1	Revision 2
2	A comparison of olivine-melt thermometers based on D_{Mg} and $D_{Ni}\text{:}$ the
3	effects of melt composition, temperature and pressure with applications
4	to MORBs and hydrous arc basalts
5	
6	Xiaofei Pu, Rebecca A. Lange, Gordon Moore
7	Department of Earth and Environmental Sciences
8	University of Michigan
9	Ann Arbor, MI 48109-1005
10	Corresponding author email: pux@umich.edu
11	
12	ABSTRACT
13	A new olivine-melt thermometer based on the partitioning of Ni ($D_{Ni}^{oliv/liq}$), with a
14	form similar to the Beattie (1993) $D_{Mg}^{oliv/liq}$ thermometer, is presented in this study. It is
15	calibrated on a dataset of 123 olivine-melt equilibrium experiments from 16 studies in the
16	literature that pass the following five filters: (1) 1-bar only, (2) analyzed totals between
17	99.0-101.0 wt% for olivine and 98.5-101.0 wt% for quenched glasses, (3) olivine is the
18	only silicate phase in equilibrium with the melt, (4) the NiO concentration is ≥ 0.1 wt% in
19	olivine and ≥ 0.01 wt% in quenched glass, and (5) no metallic phase is present other than
20	the capsule. The final dataset spans a wide range of temperature (1170-1650 °C), liquid
21	composition (37-66 wt% SiO ₂ ; 4-40 wt% MgO; 107-11087 ppm Ni), and olivine
22	composition (Fo ₃₆₋₁₀₀ ; 0.10-15.7 wt% NiO). The Ni-thermometer recovers the 123
23	experimental temperatures within \pm 29 °C (1 σ), with an average residual of 0 °C. A re-

24 fitted version of the Mg-thermometer of Beattie (1993), calibrated on the same 123 25 experiments as for the Ni-thermometer, results in an average residual of 1 ± 26 °C (1 σ). 26 When both thermometers are applied to the same 123 experiments, the average ΔT (T_{Mg}-27 T_{Ni}) is $1 \pm 29^{\circ}C$ (1 σ), which confirms that the Mg- and Ni-thermometers perform equally 28 well over a wide range of anhydrous melt composition and temperature at 1 bar. The 29 pressure dependence of the Ni-thermometer under crustal conditions (≤ 1 GPa) is shown 30 to be negligible through comparison with experimental results from Matzen et al. (2013), 31 whereas the pressure dependence of the Mg-thermometer is up to $52^{\circ}C$ at ≤ 1 GPa 32 (Herzberg and O'Hara, 2002). Therefore, neglecting the effect of pressure when 33 applying both thermometers to basalts that crystallized olivine at crustal depths (≤ 1 GPa) 34 is expected to lead to negative $\Delta T (T_{Mg}-T_{Ni})$ values ($\leq -52 \text{ °C}$). Application of the two 35 thermometers to nine mid-ocean ridge basalts results in an average ΔT of -3 degrees, 36 consistent with shallow crystallization of olivine under nearly anhydrous conditions. In 37 contrast, application of the two thermometers to 18 subduction-zone basalts leads to an 38 average ΔT of +112 degrees; this large positive ΔT value cannot be explained by the 39 effect of pressure, temperature or anhydrous melt composition. It is well documented in the literature that $D_{Mg}^{oliv/liq}$ is affected by dissolved water in the melt and that Mg-40 41 thermometers overestimate the temperature of hydrous basalts if an H₂O correction is not 42 applied (e.g., Putirka et al., 2007). Therefore, the reason why hydrous arc basalts have higher ΔT (T_{Mg}-T_{Ni}) values than MORBs may be because D_{Ni}^{oliv/liq} is less sensitivite to 43 44 water in the melt, which is supported by new Ni-partitioning results on three olivine-melt 45 equilibrium experiments on a basaltic andesite with up to 5 wt% H₂O. More hydrous 46 experiments are needed to confirm that the Ni-thermometer can be applied to hydrous

47 melts without a correction for H_2O in the melt.

⁴⁸

49	INTRODUCTION
50	The importance of obtaining the magmatic temperatures of basalts has long been
51	recognized and pursued by Earth scientists. Numerous researchers have mapped global
52	variations in mantle temperature by applying olivine-melt thermometers based on Mg-
53	partitioning $(D_{Mg}^{oliv/liq})$ to basalts from mid-ocean spreading ridges (e.g. Falloon et al.,
54	2007; Genske et al., 2012) and the Iceland and Hawaiian plumes (e.g. Neave et al., 2015;
55	Xu et al., 2014). These efforts not only constrain conditions for mantle melting at
56	different tectonic settings, including depth of melting (e.g., Lee et al., 2009) and thermal
57	anomalies associated with mantle plumes (e.g., Herzberg et al., 2007; Falloon et al., 2007;
58	Putirka et al., 2007), but also have contributed substantially to our understanding of how
59	the Earth's mantle has cooled through time (e.g., Herzberg and Gazel, 2009).
60	The reliability of these results largely depends on the accuracy of applied olivine-
61	melt thermometers. There is general agreement (e.g., Herzberg et al., 2007; Falloon et al.,
62	2007; Putirka, 2008; Herzberg and Asimow, 2015) that the Beattie (1993) form of the
63	thermometer recovers experimental temperatures the best under anhydrous conditions
64	(e.g., standard error estimate of \pm 44°C; Putirka, 2008) and produces temperatures similar
65	to the model of Ford et al. (1983) and those obtained by the MELTS program (Ghiorso
66	and Sack, 1995; Asimow et al., 2001) for anhydrous natural samples. When applied to
67	hydrous liquids, however, all thermometers based on $D_{Mg}^{oliv/liq}$ (e.g., Ford et al., 1983;
68	Beattie, 1993), require a major correction for the dissolved H_2O content when applied to
69	hydrous liquids, possibly because hydroxyl groups complex with Mg ²⁺ to lower its

activity in hydrous melts (e.g., Waters and Lange, 2013). Putirka et al. (2007) provides a
modified thermometer (Eq. 4 in that study) that includes an H₂O term, which reproduces
experimental temperatures with a high overall precision (standard error estimate of 29°C;
Putirka, 2008). Thus, the application of any currently available olivine-melt thermometer
based on Mg-partitioning to hydrous basalts requires that melt H₂O concentration be
known a priori.

76 In this study, the potential of a new olivine-melt thermometer based on the partitioning of Ni ($D_{Ni}^{oliv/liq}$) is evaluated in comparison to the best available $D_{Mg}^{oliv/liq}$ 77 78 thermometer as a function of anhydrous melt composition, temperature and pressure 79 through a common set of phase-equilibrium experiments from the literature. Both the $D_{Ni}^{oliv/liq}$ and $D_{Mg}^{oliv/liq}$ thermometers are applied to a set of nine mid-ocean ridge basalts 80 81 (MORBs) and 18 subduction-zone basalts to test whether there is any difference in the 82 results for samples that are relatively anhydrous (i.e., MORBs) vs. hydrous (i.e., arc 83 basalts). In light of the large systematic difference in the Ni- and Mg-thermometers for 84 arc basalts, but not for MORBs, new Ni-partitioning results for olivine-melt equilibrium 85 experiments on a hydrous basaltic andesite are presented to test the relative sensitivity of $D_{Ni}^{oliv/liq}$ and $D_{Mg}^{oliv/liq}$ to up to 5 wt% H₂O in the melt phase. 86

- 87
- 88 ANALYTICAL METHODS

93	counting times were 30s each for Si, Mg, Fe and Ni, and 20 s each for Al, Mn, Cr and Ca.
94	The 1 σ precision based on counting statistics is \pm 0.32 wt% SiO_2, \pm 0.25 wt% MgO, \pm
95	0.54 wt% FeO, and \pm 0.05 wt% NiO, and $<$ 0.1 wt% for Cr ₂ O ₃ , Al ₂ O ₃ , MnO and CaO.
96	The standards used for all analyses are from the University of Michigan collection for the
97	electron microprobe and are described in Appendix A. Oxygen was calculated by cation
98	stoichiometry and used in the Cameca PAP correction program. Traverses across 20-30
99	olivine crystals were conducted in all natural samples. Traverses along the darker (Mg-
100	rich) region on the back-scattered electron (BSE) image of each crystal were made, with
101	an analysis every 20-30 μ m, leading to approximately 200-500 effective olivine analyses
102	for each sample. Plagioclase crystals in two natural samples (UR-60, UR-61) were also
103	analyzed using the Cameca SX-100, but in this case seven elements were analyzed (Si,
104	Al, Fe, Ca, Na, K, Ba) using an accelerating voltage of 15 kV and a focused beam current
105	of 4 nA. The peak and background counting times were 30s each for all elements. The
106	1σ precision based on counting statistics is $<2\%$ for SiO_2 and Al_2O_3, $<4\%$ for CaO, and
107	< 5% for Na ₂ O. Traverse analyses across plagioclase phenocrysts were performed in the
108	same way as for olivine phenocrysts.
109	The Ni concentrations (ppm) in the quenched glass of experimental run products
110	were analyzed by laser ablation using a Photon Machines Analyte G2 193 nm Ar-F
111	excimer laser coupled with a Thermo Scientific X series 2 Quadrapole inductively
112	coupled plasma mass spectrometer (ICP-MS) at Oregon State University. The beam size
113	was 50 μ m and the counting time was 30s. GSE-1G was used as the reference standard
114	while monitoring standards BCR-2G and TI-G. The Ni content of the glass was
115	calculated relative to the reference standard GSE-1G, which was measured under

116	identical conditions throughout the same analytical session. To reduce the matrix effect,
117	⁴³ Ca was used as an internal standard, in conjunction with the CaO contents in the
118	experimental glasses, which were measured independently with an electron microprobe
119	and reported in Moore and Carmichael (1998). The 1σ uncertainty is 8%, which includes
120	the error from the reference standard GSE-1G. The procedures and protocols that were
121	followed are described more fully in Kent et al. (2004).
122	
123	OLIVINE-MELT THERMOMETRY
124	An olivine-melt thermometer based on Ni partitioning at 1 bar
125	Nickel partitioning between olivine and basaltic melts has been extensively
126	studied as a function of anhydrous melt composition, temperature, and pressure by a large
127	number of researchers. Here, attention is first focused on the effect of anhydrous melt
128	composition and temperature on the partition coefficient for Ni between olivine and melt
129	$(D_{Ni}^{oliv/liq})$ at 1 bar; the effect of pressure is evaluated separately in another section below.
130	On the basis of nine experimental studies published over the last four decades (Arndt,
131	1977; Hart and Davis, 1978; Leeman and Lundstrom, 1978; Agee and Walker, 1990;
132	Kelemen et al., 1998; Wang and Gaetani, 2008; Li and Ripley, 2010; Putirka et al., 2011;
133	Matzen et al., 2013) thirteen different models were proposed to describe $D_{Ni}^{oliv/liq}$ as a
134	function of temperature and melt composition (Table 1).
135	To test the relative effectiveness of these different model equations at 1-bar, an
136	initial dataset of 328 1-bar experiments were compiled, which includes those that were
137	used to calibrate the Matzen et al. (2013) and Li and Ripley (2010) models, as well those
138	in the Library of Experimental Phase Relations (LEPR) (Hirschmann et al., 2008). Four

139	filters were then applied: (1) analyzed totals of olivine between 99.0-101.0 wt% and of
140	glass between 98.5-101.0 wt%; (2) olivine is the only silicate phase in equilibrium with
141	the melt; (3) the NiO concentration is ≥ 0.1 wt% in olivine and ≥ 0.1 wt% in quenched
142	glass (given the detection limits of the electron microprobe used to analyze the Ni
143	contents in both phases); (4) no metallic phase is present other than the capsule. The
144	purpose of these four filters is to exclude experiments where analytical uncertainties may
145	have been too high and/or where equilibrium may not have been attained among several
146	phases in crystal-rich experiments. Although some experiments that had small analytical
147	uncertainties and/or achieved equilibrium may have been excluded, the uniform
148	application of all four filters allowed a high-quality dataset to be compiled in an unbiased
149	manner. The final dataset includes 123 olivine-melt experiments at 1 bar from 16 studies
150	(Bird, 1971; Arndt, 1977; Takahashi, 1978; Nabelek, 1980; Kinzler et al., 1990; Ehlers et
151	al., 1992; Snyder and Carmichael, 1992; Jurewicz et al., 1993; Parman et al., 1997;
152	Gaetani and Grove, 1997; Tuff et al., 2005; Mysen, 2006; Mysen, 2007a; Mysen, 2007b;
153	Mysen, 2008; Wang and Gaetani, 2008; Matzen et al., 2013). The final dataset (compiled
154	in Appendix B) spans a wide range of liquid composition (37-66 wt% SiO ₂ ; 4-40 wt%
155	MgO; 107-11087 ppm Ni), olivine composition (Fo ₃₆₋₁₀₀ ; 0.13-15.7 wt% NiO), and
156	temperature (1170-1650 °C).
157	The thirteen $D_{Ni}^{oliv/liq}$ models in Table 1 were used to calculate temperature for the
158	123 experiments in Appendix B. Plots of the temperature residuals for each model are
159	shown in Appendix C (supplementary material). Among the thirteen models, the one

160 presented in Li and Ripley (2010) yields the best result with an average residual of -9 \pm

161 30°C (1 σ), while the others have 1 σ residuals that range from ± 54 to ±119°C (Table 1;

162 Appendix C). Although the most recently published model of Matzen et al. (2013) has an 163 average residual of only 19 °C, the 1 σ standard deviation is ± 98°C (Table 1; Appendix 164 C). Note that the Ni-partitioning experiments conducted by Matzen et al. (2013) are of 165 the highest quality, and both the Li and Ripley model (2010) and the Matzen et al. (2013) 166 models recovers the two 1-bar experiments from Matzen et al. (2013) within 22 and 35 167 °C, respectively.

168 The next step is to recalibrate all of the $D_{Ni}^{oliv/liq}$ thermometers in Table 1, using 169 the dataset of 123 olivine-melt experiments in Appendix B. The 13 models in Table 1 170 can be reduced to eight different forms of model equations, and the results of those re-171 calibrations are shown in Table 2 and Appendix D (plots of the temperature residuals for 172 each model). The effect of recalibrating the model equations in Table 2 with 10000/T as 173 the dependent variable (instead of $\ln D_{Ni}^{oliv/liq}$) leads to temperature-dependent residuals 174 (Appendices E and F) and is therefore not recommended.

