; Wang et al. 2007; Boesenberg and Hewins 2010; Schneider et al. 238 239 2013; Fowler-Gerace and Tait 2015). Most of these investigations suggested that rapid crystallization from a high-temperature (>~1000 °C) P-rich melt is the most viable 240 mechanism for the formation of P-rich olivine (see Boesenberg and Hewins 2010; 241 242 Fowler-Gerace and Tait 2015). The scenario is well supported by the igneous texture of the samples containing P-rich olivine or the internal texture of P-rich olivine, although 243 the host samples of P-rich olivine have different mineral assemblages and origins. 244 However, this scenario cannot interpret the origin of P-rich olivine in DaG 978, since the 245 P-rich olivine and its associated minerals do not exhibit an igneous texture. A new 246 mechanism is required to interpret the formation of this P-rich olivine. 247

Zhang and Yurimoto (2013) described that olivine in AOAs and normal chondrules from DaG 978 has much lower Mg# values than its associated pyroxene. This feature is also observed in this study for the olivine and pyroxene in PC-1. This chemical feature has been interpreted as a result of various Fe-Mg interdiffusion rates in olivine and pyroxene during a metamorphic event on the parent body (Zhang and Yurimoto 2013;

253	Zhang et al. 2014). Although the P-rich olivine in DaG 978 has Mg# values similar to
254	those in AOAs and chondrules, it is unlikely that the elevated P_2O_5 concentrations in
255	olivine are due to elemental diffusion during the metamorphic event. If the high P_2O_5
256	concentrations in lath-like olivine grains were due to thermal metamorphism, some, if not
257	all, of the olivine grains in AOAs and normal chondrules would be enriched in
258	phosphorus as well. However, this is not observed in this study. P-rich olivine shows a
259	sharp boundary with P-poor olivine (Fig. 4e). The absence of P-enrichment in olivine
260	from AOAs and normal chondrules is consistent with the low diffusion of P in olivine
261	(Milman-Barris et al. 2008; Watson et al. 2015; McCanta et al. 2016).
262	The lath-shaped texture and chemical feature indicates that the P-rich olivine could
263	have formed during fluid-assisted metamorphism on the DaG 978 parent body.

264 Fluid-assisted metamorphism is a kind of metamorphism in the presence of fluids (Krot et al. 2004; Brearley and Krot 2013). It involves both metamorphism and metasomatism, 265 and has been widely accepted as the formation mechanism of the secondary ferrous 266 267 olivine in many carbonaceous chondrites (e.g., Krot et al. 2004; Brearley and Krot 2013; 268 Zhang and Yurimoto 2013). Fluid-assisted metamorphism has been proposed to interpret other secondary mineralogical and oxygen isotopic features in DaG 978 (Zhang and 269 Yurimoto 2013; Zhang et al. 2014), which supports our interpretation about the formation 270 271 of P-rich olivine.

272

Based on petrographic observations and the isotopic compositions of ferrous olivine,

Krot et al. (2004) proposed three different formation mechanism of secondary ferrous 273 274 olivine during fluid-assisted metamorphism: (i) replacement of FeNi-metal \pm sulfide nodules, (ii) replacement of magnesian olivine and low-Ca pyroxene, and (iii) direct 275 precipitation from an aqueous solution. Here, we will discuss the formation mechanism 276 277 of P-rich olivine based on our observations on the chondrule PC-1. The presence of FeNi 278 metal and troilite as intact grains in PC-1 indicates that the formation of P-rich olivine is not due to replacement of FeNi-metal \pm sulfide nodules. Instead, it could have formed 279 through replacing olivine and/or enstatite, since petrographic observations demonstrate 280 281 that P-rich olivine encloses round-shaped olivine and irregular enstatite grains. Given that low-Ca pyroxene contains higher Cr and Al concentrations than the primary olivine in 282 DaG 978 (Zhang and Yurimoto 2013; this study), the presence of tiny Cr-rich hercynite 283 284 inclusions indicates that P-rich olivine probably has formed through replacing enstatite rather than primary olivine (c.f., Brearley and Krot 2013). The Cr and Al in Cr-rich 285 286 hercynite might be derived from the precursor low-Ca pyroxene. With low mobility of Cr 287 in aqueous solution (Roeder and Reynolds 1991; Klein-BenDavid et al. 2001), Cr-rich hercynite could have precipitated during the formation of P-rich olivine. We noticed that 288 the Cr/Al ratios ($\sim 1/2$ 1) of the fine-grained Cr-rich hercynite are generally comparable 289 290 with those of P-rich olivine $(1/2 \ 1)$, but higher than that of low-Ca pyroxene $(1/8 \ 1/3)$; Zhang and Yurimoto 2013; this study). This discrepancy could be due to the presence of 291 secondary plagioclase (Fig. 5) and/or due to the loss of Al into fluids, since the 292 293 replacement process should have taken place in an open system. In addition, the shape of

