1	Revision 1
2	Hydrogen incorporation mechanisms in forsterite: New insights from ¹ H and ²⁹ Si NMR spectroscopy and
3	first-principles calculation
4	
5	Xianyu Xue ^{1*} , Masami Kanzaki ¹ , Doreen Turner ² and Dominik Loroch ³
6	¹ Institute for Planetary Materials, Okayama University, Misasa, Tottori 682-0193 Japan
7	² Institute of Geoscience, University of Jena, Burgweg 11, Jena 07749 Germany
8	³ Institute for Mineralogy, University of Muenster, Corrensstrasse 24, Muenster, 48149 Germany
9	*Corresponding author; E-mail: xianyu@misasa.okayama-u.ac.jp
10	Tel: 81-858-43-3824
11	Submitted to Am. Mineral. June 9, 2016
12	Revised September 4, 2016
13	
14	Abstract
15	The presence of water (hydrogen) in nominally anhydrous mantle minerals may have profound effects on their
16	physical properties (e.g., electrical conductivity, diffusivity, rheology), and these effects are expected to depend on
17	how water is incorporated in the crystal structure. For olivine, the most abundant upper mantle mineral, despite
18	extensive studies, mostly using vibrational spectroscopy, the interpretations are still not well constrained. To provide
19	better understanding on this issue, we carried out a comprehensive ¹ H and ²⁹ Si NMR study on an Mg ₂ SiO ₄ forsterite
20	sample containing about 0.5 wt% H_2O synthesized at 12 GPa and 1200 °C, complemented by Raman measurement
21	and first-principles calculation of the geometry, stability and NMR parameters of model structures. The Raman spectra
22	contain relative sharp O-H stretching bands near 3612, 3579 and 3567 cm ⁻¹ and a broader band near 3547 cm ⁻¹ , similar
23	to previous reports. The ¹ H static and MAS NMR data revealed that there are two main populations of protons in the
24	hydrous forsterite structure, one experiencing strong ¹ H- ¹ H homonuclear dipolar couplings and contributing to a broad

25	peak near 2.4 ppm, and another with weaker dipolar couplings and contributing to a narrower peak near 1.2 ppm in the
26	MAS NMR spectrum at 30 kHz. Two-dimensional ¹ H CRAMPS-MAS NMR measurements confirmed that the two
27	proton components belong to the same phase and the contrast in MAS NMR peak width is largely due to difference in
28	the strength of ¹ H- ¹ H homonuclear dipolar couplings. In addition, there is also a very weak, narrow ¹ H MAS NMR
29	peak near 7.3 ppm (contributing to $< 0.1\%$ of the total intensity) due to protons that are more remote from the two
30	main components. First-principles calculation confirmed that the two main proton components can be attributed to the
31	hydrogarnet-like substitution mechanism of four H ions for one Si ((4H)si) in a tetrahedral site of olivine, but unlike
32	hydrogarnet with one of the protons pointing away from the tetrahedral center and located in an adjacent interstitial site,
33	thus experiencing weaker dipolar couplings than those in the vicinity of the vacant tetrahedron; the very weak narrow
34	peak near 7.3 ppm can be attributed to the substitution mechanism of two H ions for one Mg in an M1 site $((2H)_{M1})$ of
35	forsterite. The ¹ H- ²⁹ Si CP-MAS NMR spectra revealed both a broad peak encompassing the position for OH
36	defect-free forsterite (-61.7 ppm) and a narrower peak at higher frequency (-60.9 ppm). First-principles calculation
37	indicates that these peaks are accountable by the same models as for the ¹ H NMR data. Thus, this study has provided
38	unambiguous evidence supporting that hydrogen is incorporated in forsterite at relatively high pressure dominantly as
39	$(4H)_{Si}$ defects, with $(2H)_{M1}$ defects playing only a very minor role. The much larger ¹ H chemical shift for protons
40	associated with the latter (than the former) is correlated with stronger hydrogen bonding for the latter, which in turn
41	reflects difference in bonding environments of the OH groups (with the latter bonded to a Si, and the former only
42	bonded to Mg). Similar correlation applies to the O-H stretching frequency. The $(4H)_{Si}$ defects are responsible for the
43	observed high-frequency O-H stretching bands (> 3450 cm^{-1}), and the (2H) _{M1} defects give lower frequencies
44	(undetected here due to low abundance, but most likely near 3160-3220 cm ⁻¹ as previously reported) in vibrational
45	spectra. These results can serve as a guide for (re-)interpretation of infrared and Raman spectroscopic data on hydrous
46	olivine produced under different pressure and silica activity conditions, and require reconsideration of any models for
47	the effects of water on physical properties of olivine based on different interpretations of such data. This study also
48	demonstrated the usefulness of the combined solid-state NMR and first-principles calculation approach in unraveling

49 the hydrogen incorporation mechanisms in nominally anhydrous minerals.

50

51 **Keywords:** forsterite, water, structure, Si vacancy, Mg vacancy, NMR, first-principles calculation

- 52
- 53

Introduction

54 Water may be incorporated in many nominally anhydrous minerals as OH defects. The presence of even a small 55 amount of water in minerals may strongly affect the phase relations, melting temperature and various physical properties (e.g., thermal and electrical conductivities, diffusivity, elastic property). Therefore, a large number of studies 56 57 have been carried out so far in an attempt to understand the structure and physical properties of nominally anhydrous 58 minerals (e.g., Keppler and Smyth 2006). To fundamentally understand the effect of water on the physical properties 59 of minerals, knowledge of how water is incorporated in the crystal structure is indispensible, because different 60 incorporation mechanisms can potentially have different effects on various properties. 61 Olivine, in particular, has been the focus of a large number of studies, because it is the most abundant constituent 62 mineral of the upper mantle. The structure of olivine (*Pbnm* space group) consists of isolated SiO₄ tetrahedra that are interlinked by two types of MO₆ octahedra (M1 and M2 sites, occupied by Mg^{2+} , Fe^{2+} , etc.). It is known to 63 64 accommodate significant amount of water (up to about 1 wt%) in the form of OH defects under upper mantle pressure 65 and temperature conditions (Mosenfelder et al. 2006; Smyth et al. 2006). Most of the studies of hydrogen incorporation mechanisms in olivine have used vibrational spectroscopy, mostly infrared (e.g., Bai and Kohlstedt 66 67 1992; Bai and Kohlstedt 1993; Bali et al. 2008; Berry et al. 2005; Berry et al. 2007; Ferot and Bolfan-Casanova 2012; 68 Gaetani et al. 2014; Ingrin et al. 2013; Koch-Muller et al. 2006; Kohlstedt et al. 1996; Kovacs et al. 2010; Kovacs et al. 69 2012; Kudoh et al. 2006; Lemaire et al. 2004; Libowitzky and Beran 1995; Matsyuk and Langer 2004; Matveev et al. 70 2001; Miller et al. 1987; Mosenfelder et al. 2006; Smyth et al. 2006; Walker et al. 2007; Withers et al. 2011; Yang 71 2016), but also some Raman (Bolfan-Casanova et al. 2014; Hushur et al. 2009; Manghnani et al. 2013). A few studies 72 also used single-crystal X-ray diffraction (Hushur et al. 2009; Kudoh et al. 2006; Smyth et al. 2006). Vibrational

73	spectroscopic measurements on synthetic and natural olivine samples have revealed a large number of bands due to
74	O-H stretching vibrations in the 3000-3700 cm ⁻¹ region; the number, frequencies and intensities of O-H stretching
75	bands have been reported to vary depending on factors such as the composition (silica activity, Fe/Mg ratio,
76	presence/absence of impurity cations such as Ti ⁴⁺ , Cr ³⁺ , Al ³⁺), oxygen fugacity, and pressure and temperature
77	conditions. To better constrain the spectral assignment, some of these studies have focused on hydrogen incorporation
78	in the chemically simpler Mg2SiO4 forsterite. The reported infrared and Raman spectra for forsterite (and often
79	(Mg,Fe) ₂ SiO ₄ olivine as well) synthesized at relatively high pressures (>3 GPa) are generally dominated by several
80	bands in the high-frequency (3450-3650 cm ⁻¹) region, regardless of silica activity (e.g., Bali et al. 2008; Kohlstedt et al.
81	1996; Mosenfelder et al. 2006; Otsuka and Karato 2011; Smyth et al. 2006; Withers et al. 2011). Infrared spectra for
82	forsterite (and often also (Mg,Fe) ₂ SiO ₄ olivine) samples synthesized at lower pressures (<3 GPa) seem to show more
83	prominent dependency on silica activity: samples produced at low silica activities (bulk M/Si ratio \geq 2) mostly show
84	infrared bands dominantly in the high-frequency region (> 3450 cm^{-1}) similar to those produced at higher pressures,
85	whereas samples produced under high silica activities (bulk M/Si ratio <2) have been reported to exhibit bands at
86	lower frequencies (near 3160 or 3220 cm ⁻¹), either dominantly or coexisting with higher-frequency bands (e.g., Bali et
87	al. 2008; Berry et al. 2005; Demouchy and Mackwell 2003; Grant et al. 2006; Lemaire et al. 2004; Padrón-Navarta et
88	al. 2014). Interpretations of these vibrational O-H stretching bands have been controversial for a long time. For
89	example, the high-frequency O-H stretching bands (> 3450 cm^{-1}) have been interpreted in terms of substitution of two
90	H ions for one Mg (e.g., Hushur et al. 2009; Kudoh et al. 2006; Manghnani et al. 2013; Otsuka and Karato 2011;
91	Smyth et al. 2006), or four H ions for one Si (hydrogarnet-like) (e.g., Berry et al. 2005; Kovacs et al. 2010; Matveev et
92	al. 2001), or both (e.g., Lemaire et al. 2004). Interstitial OH groups were also postulated in earlier studies (Bai and
93	Kohlstedt 1992; Bai and Kohlstedt 1993; Kohlstedt et al. 1996). The assignment of the high-frequency bands to H ions
94	associated with Mg vacancies (or interstitial OH groups) was mostly based on indirect evidence, such as cation site
95	occupancies and (average) O-O edge lengths determined from structural refinement of X-ray diffraction data (Hushur
96	et al. 2009; Kudoh et al. 2006; Manghnani et al. 2013; Smyth et al. 2006) or thermodynamic argument based on the