175 The best model in Table 2 is obtained from the equation used by Li and Ripley 176 (2010), which is based on the simplified thermodynamic formulation of Beattie et al. 177 (1991) where the effect of melt composition (and polymerization) is modeled through the term, $X_{Div}^{melt} / X_{SiO_2}^{melt}$, where X_{Div}^{melt} is equal to $X_{MgO}^{melt} + X_{FeO}^{melt} + X_{CaO}^{melt} + X_{CaO}^{melt} + X_{NiO}^{melt} + X_{NiO}^{melt}$ and 178 $X_{SiO_2}^{melt}$ is the mole fraction of SiO₂ in the melt. To first order, this compositional term 179 180 tracks the degree of melt polymerization, which has been shown to increase the value of D_{Ni}^{oliv/liq} (e.g., Hart and Davis, 1978; Wang and Gaetani, 2008). Interestingly, this 181 182 simplified compositional parameter leads to a better model equation than one that is 183 based on the parameter NBO/T (non-bridging oxygens over tetrahedral units), which was 184 introduced by Mysen et al. (1985) to model the degree of melt polymerization. The

185 NBO/T parameter is included in Model D (Table 2), the form used by Wang and Gaetani 186 (2008), and results in a higher 1σ standard deviation (± 60 °C) than that (± 31 °C) for the 187 Li and Ripley (2010) form (Model A in Table 2) when calibrated on the 123 1-bar 188 experiments.

189 A final model equation for the Ni-thermometer is based on the general form of the Beattie (1993) Mg-thermometer. In this empirical version (Eq. 1), D_{Ni}^{oliv/liq} is substituted 190 for $D_{Mg}^{oliv/liq}$ (both constructed on a molar basis) and the coefficients in front of the 191 192 molar compositional terms are fitted parameters. In this equation, the effect of melt 193 polymerization is incorporated with the combined terms X_{NM} and X_{SiO2} , which are 194 defined below. Although the original Beattie (1993) model equation uses cation fractions 195 instead of mole fractions, the results of a calibration on the 123 experiments in Appendix 196 B have lower residuals if mole fractions are used. The generalized form of the equation 197 is given here:

198
$$\ln D_i^{ol/melt} = a + \frac{b}{T} + c \ln(X_{NM}^{liq}) + d \ln(X_{SiO_2}^{liq}) + e(NF)$$
(1)

199 where T is in Kelvin, $X_{NM}^{liq} = X_{FeO}^{liq} + X_{MgO}^{liq} + X_{CaO}^{liq} + X_{CoO}^{liq} + X_{NiO}^{liq}$ (mole fraction

200 components), $X_{SiO_2}^{liq}$ is the mole fraction of SiO₂ in the melt, and NF =

3.5 $\ln(1-X_{Al_2O_3})$ + 7 $\ln(1-X_{TiO_2})$. The results of the calibration of Equation 1 (for i=Ni) on the 123 experiments in Appendix B are given in Table 3, with residuals plotted in Figure 1a. This model provides the best overall fit to the data, with an average residual of 0 ± 29°C and a R² of 0.96, and it is the Ni-thermometer recommended in this study (Table 3).

206 An updated olivine-melt thermometer based on Mg partitioning at 1 bar

207	Since the publication of the landmark study by Roeder and Emslie (1970),
208	numerous geothermometers based on the partitioning of Mg between olivine and silicate
209	melt have been proposed. In a review of olivine-melt thermometers, Putirka (2008)
210	showed that the general form of the Beattie (1993) model (Eq.1) leads to the most
211	accurate results. When the Beattie (1993) and Putirka et al. (2007) Mg-thermometers are
212	applied to the 123 olivine-melt 1-bar experiments in Appendix B (used to calibrate the
213	Ni-thermometer in Eq. 1), the average residuals are 17 ± 30 (1 σ) and 0 ± 31 (1 σ),
214	respectively (Table 4; Appendix G). Here, we perform a re-calibration of the general
215	form of the Beattie (1993) Mg-thermometer on the 123 experiments in Appendix B, using
216	the empirical form shown in Equation 1. The results of the regression are given in Table
217	3, with residuals plotted in Figure 1b. This model provides an excellent fit to the 123
218	olivine-melt experiments, with an average residual of $1 \pm 26^{\circ}$ C and a R ² of 0.96, and it is
219	the Mg-thermometer recommended in this study.
220	

A comparison of the Ni- and Mg-thermometers at 1 bar

222 In order to directly compare the results of the Ni-thermometer (T_{Ni}) with those of 223 the Mg-thermometer (T_{Mg}) on the 123 experiments, a parameter $\Delta T = T_{Mg} - T_{Ni}$) was 224 constructed for this dataset. A plot of ΔT as a function of experimental temperature is 225 shown in Figure 1c; the average ΔT is $1 \pm 29^{\circ}C$ (1 σ). This result confirms that the Ni-226 thermometer and the Mg-thermometer (Table 3, Eq. 1) perform equally well over a wide 227 range of anhydrous melt composition (SiO₂ = 37-66 wt%; MgO = 4-40 wt%) and 228 temperature (1160-1650 °C) at 1 bar. Therefore, if the two thermometers are applied to a 229 series of basalts that crystallized at shallow depths and contained little dissolved H₂O

230	(e.g., MORBs), $\Delta T (= T_{Mg} - T_{Ni})$ is expected to be close to zero. A test of whether or not
231	this is the case is presented below in an application to mid-ocean ridge basalts, but first
232	the effect of pressure on both the Mg- and Ni-thermometers is evaluated.
233	
234	The effect of pressure on the Mg- and Ni-thermometers
235	Herzberg and O'Hara (2002) examined the effect of pressure on the Beattie
236	(1993) $D_{Mg}^{oliv/liq}$ thermometer and proposed the following pressure correction:
237	$T(P) = T_{1-bar} + 54P(GPa) - 2P(GPa)^2$ (2)
238	This pressure correction can be tested against the high-quality experimental results of
239	Matzen et al. (2013), where olivine-melt equilibrium experiments were performed on a
240	MORB sample between 1 bar and 3 GPa. Application of the updated Mg-thermometer
241	(Table 3, Eq. 1) to the Matzen et al. (2013) experiments allows the residuals ($T_{experimental}$ -
242	T_{Mg}) to be plotted as a function of pressure. In Figure 2, the solid curve shows the
243	Herzberg and O'Hara (2002) pressure correction (Eq. 2), which agrees well with the
244	Matzen experiments.
245	The exchange of Mg between olivine and liquid can be described by the following
246	reaction:
247	Mg_2SiO_4 (melt) = Mg_2SiO_4 (olivine), (3)
248	In Equation 3, the lower volume (olivine) side of the reaction is favored with higher
249	pressure. Therefore, increasing pressure (while holding all other parameters constant)
250	will result in higher $D_{Mg}^{oliv/liq}$ values, which leads to lower calculated temperatures (Eq.
251	1). Thus, the effect of not including a pressure correction to the Mg-thermometer will

252	lead to underestimates of temperature (by $\leq 52^{\circ}$ C for melts that crystallize olivine at ≤ 1
253	GPa, according to Eq. 2).

254	The Matzen et al. (2013) experiments can also be used to evaluate the pressure
255	dependence to $D_{Ni}^{oliv/liq}$. In this case, application of the Ni-thermometer (Table 3, Eq. 1)
256	leads to residuals (T_{expt} - T_{Ni}) that show a step-like distribution with pressure, with little
257	dependence between 1 bar and 1 GPa, and then a marked pressure dependence between 2
258	and 3 GPa. At 1 bar, the two Matzen et al. (2013) experiments have residuals of -2 and -
259	9 degrees. At 1 GPa, the five Matzen et al. (2013) experiments all give a similar result,
260	with an average residual of -2 \pm 6 °C. A linear fit to all seven residuals (dashed line in
261	Fig. 2) leads to an increase of only 4°C between 0 and 1 GPa.
262	A plausible explanation for the step-like behavior in Figure 2 is related to the
263	coordination of Ni ²⁺ in the melt as a function of pressure. X-ray Absorption Near-Edge
264	Structure (XANES) spectroscopy shows that Ni ²⁺ in silicate liquids is largely in 4- and 5-
265	fold coordination over a range of melt composition at 1 bar (Galoisy and Calas, 1993).
266	Moreover, Ni^{2+} is not abundant in 6-fold coordination at depths ≤ 1 GPa, but does
267	undergo a complete conversion to octahedral coordination by 4 GPa (Jones et al., 2011).
268	Therefore, we suggest two reactions to describe the effect of pressure on the $\mathrm{Ni}_2\mathrm{SiO}_4$
269	liquid component:
270	$^{[4-5]}Ni_2SiO_4 (melt) = {}^{[6]}Ni_2SiO_4 (melt)$ (4a)
271	^[6] Ni ₂ SiO ₄ (melt) = ^[6] Ni ₂ SiO ₄ (crystal) (4b)
272	At crustal pressures (<1 GPa), the predominant effect of increasing pressure is expressed

by the reaction in Equation 4a, where 4- and 5-fold coordinated Ni^{2+} in the melt is

274	gradually converted to 6-fold coordinated Ni ²⁺ , whereas once 6-fold Ni ²⁺ is abundant (≥ 2
275	GPa), the predominant effect of pressure is shown by the reaction in Equation 4b.
276	In contrast to the case for Ni ²⁺ , evidence from nuclear magnetic resonance (NMR)
277	spectroscopy show that CaO-MgO-Al ₂ O ₃ -SiO ₂ (CMAS) liquids (model basalts) at one
278	bar contain Mg^{2+} with an average coordination that is close to 6-fold, with minor amounts
279	that are 5-fold (George and Stebbins, 1998). This result is consistent with density
280	measurements on CaO-MgO-FeO-Al2O3-SiO2 liquids, including CaMgSi2O6 (diopside)
281	and CaFeSi ₂ O ₆ (hedenbergite) liquids, that result in partial molar volumes for CaO, MgO
282	and FeO at 1723 K that are within 0%, 5%, and 28%, respectively, of the crystalline
283	volumes of lime (^[6] CaO), periclase (^[6] MgO) and wustite (^{6]} FeO) at 298 K, consistent
284	with of an average coordination for Ca^{2+} , Mg^{2+} and Fe^{2+} in these melts of ~6, ~5.8, and
285	~4.7 (Guo et al., 2013; 2014). George and Stebbins (1998) point out that although Ni^{2+} ,
286	Fe^{2+} and Mg^{2+} share a similar ionic size and valence, the lower average coordination for
287	Ni^{2+} and Fe^{2+} in contrast to the higher average coordination for Mg^{2+} , may reflect a
288	difference in the bonding behavior between transition metal cations (e.g., Ni^{2+} , Fe^{2+}) and
289	alkaline earth cations (e.g., Mg^{2+}).
290	The most important conclusion to be drawn from the results in Figure 2,
291	irrespective of the cause, is that if the effect of pressure is neglected when the Mg-
292	thermometer and Ni-thermometer are both applied to a basalt that crystallized olivine at <
293	1 GPa, the expectation is that the Mg-thermometer will give a temperature that is too low,
294	whereas the Ni-thermometer will not (within 1σ uncertainty). Therefore, the value of ΔT
295	$(T_{Mg}-T_{Ni})$ is expected to be close to zero or negative, and the magnitude of ΔT will scale
296	with the depth of olivine crystallization (\leq -52°C for depths \leq 1 GPa).

297

298	APPLICATION TO MID-OCEAN RIDGE BASALTS
299	An opportunity to test the application of both the Mg- and Ni-thermometers
300	(Table 3, Eq. 1) on mid-ocean ridge basalt (MORB) samples is provided by the
301	petrological study of Allan et al. (1989) on a series of glassy MORB samples erupted
302	from the Lamont Seamount Chain, associated with the East Pacific Rise. Only those
303	samples from the margins of rapidly quenched pillow basalts, with a glassy groundmass
304	and sparse phenocrysts + microphenocrysts (0.4-5.4%) of olivine + plagioclase are
305	examined here (Table 5). Reported melt (glass) compositions are used to obtain
306	temperature from the Mg-thermometer (Eq.1 and Table 3), and the results range from
307	1189-1149°C.
308	The Ni contents of both the olivine phenocrysts and glass were also analyzed and
309	reported by Allan et al. (1989), enabling application of the Ni thermometer (Eq. 1 and
310	Table 3). The observed compositional range of the olivine phenocrysts within each
311	sample is narrow (~1-2% Fo) and the most Fo-rich and Ni-rich olivine composition
312	reported for each sample was used. Resulting temperatures range from 1214 to 1143°C.
313	The results of the two thermometers applied to the nine MORB samples from
314	Allan et al (1989) are summarized in Table 5, and the resulting values for $\Delta T $ (= T_{Mg} -
315	$T_{\rm Ni}$) are compared to those for the 123 1-bar experimental dataset in Figure 3. The values
316	of ΔT range from +45 to -45 °C with an average of -3 ± 33 °C. The 1 σ variance in the
317	calculated ΔT values for the MORB samples broadly matches that ($1\sigma = 29^{\circ}C$) for the
318	123 anhydrous experiments (Fig. 3).
319	

321	The Ni- and Mg-thermometers from this study (Table 3, Eq. 1) were also applied
322	to a series of subduction-zone lavas that may have crystallized olivine at greater crustal
323	depths than most MORBs and contained higher melt H ₂ O concentrations. For this
324	application, 18 olivine-bearing lavas from the Michoacán-Guanajuato volcanic field
325	(MGVF) in the Mexican arc were chosen. The whole-rock compositions and mineral
326	modes of 16 basalt and basaltic andesite samples from a 4400 km ² segment of the
327	MGVF, referred to as the Tancitaro-Nueva Italia region, were obtained from the study of
328	Ownby et al. (2011) and are presented in Table 6. Two additional samples from the
329	MGVF, one from Volcán Jorullo and one from Cerro La Pilita, from the study of Luhr
330	and Carmichael (1985), are also included in Table 6. Three of the 18 samples (Jor-44,
331	TAN-19 and APA-6) are from cinder cones (Volcán Jorullo, Cerro el Astillero and Cerro
332	el Hungaro, respectively) that also have been sampled by Johnson et al. (2008; 2009) in
333	their study of the volatile contents in olivine-hosted melt inclusions.
334	The 18 samples in Table 6 contain 2-10% olivine phenocrysts (defined to include
335	all crystals \geq 300 µm), and olivine is the most abundant phenocryst in all samples. Two
336	of the samples contain a notable abundance of plagioclase phenocrysts (TAN-19 and UR-
337	2) at 4 and 5%, respectively, and they have similar compositions to NI-27 and NI-21,
338	respectively, which are free of plagioclase phenocrysts (Table 6). By including these two
339	compositional pairs of phenocryst-rich (plagioclase-bearing) and phenocryst-poor
340	(plagioclase-free) samples, any systematic difference in the thermometry results can be
341	evaluated as a function of overall phenocryst abundance.
342	

343 Application of the D_{Mg} and D_{Ni} (olivine-melt) thermometer

344	In order to apply the $D_{Mg}^{oliv/liq}$ and $D_{Ni}^{oliv/liq}$ thermometers to a set of natural
345	samples for which no prior petrological information is available, the first task is to
346	analyze the olivine phenocrysts in each sample and evaluate whether the most Fo-rich
347	olivine in each sample could be the equilibrium composition to first crystallize from the
348	bulk liquid. A test of equilibrium is made using appropriate $Fe^{2+}-Mg}K_{D}$ (olivine-melt) values
349	from experiments in the literature. If confirmed, the most Fo-rich olivine can be used to
350	calculate temperature with the Mg-thermometer (Eq.1 and Table 3). Next, a fitted
351	relationship between Ni and Fo content in the olivines in each sample is obtained. This
352	allows an evaluation of the mean value of Ni (and its variation) in the most Fo-rich
353	olivine in each sample, which is used to calculate temperature, together with melt
354	composition, using the Ni-thermometer (Eq.1 and Table 3).
355	
356	Microprobe analyses of olivine. Electron microprobe traverses across 20-30
357	olivine crystals were conducted in each of the 18 samples in Table 6. Traverses along the
358	long axes of each crystal were made, with an analysis every 20-30 μ m, leading to

364

363

sample is listed in Table 6.