enstatite and olivine in the chondrule fragment shown in Fig. 3 also supports that enstatite 294 could be the precursor mineral, although it might not be definitive evidence. The 295 coexistence of Cr-rich hercynite with P-rich olivine and the replacement texture can also 296 exclude the possibility that P-rich olivine formed through direct precipitation from 297 298 aqueous solution. The first and key consideration is that direct precipitation of Cr-rich 299 hercynite and P-rich olivine cannot account for the replacement texture of low-Ca pyroxene. The second consideration is the low solubility and high immobility of Cr^{3+} in 300 aqueous solution (e.g., Roeder and Reynolds 1991; Klein-BenDavid et al. 2011), 301 although Watenphul et al. (2014) reported elevated Cr³⁺ solubility in aqueous fluids at 302 high pressures and temperatures. In summary, it is most likely that the Cr in hercynite is 303 derived from the precursor low-Ca pyroxene rather than the aqueous solution. The P-rich 304 olivine in DaG 978 could have formed by replacing precursor low-Ca pyroxene during 305 306 fluid-assisted metamorphism.

307 Formation conditions of P-rich olivine in DaG 978

Although P-rich olivine in DaG 978 should have formed through a mechanism differing from other natural P-rich olivine described in the literature, there are two aspects of similarities for their formations. First, the system from which P-rich olivine crystallized should have high P_2O_5 concentrations and low silica activity (Goodrich 1984; Agrell et al. 1998; Boesenberg and Hewins 2010; Schneider et al. 2013; Fowler-Gerace and Tait 2015). This chemical requirement that has been extensively emphasized in the

literature is also supported by the petrographic observations in DaG 978. In DaG 978, the TEM observations reveal that P-rich olivine shows a spatially close association with chlorapatite and merrillite, which indicates a high P_2O_5 concentration. Meanwhile, the replacement of low-Ca pyroxene by olivine is consistent with a low silica activity.

Second, the texture of other natural P-rich olivine demonstrates a rapid 318 crystallization from high-temperature melts (Goodrich 1984; Tropper et al. 2004; 319 Schneider et al. 2013; Fowler-Gerace and Tait 2015). Previous investigations suggest that 320 321 P-rich olivine should be a metastable phase during a disequilibrium process. This is well consistent with the synthetic experimental results by Boesenberg and Hewins (2010), in 322 which the P₂O₅ contents in olivine decrease with duration. For the P-rich olivine in DaG 323 978, it should also be a product of disequilibrium process, although its crystallization 324 kinetics remains unknown. The main evidence for such a disequilibrium process is the 325 heterogeneous distribution of P among secondary olivine grains and even within single 326 327 grains (Figs. 4 and 8).

Differing from other natural P-rich olivine that could have formed under high temperature (>1000 °C; Boesenberg and Hewins 2010; Fowler-Gerace and Tait 2015), however, the P-rich olivine in DaG 978 should have formed under a relatively lower temperature. The absence of phyllosilicate minerals and the petrologic type of DaG 978 indicate that the formation temperature of P-rich olivine might be as low as 400–650 °C or even lower (Jones and Rubie 1993; Zhang and Yurimoto 2013). It is difficult to