97	observed water solubility as a function of water fugacity (Bai and Kohlstedt 1992; Bai and Kohlstedt 1993; Kohlstedt
98	et al. 1996; Otsuka and Karato 2011). As will be further discussed below, there are pitfalls in some of these arguments.
99	For example, the O-O edge lengths tend to be locally relaxed around OH defects, and thus wrong conclusion may
100	result if one assumes that the average O-O edge lengths obtained from diffraction methods for a nominally anhydrous
101	mineral are correlated with the O-H stretching frequencies (Blanchard et al. 2009; Umemoto et al. 2011, also see
102	discussions below). The observed change in infrared spectra with silica activity at <3 GPa, on the other hand, has been
103	suggested to be consistent with the assignment of (most of) the high-frequency O-H stretching bands to H ions
104	associated with Si vacancies (Berry et al. 2005; Lemaire et al. 2004; Matveev et al. 2001). More direct information
105	about the nature of the individual vibrational bands came from theoretical calculations. A number of studies have used
106	computational methods to evaluate the stability (Balan et al. 2011; Brodholt and Refson 2000; Haiber et al. 1997;
107	Umemoto et al. 2011; Verma and Karki 2009; Walker et al. 2006; Walker et al. 2007; Wright and Catlow 1994) and
108	infrared spectroscopic characteristics (Balan et al. 2014; Balan et al. 2011; Braithwaite et al. 2003; Crepisson et al.
109	2014; Shaw and Tse 2007; Umemoto et al. 2011; Walker et al. 2006) of different OH defects in forsterite. The more
110	recent first-principles density-functional theory (DFT) calculations by Balan et al. (2011) and Umemoto et al. (2011),
111	in particular, provided strong evidence supporting that H ions associated with Si vacancies give high-frequency O-H
112	stretching bands (> 3450 cm ⁻¹), and those associated with Mg vacancies give low-frequency bands (most likely
113	corresponding to the observed bands near 3160-3220 cm ⁻¹). Nevertheless, detailed assignments of the individual
114	observed vibrational bands in the high-frequency region, including the nature for some of them, are still not well
115	constrained, and the interpretation apparently has not been universally accepted. For example, there was postulation
116	for the assignment of one or two high-frequency O-H stretching bands that exhibit stronger temperature-dependent
117	broadening and frequency shift (including a commonly observed, major band near 3550 cm ⁻¹ at room temperature) to
118	(charged) interstitial OH groups from low-temperature infrared measurement (Ingrin et al. 2013) and first-principles
119	calculation (Balan et al. 2014). As will be discussed below, this is questionable considering that the presence of
120	charged defects of major abundance is energetically unfavorable. Even more recently, authors of some publications

121	(e.g. Karato 2013; Karato 2015; Manghnani et al. 2013) still regard hydrogen to be primarily associated with Mg
122	vacancies, when the vibrational spectra of the corresponding olivine samples consist dominantly of high-frequency
123	O-H stretching bands. Therefore, there is a need to better clarify the nature of hydrogen incorporation in olivine, by
124	obtaining additional constraints from complementary spectroscopic techniques, such as nuclear magnetic resonance
125	(NMR) spectroscopy.
126	Solid-state NMR may potentially place better constraints on the incorporation mechanisms of water (and other
127	structural issues) in minerals, because it can provide detailed and quantitative local structural information around
128	individual elements (nuclei, e.g., ²⁹ Si, ¹ H) and their spatial relationship, via a rich variety of multi-nuclear,
129	multi-resonance and multi-dimensional NMR techniques (Xue and Kanzaki, 2009; Stebbins and Xue, 2014). This is
130	particularly true when the full capacity of advanced NMR techniques is combined with first-principles calculation
131	(Griffin and Ashbrook 2013; Griffin et al. 2013; Xue and Kanzaki 2009). Kohn (1996) first applied ¹ H magic-angle
132	spinning (MAS) NMR to a forsterite sample (and some other nominally anhydrous minerals) synthesized at 1.5 GPa
133	and 1000-1150 °C under water-saturated condition, and identified several narrower peaks (including an intense peak
134	near 1 ppm and smaller features near 6.9 ppm and possibly also 5.5 ppm) on top of a broad peak (near 4.3 ppm).
135	Unfortunately, because of the presence of excess water in the sample and complication with sample handling (crushed
136	in water before NMR measurement), it was not certain whether a significant part of the observed intensities could be
137	due to coexisting quenched hydrous phases and/or water in grain boundaries (e.g., Keppler and Rauch 2000). A
138	subsequent study on another forsterite sample synthesized at 2.1 GPa and 1100 °C described in Kohn (2006) reported
139	an "improved" ¹ H MAS NMR spectrum that contains a broad peak at 1 ppm (in addition to a background signal) and
140	a distinct peak at 6.7 ppm, without the dominant broader feature in the earlier spectrum. However, there was still some
141	ambiguity regarding the extent of contribution from coexisting quenched hydrous phases and water in grain
142	boundaries to the observed spectrum. Note that these studies did not utilize the diverse NMR techniques available to
143	strengthen peak assignment.

144 In this study, we performed detailed one-dimensional ¹H static and MAS NMR, ²⁹Si MAS NMR and ¹H-²⁹Si

145	cross-polarization (CP) MAS NMR measurements, and two- dimensional (2D) ¹ H homonuclear correlation MAS
146	NMR experiments, in addition to Raman measurement, on a nearly single-phase forsterite sample containing about
147	$0.5 \text{ wt\%} \text{ H}_2\text{O}$ (water-undersaturated) synthesized at 12 GPa and 1200 °C, and also carried out first-principles
148	calculation to help interpret the experimental data. It will be shown that these data provided unambiguous evidence for
149	the hydrogen incorporation mechanisms in forsterite, and revealed that the dominant incorporation mechanism is four
150	H ions substituting for one Si (denoted $(4H)_{Si}$ hereafter), with trace amount of protons incorporated via the substitution
151	mechanism of two H ions for one Mg in an M1 site (denoted (2H) _{M1} hereafter). The former corresponds to relatively
152	high-frequency O-H stretching frequencies (> 3450 cm ⁻¹) and the latter to lower frequencies in vibrational spectra.
153	These data thus supplied the long-needed guide for the interpretation of vibrational spectroscopic data for hydrous
154	forsterite (and olivine in general).
155	
156	Experimental and Calculation Methods
	1
157	Sample synthesis and description
157 158	Sample synthesis and description An anhydrous Mg ₂ SiO ₄ forsterite sample was first synthesized by heat treatment of a mixture of reagent-grade
157 158 159	Sample synthesis and description An anhydrous Mg ₂ SiO ₄ forsterite sample was first synthesized by heat treatment of a mixture of reagent-grade MgO and SiO ₂ , initially at 1300 °C for 20 hr and then at 1500 °C for 24 hr, with thorough grinding/mixing and
157 158 159 160	Sample synthesis and description An anhydrous Mg ₂ SiO ₄ forsterite sample was first synthesized by heat treatment of a mixture of reagent-grade MgO and SiO ₂ , initially at 1300 °C for 20 hr and then at 1500 °C for 24 hr, with thorough grinding/mixing and pelleting prior to each heating stage. The MgO and SiO ₂ starting materials had been dried at 1000 °C and 1200 °C,
157 158 159 160 161	Sample synthesis and description An anhydrous Mg ₂ SiO ₄ forsterite sample was first synthesized by heat treatment of a mixture of reagent-grade MgO and SiO ₂ , initially at 1300 °C for 20 hr and then at 1500 °C for 24 hr, with thorough grinding/mixing and pelleting prior to each heating stage. The MgO and SiO ₂ starting materials had been dried at 1000 °C and 1200 °C, respectively, for 12 hr before use.
157 158 159 160 161 162	Sample synthesis and description An anhydrous Mg ₂ SiO ₄ forsterite sample was first synthesized by heat treatment of a mixture of reagent-grade MgO and SiO ₂ , initially at 1300 °C for 20 hr and then at 1500 °C for 24 hr, with thorough grinding/mixing and pelleting prior to each heating stage. The MgO and SiO ₂ starting materials had been dried at 1000 °C and 1200 °C, respectively, for 12 hr before use. A hydrous Mg ₂ SiO ₄ forsterite sample containing nominally 0.5 wt% H ₂ O was synthesized at 12 GPa and 1200 °C
157 158 159 160 161 162 163	Sample synthesis and description An anhydrous Mg ₂ SiO ₄ forsterite sample was first synthesized by heat treatment of a mixture of reagent-grade MgO and SiO ₂ , initially at 1300 °C for 20 hr and then at 1500 °C for 24 hr, with thorough grinding/mixing and pelleting prior to each heating stage. The MgO and SiO ₂ starting materials had been dried at 1000 °C and 1200 °C, respectively, for 12 hr before use. A hydrous Mg ₂ SiO ₄ forsterite sample containing nominally 0.5 wt% H ₂ O was synthesized at 12 GPa and 1200 °C for 1 hr in a 5000-ton Kawai-type double-stage uniaxial split-sphere multi-anvil press. Previous studies reported water
157 158 159 160 161 162 163 164	Sample synthesis and description An anhydrous Mg ₂ SiO ₄ forsterite sample was first synthesized by heat treatment of a mixture of reagent-grade MgO and SiO ₂ , initially at 1300 °C for 20 hr and then at 1500 °C for 24 hr, with thorough grinding/mixing and pelleting prior to each heating stage. The MgO and SiO ₂ starting materials had been dried at 1000 °C and 1200 °C, respectively, for 12 hr before use. A hydrous Mg ₂ SiO ₄ forsterite sample containing nominally 0.5 wt% H ₂ O was synthesized at 12 GPa and 1200 °C for 1 hr in a 5000-ton Kawai-type double-stage uniaxial split-sphere multi-anvil press. Previous studies reported water solubility of 0.55-0.89 wt% in forsterite at about 12 GPa and 1100-1250 °C (Litasov et al. 2007; Smyth et al. 2006).
 157 158 159 160 161 162 163 164 165 	Sample synthesis and description An anhydrous Mg ₂ SiO ₄ forsterite sample was first synthesized by heat treatment of a mixture of reagent-grade MgO and SiO ₂ , initially at 1300 °C for 20 hr and then at 1500 °C for 24 hr, with thorough grinding/mixing and pelleting prior to each heating stage. The MgO and SiO ₂ starting materials had been dried at 1000 °C and 1200 °C, respectively, for 12 hr before use. A hydrous Mg ₂ SiO ₄ forsterite sample containing nominally 0.5 wt% H ₂ O was synthesized at 12 GPa and 1200 °C for 1 hr in a 5000-ton Kawai-type double-stage uniaxial split-sphere multi-anvil press. Previous studies reported water solubility of 0.55-0.89 wt% in forsterite at about 12 GPa and 1100-1250 °C (Litasov et al. 2007; Smyth et al. 2006).
 157 158 159 160 161 162 163 164 165 166 	An anhydrous Mg ₂ SiO ₄ forsterite sample was first synthesized by heat treatment of a mixture of reagent-grade MgO and SiO ₂ , initially at 1300 °C for 20 hr and then at 1500 °C for 24 hr, with thorough grinding/mixing and pelleting prior to each heating stage. The MgO and SiO ₂ starting materials had been dried at 1000 °C and 1200 °C, respectively, for 12 hr before use. A hydrous Mg ₂ SiO ₄ forsterite sample containing nominally 0.5 wt% H ₂ O was synthesized at 12 GPa and 1200 °C for 1 hr in a 5000-ton Kawai-type double-stage uniaxial split-sphere multi-anvil press. Previous studies reported water solubility of 0.55-0.89 wt% in forsterite at about 12 GPa and 1100-1250 °C (Litasov et al. 2007; Smyth et al. 2006). The target water content of 0.5 wt% was chosen so that the sample is under-saturated with water to avoid possible
 157 158 159 160 161 162 163 164 165 166 167 	An anhydrous Mg ₂ SiO ₄ forsterite sample was first synthesized by heat treatment of a mixture of reagent-grade MgO and SiO ₂ , initially at 1300 °C for 20 hr and then at 1500 °C for 24 hr, with thorough grinding/mixing and pelleting prior to each heating stage. The MgO and SiO ₂ starting materials had been dried at 1000 °C and 1200 °C, respectively, for 12 hr before use. A hydrous Mg ₂ SiO ₄ forsterite sample containing nominally 0.5 wt% H ₂ O was synthesized at 12 GPa and 1200 °C for 1 hr in a 5000-ton Kawai-type double-stage uniaxial split-sphere multi-anvil press. Previous studies reported water solubility of 0.55-0.89 wt% in forsterite at about 12 GPa and 1100-1250 °C (Litasov et al. 2007; Smyth et al. 2006). The target water content of 0.5 wt% was chosen so that the sample is under-saturated with water to avoid possible coexisting quenched fluid phases. The starting material was Mg ₂ SiO ₄ forsterite plus a 2Mg(OH) ₂ + SiO ₂ mixture with the target bulk composition. The SiO ₂ starting material is the same as described above, and the Mg(OH) ₂ starting