359

360

361

362

365 A test of olivine-melt equilibrium using $Fe^{2+}-Mg}K_D$ values. To evaluate whether 366 the most Mg-rich olivine in each sample represents the first olivine to crystallize from the

approximately 300-500 olivine analyses for each sample. These analyses are tabulated in

the supplementary material (Appendix H) and are summarized in a histogram of forsterite

(Fo) content for each sample (Appendix I); all samples show a continuous range of

olivine compositions, with no breaks. The most Fo-rich olivine composition for each

367	whole-rock melt composition, the ferric-ferrous ratio (and fO_2 condition) in the melt at
368	the onset of olivine crystallization is calculated to see if reasonable results are obtained.
369	An initial estimate for the $Fe^{2+}-MgK_D$ between olivine and melt is 0.34, which is the value
370	Matzen et al. (2011) reports on the basis of 446 anhydrous 1-bar experiments in the
371	literature, using the equation provided by Jayasuriya et al. (2004) to relate melt
372	composition, temperature and oxygen fugacity to a melt ferric-ferrous ratio. The resulting
373	Fe^{3+}/Fe^{T} ratios in the 18 samples in Table 6 range from 0.12 to 0.27 and correspond to
374	Δ NNO values from -1.5 to +0.8 (=logfO ₂ [sample] – logfO ₂ [Ni-NiO buffer] at the same
375	temperature from the Ni-thermometer). These Fe^{3+}/Fe^{T} values (average = 0.20) and
376	Δ NNO values (average = -0.1) are slightly higher relative to mid-ocean ridge basalts,
377	which is expected for subduction-zone magmas.
378	There is evidence, however, that the $Fe^{2+}-M_B}K_D$ between olivine and melt may be
379	affected by melt H ₂ O concentration, and a compilation of 108 hydrous experiments on
380	basalts, for which fO2 is buffered or monitored, from eight studies (Sisson and Grove,
381	1993a, 1993b; Wagner et al., 1995; Righter and Carmichael, 1996; Moore and
382	Carmichael, 1998; Almeev et al., 2007; Médard and Grove, 2008; Parman et al., 2011),
383	leads to an average $K_D = 0.37 \pm 0.04$ (Appendix J), using the model equation of
384	Jayasuirya et al. (2004) to calculate melt ferric-ferrous ratios in the experimental melts.
385	When this higher $Fe^{2+-Mg}K_D$ value is applied to the most Mg-rich olivine in each of the 18
386	samples in Table 6, the resulting Fe^{3+}/Fe^{T} ratios range from 0.19-0.32 and correspond to
387	Δ NNO values of -0.2 to +1.4. These results lead to a higher average Fe ³⁺ /Fe ^T ratio (0.26)
388	and a higher average Δ NNO value (+0.7) relative to those when a value of 0.34 is used,
389	and fully overlap with the range of Fe^{3+}/Fe^{T} values (0.19-0.28) directly analyzed in

olivine-hosted melt inclusions in arc basalts (e.g., Kelley and Cottrell, 2009; Brounce et
al., 2014). Therefore, there is no reason to conclude that the most Mg-rich olivine
composition in each sample in Table 6 is not close to the first olivine to crystallize from
the whole-rock liquid composition. Nonetheless, the effect of underestimating the mol%
Fo of the first olivine to crystallize from the melt on the thermometry results is discussed
below.

396

Ni concentrations in olivine as a function of Fo-content. The next step in 397 398 applying the Ni- thermometer (Table 3) is to determine the Ni concentration in olivine at 399 the onset of crystallization from a liquid that is represented by the whole-rock 400 composition. This can be calculated from a plot of wt% NiO as a function of mol% Fo for 401 all olivine analyses in each sample, and a linear fit to the data that span the highest 3 402 mol% Fo content for the olivine population in each sample (Fig. 4). The fitted linear 403 equation for each sample is then used to calculate the average Ni content in the most Fo-404 rich olivine (value reported in Table 6). The minimum and maximum standard deviation 405 (1 σ) in wt% NiO for the most Fo-rich olivine among the 18 samples is ± 0.03 and ± 0.05 , 406 respectively. 407 408 Temperatures (and uncertainties) calculated from the Mg- and Ni-409 thermometers. Application of the Mg-thermometer (Eq. 1 and Table 3), using the most 410 Fo-rich olivine analyzed in each sample together with their whole-rock composition 411 (Table 6), leads to temperatures that range from 1122 to 1240 °C for samples that range 412 from 4.3 to 9.4 wt% MgO (Table 6). For application of the Ni-thermometer (Eq. 1 and

413 Table 3), the Ni contents in olivine at the onset of crystallization were combined with the

414	Ni contents in the whole-rock samples to calculate the value of $D_{Ni}^{oliv/liq}$ at the onset of
415	olivine crystallization for each sample in Table 6. This value was then incorporated into
416	the Ni-thermometer (Eq. 1, Table 3) to calculate the temperature at which olivine first
417	began to crystallize in these 18 subduction-zone magmas. Temperatures range from 1020
418	to 1159 °C for these basalt and basaltic and esite samples (52-59 wt% SiO_2) and are
419	112°C cooler, on average, than the temperatures calculated with the updated Mg-
420	thermometer (Table 6). The uncertainties on these temperatures are estimated to be \pm
421	29°C at the 1 σ level, on the basis of the calibration results for ΔT on 123 experiments
422	(Table 3 and Fig. 1c). An additional uncertainty of \pm 11 and \pm 6 °C, respectively, is
423	added owing to an average 1σ uncertainty of \pm 0.05 wt% NiO in olivine and \pm 4 ppm
424	uncertainty in the average whole-rock Ni concentration.
425	Another source of error is that the first Mg-rich olivine to crystallize from the
126	malt may not be averaged on the thin costion and the micromuch a transmer may not

426 melt may not be exposed on the thin-section surface and the microprobe traverse may not 427 have crossed it. It is also possible that some diffusive re-equilibration of the initial Mg-428 rich olivine may have occurred as well. Therefore, the highest Fo content analyzed in 429 each sample may be a minimum value, and therefore the resulting temperatures derived 430 from both the Ni- and Mg-thermometer may be maximum values. The combined effect 431 on both thermometers is to cause ΔT values (= T_{Mg} - T_{Ni}) to increase by 13-46 degrees per 432 1 mol% Fo increase in olivine composition for the samples in Table 6. Therefore, the 433 reported ΔT values in Table 6 are minimum values if the most Mg-rich olivine to have 434 crystallized in each sample is not captured in the analyses.

435

437 A comparison of ΔT (= T_{Mg} - T_{Ni}) values between hydrous basalts and MORBs

438	The values of $\Delta T (= T_{Mg} - T_{Ni})$ for the 18 subduction-zone samples in Table 6
439	range from 63 to 150 °C and are systematically higher than the ΔT values calculated for
440	the nine mid-ocean ridge basalts in Table 5. The comparison of these two sets of ΔT
441	values to those for the 123 experiments are illustrated in Figure 3. As discussed above,
442	neglecting the effect of pressure on the two thermometers is expected to lead to
443	underestimation of ΔT (=T _{Mg} - T _{Ni}). Therefore, the large, positive values of ΔT obtained
444	for the subduction-zone magmas in Table 6 cannot be attributed to the effect of pressure.
445	Nor can they be attributed to the effects of temperature and/or anhydrous melt
446	composition (Fig. 1c). Instead, it appears that the large positive values of ΔT reflect a
447	difference in the sensitivity of $D_{Mg}^{oliv/liq}$ and $D_{Ni}^{oliv/liq}$ to dissolved water in basaltic
448	liquids.
449	
449 450	A different sensitivity of $D_{Mg}^{oliv/liq}$ and $D_{Ni}^{oliv/liq}$ to dissolved water in the melt?
449 450 451	A different sensitivity of $D_{Mg}^{oliv/liq}$ and $D_{Ni}^{oliv/liq}$ to dissolved water in the melt? As noted in the introduction, all thermometers based on $D_{Mg}^{oliv/liq}$ (e.g., Beattie,
449 450 451 452	A different sensitivity of $D_{Mg}^{oliv/liq}$ and $D_{Ni}^{oliv/liq}$ to dissolved water in the melt? As noted in the introduction, all thermometers based on $D_{Mg}^{oliv/liq}$ (e.g., Beattie, 1993) require a major correction for dissolved H ₂ O in the melt, possibly because
449 450 451 452 453	 A different sensitivity of D_{Mg}^{oliv/liq} and D_{Ni}^{oliv/liq} to dissolved water in the melt? As noted in the introduction, all thermometers based on D_{Mg}^{oliv/liq} (e.g., Beattie, 1993) require a major correction for dissolved H₂O in the melt, possibly because hydroxyl groups complex with Mg²⁺ to lower the activity of the MgO component in
449 450 451 452 453 454	 A different sensitivity of D_{Mg}^{oliv/liq} and D_{Ni}^{oliv/liq} to dissolved water in the melt? As noted in the introduction, all thermometers based on D_{Mg}^{oliv/liq} (e.g., Beattie, 1993) require a major correction for dissolved H₂O in the melt, possibly because hydroxyl groups complex with Mg²⁺ to lower the activity of the MgO component in hydrous melts (e.g, Waters and Lange, 2013). The strong dependence of Mg-
449 450 451 452 453 454 455	 A different sensitivity of D_{Mg}^{oliv/liq} and D_{Ni}^{oliv/liq} to dissolved water in the melt? As noted in the introduction, all thermometers based on D_{Mg}^{oliv/liq} (e.g., Beattie, 1993) require a major correction for dissolved H₂O in the melt, possibly because hydroxyl groups complex with Mg²⁺ to lower the activity of the MgO component in hydrous melts (e.g, Waters and Lange, 2013). The strong dependence of Mg- thermometers on melt H₂O concentration was reviewed by Putrika et al. (2007), and the
449 450 451 452 453 454 455 455	A different sensitivity of $D_{Mg}{}^{oliv/liq}$ and $D_{Ni}{}^{oliv/liq}$ to dissolved water in the melt? As noted in the introduction, all thermometers based on $D_{Mg}{}^{oliv/liq}$ (e.g., Beattie, 1993) require a major correction for dissolved H ₂ O in the melt, possibly because hydroxyl groups complex with Mg^{2+} to lower the activity of the MgO component in hydrous melts (e.g, Waters and Lange, 2013). The strong dependence of Mg- thermometers on melt H ₂ O concentration was reviewed by Putrika et al. (2007), and the effect is illustrated in Figure 5 using the experimental datasets of Almeev et al. (2007)
449 450 451 452 453 454 455 456 457	A different sensitivity of $D_{Mg}^{oliv/liq}$ and $D_{Ni}^{oliv/liq}$ to dissolved water in the melt? As noted in the introduction, all thermometers based on $D_{Mg}^{oliv/liq}$ (e.g., Beattie, 1993) require a major correction for dissolved H ₂ O in the melt, possibly because hydroxyl groups complex with Mg ²⁺ to lower the activity of the MgO component in hydrous melts (e.g, Waters and Lange, 2013). The strong dependence of Mg- thermometers on melt H ₂ O concentration was reviewed by Putrika et al. (2007), and the effect is illustrated in Figure 5 using the experimental datasets of Almeev et al. (2007) and Médard and Grove (2008) at \leq 200 MPa. In these two studies, detailed experimental
449 450 451 452 453 454 455 455 456 457	A different sensitivity of $D_{Mg}^{oliv/liq}$ and $D_{Ni}^{oliv/liq}$ to dissolved water in the melt? As noted in the introduction, all thermometers based on $D_{Mg}^{oliv/liq}$ (e.g., Beattie, 1993) require a major correction for dissolved H ₂ O in the melt, possibly because hydroxyl groups complex with Mg^{2+} to lower the activity of the MgO component in hydrous melts (e.g, Waters and Lange, 2013). The strong dependence of Mg- thermometers on melt H ₂ O concentration was reviewed by Putrika et al. (2007), and the effect is illustrated in Figure 5 using the experimental datasets of Almeev et al. (2007) and Médard and Grove (2008) at \leq 200 MPa. In these two studies, detailed experimental approaches were applied to precisely locate the depression of the olivine liquidus with

460	3, Eq.1) gives the anhydrous temperature for each experiment, whereas the Putirka et al.
461	(2007) thermometer (with an H_2O correction, Table 4) gives the hydrous temperature.
462	The differences between the two thermometers lead to ΔT values (= $T_{anhydrous}$ - $T_{hydrous}$) that
463	are consistently positive and increase with the amount of dissolved water in the
464	experimental melt (Fig. 5). This result illustrates that $D_{Mg}^{oliv/liq}$ has a strong sensitivity to
465	dissolved water in basaltic melts, and it suggests that the reason why the Ni-thermometer
466	gives lower temperatures than the Mg-thermometer when applied to hydrous samples
467	(Table 6, Fig. 3) is because $D_{Ni}^{oliv/liq}$ is less sensitive to water. The question that arises is
468	whether the Ni-thermometer (Table 3, Eq. 1), which has no H ₂ O correction, gives similar
469	temperatures as the Mg-thermometer of Putirka et al. (2007), which has an H_2O
470	correction.
471	This question is addressed with three of the 18 samples in Table 6 (Jor-44, TAN-
472	19 and APA-6), for which melt H ₂ O concentrations were directly analyzed in olivine-
473	hosted melt inclusions (Johnson et al., 2008; 2009). The maximum H_2O concentrations
474	reported for these three samples (5.7, 4.6 and 3.9 wt%, respectively) can be used in the
475	Mg-thermometer of Putirka et al. (2007; their Eq. 4), which incorporates the
476	compositional effect of melt H ₂ O, to obtain the temperature of these magmas at the onset
477	of olivine crystallization. The results are 1139, 1116 and 1099°C, respectively, for the
478	Jor-44, TAN-19 and APA-6 melts with 5.7, 4.6 and 3.9 wt% H ₂ O, respectively, at
479	minimum entrapment pressures of 0.4, 0.15 and 0.1 GPa (Johnson et al., 2008; 2009).
480	These temperatures are within -38, +38 and +24°C, respectively, of the temperatures
481	obtained in this study using the Ni-thermometer (Table 3, Eq. 1). These differences are
482	well within the combined 1 σ uncertainty of the two thermometers (± 29 °C for Ni-