interpret the stability of P-rich olivine with the phase diagram between forsterite and 334 335 farringtonite $[Mg_3(PO_4)_2]$, because forsterite and farringtonite cannot form a solid solution at an equilibrium temperature below 1320 °C (Boesenberg and Hewins 2010). 336 For the case of the P-rich olivine in DaG 978, we suspect that its formation might be 337 338 related to two reasons. One is the disequilibrium formation process as discussed above. 339 The other could be the high FeO contents of the P-rich olivine (\sim Fa₃₀) in DaG 978. Compared with Fe-poor olivine, Fe-rich olivine usually forms at a lower temperature. 340 Although whether and how Fe^{2+} affects the solubility of P in olivine remains unknown, 341 most P-rich olivine grains in natural samples and experimental products contain high FeO 342 contents (Boesenberg and Hewins 2010). 343

The P-rich fluid has been proposed in our previous investigations on the DaG 978 344 chondrite (Zhang and Yurimoto 2013; Zhang et al. 2016), which contains much more 345 abundant coarse-grained chlorapatite than other type 3 chondrites to our knowledge. 346 Based on the close association between apatite and merrillite and FeNi metal, it is very 347 likely that FeNi metal could be one of the most important sources of P (Zanda et al. 1994; 348 349 Zhang et al. 2016). In addition, mesostasis could be another source of P. Jones (1990) reported that the mesostasis in type II chondrules could contain up to 3.5 wt% P_2O_5 . As 350 for the chondrule PC-1 and the adjacent P-rich olivine fragment PF-1, it is difficult to 351 constrain the source of P. However, based on small amount of FeNi metal in PC-1, an 352 external source of P might be more likely to interpret the presence of chlorapatite, 353

merrillite, and P-rich olivine. As for the local occurrence of P-rich olivine in DaG 978, 354 355 we suspect that it could be related to local chemistry (e.g., P and Ca) of fluids and the minerals that have been replaced or altered. If the fluid has high activities for both P and 356 Ca, Ca-phosphate minerals would be the dominant P-rich phases and suppress the 357 formation of P-rich olivine. However, if the fluid has a high P activity but a low activity 358 359 of Ca, some P might incorporate into the olivine structure while Ca-phosphate minerals are also precipitates from the fluid. Laboratory experiments are needed to confirm this 360 361 scenario.

362

IMPLICATIONS

Phosphorus-rich olivine was considered as an anomalous phase compared with the 363 normal olivine in igneous samples of terrestrial and extraterrestrial origins. It was 364 suggested that P-rich olivine formed through rapid crystallization from high-temperature 365 366 P-rich melts. Although this scenario was not explicitly claimed as the only mechanism forming P-rich olivine, it was considered as the most viable mechanism (Boesenberg and 367 Hewins 2010; Fowler-Gerace and Tait 2015). Our study described a new occurrence of 368 369 natural P-rich olivine and demonstrates a new formation mechanism involving replacement of low-Ca pyroxene by P-rich fluids during fluid-assisted metamorphism. 370 371 The most distinctive difference between our interpretation and that in the literature is the 372 formation temperature. Such a comparison implies that high temperature is not a key factor affecting the solubility of P in olivine. Instead, high P concentration and 373

disequilibrium formation process could be the two predominant factors for the formationof P-rich olivine.

376 We noticed that not all of the P-rich olivine grains reported in the literature have a texture explicitly indicating a rapid crystallization from high-temperature melts (Agrell et 377 378 al. 1998; Wang et al. 2007). Therefore, rapid crystallization from high-temperature melts might not be the only interpretation for these two occurrences of P-rich olivine. Instead, 379 380 fluid-assisted metamorphism might be an alternative interpretation. First, for the case of P-rich olivine from Pine Canyon, Piute Co., Utah (Agrell et al. 1998), the sample did not 381 exhibit a dendritic texture as other terrestrial occurrences of P-rich olivine. On the other 382 hand, the authors stated that the samples resemble the olivine-rich group of the highly 383 desilicated 'skarns' (Agrell et al. 1998). This seems to be similar to the replacement of 384 low-Ca pyroxene by olivine in DaG 978, which can also considered as a means of 385 desilication. Second, for the case of P-rich olivine in the Ningqiang carbonaceous 386 chondrite, it is closely associated with opaque assemblages (Fig. 2b of Wang et al. 2007). 387 The opaque assemblages in the Ningqiang chondrite contain magnetite, phosphate 388 389 minerals, pyrrhotite, and relict primary minerals (Hsu et al. 2006). Hsu et al. (2006) suggested that the magnetite and phosphate minerals in opaque assemblages from the 390 Ningqiang chondrite should have formed by aqueous alteration, based on their oxygen 391 392 isotopic compositions. Considering the spatially close association between P-rich olivine and magnetite and phosphate minerals, it is very likely that the P-rich olivine also formed 393