169	starting mixture was first prepared by thoroughly grinding and mixing the ingredients in an agate mortar and then
170	drying in an oven at 110 °C for ca. 24 hr; this mixture was then weighed and mixed with Mg2SiO4 forsterite and
171	thoroughly ground and mixed again, and finally dried in an oven at 110 °C for > 16 hr before sealed into a Pt capsule
172	(2 mm outer diameter and ~3 mm length). For high-pressure sample synthesis, a Cr-doped MgO octahedral cell
173	assembly of an edge length of 14 mm was used. The Pt capsule was put at the center of the octahedron, and was
174	surrounded by an MgO tube, a tube heater made of hBN plus TiB2 and a ZrO2 sleeve, as described in Kanzaki (2010).
175	The temperature was measured with a $W_{97}Re_3-W_{75}Re_{25}$ thermocouple with an uncertainty within ca 2 ° C. The
176	pressure was estimated from a pressure calibration curve constructed from an in-situ X-ray diffraction study with the
177	same pressure cell (Kanzaki 2010) with an uncertainty less than 1 GPa.
178	The sample was recovered from the capsule under ambient condition after carefully cleaning the exterior of the
179	capsule. The recovered sample was un-sintered and white-colored. It was confirmed to be a nearly pure forsterite
180	sample by micro-Raman, electron microprobe and ²⁹ Si MAS NMR measurements, with minor coexisting
181	clinoenstatite revealed by ²⁹ Si MAS NMR (see below). Both micro-Raman and ¹ H MAS NMR confirmed that the
182	added water was incorporated in the forsterite structure, and the estimated bulk water content (0.45(1) wt%) from
183	quantitative ¹ H MAS NMR spectra is in reasonable agreement with the nominal water content (see below).
184	
185	Electron Microprobe Analysis
186	A small portion of the sample was embedded in epoxy and polished for examination with a JEOL JXA-8530F
187	field-emission electron microprobe (FE-EPMA) at IPM. Back-scattered electron image observation and elemental
188	(Mg, Si) mapping analysis revealed that the sample consisted of fine-grained forsterite with crystallite sizes of a few
189	micrometers. The grain sizes were too small to allow accurate quantitative chemical analysis. No phases other than
190	forsterite were detected with EPMA examination.
191	

192 Raman spectroscopy

193	Unpolarized Raman spectra within the 200-1600 cm ⁻¹ and 2600-3700 cm ⁻¹ regions were acquired on selected
194	grains using an argon-ion laser with a wavelength of 488 nm and a power of 60 mW in a 180° backscattering
195	geometry, similar to that described previously (Xue et al. 2010). The laser beam was focused onto the sample with a
196	$50 \times$ objective lens. Scattered light from the sample was focused onto a pinhole (diameter: 200μ m) before entering an
197	imaging monochromater with a focal length of 500 mm and a grating of 1200 gr/mm, and was detected with a liquid
198	nitrogen-cooled CCD detector. Raman shift was calibrated using the plasma lines of the laser with an accuracy better
199	than 1 cm ⁻¹ . The exposure time was typically 60 s. Only forsterite was detected by Raman spectroscopy.

200

201 NMR spectroscopy

The recovered sample was loaded into an NMR rotor as is (without grinding), with special care in sample/rotor 202 handling (e.g., wearing gloves and carefully cleaning rotor parts and packing tools) to avoid contamination. ¹H and ²⁹Si 203 204 NMR spectra were obtained at room temperature at a resonance frequency of 400.4 and 79.5 MHz, respectively, using 205 a Varian 9.4 tesla Unity-Inova NMR spectrometer and a 1.6 mm T3 MAS NMR probe. The chemical shifts for both 206 nuclei were referenced to tetramethylsilane (TMS), and were reproducible to better than about ± 0.1 ppm. ¹H static and MAS NMR spectra (at 10-30 kHz spinning rates) were obtained on the hydrous forsterite sample 207 (~14 mg) with a spectral width of 1 MHz and several recycle delay times up to 60 s (> $5 \times T_1(^1H)$), where T_1 is the 208 209 spin-lattice relaxation time constant). The ¹H T₁ was measured with the saturation-recovery method, and was found to be 10.6(6) s for the main peaks (see below). The DEPTH sequence that consists of three back-to-back pulses ($\pi/2-\pi-\pi$) 210 with a 16-step phase cycle (Cory and Ritchey, 1988) was used to suppress the probe background from outside the RF 211 coil. The residual small background signal from the probe/rotor was subtracted from the reported spectra, by acquiring 212 213 the corresponding spectra for the empty rotor. The bulk water content of the hydrous forsterite sample was estimated from the total intensities of the fully relaxed ¹H MAS NMR spectra (obtained with a recycle delay time of 60 s), using 214 adamantane (C₁₀H₁₆) as an external intensity standard. Our previous study on hydrous aluminosilicate glasses 215 (containing about 0.5-1 wt% H₂O) confirmed that water contents estimated in this way agree well (within about 0.1 216

217 wt%) with those determined by infrared spectroscopy (Malfait and Xue 2010).

218	Although NMR is a bulk technique, it is possible to utilize various two-dimensional (2D) single- and double-
219	resonance techniques to gain information about the proximities of different atoms (within the same or different phases),
220	which place further constraints on peak assignment. In this study, we applied two related 2D ¹ H MAS NMR
221	experiments. The first is 2D ¹ H rotor-synchronized nuclear Overhauser effect spectroscopy (NOESY) experiment
222	using the standard three-pulse ($\pi/2 - t_1 - \pi/2 - t_{mix} - \pi/2$ - acquire) sequence, similar to that described previously (Xue
223	and Kanzaki 2007a; Xue et al. 2008). It probes the transfer of z magnetization between dipolar-coupled spins via spin
224	diffusion during the mixing period (t_{mix}) (Brown 2007). Whereas protons that are isolated from one another (e.g., those
225	belonging to different phases) yield only diagonal peaks (peaks with the same frequency in both dimensions), a pair of
226	dissimilar protons that are dipolar-coupled (due to spatial proximity in the same phase) can produce both diagonal and
227	cross peaks (peaks that are located at different frequencies in the two dimensions). The intensity ratio between the
228	cross peak and diagonal peak increases with mixing time at a rate that depends on the ¹ H- ¹ H distance, and ultimately
229	levels off as spin diffusion approaches an equilibrium state. 2D rotor-synchronized ¹ H NOESY MAS NMR spectra
230	were acquired at a spinning rate of 20 kHz, a recycle delay time of 15 s (with one steady-state point acquired) and
231	mixing times (t_{mix}) of 2 µs and 200 ms. Spectral widths in both dimensions were set to the rotor frequency. Sixteen
232	transients were averaged for each of $64-160 t_1$ increments. Even $160 t_1$ increments were insufficient to allow complete
233	decay of the signal for the narrowest peak observed (near 7.3 ppm), but this does not affect the overall conclusion.
234	As will be shown later on, some of the ¹ H MAS NMR peaks are very broad. In order to ascertain whether the
235	broad peak width is due to structure disorder or strong 1 H- 1 H dipolar couplings (or both), we also performed 2D 1 H
236	CRAMPS-MAS NMR experiment, similar to that described previously (Xue and Kanzaki 2007b; Xue et al. 2010).
237	Like the NOESY experiment, the pulse sequence consists of three-pulses ($\pi/2 - t_1 - \pi/2 - t_{mix} - \pi/2$ - acquire), except that
238	during the t_1 evolution period, frequency-switched Lee-Goldburg (FSLG) decoupling was applied to eliminate ${}^{1}H{}^{-1}H$
239	dipolar coupling (Bielecki et al. 1989; Vinogradov et al. 1999). The 2D CRAMPS-MAS NMR spectra were obtained
240	on a smaller sample (6.5 mg) located at the central half portion (~4 mm length) of the rotor to improve RF field