483	thermometer, Table 3, Eq. 1; \pm 31°C for Putirka et al., 2007; Table 4). This result
484	supports the inference that D_{Ni} is less sensitive than D_{Mg} to dissolved water in the melt,
485	which can be further tested with a set of hydrous olivine-melt equilibrium experiments.
486 487	Ni-partitioning results on hydrous olivine-melt experiments. Although
488	Almeev et al. (2007) and Médard and Grove (2008) did not report Ni concentrations in
489	olivine and melt, a preliminary evaluation of how melt H2O content affects the Ni-based
490	thermometer is made in this study through new Ni-partitioning results on the run products
491	from a hydrous phase-equilibrium study on a basaltic andesite (MAS-22; Moore and
492	Carmichael, 1998). In that study, there were three experimental run products that contain
493	glass + olivine only (runs 22-2, 22-7 and 22-12), with olivine abundance reported to be
494	\leq 3% (run conditions are summarized in Table 7). The olivine crystals and quenched
495	liquid (glass) from these three experiments were analyzed in this study for their Ni
496	contents. The results are tabulated in Table 7.
497	These values of $D_{Ni}^{oliv/liq}$ were calculated from the newly obtained Ni data from
498	the three experimental charges, and were used to calculate the amount of olivine that
499	crystallized during each of these phase-equilibrium runs, as a check on internal
500	consistency, using the equilibrium crystallization equation:

501
$$\frac{C_L}{C_O} = \frac{1}{D_{Ni}^{ol/melt} (1-F) + F}$$
(5)

502 In Equation 5, C_L is the analyzed concentration of Ni in the quenched liquid phase, C_0 is 503 the initial concentration of Ni in the liquid prior to olivine crystallization (106 ppm in the 504 MAS-22 whole rock; Lange and Carmichael, 1990) and F is the melt fraction. On the 505 basis of this equation and the $D_{Ni}^{oliv/liq}$ values for each experiment, the abundance of olivine ranges from 1.4 to 3.6%, which is consistent with the values reported by Mooreand Carmichael (1998).

508	Using the compositional data reported in Table 7, the calculated Ni-temperatures
509	(Table 3, Eq.1) for the three experiments lead to residuals $(T_{Ni}-T_{expt})$ of +24, -50, and -
510	21 °C for melt H_2O contents of 2.5, 3.2 and 5.0 wt%, respectively (Table 7). When these
511	residuals are plotted in Figure 1a, they are well within the range of the residuals for the
512	123 1-bar experiments upon which the Ni-thermometer (Table 3, Eq. 1) is calibrated on.
513	This result strongly suggests that the Ni-based olivine-melt thermometer has a relatively
514	weak dependence on melt H ₂ O contents.
515	Understanding the underlying cause for why $D_{Ni}^{oliv/liq}$ appears to have a lower
516	sensitivity than $D_{Mg}^{oliv/liq}$ to dissolved water in the melt is of key importance. However, it
517	is beyond the scope of the present study to answer this question because it requires a
518	spectroscopic study of the coordination environments for both Ni and Mg in the same
519	basaltic melts under hydrous conditions, which are not yet available. Nonetheless,
520	available spectroscopic evidence (e.g., Galoisy and Calas, 1993; George and Stebbins,
521	1998), supported by liquid density measurements (Guo et al., 2013; 2014), show that
522	alkaline earth cations, such as Mg^{2+} , and transition metal cations, such as Fe^{2+} and Ni^{2+} ,
523	display different bonding behavior despite their similar size, and these differences may
524	extend to hydrous melts. As an aside, it may that the partition coefficients for Mn^{2+} and
525	Co ²⁺ , two other transition metals with an ionic radius similar to that for Ni ²⁺ , may also
526	lead to useful olivine-melt thermometers that are weakly dependent on water in the melt
527	phase. In the meantime, the accuracy of the Ni-thermometer, which does not include an

528 H_2O correction, can be evaluated through a comparison of its results to experimentally

- 529 determined hydrous phase diagrams.
- 530

531 Consistency with hydrous phase-equilibrium experiments on basaltic andesite

532 The results from the Ni-thermometer (Table 3, Eq.1) for APA-6 (Table 6) can be

533 compared to the hydrous phase-equilibrium experimental results from Moore and

534 Carmichael (1998) on the MAS-22 basaltic andesite (Table 7), which has a similar

535 composition to APA-6. In Figure 6, a simplified plot of the phase stability fields for

olivine, plagioclase, and hornblende are shown on a plot of P_{H2O} vs. temperature based on

537 the results of Moore and Carmichael (1998). Also shown are isopleths of melt H_2O

538 concentration based on the H₂O solubility model of Zhang et al. (2007). The calculated

temperature for APA-6 at the onset of olivine crystallization is $1075 (\pm 29)$ °C, which is

540 projected onto the phase diagram in Figure 6 (the phase diagram of MAS-22 with all

541 individual experiments plotted is shown in Appendix K).

542 The occurrence of large, sparse phenocrysts of olivine in APA-6 with diffusion-543 limited (i.e., rapid-growth) textures (Fig. 7) indicates that this basaltic andesite liquid 544 experienced significant effective undercooling ($\Delta T_{eff} = T_{liquidus} - T_{mel}$) during phenocryst 545 growth (e.g., Lofgren, 1974; Welsch et al., 2014). It is difficult for a melt to develop an 546 undercooling during slow cooling and crystallization in a magma chamber. In contrast, an 547 effective undercooling during phenocryst growth readily develops during rapid ascent 548 under fluid-saturated conditions, owing to the effect of H₂O degassing from the melt 549 (e.g., Waters et al., 2015). A projected ascent path for APA-6 under fluid-saturated 550 conditions is illustrated in Figure 6, and it is consistent with the P_{H2O}-T location for the

entrapment of the olivine-hosted melt inclusion with 3.9 wt% H₂O from Johnson et al.
(2008).

553	The results for two additional samples (UR-2 and NI-21) can also be projected
554	onto this experimental phase diagram, as their compositions only differ from MAS-22
555	(Table 7) and APA-6 by having slightly lower MgO concentrations (Table 6). The
556	results for UR-2 and NI-21 are particularly noteworthy, as the samples have nearly
557	identical bulk compositions (despite being erupted from separate vents located tens of km
558	apart; Ownby et al., 2011) and give similar temperatures (1020 and 1021 °C) at the onset
559	of olivine crystallization, suggestive of similar melt H ₂ O contents. However, they
560	contain very different phenocryst abundances. UR-2 contains \sim 5% olivine and \sim 5%
561	plagioclase, whereas NI-21 only contains ~4% olivine with diffusion-limited (i.e., rapid
562	growth) textures (Fig. 7). The absence of plagioclase phenocrysts could reflect a kinetic
563	delay to its nucleation and growth in NI-21 during its fluid-saturated ascent, similar to
564	what has been documented for various phenocryst-poor andesite, dacite and rhyolite
565	melts (e.g., Frey and Lange, 2011; Crabtree and Lange, 2011; Waters and Lange, 2013;
566	Waters et al., 2015). The inference, therefore, is that NI-21 ascended more rapidly than
567	UR-2 to the surface. A similar difference in ascent rate and timescale for phenocryst
568	growth may explain the difference in phenocryst abundance between TAN-19 and NI-27,
569	which have similar bulk compositions (Table 6). The absence of plagioclase phenocrysts
570	in NI-27, together with the abundance of olivine phenocrysts with diffusion-limited
571	growth textures (Fig. 7), is consistent with a kinetic delay to plagioclase nucleation and
572	growth during rapid ascent under fluid-saturated conditions (e.g., Waters et al., 2015).
573	

574 Consistency with phase-equilibrium experiments on hornblende-bearing basalt

575	Another comparison of thermometry results with hydrous phase-equilibrium
576	experiments can be made for lava flow sample Jor-46d, which is the only sample among
577	the 18 samples in Table 6 to have hornblende in its phenocryst assemblage. In Figure 8, a
578	simplified plot of the phase stability fields for olivine, clinopyroxene, and hornblende are
579	shown on a plot of $P_{\rm H2O}$ vs. temperature based on the experimental results of Barclay and
580	Carmichael (2004) on Jor-46, a scoria sample from the same cinder cone as the lava flow
581	sample Jor-46d; Luhr and Carmichael, 1985. The phase diagram of Jor-46 with all
582	individual experiments plotted is shown in Appendix K. The extrapolated $dT/dP_{\rm H2O}$ slope
583	of the hornblende-in curve in Figure 8 between $P_{H2O} = 200$ and 500 MPa is estimated
584	from the experimentally established hornblende-in curve over this $P_{\rm H2O}$ interval by
585	Krawczynski et al. (2012) for a high-Mg andesite. Also shown in this phase diagram is
586	the calculated temperature (1105 \pm 29 °C; gray shaded rectangle) at the onset of olivine
587	crystallization from the Ni-thermometer (Table 3, Eq. 1). Within the 1σ uncertainty of
588	the Ni-thermometer, the onset of olivine crystallization and the stability field of
589	hornblende overlap, which shows that it is plausible that the phenocryst assemblage in
590	Jor-46d crystallized during fluid-saturated ascent, with undercooling driven by degassing
591	of dissolved H_2O . An alternative model is that the phenocryst assemblage grew during
592	cooling at $P_{H2O} \ge 200$ MPa. Either way, the results of the Ni-thermometer are consistent
593	with the observed phenocryst assemblage and the phase-equilibrium results of Barclay
594	and Carmichael (2004) and indicate that the onset of phenocryst crystallization in Jor-46d
595	occurred at melt H ₂ O contents \geq 5.5 wt% H ₂ O, and possibly higher (>7 wt% H ₂ O; Fig.
596	8).

597

598	MINIMUM MELT WATER CONTENTS
599	Relationship between ΔT and dissolved H_2O in the melt
600	There is an opportunity to use the difference in calculated temperatures from the
601	Mg- and Ni-thermometers, when applied to hydrous samples, as a proxy for an estimate
602	of $\Delta T = T_{anhydrous}$ -T _{hydrous} . This, in turn, allows broad constraints to be placed on the
603	minimum melt H ₂ O concentrations in hydrous magmas at the onset of olivine
604	crystallization. As discussed above, Almeev et al. (2007) and Médard and Grove (2008)
605	conducted experiments to carefully quantify the depression of the olivine liquidus
606	temperature ($\Delta T = T_{anhydrous}$ - $T_{hydrous}$) as a function of melt H ₂ O concentration. In Figure
607	9, their experimental results are plotted together with several additional hydrous olivine-
608	melt equilibrium experiments from the literature (Sisson and Grove, 1993a and 1993b;
609	Parman et al., 2011; Wagner et al., 1995; Berndt et al., 2005; Moore and Carmichael
610	1998) under near-liquidus conditions (\leq 5% olivine). Note that there is a wide range of
611	ΔT values for melt H ₂ O concentrations of ~5 wt% recorded by these experiments (Fig. 9).
612	Detailed information for these 36 olivine-melt equilibrium experiments are reported in
613	Appendix L. For the purposes of internal consistency, the anhydrous liquidus
614	temperature ($T_{anhydrous}$) for each experiment was calculated with the Mg- thermometer
615	(Table 3 and Eq.1) and the pressure correction of Herzberg and O'Hara (2002) as shown
616	in Eq. 2. The experimental temperature is treated as a close approximation to the hydrous
617	liquidus temperature ($T_{hydrous}$) for each experiment. The melt H ₂ O concentration for all
618	pure-H ₂ O fluid-saturated experiments was calculated using the Zhang et al. (2007) water
619	solubility model ($1\sigma = \pm 0.34 \text{ wt\%}$). For the water under-saturated experiments of

620	Almeev et al. (2007), the H_2O contents measured by Karl Fischer Titration (KFT) were
621	used, and when unavailable, the H_2O contents measured by FTIR (Fourier transform
622	infrared) spectroscopy were used. Phase-equilibrium experiments at $P_{\rm H2O} \ge 500$ MPa
623	were not included in this compilation (e.g., Hamilton, 1964) because the calculated water
624	concentrations in those melts have a relatively high uncertainty (Zhang et al., 2007).
625	The goal in this study is to provide a simple polynomial equation that describes
626	the lower limit of the data in Figure 9 and allows a minimum melt H_2O content to be
627	calculated from values of ΔT (= $T_{anhydrous}$ - $T_{hydrous}$ = T_{Mg} - T_{Ni}). The second order
628	polynomial curve fit to data points with the lowest melt H_2O content for their ΔT is:
629	wt% H ₂ O = $6.92 \times 10^{-5} \times \Delta T^2 - 2.62 \times 10^{-2} \times \Delta T$ (6)
630	The application of Equation 6 to the average ΔT result (-3°C) for the nine MORBs in
631	Table 5 leads to a melt H_2O content of 0 wt%, which is consistent with previous work
632	that documents relatively low melt H ₂ O contents in mid-ocean ridge basalts (e.g.,
633	Danyushevsky, 2001). The application of Equation 6 to the average ΔT result (112°C)
634	for the 18 subduction-zone magmas in Table 6 leads to an average minimum H_2O melt
635	content of 3.8 wt%. This result is consistent with direct measurements of H_2O
636	concentrations in olivine-hosted melt inclusions in arc basalts (e.g., Sisson and Layne,
637	1993; Cervantes and Wallace, 2003; Walker et al., 2003; Wade et al., 2006; Benjamin et
638	al., 2007; Portnyagin et al., 2007; Sadofsky et al., 2008; Shaw et al., 2008; Johnson et al.,
639	2009; Kelley et al., 2010; Zimmer et al, 2010; Ruscitto et al., 2010, 2011, Lloyd et al.,
640	2013), which show that they contain up to 7 wt% H ₂ O, with an average that is close to ~4
641	wt% H ₂ O (Plank et al., 2013).
642	