by metasomatism of preexisting metal alloys during fluid-assisted metamorphism. If these interpretations are correct, formation of P-rich olivine through fluid-assisted metamorphism would also be common. However, we cannot completely rule out the possibility that the P-rich olivine in these two occurrences has a high-temperature crystallization origin.

399

ACKNOWLEDGEMENTS

This study is financially supported by Natural Science Foundation of China (Grant no. 41373065) and the Fundamental Research Funds for the Central Universities. We thank Run-Lian Pang for helpful discussions. We appreciate the comments from Dr. Kimberly Tait and Dr. John Beckett and the editorial effort from Associate Editor Prof. E. Watson.

405

REFERENCES CITED

- Agrell, S.O., Charnley, N.R., and Chinner, G.A. (1998) Phosphoran olivine from Pine
 Canyon, Piute Co., Utah. Mineralogical Magazine, 62, 265–269.
- 408 Anderson, A.T., and Greenland, L.P. (1969) Phosphorus fractionation diagram as a
- 409 quantitative indicator of crystallization differentiation of basaltic liquids.
- 410 Geochimica et Cosmochimica Acta, 33, 493–505.
- 411 Boesenberg, J.S., and Hewins, R.H. (2010) An experimental investigation into the
- 412 metastable formation of phosphoran olivine and pyroxene. Geochimica et

- 413 Cosmochimica Acta, 74, 1923–1941.
- Brearley, A.J. and Krot, A.N. (2013) Metasomatism in the early solar system: the record
- from chondritic meteorites. In Metasomatism and the chemical transformation of
- 416 rock, Lecture notes in Earth System Sciences, edited by Harlov D. E. and Austrheim
- 417 H. Berlin: Springer-Verlag. pp. 659–789.
- Brunet, F., and Chazot, G. (2001) Partitioning of phosphorus between olivine,
 clinopyroxene and silicate glass in a spinel lherzolite xenolith from Yemen.
 Chemical Geology, 176, 51–72.
- 421 Buseck, P.R. (1977) Pallasite meteorites-Mineralogy, petrology and geochemistry.

422 Geochimica et Cosmochimica Acta, 41, 711–740.

- Buseck, P.R., and Clark, J. (1984) Zaisho—A pallasite containing pyroxene and
 phosphoran olivine. Mineralogical Magazine, 48, 229–235.
- 425 Choe, W.H., Huber, H., Rubin, A.E., Kallemeyn, G.W., and Wasson, J.T. (2010)
- 426 Compositions and taxonomy of 15 unusual carbonaceous chondrites. Meteoritics &
 427 Planetary Science, 45, 531–554.
- 428 Fowler-Gerace, N.A., and Tait, K.T. (2015) Phosphoran olivine overgrowth: Implications
- for multiple impacts to the Main Group pallasite parent body. American
 Mineralogist, 100, 2043–2052.
- 431 Goodrich, C.A. (1984) Phosphoran pyroxene and olivine in silicate inclusions in natural
- 432 iron-carbon alloy, Disko Island, Greenland. Geochimica et Cosmochimica Acta, 48, 22

433 2769–2771.