241	homogeneity. A spinning rate of 25 kHz, a recycle delay time of 15 s, and mixing times (t_{mix}) of 2 μ s and 200 ms were
242	used. Thirty-two scans were averaged for each t_1 time increment of 105 μ s (corresponding to an un-scaled F_1 spectral
243	width of 9524 Hz). An RF field of ~ 110 kHz and an offset corresponding to the Lee-Goldburg (LG) condition were
244	applied during FSLG decoupling. The scaling factor for the CRAMPS dimension was found to be 0.58 from spectra
245	acquired with three different offsets (differing by 0 and \pm 1 kHz). The corrected chemical shift scale for the CRAMPS
246	dimension is used for the reported spectra.
247	Single-pulse ²⁹ Si MAS NMR spectra were obtained using a 1 μ s-pulse (45° flip angle) and a recycle delay time of
248	2000 s at a spinning rate of 20 kHz, with 66 scans averaged. ¹ H- ²⁹ Si CP-MAS NMR spectra were acquired at a
249	spinning rate of 20 kHz under the MAS-modified Hartman-Hahn condition (+1 spinning sideband for the ¹ H channel),
250	with an RF field of \sim 50 kHz for the ²⁹ Si channel and a ramped power (\sim 8 kHz RF field range) for the ¹ H channel. Spin
251	temperature inversion was incorporated in the phase cycle to eliminate direct polarization. A recycle delay of 15 s and
252	a range of contact times of 2-20 ms were used. 7260 to 17920 scans were averaged for the reported spectra.
253	
254	First-principles calculation
255	First-principles density functional theory calculations of NMR parameters were performed for periodic structures
256	with the Gauge-Including Projector-Augmented Wave (GIPAW) method (Pickard and Mauri 2001) using the
257	Quantum-ESPRESSO (QE) package (version 5.3.0) (Giannozzi et al. 2009), similar to our recent study on
258	$(Mg,Zn)_2SiO_4$ olivine solid solution (Kanzaki and Xue 2016). A number of model structures of $2 \times 1 \times 2$ supercell for
259	Mg ₂ SiO ₄ forsterite (containing 16 formulae and 112 atoms, relative to the space group <i>Pbnm</i>) with one Si replaced by
260	four H atoms or one Mg in an M1 or M2 site replaced by two H atoms were studied. In order to provide chemical shift
261	reference and to double-check the reproducibility of experimental NMR data, similar calculations were also performed

- 262 on several other phases in the MgO-SiO₂-H₂O system, including H-free Mg₂SiO₄ forsterite and its two high-pressure
- 263 polymorphs (wadsleyite and ringwoodite), MgSiO₃ protoenstatite, orthoenstatite and low-pressure clinoenstatite,
- 264 phase A (Mg₇Si₂O₈(OH)₆), phase B (Mg₁₂Si₄O₁₉(OH)₂), superhydrous B (Mg₁₀Si₃O₁₄(OH)₄) and brucite (Mg(OH)₂).

265	The structures (both cell parameters and atomic coordinates) were first relaxed at 0 GPa with the PWscf code of
266	the QE package, before NMR calculation using the GIPAW method implemented in the QE-GIPAW package
267	(version 5.3.0). In addition to producing more reliable NMR parameters, the full relaxation of the structures (both cell
268	parameters and atomic coordinates) makes it possible to directly compare with experimentally determined crystal
269	structural parameters, which may provide additional constraints on the validity of different models. Both structural
270	relaxation and NMR parameter calculations were performed using the PBEsol functional within the generalized
271	gradient approximation (GGA) for the exchange-correlation energy (Perdew et al. 1996; Perdew et al. 2008). The
272	PAW-pseudopotentials from the PSlibary ((Dal Corso 2014)) (Mg.pbesol-n-kjpaw_psl.0.3.0.UPF,
273	Si.pbesol-n-kjpaw_psl.0.1.UPF, O.pbesol-n-kjpaw_psl.0.1.UPF, H.pbesol-kjpaw_psl.0.1.UPF) were adopted. A
274	Monkhorst-Pack grid of $2 \times 2 \times 2$ for the Brillouin zone sampling was used for the $2 \times 1 \times 2$ supercell of forsterite, and
275	comparable or finer grid sizes (with respect to the cell dimension, e.g., $4 \times 2 \times 4$ grid for forsterite of a single unit cell)
276	were used for the other phases. A kinetic energy cutoff of 50 Ry and a charge density cutoff of 250 Ry were used for
277	all the reported data. To test whether these cutoff values are sufficient, additional test calculations on forsterite and
278	phase A were also performed with a larger kinetic energy cutoff of 100 Ry and a charge density cutoff of 500 Ry
279	during both structural relaxation and NMR calculations. The resultant total energy per atom and ²⁹ Si and ¹ H isotropic
280	chemical shielding values differ from those calculated with a kinetic energy cutoff of 50 Ry and a charge density
281	cutoff of 250 Ry by < 1 mRy and < 0.1 ppm, respectively; the corresponding relative differences between different
282	structures are even smaller (by about one order). Therefore, the kinetic energy cutoff of 50 Ry and charge density
283	cutoff of 250 Ry are considered sufficient.
284	The relaxed Mg ₂ SiO ₄ forsterite structure at 0 GPa has the following cell parameters: $a = 4.7613 \text{ A}^3$, $b = 10.2037$
285	A^3 , $c = 5.9867 A^3$. The unit-cell volume is 290.85 A^3 , only slightly larger (by 0.26%) than that determined by
286	single-crystal X-ray diffraction under ambient condition (290.107(17) A ³ , Smyth et al. (2006), also see Table 1). The
287	calculated unit-cell volumes for the other silicate phases (wadsleyite, ringwoodite, orthoenstatite, low-pressure
288	clinoenstatite, phase A, phase B and superhydrous B) are also very close (within about $\pm 0.8\%$ or better) to the

289	respective experimental values under ambient condition. We noticed by comparing calculations with different
290	pseudopotentials that good reproducibility of experimental cell parameters is important in order to achieve good
291	reproducibility of experimental NMR parameters.
292	The reported ¹ H and ²⁹ Si chemical shifts were calculated, respectively, using brucite (0.0 ppm with respective to
293	tetramethylsilane (TMS), Xue and Kanzaki (2009)) and Mg2SiO4 forsterite (-61.8 ppm with respective to
294	tetramethylsilane (TMS): data from this study, also see Stebbins 1995; Stebbins et al. 2009) as a secondary chemical
295	shift standard. The calculated isotropic ²⁹ Si chemical shifts of tetrahedral Si and ¹ H chemical shifts for the model
296	minerals are, respectively, within about ± 2 ppm and ± 1 ppm (or better) of the corresponding experimental data (see
297	Table 1). This is broadly consistent with previous reports (generally within a few ppm) for various silicate and
298	phosphate phases (e.g., Ashbrook et al. 2007a; Ashbrook et al. 2007b; Charpentier 2011; Kanzaki and Xue 2012). It
299	should be noted that the agreement in isotropic chemical shift differences is in general better between similar local
300	structures. For example, between the two Si sites of phase A, Si2 site has a similar local structure to forsterite, with the
301	SiO ₄ tetrahedron sharing both corners and edges with MgO ₆ octahedra, whereas Si1 site shares only tetrahedral
302	corners with MgO ₆ octahedra (Horiuchi et al. 1979; Kanzaki et al. 1992). When forsterite is chosen as a secondary ²⁹ Si
303	chemical shift reference, the calculated isotropic chemical shift for the Si2 site of phase A (-64.0 ppm) is within 0.1
304	ppm of the corresponding experimental value (-63.9 ppm, Kanzaki et al. (1992)), whereas that of the Si1 site (-68.3
305	ppm) differs from the experimental value (-70.6 ppm) by a larger amount (~2 ppm). Agreements for octahedral Si
306	(e.g., Si1 sites in phase B and superhydrous B) are somewhat worse. Therefore, it is useful to choose a model structure
307	with local structures similar to those of the target phases as chemical shift reference. Forsterite and brucite have been
308	chosen for this reason. The calculated ¹ H and ²⁹ Si chemical shifts for the OH-bearing forsterite models are expected to
309	be reliable within about ± 1 ppm or better, considering the lack of drastic variations in local structures.
310	In addition, to evaluate the relative stabilities of the different OH-bearing model structures ($2 \times 1 \times 2$ supercell) for
311	Mg_2SiO_4 forsterite under high pressure, which is more relevant to the sample synthesis condition, we also performed
312	additional DFT calculations to obtain the fully relaxed structure and enthalpy at a range of pressures from 0 to 12 GPa

313 (in step of 2 GPa). Enthalpy was calculated as the sum of internal energy (E) and a pressure (P) \times volume (V) term.