643 Application of plagioclase-liquid hygrometry to two olivine-bearing andesites

644	There may be an opportunity to extend the plagioclase-liquid hygrometer, which
645	requires an independent assessment of temperature, to olivine-bearing andesites when
646	used in conjunction with the Ni-thermometer (Table 3, Eq.1). Many phenocryst-poor
647	low-SiO ₂ andesites do not contain ilmenite, and therefore temperatures cannot be
648	obtained from two Fe-Ti oxides (e.g. Ghiorso and Evans, 2008). Two of the 18 samples
649	in Table 6 are olivine-bearing and esites with 59 wt% SiO_2 and 4.3 wt% MgO (UR-60 and
650	UR-61). In comparison to the phase relations for the basaltic andesite MAS-22 (Fig. 6),
651	which has 55.5 wt% SiO ₂ and 6.5 wt% MgO, it is probable that the positions of the
652	plagioclase-in and olivine-in curves for these two andesites are relatively close in $P_{\rm H2O}$ -T
653	space.
654	In order to apply the plagioclase-liquid hygrometer, the compositions of the
655	plagioclase phenocrysts in the two samples were analyzed in this study. The microprobe
656	results are given in the supplementary materials (Appendix M). The most calcic
657	plagioclase crystals in UR-60 and UR-61 are An_{83} and An_{82} , respectively, which results
658	in calculated melt water contents of ~2.9 and ~2.5 wt%, respectively, at the onset of
659	plagioclase crystallization in each sample, at temperatures of 1046 and 1050 °C,
660	respectively. In this case, an uncertainty $\pm 29^{\circ}$ C in temperature propagates to an
661	uncertainty in melt $\mathrm{H_2O}$ of \pm 0.4 wt% from the plagioclase hygrometer, and the results
662	are consistent with the minimum estimates of melt H_2O content for these two samples
663	using Equation 6 (Table 6; 2.6 and 2.2 wt%, respectively).
664	
665	IMPLICATIONS

666	Currently, all olivine-melt thermometers that are based on $D_{Mg}^{oliv/liq}$ need a							
667	correction for the H_2O content in the melt, which in turn requires that it be measured.							
668	Unfortunately, the process of obtaining high-quality H_2O analyses from olivine-hosted							
669	melt inclusions is labor and time intensive, at least compared to microprobe analyses of							
670	olivine. Moreover, magmas that erupt explosively (i.e., scoria) vs. effusively (i.e., lavas)							
671	are more likely to contain olivine-hosted melt inclusions that preserve maximum pre-							
672	eruptive H ₂ O contents, but they are generally less well preserved in the field (e.g., Lloyd							
673	et al., 2012). Therefore, in order to compile large global data sets on the temperatures of							
674	hydrous basalts, it is desirable to develop an olivine-melt thermometer that only requires							
675	microprobe analyses to apply and has a negligible dependence on water.							
676	In some arcs, it has been shown that the amount of dissolved H_2O in erupted							
677	basalts decreases with increasing distance from the trench, which is inferred to reflect a							
678	shift from H ₂ O-induced flux melting beneath the volcanic front to decompressional							
679	melting in the back arc (Walker et al., 2003, Johnson et al, 2009). An olivine-melt							
680	thermometer that has a small dependence on dissolved H_2O in the melt allows a test of							
681	whether there is a corresponding systematic change in the temperature of basaltic melts							
682	with distance from the trench, which will enhance our understanding of the interplay							
683	between flux melting and decompressional melting at subduction zones. The Ni-							
684	thermometer in this study (Table 3, Eq. 1) requires relatively routine whole rock analyses							
685	combined with microprobe analyses on olivine, and thus it can be used to generate							
686	relatively large datasets to examine temperature variations in mantle-derived arc basalts							
687	on a global basis.							

688

Application of the Ni-thermometer can also be made to olivine-bearing lavas

689	associated with plumes, including Yellowstone and Iceland, for which there is evidence
690	of dissolved H_2O contents up to 3.3 and 1.0 wt% H_2O , respectively, (e.g., Stefano et al.
691	2011; Nichols et al., 2002), and therefore a thermometer is needed that does not require
692	prior information on water concentrations in the melt. It may also be possible to apply the
693	Ni-thermometer to Archean komatiites, for which there is ongoing debate about whether
694	they erupted at very high temperatures (>1500 °C) (e.g., Herzberg et al., 2007; Sobolev et
695	al., 2016), or whether they erupted at significantly lower temperatures owing to relatively
696	high melt H ₂ O concentrations (e.g., Grove and Parman, 2004; Parman et al., 2004). The
697	results from this study suggest that an olivine-melt thermometer based on D_{Ni} has
698	considerable promise to help resolve this controversy, after additional Ni-partitioning
699	olivine-melt equilibrium experiments are obtained under hydrous conditions.
700	
701	ACKNOWLEDGEMENT
702	This study was supported by National Science Foundation grant (EAR-1551344).
703	We thank Adam Kent, Richard Bradshaw and Andy Ungerer for their help with the LA-
704	ICP- MS analysis at Oregon State University. Thoughtful and constructive reviews by C.
705	Li, A.K. Matzen and M. Garcia significantly improved this paper.
706	
707	REFERENCES
708	Agee, C. B., and Walker, D. (1990) Aluminum partitioning between olivine and
709	ultrabasic silicate liquid to 6 GPa. Contributions to Mineralogy and Petrology, 105, 243-
710	254.

- Allan, J.F., Batiza, R., Perfit, M.R., Fornari, D.J., Sack, R.O. (1989) Petrology of lavas
- from the Lamont Seamount Chain and adjacent East Pacific Rise, 10°N. Journal of
- 713 Petrology, 30, 1245-1298.
- Almeev, R.A., Holtz, F., Koepke, J., Parat, F., Botcharnikov, R.E. (2007) The effect of
- 715 H₂O on olivine crystallization in MORB: experimental calibration at 200 MPa. American
- 716 Mineralogist, 92, 670-674.
- Arndt, N.T. (1977) Partitioning of nickel between olivine and ultrabasic and basic
- komatiite liquids. Carnegie Institution of Washington Yearbook, 76, 553-557.
- Asimow, P.D., Hirschmann, M.M., Stolper, E.M. (2001). Calculation of peridotite partial
- 720 melting from thermodynamic models of minerals and melts, IV. Adiabatic decompression
- and the composition and mean properties of mid-ocean ridge basalts. Journal of
- 722 Petrology, 42, 963-998.
- 723 Barclay, J., and Carmichael, I.S.E. (2004) A hornblende basalt from western Mexico:
- 724 water-saturated phase relations constrain a pressure-temperature window of eruptibility.
- 725 Journal of Petrology, 45, 485-506.
- 726 Beattie, P., Ford, C., Russell, D. (1991) Partition coefficients for olivine-melt and
- orthopyroxene-melt systems. Contributions to Mineralogy and Petrology, 109, 212-224.
- 728 Beattie, P. (1993) Olivine-melt and orthopyroxene-melt equilibria. Contributions to
- 729 Mineralogy and Petrology, 115, 103-111.
- 730 Benjamin, E.R., Plank, T., Wade, J.A., Kelley, K.A., Hauri, E.H., Alvarado, G.E. (2007)
- High water contents in basaltic magmas from Irazu Volcano, Costa Rica. Journal of
- 732 Volcanology and Geothermal Research, 168, 68-92.

- 733 Berndt, J., Koepke, J., Holtz, F. (2005) An experimental investigation of the influence of
- water and oxygen fugacity on differentiation of MORB at 200 MPa. Journal of Petrology,
- 73546, 135-167.
- 736 Bird, M.L. (1971) Distribution of trace elements in olivine and pyroxenes An
- 737 experimental study. Ph.D. Thesis, University of Missouri, Rolla.
- 738 Brounce, M.N., Kelley, K.A., Cottrell E. (2014) Variations in Fe^{3+}/Σ Fe of Mariana Arc
- basalts and mantle wedge fO₂. Journal of Petrology, 55, 2513-2536.
- 740 Cervantes, P., and Wallace, P.H. (2003) Role of H₂O in subduction-zone magmatism:
- new insights from melt inclusions in high-Mg basalts from central Mexico. Geology, 31,
- 742 235-238.
- 743 Crabtree, S.M., and Lange, R.A. (2011) Complex phenocryst textures and zoning patterns
- in andesites and dacites: evidence of degassing induced rapid crystallization? Journal of
- 745 Petrology, 52, 3–38.
- 746 Danyushevsky, L.V. (2001) The effect of small amounts of H₂O crystallisation of mid-
- ocean ridge and backarc basin magmas. Journal of Volcanology and Geothermal
- 748 Research, 110, 265-280.
- 749 Ehlers, K., Grove, T.L., Sisson, T.W., Recca, S.I., Zervas, D.A. (1992) The effect of
- 750 oxygen fugacity on the partitioning of nickel and cobalt between olivine, silicate melt,
- and metal. Geochimica et Cosmochimica Acta, 56, 3733–3743.
- 752 Falloon, T.J., Danyushevsky, L.V., Ariskin, A., Green, D.H., Ford, C.E. (2007) The
- application of olivine geothermometry to infer crystallization temperature of parental

- 1754 liquids: Implications for the temperature of MORB magmas. Chemical Geology, 241,
- 755 207-233.
- Frey, H.M., and Lange, R.A. (2011) Phenocryst complexity in andesites and dacites from
- the Tequila volcanic field, Mexico: resolving the effects of degassing vs. magma mixing.
- 758 Contributions to Mineralogy and Petrology, 162, 415–445.
- Ford, C. E., D. G. Russell, J. A. Craven, and M. R. Fisk (1983), Olivine-liquid equilibria:
- 760 Temperature, pressure and composition dependence of the crystal/liquid cation partition
- 761 coefficients for Mg, Fe^{2+} , Ca and Mn. Journal of Petrology, 24, 256–265.
- 762 Gaetani, G.A., and Grove, T.L. (1997) Partitioning of moderately siderophile elements
- among olivine, silicate melt, and sulfide melt: constraints on core formation in the Earth
- and Mars. Geochimica et Cosmochimica Acta, 61, 1829-1846.
- 765 Galoisy, L., and Calas G. (1993) Structural environment of nickel in silicate glass/melt
- system: Part 1. Spectroscopic determination of coordination states. Geochimica et
- 767 Cosmochimica Acta, 57, 3613-3626.
- 768 George, A.M., and Stebbins, J.F. (1998) Structure and dynamics of magnesium in silicate
- 769 melts: A high-temperature ²⁵Mg NMR study. American Mineralogist, 83, 1022-1029.
- 770 Genske, F.S., Turner, S.P., Beier, C., Schaefer, B.F. (2012) The petrology and
- geochemistry of lavas from the Western Asores Islands of Flores and Corvo. Journal of
- 772 Petrology, 53, 1673-1708.
- 773 Ghiorso, M.S., and Sack, R.O. (1995) Chemical mass-transfer in magmatic processes IV.
- A revised and internally consistent thermodynamic model for the interpolation and

- extrapotion of liquid-solid equilibria in magmatic systems at elevated temperatures and
- pressures. Contributions to Mineralogy and Petrology, 119, 197-212.
- Ghiorso, M.S., and Evans, B.W. (2008) Thermodynamics of rhombohedral oxide solid
- solutions and a revision of the Fe-Ti two oxides geothermometers and oxygen-barometer.
- Americal Journal of Science, 308, 957-1039.
- 780 Grove, T. L., and Parman, S.W. (2004) Thermal evolution of the Earth as recorded by
- komatiites. Earth and Planetary Science Letters, 219, 173-187.
- Guo, X., Lange, R.A., Ai, Y. (2013) The density and compressibility of CaO-FeO-SiO₂
- 783 liquids at one bar: Evidence for four-coordinated Fe^{2+} in the CaFeO₂ component.
- 784 Geochimica et Cosmochimica Acta, 120, 206-219.
- Guo, X., Lange, R.A., Ai, Y. (2014) Density and sound speed measurements on model
- basalt (An-Di-Hd) liquids at one bar: New constraints on the partial molar volume and
- compressibility of the FeO component. Geochimica et Cosmochimica Acta, 388, 283-292.
- Hamilton, D.L., Burnham, C.W., Osbom, E.F. (1964) The solubility of water and effects
- of oxygen fugacity and water content on crystallization in mafic magmas. Journal of
- 791 Petrology, 5, 21-39.
- Hart, S.R., and Davis, K.E. (1978) Nickel partitioning between olivine and silicate melt.
- Earth and Planetary Science Letters, 40, 203–219.
- Herzberg, C., and O'Hara, M.J. (2002) Plume-associated ultramafic magmas off
- Phanerozoic age. Journal of Petrology, 43, 1857-1883.

- Herzberg, C., Asimow, P.D., Arndt, N., Niu, Y., Lesher, C.M., Fitton, J.G., Cheadle,
- 797 M.J., Saunders, A.D. (2007) Temperatures in ambient mantle and plumes: constraints
- from basalts, picrites, and komatiites. Geochmistry, Geophysics, Geosystems, 8, Q02006.
- Herzberg, C., and Gazel, E. (2009) Petrological evidence for secular cooling in mantle
- 800 plumes. Nature, 458, 619-623.
- 801 Herzberg, C., and Asimow, P.D. (2015) PRIMELT3 MEGA.XLSM software for primary
- 802 magma calculation: peridotite primary magma MgO contents from the liquidus to the
- solidus. Geochemistry, Geophysics, Geosystems, 16, 563-578.
- 804 Hirschmann, M.M., Ghiorso, M.S., Davis, F.A., Gordon, S.M., Mukherjee, S., Grove,
- 805 T.L., Krawczynski, M., Médard, E., Till, C.B. (2008) Library of Experimental Phase
- 806 Relations (LEPR): a database and web portal for experimental magmatic phase equilibria
- data. Geochemistry, Geophysics, Geosystems, 9, Q03011.
- 308 Jayasuriya, K. D., O'Neill, H. St. C., Berry, A. J., Campbell, S. J. (2004) A Mössbauer
- study of the oxidation state of Fe in silicate melts. American Mineralogist, 89, 1597-
- 810 1609.
- Johnson, E.R., Wallace, P.J., Cashman, K.V., Delgado-Granados, H., Kent, A.J.R. (2008)
- 812 Magmatic volatile contents and degassing-induced crystallization at Volcán Jorullo,
- 813 Mexico: Implications for melt evolution and the plumbing systems of monogenetic
- volcanoes. Earth and Planetary Science Letters, 269, 478-487.
- Johnson, E.R., Wallace, P.J., Granados, H.D., Manea, V.C., Kent, A.J.R., Bindeman,
- 816 I.N., Donegan, C.S. (2009) Subduction-related volatile recycling and magma generation

- 817 beneath Central Mexico: Insights from melt inclusions, oxygen isotopes and geodynamic
- 818 models. Journal of Petrology, 50, 1729-1764.
- Jones, J., O'Neill, H.S., Berry, A. (2011) Differential changes in Ni^{2+,} Co²⁺ and Fe²⁺
- 820 coordination in silicate melt with pressure. Goldschmidt Conference Abstract,
- 821 Mineralogical Magazine, 75, 1124.
- 822 Jurewicz, A.J.G., Mittlefehldt, D.W., Jones, J.H. (1993) Experimental partial melting of
- 823 the Allende (CV) and Murchison (CM) chondrites and the origin of asteroidal basalts.
- 824 Geochimica et Cosmochimica Acta, 57, 2123-2139.
- 825 Kelemen, P.B., Hart, S.R., Bernstein, S. (1998) Silica enrichment in the continental upper
- 826 mantle via melt/rock reaction. Earth and Planetary Science Letters, 164, 387–406.
- 827 Kelley, K.A., and Cottrell E. (2009) Water and the oxidation state of subduction zone
- 828 magmas. Science, 325, 605-607.
- 829 Kelley, K.A., Plank, T., Newman, S., Stolper, E., Grove, T.L., Parman, S., Hauri, E.
- 830 (2010) Mantle melting as a function of water content beneath the Mariana arc. Journal of
- 831 Petrology, 51, 1711-1738.
- 832 Kent, A.J.R., Stolper, E.M., Francis, D., Woodhead, J., Frei, R., Eiler, J. (2004) Mantle
- 833 heterogeneity during the formation of the North Atlantic Igneous Province: Constraints
- 834 from trace element and Sr-Ni-Os-O isotope systematics of Baffin Island picrites.
- 835 Geochemistry Geophysics Geosystems, 5, Q11004.
- 836 Kinzler, R.J., Grove, T.L., Recca, S.I. (1990) An experimental study on the effect of
- temperature and melt composition on the partitioning of nickel between olivine and
- 838 silicate melt. Geochimica et Cosmochimica Acta, 54, 1255–1265.