434	Grossman, J.N., and Brearley, A.J. (2005) The onset of metamorphism in ordinary and
435	carbonaceous chondrites. Meteoritics & Planetary Science, 40, 87-122.
436	Hsu, W., Guan, Y., Hua, X., Wang, Y., Leshin, L.A., and Sharp, T.G. (2006) Aqueous
437	alteration of opaque assemblages in the Ningqiang carbonaceous chondrite:
438	Evidence from oxygen isotopes. Earth and Planetary Science Letters, 243, 107–144.
439	Jones, R.H. (1990) Petrology and mineralogy of type II, FeO-rich chondrules in
440	Semarkona (LL3.0): Origin by closed-system fractional crystallization, with
441	evidence for supercooling. Geochimica et Cosmochimica Acta, 54, 1785–1802.
442	Jones, R.H., and Rubie, D.C. (1993) Thermal histories of CO3 chondrites: application of
443	olivine diffusion modelling to parent body metamorphism. Earth and Planetary
444	Science Letters, 106, 73–86.
445	Klein-BenDavid, O., Pettke, T., and Kessel, R. (2011) Chromium mobility in hydrous
446	fluids at upper mantle conditions. Lithos, 125, 122–130.
447	Krot, A.N., Petaev, M.I., and Bland, P.A. (2004) Multiple formation mechanisms of
448	ferrous olivine in CV3 carbonaceous chondrites during fluid-assisted metamorphism.
449	Antarctic Meteorite Research, 17, 154–172.
450	McCanta, M.C., Beckett, J.R., and Stolper, E.M. (2016) Correlations and zoning patterns
451	of phosphorus and chromium in olivine from H chondrites and the LL chondrite
452	Semarkona. Meteoritics & Planetary Science, 51, 520–546.

- 453 Milman-Barris, M.S., Beckett, J.R., Baker, M.B., Hofmann, A.E., Morgan, Z., Crowley,
- 454 M.R., Vielzeuf, D., and Stolper, E. (2008) Zoning of phosphorus in igneous olivine.
- 455 Contributions to Mineralogy and Petrology, 155:739–765.
- 456 Roeder. P.L., and Reynolds, I. (1991) Crystallization of chromite and chromium
 457 solubility in basaltic melts. Journal of Petrology, 32, 909–934.
- 458 Russell, S.S., Zipfel, J., Folco, L., Jones, R., Grady, M.M., McCoy, T., and Grossman, J.
- N. (2003) The Meteoritical Bulletin, No. 87. Meteoritics & Planetary Science, 38,
 A189–A248.
- 461 Schneider, P., Tropper, P., and Kaindl, R. (2013) The formation of phosphoran olivine
- 462 and stanfieldite from the pyrometamorphic breakdown of apatite in slags from a 463 prehistoric ritual immolation site (Goldbichl, Igls, Tyrol, Austria). Mineralogy and
- 464 Petrology, 107, 327–340.
- 465 Sonzogni, Y., Devouard, B., Provost, A., and Devidal, J.-L. (2009) Olivine-hosted melt
- 466 inclusions in the Brahin pallasite. In Meteoritics and Planetary Science Supplement,

467 p. 5070, 72nd Annual Meeting of the Meteoritical Society, Nancy, France.

- Tropper, P., Recheis, A., and Konzett, J. (2004) Pyrometamorphic formation of
 phosphorus-rich olivines in partially molten metapelitic gneisses from a prehistoric
 sacrificial burning site (Ötz Valley, Tyrol, Austria). European Journal of Mineralogy,
- 471 16, 631–640.
- 472 Wang, Y., Hua, X., and Hsu, W. (2007) Petrogenesis of opaque assemblages in the 24

473	Ningqiang carbonaceous chondrite. Science in China Series D: Earth Sciences, 50,
474	886–896.
475	Wasson, J.T., Lange, D.E., and Francis, C.A. (1999) Massive chromite in the Brenham
476	pallasite and the fractionation of Cr during the crystallization of asteroidal cores.
477	Geochimica et Cosmochimica Acta, 63, 1219–1232.
478	Watenphul, A., Schmidt, C., and Jahn, S. (2014) Cr(III) solubility in aqueous fluids at
479	high pressures and temperatures. Geochimica et Cosmochimica Acta, 126, 212-227.
480	Watson, E.B., Cherniak, D.J., and Holycross, M.E. (2015) Diffusion of phosphorus in
481	olivine and molten basalt. American Mineralogist, 100, 2053–2065.
482	Zanda, B., Bourot-Denise, M., Perron, C., and Hewins, R.H. (1994) Origin and
483	metamorphic redistribution of silicon, chromium, and phosphorus in the metal of
484	chondrites. Science, 265, 1846–1849.
485	Zhang, A.C., and Yurimoto, H. (2013) Petrography and mineralogy of the ungrouped type
486	3 carbonaceous chondrite Dar al Gani 978. Meteoritics & Planetary Science, 48,
487	1651–1677.
488	Zhang, A.C., Itoh, S., Sakamoto, N., Wang, R.C., and Yurimoto, H. (2014) Origins of
489	Al-rich chondrules: Clues from a compound Al-rich chondrule in the Dar al Gani
490	978 carbonaceous chondrite. Geochimica et Cosmochimica Acta, 130, 78–92.
491	Zhang, A.C., Li, Q.L., Yurimoto, H., Sakamoto, N., Li, X.H., Hu, S., Lin, Y.T., and Wang,