314

315 Simulation of NMR spectra from first-principles calculation results

316 When protons are clustered (strongly dipolar coupled), both ¹H static and MAS NMR spectra are affected not only by ¹H isotropic chemical shift, but also by the combined effect of ¹H homonuclear dipolar couplings (which are 317 dependent on the proton configurations) and chemical shift anisotropy (Maricq and Waugh 1979; Phillips et al. 1997; 318 Wu and Wasylishen 1993; Xue et al. 2008). In order to provide more direct comparison of the geometries and NMR 319 parameters from first-principles calculation with the experimental ¹H NMR spectra, we also simulated ¹H static and 320 MAS NMR powder spectra (at a ¹H resonance frequency of 400 MHz and spinning rates of 10-30 kHz) for the 321 calculated model structures and NMR chemical shielding tensors using the SIMPSON program (version 4.1.1) (Bak 322 et al. 2000). The ¹H-¹H dipolar couplings and the complete ¹H chemical shift tensors for all protons in the supercell 323 were included in the simulation. For the simulation of ¹H static NMR powder spectra, the direct method and ZCW 324 scheme (Cheng et al. 1973; Conroy 1967; Zaremba 1966)(using a large crystal file zcw28656.cry from the SIMPSON 325 326 website: http://nmr.au.dk/software/simpson/) for powder averaging of α and β angles were adopted. For ¹H MAS NMR powder spectra, the γ -compute method (Hohwy et al. 1999) and REPULSION scheme (Bak and Nielsen 1997) 327 (crystal file rep168.cry in the SIMPSON program) were used. A Lorentzian line broadening function of 400 Hz was 328 applied to all the static NMR spectra and the MAS NMR spectra of the (4H)_{Si} models; whereas a smaller Lorentzian 329 330 line broadening function of 50 Hz was applied to the MAS NMR spectra of the (2H)_{Mg} models because of much 331 narrower line widths. 332

333

Results

334 Raman spectra

Unpolarized Raman spectra were taken on a number of grains for the hydrous forsterite sample. All the spectra within the 200-1600 cm^{-1} region contain strong bands near 857 and 825 cm^{-1} , and weaker bands near 966, 920, 881,

337	608, 589, 546, 434, 374, 339, 331 and 305 cm ⁻¹ (not shown), consistent with those known for forsterite (e.g., Piriou
338	and McMillan 1983). Note that the relative intensities vary between grains as a result of orientational dependency.
339	Raman spectra within the O-H stretching region contain relative sharp bands near 3612, 3579 and 3567 cm ⁻¹ and a
340	broader band near 3547 cm ⁻¹ (see Fig. 1 for an example), similar to previously reported Raman spectra for hydrous
341	forsterite and Fe-bearing olivine synthesized at > 3 GPa (Bolfan-Casanova et al. 2014; Hushur et al. 2009; Manghnani
342	et al. 2013). Peaks at similar positions have also been reported for infrared spectra of hydrous forsterite and Fe-bearing
343	olivine synthesized at high pressure in numerous previous studies, and are generally agreed upon to be due to OH
344	defects in the olivine structure (e.g., Bali et al. 2008; Berry et al. 2005; Kohlstedt et al. 1996; Kovacs et al. 2010;
345	Lemaire et al. 2004; Mosenfelder et al. 2006; Otsuka and Karato 2011; Padrón-Navarta et al. 2014; Smyth et al. 2006).
346	This suggests that water was indeed incorporated in the structure of forsterite in the present study.
347	
348	¹ H static and MAS NMR spectra
349	Figure 2 shows the fully relaxed ¹ H static and MAS NMR spectra obtained at spinning rates of 10, 20 and 30 kHz
350	(all with a recycle delay time of 60 s). The bulk water content was estimated from the total intensities of the ¹ H MAS
351	NMR spectra, and was found to be 0.45(1) wt%, in reasonable agreement with the nominal added water content (0.5
352	wt%). The quoted uncertainty represents the range of estimated values from NMR spectra obtained at different
353	spinning rates.
354	The ¹ H static NMR spectrum contains a narrower component on top of a broad component that span a chemical
355	shift range of about 200 ppm (~80 kHz). The ¹ H MAS NMR spectra also revealed two main components, a broader
356	peak (full-width-at-half-maximum (FWHM) of 8.7 ppm and centered near 2.4 ppm at 30 kHz MAS) that has
357	extensive spinning sidebands with asymmetric peak shapes and a narrower peak (FWHM of 1.1 ppm and centered at
358	
	1.2 ppm at 30 kHz MAS, contributing to about 1/4 of the total intensity) with much less prominent spinning sidebands.
359	1.2 ppm at 30 kHz MAS, contributing to about 1/4 of the total intensity) with much less prominent spinning sidebands. The former most likely corresponds to the broad component and the latter to the narrower component in the ¹ H static

361	(FWHM of 0.14 ppm at 30 kHz MAS, contributing to $< 0.1\%$ of the total intensity) (see Figs. 2-3, Table 2). All these
362	components have a relatively long and similar 1 H spin-lattice relaxation time constant (T ₁) of 10.6(6) s. There is also a
363	very weak component centered near 5 ppm that has a significantly shorter T_1 than the other peaks. This is clear when
364	the ¹ H MAS NMR spectra taken with recycle delay times of 60 s and 3 s are compared (see Fig. 3): All the
365	components except the small component near 5 ppm increase in intensity with increasing recycle delay time from 3 s
366	to 60 s, whereas the extra component near 5 ppm has similar intensities, so that the difference spectrum of the two is
367	free from such a component. It is known that water species absorbed on grain boundaries and in hydrous phases often
368	have shorter ${}^{1}H T_{1}$ than those in nominally anhydrous phases (Xue et al. 2006), and molecular water usually exhibits a
369	peak near 4.8 ppm (Xue and Kanzaki 2004). Thus, it is highly likely that the minor extra component near 5 ppm is due
370	to water present in grain boundaries. The contribution of this component to the total intensity is negligible. For the
371	narrow component near 7.3 ppm, the narrowness of the peak and the relatively long ${}^{1}HT_{1}$ suggest that it likely belongs
372	to a crystalline phase. Its peak position does not agree with chemical shifts for known hydrous phases in the
373	MgO-SiO ₂ -H ₂ O system. Judging from its similar 1 H T ₁ to the main peaks, it is likely to be part of the forsterite
374	structure. Kohn (1996; 2006) have also reported ¹ H MAS NMR spectra obtained using a 200 MHz NMR
375	spectrometer for two forsterite samples synthesized at 1.5 and 2.1 GPa under water-saturated condition. The reported
376	spectra contain peaks near 1 ppm and 6.7 ppm (plus some additional narrow and broad peaks). Although it could not
377	be excluded and most likely that these spectra include contributions from quenched hydrous phases and/or water in
378	grain boundaries, the peak near 6.7 ppm and (part of) the peak near 1 ppm may correspond to the peaks near 7.3 and
379	1.2 ppm observed in the present study.
380	The broad component in the ¹ H static and MAS NMR spectra of hydrous forsterite in Figure 2 resemble those of
381	synthetic katoite (Ca ₃ Al ₂ (H ₄ O ₄) ₃) (Xue and Geiger, unpublished data; also see Cho and Rossman 1993; Cohen-Addad
382	et al. 1964 for ¹ H static NMR spectra). The broad component in the ¹ H MAS NMR spectra also resemble that reported
383	for a natural grossular garnet sample containing $3.6 \text{ wt}\% \text{ H}_2\text{O}$ (Yesinowski et al. 1988). The grossular (Ca ₃ Al ₂ (SiO ₄) ₃)
384	- katoite (Ca ₃ Al ₂ (H ₄ O ₄) ₃) solid solution series is well known to have a garnet structure, with each Si in the tetrahedral

385	site of grossular replaced by four hydrogen ions that are located near the face of the vacant tetrahedron toward the
386	katoite composition (Lager et al. 1987; Lager et al. 1989). The close H-H distances among the four protons are largely
387	responsible for the strong ¹ H - ¹ H dipolar couplings and thus broad ¹ H static and MAS peak widths. There is no
388	corresponding narrow component, though, in the ¹ H static and MAS NMR spectra of katoite.
389	2D 1 H NOESY NMR spectrum obtained at a spinning rate of 20 kHz and mixing times of 2 μ s and 200 ms for the
390	hydrous forsterite sample are shown in Figure 4. At a short mixing time of 2 µs, most of the intensities are along the
391	diagonal (though broad for the very broad component near 2.4 ppm), whereas at a mixing time of 200 ms, cross peaks
392	between the two main components are clearly developed. The increase in relative intensity for the cross peaks with
393	mixing time confirms that the two components represent protons in close spatial proximity and thus must belong to the
394	same phase. As a matter of fact, at a mixing time of 200 ms, spin diffusion has nearly reached equilibrium, as is clear
395	from the similar peak shape for F2 cross sections at different positions of the F1 dimension (upper and middle cross
396	sections in Fig. 4 at F1 peak positions with little and significant narrow component contribution, respectively). There
397	are also a very weak and narrow peak near 7.3 ppm (lower cross sections in Fig. 4) and a weak and somewhat broader
398	peak near 5 ppm, which do not show appreciable cross peaks with the two main peaks even at a mixing time of 200
399	ms, suggesting that these peaks represent protons more remote from the other protons. As described above, the
400	component near 5 ppm has a shorter ${}^{1}HT_{1}$ and is likely due to a small amount of protons (molecular water) from grain
401	boundary materials; the narrow peak near 7.3 ppm has a 1 H T ₁ similar to those of the main components and could be
402	part of the forsterite structure, but more remote from the other protons.
403	2D 1 H CRAMPS-MAS NMR spectrum was also obtained at a spinning rate of 25 kHz with mixing times of 2 μ s
404	and 200 ms (Fig. 5). For the spectrum with a mixing time of 2 μ s, the peak width in the CRAMPS dimension for the
405	broad MAS component near 2.4 ppm is about 1 ppm, comparable to that of the narrower MAS component near 1.2
406	ppm (see the upper and middle cross sections in Fig. 5a). This suggests that the width of the broad peak in the MAS
407	spectra is largely due to strong ¹ H- ¹ H homonuclear dipolar couplings. Similar to the 2D NOESY spectra, at a mixing
408	time of 200 ms, the two main components have nearly reached equilibrium as is clear from similar peak shapes for the

409	corresponding cross sections (upper and middle cross sections in Fig. 5b), whereas weaker peaks near 7.3 ppm and 5
410	ppm are distributed only along the diagonal.
411	Thus, the 1D and 2D ¹ H NMR data revealed that there are two main populations of protons in the hydrous
412	forsterite structure, one experiencing strong ¹ H- ¹ H homonuclear dipolar couplings and contributing to a broad peak
413	near 2.4 ppm, and another with weaker dipolar couplings and contributing to a narrower peak near 1.2 ppm
414	(accounting for about 1/4 of the total intensity) in the MAS NMR spectrum at 30 kHz. In addition, there is also a very
415	weak, narrow MAS NMR peak near 7.3 ppm (contributing to $< 0.1\%$ of the total intensity), most likely from more
416	remote protons in the forsterite structure.