- 839 Krawczynski, M.J., Grove, T.L., Behrens, H. (2012) Amphibole stability in primitive arc
- 840 magmas: effects of temperature, H₂O content and oxygen fugacity. Contributions to
- 841 Mineralogy and Petrology, 164, 317-339
- 842 Lange, R.A., and Carmichael, I.S.E. (1990) Hydrous basaltic andesites associated with
- 843 minette and related lavas in Western Mexico. Journal of Petrology, 31, 1225-1259.
- Lee, C.T., Luffi, P., Plank, T., Dalton, H., Leeman, W.P. (2009) Constraints on the depths
- and temperatures of basaltic magma generation on Earth and other terrestrial planets
- using new thermobarometers for mafic magmas. Earth and Planetary Science Letters,
- 847 279, 20-33.
- 848 Leeman, W.P., and Lindstrom, D.J. (1978). Partitioning of Ni²⁺ between basaltic and
- 849 synthetic melts and olivines: an experimental study. Geochimica et Cosmochimica Acta,

42, 801–806.

- Li, C., and Ripley, E.M. (2010) The relative effects of composition and temperature on
- 852 olivine-liquid Ni partitioning: statistical deconvolution and implications for petrologic
- modeling. Chemical Geology, 275, 99–104.
- Lloyd, A.S., Plank, T., Ruprecht, P., Hauri, E., Rose, W. (2013) Volatile loss from melt
- 855 inclusions in pyroclasts of differing sizes. Contributions to Mineralogy and Petrology,
- 856 165, 129-153.
- 857 Lofgren, G. (1974) An experimental study of plagioclase crystal morphology: isothermal
- 858 crystallization. American Journal of Science, 274, 243-273.

- 859 Luhr, J.F., and Carmichael, I.S.E. (1985) Jorullo Volcano, Michoacán, Mexico (1759-
- 860 1774): The earliest stages of fractionation in calc-alkaline magmas. Contributions to
- Mineralogy and Petrology, 90, 142-161.
- 862 Matzen, A. K., Baker, M. B., Beckett, J. R., Stolper, E. M. (2011) Fe-Mg partitioning
- between olivine and high-magnesian melts and the nature of Hawaiian parental liquids.
- 864 Journal of Petrology, 52,1243-1263.
- 865 Matzen, A.K., Baker, M.B., Beckett, J.R., Stolper, E.M. (2013) The temperature and
- 866 pressure dependence of nickel partitioning between olivine and silicate melt. Journal of
- 867 Petrology, 54, 2521-2545.
- 868 Médard, E., and Grove, T.L. (2008) The effect of H₂O on the olivine liquidus of basaltic
- 869 melts: experiments and thermodynamic models. Contributions to Mineralogy and
- 870 Petrology, 155, 417-432.
- 871 Moore, G., and Carmichael, I.S.E. (1998) The hydrous phase equilibria (to 3 kbar) of an
- andesite and basaltic andesite from western Mexico: constraints on water content and
- 873 conditions of phenocryst growth. Contributions to Mineralogy and Petrology, 130:304-
- 874 319.
- 875 Mysen, B.O., Virgo, D., Seifert, F.A. (1985) Relationships between properties and
- 876 structure of aluminosilicate melts. American Mineralogist, 70, 88-105.
- 877 Mysen, B.O. (2006) Redox equilibria of Iron and silicate melt structure: Implications for
- 878 olivine/melt element partitioning. Geochimica et Cosmochimica Acta, 70, 3121-3138.

- 879 Mysen, B.O. (2007a) Olivine/melt transition metal partitioning, melt composition, and
- 880 melt structure—influence of Al^{3+} for Si^{4+} substitution in the tetrahedral network of
- silicate melts. Geochimica et Cosmochimica Acta, 71, 5500–5513.
- 882 Mysen, B.O. (2007b) Partitioning of calcium, magnesium, and transition metals between
- 883 olivine and melt governed by the structure of the silicate melt at ambient pressure.
- American Mineralogist, 92, 844–862.
- 885 Mysen, B.O. (2008) Olivine/melt transition metal partitioning, melt composition, and
- 886 melt structure melt polymerization and Qⁿ-speciation in alkaline earth silicate systems.
- B87 Geochimica et Cosmochimica Acta, 72, 4796–4812.
- 888 Nabelek, P.I. (1980) Nickel partitioning between olivine and liquid in natural basalts:
- Henry's Law behavior. Earth and Planetary Science Letters, 48, 293–302.
- 890 Neave, D.A., Maclennan, J., Thordarson, T., Hartley, M.E. (2015) The evolution and
- storage of primitive melts in the Eastern Volcanic Zone of Iceland: the 10ka Grímstötn
- tephra series (i.e. the Saksunarvatn ash). Contributions to Mineralogy and Petrology, 170,
- 893 21.
- Nichols, A.R.L., Carroll, M.R., Höskuldsson, Á. (2002) Is the Iceland hot spot also wet?

895 Evidence from the water contents of undegassed submarine and subglacial pillow basalts.

- Earth and Planetary Science Letters, 202, 77-87.
- 897 Ownby, S.E., Lange, R.A., Hall, C.M., Delgado-Granados, H. (2011) Origin of andesite
- in the deep crust and eruption rates in the Tancítaro-Nueva Italia region of the central
- 899 Mexican arc. Geological Society of America Bulletin, 123, 274-294.

- 900 Parman, S.W., Dann, J.C., Grove, T.L., de Wit, M.J. (1997) Emplacement conditions of
- 901 komatiite magmas from the 3.49Ga Komati Formation, Barberton Greenstone Belt, South
- 902 Africa. Earth and Planetary Science Letters, 150, 303-323.
- Parman, S.W., Grove, T.L., Dann, J.C. (2004) A subduction origin for komatiites and
- 904 cratonic lithospheric mantle. South African Journal of Geology, 107, 107-118.
- 905 Parman, S.W., Grove, T.L., Kelley, K.A., Plank, T. (2011) Along-arc variations in the
- 906 pre-eruptive H₂O contents of Mariana Arc magma inferred from fractionation paths.
- 907 Journal of Petrology, 52, 257-278.
- 908 Plank, T., Kelley, K.A., Zimmer, M.M., Hauri, E.K., Wallace, P.J. (2013) Why do mafic
- magmas contain ~4 wt% water on average? Earth and Planetary Science Letters, 364,
- 910 168-179.
- 911 Portnyagin, M., Hoernle, K., Plechov, P., Mirono, N., Khubunaya, S. (2007) Constraints
- 912 on mantle melting and composition and nature of slab components in volcanic arcs from
- 913 volatiles (H₂O, S, Cl, F) and trace elements in melt inclusions from the Kamtchatka Arc.
- Earth and Planetary Science Letters, 255, 53-69.
- 915 Putirka, K.D., Perfit, M., Ryerson, F.J., Jackson, M.G. (2007) Ambient and excess mantle
- 916 temperatures, olivine thermometry, and active vs. passive upwelling. Chemical Geology,
- 917 241, 177-206.
- 918 Putirka, K.D. (2008) Thermometers and barometers for volcanic systems. Reviews in
- 919 Mineralogy and Geochemistry, 69, 61-120.
- 920 Putirka, K., Ryerson, F.J., Perfit, M., Ridley, W.I. (2011) Mineralogy and composition of
- 921 the oceanic mantle. Journal of Petrology, 52, 279-313.

- 922 Righter, K., and Carmichael, I.S.E. (1996) Phase equilibria of phlogopite lamprophyres
- 923 from western Mexico: biotite-liquid equilibria and P-T estimates for biotite-bearing
- igneous rocks. Contributions to Mineralogy and Petrology, 123, 1-21.
- 925 Roeder, P.L., and Emslie, R.F. (1970) Olivine-liquid equilibrium. Contributions to
- 926 Mineralogy and Petrology, 29, 275-289.
- 927 Ruscitto, D.M., Wallace, P.J., Johnson, E.R., Kent, A.J.R., Bindeman, I.N. (2010)
- 928 Volatile contents of mafic magmas from cinder cones in the Central Oregon High
- 929 Cascades: implications for magma formation and mantle conditions in a hot arc. Earth
- and Planetary Science Letters, 298, 253-161.
- 931 Ruscitto, D.M., Wallace, P.J., Kent, A.J.R. (2011) Revisiting the compositions and
- volatile contents of olivine-hosted melt inclusions from the Mount Shasta region:
- 933 implications for the formation of high-Mg andesites. Contributions to Mineralogy and
- 934 Petrology, 162, 109-132.
- 935 Sadofsky, S. J., Portnyagin, M., Hoernle, K., van den Bogaard, P. (2008) Subduction
- 936 cycling of volatiles and trace elements through the Central American volcanic arc:
- evidence from melt inclusions. Contributions to Mineralogy and Petrology, 155, 433-456.
- 938 Shaw, A.M., Hauri, E.H., Fischer, T.P., Hilton, D.R., Kelley, K.A. (2008) Hydrogen
- 939 isotopes in Mariana arc melt inclusions: implications for subduction dehydration and the
- 940 deep-Earth water cycle. Earth and Planetary Science Letters, 275, 138-145.
- 941 Sisson, T.W., and Layne, G.D. (1993) H₂O in basalt and basaltic andesite glass inclusions
- 942 from four seduction-related volcanoes. Earth and Planetary Science Letters, 117, 619-
- 943 635.

- 944 Sisson, T.W., and Grove, T.L. (1993a) Experimental investigations of the role of H₂O in
- 945 calc-alkaline differentiation and subduction zone magmatism. Contributions to
- 946 Mineralogy and Petrology, 113,143-166.
- 947 Sisson, T.W., and Grove, T.L. (1993b) Temperatures and H₂O contents of low-MgO
- high-alumina basalts. Contributions to Mineralogy and Petrology, 113, 167-184.
- 949 Snyder, D.A., and Carmichael, I.S.E. (1992) Olivine-liquid equilibria and the chemical
- 950 activities of FeO, NiO, Fe₂O₃, and MgO in natural basic melts. Geochimica et
- 951 Cosmochimica Acta, 56, 303–318.
- 952 Sobolev, A.V., Asafov, E.V., Gurenko, A.A., Arndt, N.T., Batanova, V.G., Portnyagin,
- 953 M.V., Garbe-Schönberg, E., Krasheninnikov, S.P. (2016) Komatiites reveal a hydrous
- Archaean deep-mantle reservoir. Nature, 531, 628-632.
- 955 Stefano, C.J., Mukasa, S.B., Andronikov A., Leeman, W.P. (2011) Water and other
- volatile systematics of olivine-hosted melt inclusions from Yellowstone hotspot track.
- 957 Contributions to Mineralogy and Petrology, 161, 615-633.
- 958 Takahashi, E. (1978) Partitioning of Ni^{2+} , Co^{2+} , Fe^{2+} , Mn^{2+} and Mg^{2+} between olivine and
- 959 silicate melts: compositional dependence of partition coefficient. Geochimica et
- 960 Cosmochimica Acta, 42, 1829–1844.
- 961 Tuff, J., Takahashi, E., Gibson, S.A. (2005) Experimental constraints on the role of
- garnet pyroxenite in the genesis of high-Fe mantle plume derived melts. Journal of
- 963 Petrology, 46, 2023-2058.

- 964 Wade, J.A., Plank, T., Melson, W.G., Soto, G.J., Hauri, E. (2006) The volatile content of
- 965 magmas from Arenal volcano. Journal of Volcanology and Geothermal Research, 157,
- 966 94-120.
- 967 Wagner, T.P., Donnelly-Nolan, J.M., Grove, T.L. (1995) Evidence of hydrous
- 968 differentiation and crystal accumulation in the low-MgO, high Al₂O₃ Lake Basalt from
- 969 Medicine Lake volcano, California. Contributions to Mineralogy and Petrology, 121,
- 970 201-216.
- 971 Walker, J.A., Roggensack, K., Patino, L.C., Cameron, B.I., Matias, O. (2003) The water
- and trace element contents of melt inclusions across an active subduction zone.
- 973 Contributions to Mineralogy and Petrology, 146, 62-77.
- Wang, Z., and Gaetani, G.A. (2008) Partitioning of Ni between olivine and siliceous
- 975 eclogite partial melt: experimental constraints on the mantle source of Hawaiian basalts.
- 976 Contributions to Mineralogy and Petrology, 156, 661–678.
- 977 Waters, L.E., and Lange, R.A. (2013) Crystal-poor, multiply saturated rhyolites
- 978 (obsidians) from the Cascades and Mexican arcs: evidence of degassing-induced
- 979 crystallization of phenocrysts. Contributions to Mineralogy and Petrology, 166, 731-754.
- 980 Waters, L.E., and Lange, R.A. (2015) An updated calibration of the plagioclase-liquid
- 981 hygrometer-thermometer applicable to basalts through rhyolites. American Mineralogist,
- 982 100, 2172-2184.
- 983 Waters, L.E., Andrews, B.J., Lange, R.A. (2015) Rapid crystallization of plagioclase
- 984 phenocrysts in silicic melts during fluid-saturated ascent: phase equilibrium and
- decompression experiments. Journal of Petrology, 56, 981-1006.