492	R.C. (2016) Young asteroidal fluid activity revealed by absolute age from apatite in									
493	carbonaceous	chondrite. Nature		Communications,	7,	12844	doi:			
494	10.1038/ncomn	ns12844.								

495

FIGURE CAPTIONS

Figure 1. Histogram of P₂O₅, Al₂O₃, and Cr₂O₃ contents (wt%) of olivine in AOAs, type
I chondrules, and lath-shaped grains.

498 Figure 2. Si (apfu) versus P (apfu) of lath-shaped olivine in DaG 978 and the data in the

literature (Buseck 1977; Goodrich 1984; Buseck and Clark 1984; Agrell 1998; Tropper

2004; Wang et al. 2007; Schneider et al. 2013; Fowler-Gerace and Tait 2015). apfu: atoms

per formula unit (on the basis of 4 oxygen atoms). The low Si values for P-poor olivine in

502 DaG 978 are due to the presence of Al and Cr.

Figure 3. (a) Backscattered electron (BSE) image of a ferromagnesian chondrule fragment in DaG 978. (b-d) magnified images of the chondrule fragment. The chondrule fragment mainly consists of P-poor olivine which exhibits a round shape, low-Ca pyroxene, and Na-rich plagioclase. Minor minerals in this chondrule fragment are FeNi metal, troilite, Cr-hercynite, chlorapatite, and merrillite. The P-rich olivine mainly occurs at the margin of this chondrule fragment, replacing low-Ca pyroxene and containing tiny bright inclusions. The location of FIB-TEM foil is signed in the (c).

Figure 4. (a) BSE image of a zoned olivine fragment adjacent to the chondrule fragment

shown in Fig. 3a. (b-h) X-ray mapping results of Si, Mg, Fe, P, Ca, Cr, Al. Note that P

512 distributes continuously, but heterogeneously in the rim of the olivine fragment whereas

513 Cr and Al hot spots disperse in the P-rich rim.

Figure 5. HAADF image of the P-rich olivine. It is associated with a plagioclase grain.

Both the P-rich olivine and the plagioclase grains contain Cr-hercynite grains (the small
bright grains) as inclusions. The two square regions are mapped to show the elemental
distributions (Fig. 7 and Fig. 8).

Figure 6. TEM-EDS spectra of P-rich olivine (a), P-poor olivine (b), and Cr-rich

hercynite (c) in the FIB-TEM foil shown in Fig. 5.

520 Figure 7. (a) HAADF image of P-rich olivine and plagioclase. (b-i) STEM-EDS mapping

results of Si, Mg, Fe, Al, Cr, P, Ca, and Cl. The high intensities of Fe, Al, and Cr indicate

- 522 that the bright grains in (a) are Cr-rich hercynite. The distributions of P, Ca, and Cl
- 523 indicate that both apatite and merrillite are present in the analyzed region. Note that
- olivine contains higher P concentrations than plagioclase.
- **Figure 8**. (a) HAADF image of P-rich olivine and its Cr-rich hercynite inclusions. (b-i)
- 526 EDS mapping results of Si, Mg, Fe, Al, Cr, P, Ca, and Cl. The high intensities of Fe, Al,
- and Cr indicate that the bright grains in (a) are Cr-rich hercynite. The distributions of P,
- 528 Ca, and Cl indicate that apatite is present in the analyzed region. Note that P distributes
- 529 heterogeneous in the analyzed region (g).