- 417
- 418

²⁹Si MAS and ¹H-²⁹Si CP-MAS NMR spectra

The ²⁹Si MAS NMR spectrum obtained at a spinning rate of 20 kHz is shown in Figure 6. The spectrum is 419

420 dominated by a narrow peak near -61.7 ppm with a FWHM of 0.18 ppm, attributable to forsterite (Stebbins 1995).

There are also two very weak peaks near -80.6 and -83.2 ppm (each with an intensity of about 5% of the main peak), 421

attributable to a small amount of coexisting low-pressure clinoenstatite (Kanzaki et al. 1992, also see Table 1). 422

¹H-²⁹Si CP-MAS NMR spectra acquired at a spinning rate of 20 kHz and contact times of 2, 4, 8 and 20 ms are 423

compared with the single-pulse ²⁹Si MAS NMR spectrum in Figure 7. Despite the large number of scans (7260-17920, 424

425 corresponding to about 30 to 75 hr of acquisition), the overall signal/noise ratios are relatively low, and the signal

426 intensities for all four contact times are not drastically different. Nevertheless, it is clear that compared to the ²⁹Si

single-pulse MAS spectrum that contains only a sharp peak near -61.7 ppm, additional peaks are also present in 427

the1H-29Si CP-MAS NMR spectra: The latter includes a sharp, well resolved peak at a less negative chemical shift 428

429 (-60.9 ppm) and broader component(s) that encompass the chemical shift range of similar and more negative values

than the peak in the single-pulse MAS spectrum for forsterite. All four ¹H-²⁹Si CP-MAS NMR spectra can be 430

reasonably simulated by three mixed Gaussian-Lorentzian components with a common set of parameters: chemical 431

shift values of -60.9, -61.7 and -62.1 ppm and FWHM of 0.17, 0.42 and 0.45 ppm, respectively (see Fig. 8 and Table 432

433	2). The component near -61.7 ppm is close to the peak position for the single-pulse MAS spectrum, but is broader. The
434	higher-frequency peak near -60.9 ppm and the lower-frequency component near -62.1 ppm are most likely due to Si
435	sites in hydrous forsterite with local structures disturbed by the presence of OH defects.
436	
437	First-principles calculation results
438	Geometry and energy of optimized structures. To gain better insights into the locations of protons in the
439	forsterite structure, we performed first-principles calculations on a number of model forsterite structures ($2 \times 1 \times 2$
440	supercell) with one Si atom replaced by four H atoms ((4H)si models), or one Mg in an M1 or M2 site replaced by two
441	H atoms ((2H) _{M1} and (2H) _{M2} models) (see Table 3 and Figs. 9 and 10). Examples of the relaxed structures at 0 GPa
442	with the lowest energies for both types of substitutions are shown in Figure 9.
443	Before describing the forsterite structures containing OH defects, it is worthwhile to remind the reader of the
444	different types of oxygen and cation sites in the ideal olivine structure. There are three types of oxygen sites, O1, O2
445	and O3, with O1 and O2 located on a mirror plane, and O3 on a general position. Each oxygen is bonded to one Si and
446	three M cations. Each Si, which is located on a mirror plane, is bonded to two O3's and to one O1 and one O2.
447	Between the two types of M sites, M1 is located on an inversion center, and M2 on a mirror plane.
448	For the 4H for 1Si substitution ((4H) _{Si} model), several previous first-principles calculation studies have reported the
449	energetics and geometries. Earlier studies generally reported optimized structures with the H on O1 migrated to the
450	exterior of the tetrahedron and the other three H ions staying close to tetrahedral edges or faces (Brodholt and Refson
451	2000; Verma and Karki 2009; Walker et al. 2007). More recently studies (Balan et al. 2011; Umemoto et al. 2011)
452	found that two geometries with one hydrogen bonded to O2 or O3 pointing away from the tetrahedral center give
453	lower energies. We have systematically tested several starting geometries for the four H positions, including those with
454	all four H atoms within the tetrahedron, and with one, two or three of the H atoms pointing away from the center of the
455	tetrahedron. Starting geometries with all four H atoms within the tetrahedron or with one H on O1 pointing away from
456	the tetrahedral center relaxed to (more than one) configurations in which three of the four H atoms (bonded to O2 and

457	O3's) are close to the tetrahedral edges or faces, and one (bonded to O1) is pointing out to the side of the tetrahedron,
458	similar to those reported previously (Balan et al. 2011; Brodholt and Refson 2000; Umemoto et al. 2011; Verma and
459	Karki 2009; Walker et al. 2007). Among these geometries, the one with the lowest energy (model 6) is shown in
460	Figure 10. Geometries with one H bonded to O2 (model 1) or O3 (model 2), with two H atoms bonded to one O2 and
461	one O3 (model 3) or to two O3's (model 4), and with three H atoms bonded to one O2 and two O3's (model 5),
462	pointing away from the tetrahedral center were all found to be stable geometries. Geometries with one and three H
463	atoms pointing away from the tetrahedral center are similar to those reported previously (Balan et al. 2011; Umemoto
464	et al. 2011); those with two H atoms pointing away from the tetrahedral center were evaluated in this study for the first
465	time. The relaxed structures at 0 GPa are shown in Figures 9 and 10, and the enthalpies of the relaxed structures at 0
466	and 12 GPa are compared in Table 3. At 0 GPa, the two structures with one H (bonded to either O2 or O3) pointing
467	away from the center of the vacant tetrahedron (models 1 and 2) give similar and the lowest energies, consistent with
468	those reported by Balan et al. (2011) and Umemoto et al. (2011). The geometry with the next-lowest energy (higher by
469	8.5 kJ/mol, 6.5 mRy, 0.088 eV than the above two) has two H atoms bonded to O2 and one of the two O3's pointing
470	away from the center of the tetrahedron (model 3). The other geometries have even higher energies (by 20-36 kJ/mol,
471	15-28 mRy, 0.21-0.38 eV than the lowest-energy geometries). Thus, consistent with the calculation results of Balan et
472	al. (2011) and Umemoto et al. (2011), the most likely geometries at 0 GPa are those with one H on O2 or O3 pointing
473	away from the tetrahedral center (models 1 and 2 in Fig. 10). At 12 GPa, models 1 and 2 remain to be the
474	lowest-enthalpy configurations (with model 2 being 3.6 kJ/mol higher), and models 3 to 6 have 19-63 kJ/mol higher
475	enthalpies. Models 3 to 5 that contain two or three H atoms on O2 and/or O3 pointing away from the vacant
476	tetrahedral center, in particular model 5 with three such H atoms, exhibit significantly larger enthalpy differences (from
477	the lowest enthalpy of model 1) at high pressure as compared to 0 GPa, largely because of the PV term as a result of
478	their larger volumes (see Table 3).
479	Therefore, the relative enthalpies at both 0 GPa and 12 GPa (and in between) suggest that the most possible

 $480 \qquad \text{configurations for the 4H for 1Si substitution} \, ((4H)_{Si}) \, \text{are models 1 and 2 with one H ion on O2 or O3 pointing away}$

481	from the tetrahedral center. This is in contrast to the well-known hydrogrossular $(Ca_3Al_2(SiO_4)_3 - Ca_3Al_2(H_4O_4)_3)$
482	substitution, in which all four H ions are known to be located close to the faces of the vacant tetrahedron and thus are
483	relatively close to one another (Lager et al. 1987; Lager et al. 1989). The difference is understandable, because in the
484	forsterite structure, interstitial octahedral sites adjacent to tetrahedral sites are available to accommodate the H ion(s) on
485	O2 or O3 pointing away from the tetrahedral center. Thus, such H ions, although substituting for Si in terms of charge
486	balance, are better regarded as residing in interstitial octahedral sites, rather than tetrahedral vacancies. There are two
487	types of interstitial octahedral sites in the olivine structure, I1 on an inversion center, and I2 on a mirror plane and
488	alternating with M2 sites along c direction (Walker et al. 2003). For all the (4H) _{si} models examined in this study, the H
489	ions on O2 or O3 pointing away from the tetrahedral center are located inside an interstitial site I2 (see Fig. 11), in
490	contrary to the claim by Umemoto et al. (2011). As will be discussed below, the presence of hydrogen ion(s) away
491	from the tetrahedral center has important consequence in terms of interpretations of ¹ H NMR spectra, because such
492	protons are more remote from other protons (with inter-proton distances > 3 Å) and thus experience weaker ${}^{1}H^{-1}H$
493	homonuclear dipolar couplings, compared to protons that are clustered in the vicinity of the vacant tetrahedron (near
494	tetrahedral edges with inter-proton distances of 1.80-1.93 Å for models 1 and 2). The two populations of protons with
495	stronger and weaker homonuclear dipolar couplings observed by ¹ H NMR for hydrous forsterite may be explained by
496	the simulated configurations of 4H for 1Si substitution models, with the protons of weaker ¹ H homonuclear dipolar
497	couplings corresponding to those pointing away from the vacant tetrahedral center.
498	For both of the models of 2H for 1Mg substitution in an M1 or M2 site, we have also searched for various
499	geometries. Similar to previous reports (Balan et al. 2011; Braithwaite et al. 2003; Brodholt and Refson 2000;
500	Umemoto et al. 2011; Verma and Karki 2009; Walker et al. 2007), we found that the lowest-energy geometry for 2H
501	for 1Mg substitution in an M1 site ((2H) _{M1} model 1) has two H atoms that are related by inversion center and each
502	bonded to an O2 and hydrogen-bonded with an O1 (close to the O1-O2 octahedral edge), with O2-H, H…O1 and
503	O2-H…O1 distances of 1.013, 1.813 and 2.765 Å, respectively, and O2-H…O1 angle of 155.1° (Fig. 9b). The
504	lowest-energy geometry for 2H for 1Mg substitution in an M2 site ((2H) _{M2} model 1) has each H bonded to a O3 and