- 986 Welsch, B., Hammer, J., Hellebrand, E. (2014) Phosphorus zoning reveals dentritic
- 987 architecture of olivine. Geology, 42, 867-870.
- 988 Xu, G., Huang, S., Frey, F.A., Blichert-Toft, J., Abouchami, W., Clague, D.A., Cousens,
- 989 B., Moore J., Beeson, M.H. (2014) The distribution of geochemical heterogeneities in the
- source of Hawaiian shield lavas as revealed by a transect across the strike of the Loa and
- 991 Kea spatial trends: East Molokai to West Molokai to Penguin Bank. Geochimica et
- 992 Cosmocimica Acta, 132, 214-237.
- 293 Zhang, Y., Xu, Z., Zhu, M., Wang, H. (2007). Silicate melt properties and volcanic
- eruptions. Reviews of Geophysics, 45, RG4004.
- 295 Zimmer, M.M., Plank, T., Hauri, E.H., Yogodzinksi, G.M., Stelling, P., Larsen, J.,
- 996 Singer. B., Jicha, B., Mandeville, C., Nye, C.J. (2010) The role of water in generating the
- 997 calc-alkaline trend: new volatile data for Aleutian magmas and a new tholeiitic index.
- 998 Journal of Petrology, 51, 2411-2444.

999

1001 FIGURE CAPTIONS

1002

1003 **FIGURE 1.** (a) Plot of T_{expt} – T_{Ni} (temperature calculated from Ni-thermometer; Eq.1, 1004 Table 3) for the 123 olivine-melt experiments in Appendix B; (b) same as (a), but for 1005 T_{expt} - T_{Mg} (temperature calculated from Mg-thermometer; Eq. 1, Table 3); (c) same as (a), 1006 but $\Delta T = T_{Mg} - T_{Ni}$ (difference in calculated temperature from the Mg-thermometer and Ni-1007 thermometer). The results show no systematic difference between the two thermometers 1008 over a wide range of temperature and anhydrous melt composition (Appendix B). The 1009 solid squares are results from the hydrous olivine-melt equilibrium experiments of Moore 1010 and Carmichael (1998; Table 7) and show that the Ni-thermometer more accurately 1011 recovers experimental temperatures under hydrous conditions than the Mg-thermometer. 1012 1013 FIGURE 2. Open and solid circles are the difference between the experimental 1014 temperatures of Matzen et al. (2013) and the temperatures calculated from the Mg-1015 thermometer and Ni-thermometer (Eq. 1 and Table 3), respectively, for each olivine-melt 1016 equilibrium experiment from Matzen et al. (2013). The solid line shows the Herzberg 1017 and O'Hara (2002) pressure correction (Eq. 2 in text); the solid line closely matches the 1018 the difference in the experimental temperatures of Matzen et al. (2013) and the 1019 temperature calculated from the Mg-thermometer in this study. The dashed line is a 1020 linear fit to the solid circles between 0 and 1 GPa (slope is 4°C/GPa) and shows that the 1021 Ni-thermometer has a negligible pressure correction over this interval. However, the Ni-1022 thermometer has a strong dependence on pressure at ≥ 2 GPa. The step-wise behavior for 1023 the Ni-thermometer between 1bar to 3 GPa is explained in the text.

1024

1025

1026	FIGURE 3. Plot of ΔT (=T _{Mg} -T _{Ni}) values for nine MORB samples (open triangles;
1027	Table 5) and 18 subduction-zone lavas (solid squares; Table 6). T_{Mg} and T_{Ni} are obtained
1028	from the Mg-thermometer and Ni-thermometer, respectively (Eq. 1; Table 3). Also
1029	shown are ΔT values for the 123 1-bar experiments in Appendix B up to 1350°C (gray
1030	circles). The MORBs have ΔT values that fall within the range of those for the
1031	experiments in Appendix B, whereas the subduction-zone samples have ΔT values that
1032	are systematically larger (and always positive) relative to the MORBs and the anhydrous
1033	experiments. It is hypothesized that the reason why the subduction-zone samples have
1034	large, positive ΔT values is because the Ni-thermometer more accurately calculates the
1035	temperature of olivine crystallization in a hydrous melt (and does not require a correction
1036	for H_2O in the melt), whereas the Mg-thermometer overestimates the temperature if a
1037	separate correction for H_2O in the melt is not applied.
1038	
1039	FIGURE 4. Plots of wt% NiO vs. mol% Fo (= XMgO/(XMgO+XFeO) x 100) for the
1040	most Mg-rich olivine analyses (highest 3 mol% Fo) in each of the 18 subduction-zone
1041	samples from the Mexican arc (Table 6). A linear fit to the data (equation in each plot)
1042	enables calculation of wt% NiO in the most Fo-rich olivine analyzed in each sample
1043	(Table 6). This value of wt% NiO is used to apply the Ni-thermometer (Eq. 1; Table 3)
1044	to these 18 samples.

1045

1046	FIGURE 5. Plot of the difference in calculated temperatures from the Mg-thermometer
1047	in this study (Eq. 1 and Table 3; corrected for pressure with Eq. 2) and those from the
1048	Putirka et al. (2007) Mg-thermometer (which includes a correction for pressure and H_2O
1049	in the melt) applied to the hydrous experiments of Almeev et al. (2007) and Médard and
1050	Grove (2008), as a function of melt water content. The results illustrate that any
1051	thermometer based on $D_{Mg}^{ol/liq}$ requires a large correction for H_2O content in the melt.
1052	
1053	FIGURE 6. Simplified phase diagram based on the phase-equilibrium experiments of
1054	Moore and Carmichael (1998) on a basaltic andesitic composition (MAS-22, Table 7)
1055	under pure- H_2O fluid-saturated conditions. (A more detailed figure in Appendix K
1056	shows the experimental results that constrain the placement of mineral-in curves.)
1057	Abbreviations in the plot: hbd (hornblende); oliv (olivine); plag (plagioclase); aug
1058	(augite). The dashed lines are isopleths of maximum H_2O solubility in the melt from the
1059	model in Zhang et al. (2007). A plausible adiabatic ascent path (arrow) is shown for
1060	APA-6 (intersects olivine-in curve at 1075 °C based on Ni-thermometry results; Table 6),
1061	which has a bulk composition similar to that for MAS-22 (Table 7). Shown on this
1062	ascent path is the maximum H_2O content of 3.9 wt% analyzed in olivine-hosted melt
1063	inclusions from scoria erupted from the same cinder cone as APA-6 (Cerro el Hungaro;
1064	Johnson et al., 2009). A plausible adiabatic ascent path for both NI-21 and UR-2, which
1065	have nearly identical bulk compositions, is also shown (intersects the olivine-in curve at
1066	\sim 1020 °C based on the Ni-thermometer results; Table 6). The absence of plagioclase
1067	phenocrysts in NI-21 is attributed to a more rapid fluid-saturated ascent relative to that
1068	for UR-2, leading to large effective under-coolings ($\Delta T_{eff} = T_{liquidus} - T_{melt}$) and a kinetic

1069 delay to the nucleation and growth of plagioclase phenocrysts (e.g., Waters et al., 2015). 1070 Both APA-6 and NI-21 contain olivine phenocrysts with diffusion-limited growth 1071 textures (Fig. 7), consistent with crystal growth under super-saturated (i.e. undercooled) 1072 conditions (see text for discussion). 1073 1074 FIGURE 7. Back-scattered electron (BSE) images of representative olivine phenocrysts in six of the subduction-zone samples in Table 6. In each case, the olivine phenocryst 1075 1076 displays a hopper texture, which forms when the crystal grows rapidly under diffusion-1077 limited conditions, which is consistent with large effective under-coolings (ΔT_{eff} = 1078 T_{liquidus}-T_{melt}) caused by rapid H₂O degassing during magma ascent (e.g., Welsch et al., 1079 2014). 1080 1081 FIGURE 8. Simplified phase diagram based on the phase-equilibrium experiments of 1082 Barclay and Carmichael (2004) on sample JOR-46 (scoria from the same cinder cone as 1083 JOR-46d; Luhr and Carmichael, 1985) under pure-H₂O fluid-saturated conditions. (A 1084 more detailed figure in Appendix K shows the experimental results that constrain the 1085 placement of mineral-in curves.) Abbreviations in the plot: hbd (hornblende); oliv 1086 (olivine); aug (augite). Dashed lines are isopleths of maximum H₂O solubility in the melt

1087 from the model in Zhang et al. (2007). A plausible adiabatic ascent path (arrow) is

1088 shown for JOR-46d, within the constraints of the Ni-thermometer (gray box; 1105 ± 29

1089 °C) for the onset of olivine crystallization and the experimentally constrained stability

1090 field for hornblende. JOR-46d is the only sample in Table 6 that contains hornblende in

1091 its phenocryst assemblage (Luhr and Carmichael, 1985).

1092

1093	FIGURE 9. Plot of wt% H_2O in the melt phase from 36 olivine-melt equilibrum
1094	experiments from the literature (Parman et al., 2011 - open circle; Médard and Grove,
1095	2008 - solid circle; Almeev et al., 2007 - open triangle; Berndt et al., 2005 - solid
1096	triangle; Moore and Carmicheal, 1998 - open diamond; Wagner et al., 1995 - solid
1097	diamond; Sisson and Grove, 1993a - empty square; Sisson and Grove, 1993b - solid
1098	square) plotted as a function of ΔT (= $T_{anhydrous}$ - $T_{hydrous}$ = T_{Mg} - T_{expt}). The anhydrous
1099	temperature for each experiment is calculated using the Mg-thermometer (Eq. 1 and
1100	Table 3; corrected for pressure with Eq. 2), whereas the hydrous temperature is the
1101	reported experimental temperature. Run conditions for all 36 experiments are reported in
1102	Appendix L. The dashed curve is a second order polynomial equation (Eq. 6), which is a
1103	fit to the experiments at the bottom of the data cloud only. Equation 6 allows the
1104	minimum concentration of water in the melt to be calculated from ΔT (=T _{anhydrous} -
1105	T _{hydrous}).

Figure 1

Figure 2

Figure 3

Figure 4 page 1 Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld

Figure 4 Page 2

Figure 5

Figure 6

Figure 7

Figure 8

Figure 9

Table 1. The equations and average residuals for 13 D_{Ni}^{oliv/liq} models from the literature applied to data in Appendix B.

Studies		Rearranged Equations*	Average Residual (± 1σ)			
Matzen et al.,		19 ± 98 °C				
2013		$\ln D_{Ni}^{max,max}(mol\%) - \ln D_{Mg}^{max,max}(mol\%) + 1.956$				
	Eqn. 2a	$T(^{\circ}C) = \frac{6800}{\ln D_{Ni}^{oliv/liq} (wt\%) + 3.257}$	-16 ± 70 °C			
Putirka et al.,	Eqn. 2b	$T(^{\circ}C) = \frac{6829}{\ln D_{Ni}^{oliv/liq}(wt\%) - 0.033 * SiO_2^{liq}(wt\%) + 4.75}$	$58\pm75~^\circ\mathrm{C}$			
2011	Eqn. 2c	$T(^{\circ}C) = \frac{3236}{\ln D_{Ni}^{oliv/liq}(wt\%) - 0.04 * SiO_2^{liq}(wt\%) + 0.04 * MgO^{liq}(wt\%) + 1.78}$	144 ± 119 °C			
	Eqn. 2c'	$T(^{\circ}C) = \frac{3235.6}{\ln D_{Ni}^{oliv/liq}(wt\%) - 0.038 * SiO_2^{liq}(wt\%) + 0.045 * MgO^{liq}(wt\%) + 1.783}$	$4\pm49^\circ C$			
Li and Ripley, 2010	$T(K) = \frac{1}{\ln D^{o}}$	$T(K) = \frac{9250}{\ln p^{0liv/liq}(\dots \pm 0)(1 + 0)(1 + 0)(1 + 1$				
Wang and Gaetani, 2008		$T(K) = \frac{7100}{lnD_{Ni}^{oliv/liq}(wt\%) + 0.71 * ln(NBO/T) + 2.5}$				
Keleman et al., 1998		$T(K) = \frac{15850}{\ln D_{vi}^{oliv/liq} (wt\%) + 7.69}$				
Agoo and Walker	SiO ₂	$T(K) = \frac{10800}{\ln D_{Ni}^{oliv/liq} (wt\%) - 0.04 * SiO_2^{liq} (wt\%) + 6.66}$	$60 \pm 59^{\circ}\mathrm{C}$			
1990	MgO	$T(K) = \frac{93000}{D_{Ni}^{oliv/liq}(wt\%) + \frac{45}{MgO^{liq}(wt\%)} + 45}$	$40\pm86^\circ C$			
Hart and Davis, 1978		$30\pm57^{\circ}C$				
Leeman and	wt%	$T(K) = \frac{13376}{\ln D_{Ni}^{oliv/liq} (wt\%) + 6.34}$	$3 \pm 54^{\circ}C$			
Lundstrom, 1978	mole%	$T(K) = \frac{14298}{\ln D_{Ni}^{oliv/liq} (mole\%) + 6.99}$	$15 \pm 54^{\circ}\mathrm{C}$			
Arndt, 1977		$T(K) = \frac{10430}{\ln D_{Ni}^{oliv/liq} (mole\%) + 4.79}$	$-17 \pm 60^{\circ}C$			

Notes:

All the models were originally fit with $\ln D_{Ni}$ or D_{Ni} as the dependent variable. They were rearranged to calculate temperature from analyzed D_{Ni} and melt compositions.

Eqn. 2c' is Eqn. 2c from Putirka et al. (2011) with one more significant digit on each of the fit parameters than what is reported (determined by trial and error to obtain a better residual for the 123 experiments).

Table 2. The average residual for eig	ht model equations (from	n Table 1) re-calibrated (on the 123 1-bar	experiments in
Appendix B.				

Studies	Rearranged Equations	Average T _{calc} – T _{expt} (with 1σ)	R ²
Model A	$T(K) = 9090(\pm 24)) / (\ln D_{Ni}^{oliv/liq}(wt\%) + 0.677 (\pm 0.026) * (X_{Fe0}^{liq} + X_{Mg0}^{liq} + X_{Mn0}^{liq} + X_{Ca0}^{liq} + X_{Co0}^{liq} + X_{Ni0}^{liq}) / X_{Si02}^{liq} + 3.904 (\pm 0.147))$	-1 ± 31 °C	0.961
Model B	$T(K) = 6902 (\pm 35) / (\ln D_{Ni}^{oliv/liq} (wt\%) - 0.029 (\pm 0.001) * (SiO_2^{liq} (wt\%) - MgO^{liq} (wt\%)) + 3.442 (\pm 0.189))$	-1 ± 49 °C	0.942
Model C	$T(K) = \frac{12958(\pm 373)}{(\ln D_{Ni}^{oliv/liq}(wt\%) - 0.0371(\pm 0.0025) * SiO_2^{liq}(wt\%) + 8.042(\pm 0.298))}$	1 ± 33 °C	0.911
Model D	$T(K) = 7965 \ (\pm 48) / (\ln D_{Ni}^{oliv/liq} (wt\%) + 0.492 (\pm 0.041)) * (NBO/T) + 2.957 \ (\pm 0.295)$	2 ± 60 °C	0.863
Model E	$T(K) = \frac{17841}{\pm 871} / \frac{\ln D_{Ni}^{oliv/melt}}{(mol\%)} + \ln D_{Mg}^{oliv/melt}}{(mol\%)} + 8.254 (\pm 0.535))$	2 ± 56 °C	0.776
Model F	$T(K) = \frac{10517(\pm 560)}{(\ln D_{Ni}^{oliv/liq}(mol\%) + 4.768(\pm 0.344))}$	$-3 \pm 61^{\circ}C$	0.745
Model G	$T(K) = \frac{11070 (\pm 592)}{(\ln D_{Ni}^{oliv/liq} (wt\%) + 4.946 (\pm 0.363))}$	$3\pm 62^{\circ}C$	0.743
Model H	$T(K) = 66644 (\pm 5083) / (D_{Ni}^{oliv/liq} (wt\%) - 1/MgO^{liq} (wt\%) + 33.745 \pm 3.118)$	$4\pm83^{\circ}\mathrm{C}$	0.696

Model A is based on the Li and Ripley (2010) model.