	AOA		Chone	drules	Lath-shaped olivine						
P ₂ O ₅	0.01	bdl	bdl	bdl	5.53	2.71	1.97	1.60	1.54	0.13	0.05
P_2O_5*	bdl	bdl	bdl	bdl	5.27	2.56	1.82	0.88	0.79	0.09	0.03
SiO_2	37.3	37.8	37.5	36.8	31.9	33.8	34.7	35.2	35.2	37.2	36.8
TiO_2	0.02	0.03	0.07	0.09	0.04	0.08	0.07	0.14	0.09	0.03	0.02
Al_2O_3	0.02	0.02	0.05	0.04	1.10	0.82	0.58	0.93	1.10	0.71	0.50
Cr_2O_3	0.04	0.03	0.09	0.04	0.84	0.91	0.66	0.68	0.89	0.63	0.22
FeO	25.5	26.9	28.2	27.8	27.9	28.4	27.6	28.1	27.5	25.3	28.0
MnO	0.31	0.27	0.27	0.28	0.24	0.23	0.22	0.25	0.22	0.17	0.20
MgO	36.2	35.9	34.2	35.5	31.0	31.1	33.0	31.7	31.6	36.6	34.9
CaO	0.02	0.05	0.07	0.06	0.26	0.15	0.15	0.73	0.76	0.04	0.02
Na ₂ O	0.01	bdl	0.01	bdl	0.27	0.07	0.04	0.07	0.05	bdl	bdl
K_2O	bdl	0.01	0.01	0.01	0.01	0.01	bdl	bdl	bdl	bdl	bdl
Total	99.43	101.0	100.5	100.6	99.09	98.28	98.99	99.40	98.95	100.8	100.7
			C	alculated	d based on 4	4 oxyger	n atoms				
Р	0.000	bdl	bdl	bdl	0.126	0.062	0.045	0.036	0.035	0.003	0.001
Si	0.990	0.993	0.998	0.978	0.856	0.922	0.935	0.948	0.951	0.973	0.976
Ti	0.000	0.001	0.001	0.002	0.001	0.002	0.001	0.003	0.002	0.001	0.000
Al	0.001	0.001	0.001	0.001	0.035	0.026	0.019	0.029	0.035	0.022	0.016
Cr	0.001	0.001	0.002	0.001	0.018	0.020	0.014	0.014	0.019	0.013	0.005
Fe	0.565	0.588	0.625	0.614	0.625	0.645	0.620	0.631	0.618	0.551	0.619
Mn	0.007	0.006	0.006	0.006	0.005	0.005	0.005	0.006	0.005	0.004	0.004
Mg	1.443	1.416	1.364	1.415	1.250	1.272	1.335	1.282	1.280	1.437	1.390
Ca	0.001	0.001	0.002	0.002	0.007	0.004	0.004	0.021	0.022	0.001	0.001
Na	0.001	bdl	0.000	bdl	0.014	0.004	0.002	0.004	0.003	bdl	bdl
Κ	bdl	0.000	0.000	0.000	0.000	0.000	bdl	bdl	bdl	bdl	bd
Sum	3.009	3.006	3.000	3.019	2.936	2.962	2.981	2.974	2.970	3.004	3.012
Mg#	72	71	69	70	67	66	68	67	67	72	69

Table 1. Representative EPMA compositions of olivine in DaG 978

Bdl: below detection limit; $Mg\# = Mg/(Mg+Fe) \times 100$ in mole.

532 $P_2O_5*=P_2O_5$ CaO×47.32/48.08, based on the assumption that merrillite contributes all 533 the CaO contents.

Figure 1

0 圖 谱图 11 Mg (a) P-rich olivine 20. Si cps/eV Fe 10 Fe 2 keV 0 4 6 8 0 Mg 40 ||| 谱图 18 P-poor olivine (b) 30 Va/sd2 Fe Fe 10 Fe 4 6 8 keV 0 || 道图 6 AI **Cr-rich hercynite** (c) 20 cps/eV Fe 10 Fe M Fe 0-1 keV 2 6 8 Figure 6