505	hydrogen-bonded with another O3 (close to the O3-O3 octahedral edges), with H1 forming stronger hydrogen bond
506	(O3-H1, H1…O3' and O3-H1…O3' distances of 1.011, 1.926 and 2.832 Å, and O3-H1…O3' angle of 147.6°) than
507	H2 (O3-H2, H2…O3' and O3-H2…O3' distances of 0.991, 2.149 and 2.902 Å, and O3-H2…O3' angle of 131.5°).
508	The lowest-energy $(2H)_{M1}$ structure (model 1) is 63 and 79 kJ/mol lower in energy than the lowest-energy $(2H)_{M2}$
509	structure (model 1) at 0 GPa and 12 GPa, respectively (see Table 3), suggesting that if two H ions substitute for an Mg,
510	the most likely site is M1. This is again consistent with conclusions from previous theoretical calculations at 0 GPa
511	(Braithwaite et al. 2003; Brodholt and Refson 2000; Umemoto et al. 2011).
512	It is worth commenting on the hydrogen bonding distances in the $(4H)_{Si}$ and $(2H)_{Mg}$ models. Because tetrahedral
513	edges are shorter than M1 and M2 octahedral edges in defect-free olivine, it may be intuitive to think that hydrogen
514	ions substituting for Si experience stronger hydrogen bonding than those substituting for Mg. As a matter of fact, such
515	intuition led some authors to assign infrared O-H stretching bands with high frequencies (> 3450 cm ⁻¹) to hydrogen
516	substituting for Mg, rather than Si (Hushur et al. 2009; Kudoh et al. 2006; Manghnani et al. 2013; Smyth et al. 2006).
517	However, Umemoto et al. (2011) pointed out from first-principles calculation for forsterite that hydrated tetrahedral
518	vacancies in fact have longer O-O tetrahedral edge lengths than those of occupied Si tetrahedra, and the order in O-O
519	edge length between a tetrahedral and an octahedral site is reversed for both unhydrated and hydrated vacancies due to
520	local relaxation around the vacancies. Blanchard et al. (2009) also noted the importance of local structure relaxation
521	around OH defects from first-principles calculation for Mg_2SiO_4 ringwoodite. We also observed similar trend for
522	forsterite in our calculation, but would like to note also the important role of strong hydrogen bonding interaction itself
523	in locally modifying the O-O edge length. For example, for the hydrated vacant tetrahedra in the two lowest-energy
524	(4H) _{Si} models 1 and 2, all the O-O tetrahedral edge lengths (including those with and without an intervening hydrogen,
525	e.g., 2.943-3.118 Å for O1-O2 and O1-O3 edges) are significantly lengthened as compared to those of defect-free
526	forsterite (2.763-2.773 Å for O1-O2 and O1-O3 edges) and occupied Si tetrahedra in the same model structures.
527	Hydrogen bonding is insignificant or weak for all these OH groups. On the other hand, for the hydrated vacant M1
528	octahedron in the lowest-energy (2H) _{M1} model, all the O-O octahedral edges without an intervening hydrogen are

529	lengthened as compared to defect-free forsterite, whereas the strongly hydrogen bonded O2-H…O1 distance (2.765
530	Å) is significantly shorter compared to the O2-O1 edge length (3.026 Å) of defect-free forsterite and those of M1 sites
531	occupied by Mg in the same model structure. The hydrogen bonding O-H…O distance thus does not simply reflect the
532	O-O edge length of the defect-free structure or that of the relaxed vacancy, but is in fact largely affected by the
533	hydrogen bonding interaction itself, which in turn is related to the local bonding environment of the OH group. Due to
534	the isolated nature of SiO_4 tetrahedra in olivine, each OH associated with the $(4H)_{Si}$ defects is bonded only to three Mg
535	cations, but not to any Si; whereas each OH associated with the $(2H)_{Mg}$ defects is bonded to one Si and two Mg cations
536	The contrast in hydrogen bonding strength between the two types of OH defects is in accord with the known trend that
537	OH groups only bonded to metal cations (e.g., Mg, Ca) tend to form weak or no hydrogen bonding, whereas those
538	bonded to a cation of high field strength (e.g., Si, P, S) tend to form moderate to strong hydrogen bonding, reflecting
539	the difference in oxygen bond valence (Xue and Kanzaki 2004; Xue and Kanzaki 2009). Therefore, it would be
540	misleading to use the average O-O edge lengths (or those of the defect-free crystal structure) determined by diffraction
541	methods to infer the location of hydrogen in a nominally anhydrous mineral, because of local structural relaxation
542	associated with the hydrogen bonding interaction as well as with cation vacancies. Instead, qualitative trend in
543	hydrogen-bond forming tendency for OH groups in different bonding environments (bonded to cations of different
544	field strength) could be useful in guiding interpretation of spectroscopic features that are closely related to
545	hydrogen-bonding, such as ¹ H chemical shift and O-H stretching frequency.
546	The calculated unit cell parameters for all the models at 0 GPa are compared with experimental data reported for
547	anhydrous and hydrous forsterite under ambient condition in Table 4. Smyth et al. (2006) and Kudoh et al. (2006)
548	have reported that water-bearing forsterite samples synthesized at 12 or 13.5 GPa give larger unit cell volumes than
549	that of anhydrous forsterite under ambient condition. Smyth et al. (2006) further noted that the unit cell volume (V)
550	may be expressed as a linear function of the water content (C_{H2O}): $V(Å^3) = 290.107 + 0.55 * C_{H2O}$ (wt%) (with a
551	correlation coefficient of 0.83). This would lead to a unit cell volume increase of 0.15% at a water content of 0.808
552	wt% for the $(2H)_{Mg}$ model, and 0.31% increase at a water content of 1.618 wt% for the $(4H)_{Si}$ model. Inspection of

553	Table 4 reveals that whereas the $(4H)_{Si}$ models 1 and 2 predict a volume increase of 0.30 and 0.36% respectively,
554	consistent with the experimental data, the $(2H)_{M1}$ model 1 predicts volume decrease (-0.07%), rather than increase,
555	with hydrogen incorporation. When the individual cell parameters are examined, the $(4H)_{Si}$ models 1 and 2 predict that
556	the increased cell volume is mainly due to increase in the b and c lengths, consistent with experimental data; whereas
557	the $(2H)_{M1}$ model 1 shows significant decrease in the c length and increase in both a and b lengths, inconsistent with
558	the reported experimental data. Thus, the reported unit cell parameters for water-bearing forsterite synthesized at 12
559	GPa (Smyth et al. 2006) are consistent with the $(4H)_{Si}$ models (1 and 2), rather than $(2H)_{M1}$ model, as the dominant
560	hydrogen incorporation mechanism. As the infrared and Raman spectra reported for these samples (Hushur et al.
561	2009; Smyth et al. 2006) show similar O-H stretching bands as the Raman spectra for forsterite in the present study,
562	the hydrogen incorporation mechanism must also be similar.
563	¹ H NMR results. The calculated ¹ H isotropic chemical shifts (δ_i^{H}) for all the OH-defect containing forsterite
564	models at 0 GPa are tabulated in Table 5. The $(4H)_{Si}$ models with 4H for 1Si substitution all yield small calculated ${}^{1}H$
565	chemical shifts (-0.4 to 2.1 ppm for the two lowest-energy models 1 and 2). In contrast, models with 2H for 1Mg
566	substitution yield larger 1 H chemical shift (7.7 ppm for the lowest-energy (2H) _{M1} model 1 in Fig. 9b). The difference in
567	¹ H chemical shift between the two types of OH defects is consistent with their difference in hydrogen-bonding
568	distances, which in turn reflects difference in their bonding environments (with the former bonded only to Mg cations,
569	and the latter also to a Si) as described above. Negative correlations between hydrogen-bonding (H \cdots O and O-H \cdots O)
570	distances and ¹ H isotropic chemical shift are well known (Xue and Kanzaki 2009). Similarly, positive correlations
571	between hydrogen-bonding distances and O-H stretching frequency are also well known (Libowitzky 1999). The
572	relatively small ¹ H chemical shifts for the two main peaks of the experimental ¹ H MAS NMR spectra for hydrous
573	forsterite are consistent with their assignment to protons substituting for Si (and thus OH groups not bonded to any Si).
574	They are also expected to correspond to the relatively high-frequency O-H stretching vibrational bands (> 3450 cm^{-1})
575	observed in the Raman spectra. The very weak peak near 7.3 ppm is consistent with protons substituting for Mg (and
576	thus OH groups bonded to a Si). No corresponding low-frequency O-H stretching band is detected in the Raman

577	spectra, as is expected because of its negligible abundance. It most likely corresponds to the O-H stretching bands
578	around 3160-3220 cm ⁻¹ reported by previous infrared studies of hydrous forsterite samples produced at < 3 GPa under
579	high silica activity condition (e.g., Bali et al. 2008; Berry et al. 2005; Kovacs et al. 2010; Lemaire et al. 2004), as
580	inferred earlier for a similar ¹ H MAS NMR peak near 6.9 ppm for two forsterite samples synthesized at 1.5 and 2.1
581	GPa (Kohn 2006). The first-principles calculations of infrared spectra for similar model structures by Balan et al.
582	(2011) and Umemoto et al. (2011) are in general consistent with these assignments of O-H stretching vibrational
583	bands.
584	Because the peak shape of a ¹ H NMR spectrum is affected not only by ¹ H isotropic chemical shift, but also by ¹ H
585	homonuclear dipolar couplings and chemical shift anisotropy when protons are clustered (with short H-H distances),
586	we also simulated ¹ H static and MAS powder NMR spectra for all the model structures using the SIMPSON program
587	(Bak et al. 2000) to facilitate better comparison with experimental data.
588	The simulated ¹ H static and MAS NMR spectra (20 kHz spinning rate) for the lowest-energy models of 4H for 1Si
589	substitution ((4H) _{Si} models 1 and 2) and 2H for $1Mg$ (M1) substitution ((2H) _{M1} model 1) are compared with the
590	corresponding experimental spectra in Figures 12 and 13. The simulated ¹ H static and MAS NMR spectra for all other
591	models can be found in the supplementary Figures 1 and 2. For both the static and MAS NMR spectra, the two main
592	components are well reproduced by both of the two $(4H)_{Si}$ models (1 and 2) with one H pointing away from the
593	tetrahedral center: the narrow component (of about 1/4 of the total intensity) is due to the proton pointing away from
594	the tetrahedral center, and the broad component is dominantly due to the other protons that are clustered near the
595	vacant tetrahedron (along tetrahedral edges). Note that even the asymmetric peak shape of the spinning sidebands in
596	the ¹ H MAS NMR spectra are reproduced. The broadness and complicated peak shapes are due to the combined
597	effect of strong ¹ H multi-spin homonuclear dipolar couplings and chemical shift anisotropy, which are 'homogeneous'
598	interactions that cannot be completely eliminated unless spinning at very fast spinning rates (Maricq and Waugh 1979).
599	Model 6, which has all protons in the vicinity of the vacant tetrahedron (within 1.62-2.37 Å of one another), gives a
600	broad component for both the static and MAS spectra that resemble the corresponding broad component observed for