Model B is based on Eq. 2c in Putirka et al. (2011).

Model C is based on Eq. 2b in Putirka et al. (2011) and the SiO₂ model in Agee and Walker (1990).

Model D is based on the Wang and Gaetani (2008) model.

Model E is based on the Matzen et al. (2013) model.

Model F is based on the mole% model in Leeman and Lundstrom (1978) and the model in Arndt (1977),

Model G is based on Eq. 2a in Putirka et al. (2011), Leeman and Lundstrom (1978), Keleman et al. (1998), and Hart and Davis, (1978).

Model H is based on the MgO equation in Agee and Walker (1990).

 lnD_{Ni} or D_{Ni} was the dependent variable in all fits, except $D_{Ni} - 1/MgO$ for Model H, and $lnD_{Ni} + lnD_{Mg}$ for Model E.

Table 3. Fitted parameters and statistics for
calibration of Eqn.1 for Ni and Mg

T _{Ni} T _{Mg}								
	fitted value ± 1σ							
а	a -4.32 ± 0.33 -4.74 ± 0.20							
b	9416 ± 296	6701 ± 182						
С	-0.71 ± 0.13	-1.12 ± 0.08						
d	0.53 ± 0.24	-1.08 ± 0.15						
е	0.35 ± 0.11	0.64 ± 0.07						
statistics								
SEE	29	26						
R² 0.96 0.96		0.96						

Table 4. The average residuals for the Mg-thermometers of Beattie (1993) and Putirka et al. (2007) re-calibrated on the 123 experiments in Appendix B.

Studies	Equations	Average Residual (with 1σ)
Beattie, 1993	$T(K) = \frac{13603.6 + 4.943 * 10^{-7} * (P(Pa) - 10^{5})}{6.26 + 2 * lnD(Mg_{Mg}^{oliv/liq}) + 2 ln(1.5 * C_{NM}^{liq}) + 2 * ln(3 * C_{SiO2}^{liq}) - NF}$	17 ± 30 °C
Putirka et al., 2007	$T(^{\circ}C) = \frac{15294.6 + 1318.8 * P(GPa) + 2.4834 * P(GPa)^{2}}{8.048 + 2.8352 * lnD_{Mg}^{oliv/liq} + 2.097 * ln(1.5 * C_{NM}^{liq}) + 2.575 * ln(3 * C_{SiO2}^{liq}) - 1.41 * NF + 0.222 * H2O^{Liq} + 0.5 * P(GPa)}$	$0 \pm 31^{\circ}C$

Table 5. Compositions and modes for MORB samples reported in Allan et al. (1989); temperatures from this study

Sample Name	F9-1	1570-1949	1572-1755-2	1559-2058	1567-1816	F1-1	1562-1941	1569-1901	F7-4
melt (glass) composition									
SiO ₂ (wt%)	49.6	49.42	48.96	49.49	50.06	50.41	49.04	50.31	50.52
TiO₂ (wt%)	1.21	0.96	1.14	1.08	1.16	1.18	1.55	1.18	1.54
Al ₂ O ₃ (wt%)	16.9	16.6	16.9	16.1	16.2	15.5	16.6	14.4	14.3
FeO ^T (wt%)	8.59	8.83	8.84	9.21	8.82	9.3	9.44	10.55	11.02
MgO (wt%)	8.97	8.78	8.51	8.30	8.28	8.14	7.80	7.56	7.05
CaO (wt%)	12.4	12.7	12.3	13.0	12.5	13.0	11.2	12.9	12.2
Na ₂ O (wt%)	2.46	2.43	2.71	2.51	2.46	2.41	2.84	2.47	2.87
K ₂ O (wt%)	0.10	0.04	0.06	0.04	0.11	0.06	0.04	0.07	0.09
P2O5 (wt%)	0.10	0.08	0.13	0.10	0.14	0.11	0.17	0.11	0.14
Ni (ppm)	189	140	142	72	162	124	106	55	80
Total	100.23	99.81	99.51	99.85	99.71	100.10	98.62	99.59	99.76
			phenocrys	t (ph) inforn	nation				
oliv ph(vol%)	0.4	0.1 ^a	0.4	0.5 ^a	0.3	0.5	0.2	0.1	0.1
plag ph (vol%)	0.0	0.5	0.6	0.8	1.0	2.0	1.1	0.7	3.4
cpx ph (vol%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.2	2.2
total (vol%)	0.4	0.5	1.0	0.8	1.3	2.5	1.3	1.0	5.7
max. Fo content in olivine	90.6	88.0	87.8	87.5	86.9	86.6	86.1	83.5	82.1
olivine NiO (wt%)	0.4	0.23	0.28	0.15	0.26	0.19	0.18	0.11	0.14
D _{Ni} ^{oliv/liq}	16.5	13.0	15.6	16.6	12.8	12.3	13.6	15.8	14.2
calculated temperature and H ₂ O									
Т _{мд} (°С)	1188	1189	1186	1173	1180	1168	1170	1160	1149
T _{Ni} (°C)	1143	1194	1156	1143	1205	1214	1196	1153	1187
∆T (T _{Mg} -T _{Ni}) ^b	45	-5	30	31	-25	-45	-27	6	-39

a. olivine crystals \leq 250 microns (in other cases only crystals \geq 250 micron are counted).

b. The average ΔT value for the 9 samples is -3 degrees, which indicates a minimum melt water content of 0 wt% using Eq. 6

sample name	UR-46	Jor-44	NI-13	UR-6	UR-36	Jor-46d	TAN-19	NI-27	NI-5	APA-14	TAN-48	UR-8B	APA-6	UR-2	NI-21	APA-2	UR-61	UR-60
							Whole-r	ock comp	osition									
SiO ₂ (wt%)	52.2	52.1	53.7	53.5	52.3	51.72	54.5	54.0	53.2	52.7	53.9	55.0	56.0	56.9	57.3	56.2	59.4	58.9
TiO ₂ (wt%)	0.8	0.81	0.87	0.91	0.96	1.22	0.83	0.81	1.28	1.14	1.13	1.07	0.88	0.78	0.85	0.93	0.80	0.80
Al ₂ O ₃ (wt%)	16.7	16.4	16.7	16.9	17.1	15.1	17.2	17.6	15.2	17.5	17.1	16.1	17.6	17.7	17.3	17.4	17.2	17.8
FeO ^T (wt%)	7.39	7.45	7.20	7.46	7.76	7.32	6.82	7.08	7.00	7.89	7.44	7.13	6.69	6.36	6.26	6.73	5.87	5.83
MnO (wt%)	0.13	0	0.12	0.13	0.13	0.12	0.12	0.12	0.12	0.14	0.13	0.12	0.11	0.11	0.11	0.12	0.10	0.11
MgO (wt%)	9.38	9.29	8.98	8.62	8.52	8.03	7.92	7.68	7.59	7.46	7.04	6.52	6.35	5.87	5.83	5.70	4.31	4.27
CaO (wt%)	9.26	8.46	7.99	8.27	8.7	7.45	7.98	8.23	8.84	8.60	8.36	7.76	7.28	7.12	7.06	7.56	6.71	6.67
Na ₂ O (wt%)	3.37	3.47	3.33	3.37	3.52	4.55	3.68	3.59	3.19	3.60	3.76	4.06	3.84	3.95	3.96	3.77	4.03	3.93
K ₂ O (wt%)	0.56	0.74	0.89	0.67	0.79	2.54	0.77	0.65	2.88	0.71	0.89	1.66	1.07	0.97	1.10	1.28	1.40	1.51
P ₂ O ₅ (wt%)	0.14	0.14	0.18	0.19	0.18	0.9	0.18	0.15	0.68	0.24	0.28	0.50	0.23	0.20	0.23	0.26	0.25	0.25
Ni (ppm)	231	261	201	178	145	221	156	130	124	100	110	108	120	122	90	100	77	65
Total	99.9	98.9	100.0	100.0	100.0	99.0	100.0	99.9	100.0	100.0	100.0	99.9	100.1	100.0	100.0	100.0	100.1	100.1
							Phenocry	st (ph) inf	ormation									
olivine ph ^a (vol%)	5.1	5.8	8.6	5.8	6.7	8.3	6.1	4.8	2.9	3.6	4.4	4.2	3.5	5.2	3.9	5.7	1.5	0.5
plagioclase ph ^a (vol%)	0.0	0	0.0	0.0	0.0	0.0	3.7	0.5	0.0	0.0	0.7	0.0	0.0	5.1	0.0	0.6	0.4	0.7
clinopyroxene pht ^a (vol%)	0.0	0	0.0	2.0	0.0	0.2	0.0	0.0	0.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.7
total ph (vol%)	5.1	5.8	8.6	7.8	6.7	8.5	9.8	5.3	3.5	3.6	5.1	5.8	3.5	10.3	3.9	6.3	1.9	1.9
						Olivine cor	nposition,	calculated	d Fe ³⁺ /Fe ^T	and ANNO								
max. Fo content ^b	89.1	89.9	88.8	88.1	87.7	87.7	89.1	87.9	88.1	85.5	86.2	85.4	85.5	86.6	85.4	84.8	83.6	81.3
Fe ^{3*} /Fe ^T (KD=0.34)	0.19	0.27	0.17	0.18	0.19	0.19	0.25	0.21	0.23	0.16	0.21	0.18	0.16	0.25	0.17	0.21	0.24	0.12
°∆NNO (KD=0.34)	-0.2	0.8	-0.4	-0.2	-0.1	-0.2	0.6	0.2	0.3	-0.6	0	-0.3	-0.7	0.6	-0.5	0.0	0.2	-1.5
Fe ³⁺ /Fe ^T (KD=0.37)	0.25	0.32	0.24	0.25	0.26	0.26	0.32	0.27	0.29	0.23	0.27	0.25	0.24	0.31	0.23	0.27	0.31	0.19
°∆NNO (KD=0.37)	0.6	1.3	0.5	0.6	0.7	0.7	1.4	0.9	1.1	0.3	0.8	0.6	0.5	1.2	0.4	0.8	1.2	-0.2
olivine NiO (wt%) ^d	0.53	0.54	0.57	0.44	0.48	0.69	0.57	0.45	0.46	0.37	0.40	0.49	0.49	0.70	0.52	0.41	0.43	0.37
D _{Ni} oliv/liq	17.3	16.3	22.3	19.9	26.0	21.9	26.7	27.8	28.5	31.4	27.9	35.7	32.1	43.8	47.1	33.8	45.4	43.5
						Calculate	ed tempera	ture and r	ninimum	wt% H₂O								
T _{Ma} (°C)	1236	1240	1237	1227	1219	1237	1209	1204	1202	1195	1186	1186	1183	1167	1171	1159	1122	1128
T _{Ni} (°C)	1159	1177	1117	1145	1079	1105	1078	1086	1069	1065	1077	1047	1075	1020	1021	1079	1050	1046
ΔT (T _{M0} -T _{Ni}) ^e	78	63	120	82	140	133	130	118	133	131	109	140	108	147	150	81	72	82
minimum wt% H ₂ O ^r	2.4	1.9	4.2	2.6	5.0	4.7	4.6	4.1	4.7	4.6	3.7	5.0	3.6	5.3	5.5	2.6	2.3	2.6
				2.0	2.0					1.0		5.0	5.0	2.0	5.0	2.0	2.0	2.0

a. phenocryst are crystals ≥300µm. b. Fo =XMgO/(XMgO+XFeO+XMnO+XCaO+XNiO)) in Appendix H c. calculated with Eq. 12 in Jayasuriya et al. (2004). d. calculated for max Fo olivine from linear fits in Fig. 4. e. the average AT of 18 samples is 112 degrees. f. minimum H2O calculated based on Eq.6; average of 18 samples is 3.8 wt%.

Sample	MAS-22 ^a	Expt 22-7	Expt 22-2	Expt 22-12						
Melt composition ^b										
SiO ₂ (wt%)	55.25	55.9	56.25	57.31						
TiO ₂ (wt%)	0.74	0.71	0.82	0.7						
Al ₂ O ₃ (wt%)	17.4	19.1	18.7	19.4						
FeO ^T (wt%)	5.98	5.77	5.40	4.94						
MgO (wt%)	6.68	5.70	5.65	5.75						
CaO (wt%)	7.28	6.68	7.31	7.08						
Na ₂ O (wt%)	3.97	4.87	4.62	3.43						
K ₂ O (wt%)	1.18	1.29	1.27	1.44						
Ni (ppm) ^c	106	82.0	53.0	40.0						
Total	98.49	100.02	100.00	100.05						
Olivine composition ^d										
olivine Fo# ^e	-	85.4	88.1	95.2						
olivine NiO (wt%)	-	0.23	0.27	0.24						
D _{Ni} ^{oliv/liq}	-	22.0	40.0	47.1						
% olivine ^f	-	1.4	2.6	3.6						
Experimental conditions and thermometry results										
∆NNO	-	2.2	2.6	5.6						
P(H ₂ O) (MPa)	-	73.1	107.2	208.2						
Expt. T(°C)	-	1150	1100	1050						
H ₂ O (wt%) ^g	-	2.5	3.1	5.0						
Τ _{Mg} (°C)	-	1165	1155	1136						
T _{Mg} - T _{expt} (°C)	-	15	55	86						
T _{Ni} (°C)	-	1174	1050	1029						
T _{Ni} - T _{expt} (°C)	-	24	-50	-21						

Table 7. Compositions and experimental conditions for three experiments reported in Moore and Carmichael (1998); temperatures from this study

Notes:

a. whole-rock composition (Lange and Carmichael, 1990)

b. experimental glass compositions normalized to 100% anhydrous

- c. measured in this study by laser ablation ICP-MS
- d. measured in this study by electron microprobe
- e. Fo # = XMgO/(XMgO+XFeO)*100;
- f. calculated from Eq. 5 in text.

g. calculated from Zhang et al. (2007) water solubility model.