601	hydrous forsterite, but yields no corresponding narrow component. The other models, which have two or three protons
602	(on O2 and/or O3) pointing away from the vacant tetrahedral center (models 3, 4, and 5), on the other hand, cannot
603	account for the observed broad component in both the static and MAS spectra of the hydrous forsterite sample.
604	The simulated spectrum for the $(2H)_{M1}$ model 1 gives a narrow MAS NMR peak with a larger ¹ H isotropic
605	chemical shift, matching well with the very weak peak at 7.3 ppm in the experimental ¹ H MAS NMR spectra. The
606	narrowness of the peak in the simulated MAS NMR spectrum is because the two protons are magnetically equivalent
607	(related by an inversion center). It is well known that when two spins are magnetically equivalent, homonuclear
608	dipolar couplings between them become 'inhomogeneous' interactions, which are completely eliminated by sample
609	spinning at the magic angle (Maricq and Waugh 1979). The H-H distance (2.54 Å) for the $(2H)_{M1}$ model 1 is also
610	longer than the shorter population of H-H distances (1.80-1.93 Å) for the lowest-energy (4H) _{Si} models 1 and 2. The
611	(2H) _{M2} model 1 gives two narrow peaks near 7.4 and 5.9 ppm in the MAS NMR spectra. Considering its significantly
612	higher energy, this model is less likely than the $(2H)_{M1}$ model.
613	Thus, both qualitative consideration of the relative H-H proximity and ¹ H chemical shift, and quantitative
614	simulation of the ¹ H static and MAS NMR spectra strongly support that the main components (broad and narrower
615	peaks, near 2.4 and 1.2 ppm in the case of MAS spectra) observed for hydrous forsterite by ¹ H NMR measurements
616	can be attributed to protons substituting for Si, most likely corresponding to $(4H)_{Si}$ models 1 and 2, and the very minor,
617	narrow peak near 7.3 ppm in the ¹ H MAS NMR spectra can be attributed to trace amount of protons substituting for
618	Mg in M1 sites. The reasonable agreement between the experimental ¹ H NMR spectra and those calculated based on
619	model structures (that have fixed proton positions) also implies that proton exchanges between the two main
620	components due to dynamic motion are insignificant at room temperature in the NMR time scale.
621	²⁹ Si NMR results. The calculated ²⁹ Si isotropic chemical shifts for all the OH-defect containing forsterite models
622	are tabulated in Table 6. Before discussing these calculation results, a brief reminder of the local structures of forsterite
623	is rewarding. In forsterite, the isolated SiO ₄ tetrahedra are linked to M1 and M2 octahedra by edge and corner sharing.
624	Each M1 octahedron is linked to two SiO4 tetrahedra by edge sharing and to two SiO4 tetrahedra by corner sharing;

625	each M2 octahedron is linked to one SiO4 tetrahedron by edge sharing and to four SiO4 tetrahedra by corner sharing.
626	It is well known that NMR parameters are affected increasingly less by more distant neighbors (Stebbins and Xue
627	2014). Consistent with this, for the $(2H)_{M1}$ model 1, the four Si sites that are linked to the vacant M1 site have greater
628	differences in ²⁹ Si chemical shift (δ_i^{Si}) (two by 1.6 ppm and two by -3.7 ppm) from that of defect-free forsterite
629	structure; all the other Si sites in the supercell have much smaller δ_i^{Si} differences from defect-free forsterite (-0.1 to 0.4
630	ppm with an average close to 0 ppm). The -3.7 ppm difference in δ_i^{Si} from defect-free forsterite corresponds to the two
631	Si tetrahedra that each share an edge (O2-O3) with the vacant octahedron (with O2 bonded to a H forming SiOH
632	linkage); the 1.6 ppm difference corresponds to the two Si tetrahedra that each share a corner (O1) with the vacant M1
633	octahedron.
634	For the (2H) _{M2} model 1, the five Si tetrahedra that are directly linked to the vacant M2 octahedron have greater
635	differences in δ_i^{Si} from defect-free forsterite (2.4, 1.3, -0.7, -1.8 and -5.0 ppm); all the other Si sites in the supercell have
636	small δ_i^{Si} differences (-0.2 to 0.4 ppm with an average close to 0 ppm). For the former, there are no obvious
637	correlations between δ_i^{Si} and the type of linkage with the vacant M2 site (edge or corner sharing) or the type of shared
638	oxygen (whether bonded to a H forming SiOH linkage or not) (see Table 6).
639	For the (4H) _{Si} models, because the vacant Si tetrahedron is not directly linked to other Si tetrahedra, the influence
640	on ²⁹ Si chemical shift for most Si are very small. Exceptions occur when a proton is pointing away from the vacant
641	tetrahedral center and located in an adjacent interstitial octahedral site (models 1 to 5), because the proton is then close
642	to an adjacent Si (with relatively short Si-H distances of 2.35-2.56 Å). For Si close to a proton pointing away from the
643	tetrahedral center and bonded to O3 (Si11 in model 2, Si10 in model 3, and Si10 and Si11 in models 4 and 5), the ²⁹ Si
644	chemical shifts all differ from that of defect-free forsterite by about 1.6 ppm. Whereas for Si close to a proton pointing
645	away from the tetrahedral center and bonded to O2 (Si13 in models 1, 3 and 5), the difference in chemical shift from
646	defect-free forsterite is small (\sim 0.3 ppm). All the other Si in the supercell give ²⁹ Si chemical shift differences in the
647	range of -1.0 to 0.8 ppm (-0.6 to 0.5 ppm for the two lowest-energy models 1 and 2) with an average close to 0 ppm.
648	As discussed above, for the ¹ H- ²⁹ Si CP-MAS NMR spectra of hydrous forsterite, two peaks are observed, one

649	narrower and well-resolved peak near -60.9 ppm (about 0.8 ppm from the peak of OH-free forsterite as detected by
650	single-pulse ²⁹ Si MAS NMR); another broader peak close to the position for OH-free forsterite, which may be further
651	decomposed into two components near -61.7 ppm and -62.1 ppm (about 0 and -0.4 ppm from the peak of OH-free
652	forsterite). The former peak would be consistent with Si adjacent to a proton that is bonded to O3 and pointing away
653	from the tetrahedral center in the (4H)si models (e.g., Sill in the lowest-energy model 2), and the latter are consistent
654	with all $(4H)_{Si}$ models, including the lowest-energy model 1. $(2H)_{M1}$ and $(2H)_{M2}$ models will result in peaks with
655	greater shifts from that of OH-free forsterite, and most likely do not significantly contribute to the observed peaks in
656	the ¹ H- ²⁹ Si CP-MAS NMR spectra of hydrous forsterite. Thus, the ¹ H- ²⁹ Si CP-MAS NMR and ¹ H NMR data of
657	hydrous forsterite together can be taken to be consistent with the lowest-energy (4H) _{Si} models 1 and 2, with at least
658	some of the (4H)si defects having the configuration of model 2 (with the proton pointing away from the vacant
659	tetrahedral center bonded to O3).
660	
661	Discussion
662	NMR and vibrational spectroscopic characteristics of OH defects in hydrous forsterite
662 663	NMR and vibrational spectroscopic characteristics of OH defects in hydrous forsterite The first-principles calculation and ¹ H and ²⁹ Si NMR measurements in this study suggest that different OH defects
662 663 664	NMR and vibrational spectroscopic characteristics of OH defects in hydrous forsterite The first-principles calculation and ¹ H and ²⁹ Si NMR measurements in this study suggest that different OH defects in hydrous forsterite can be unambiguously distinguished by ¹ H and ²⁹ Si NMR. The most plausible configurations of
662 663 664 665	NMR and vibrational spectroscopic characteristics of OH defects in hydrous forsterite The first-principles calculation and ¹ H and ²⁹ Si NMR measurements in this study suggest that different OH defects in hydrous forsterite can be unambiguously distinguished by ¹ H and ²⁹ Si NMR. The most plausible configurations of the 4H for 1Si substitution in forsterite ((4H) _{Si} models 1 and 2) have one H ion on O2 or O3 pointing away from the
 662 663 664 665 666 	NMR and vibrational spectroscopic characteristics of OH defects in hydrous forsterite The first-principles calculation and ¹ H and ²⁹ Si NMR measurements in this study suggest that different OH defects in hydrous forsterite can be unambiguously distinguished by ¹ H and ²⁹ Si NMR. The most plausible configurations of the 4H for 1Si substitution in forsterite ((4H) _{Si} models 1 and 2) have one H ion on O2 or O3 pointing away from the tetrahedral center and located inside an interstitial octahedral site I2. They are characterized by relatively small ¹ H
 662 663 664 665 666 667 	NMR and vibrational spectroscopic characteristics of OH defects in hydrous forsterite The first-principles calculation and ¹ H and ²⁹ Si NMR measurements in this study suggest that different OH defects in hydrous forsterite can be unambiguously distinguished by ¹ H and ²⁹ Si NMR. The most plausible configurations of the 4H for 1Si substitution in forsterite ((4H) _{Si} models 1 and 2) have one H ion on O2 or O3 pointing away from the tetrahedral center and located inside an interstitial octahedral site I2. They are characterized by relatively small ¹ H isotropic chemical shifts, and coexistence of protons with weak and strong dipolar couplings, resulting in two
 662 663 664 665 666 667 668 	NMR and vibrational spectroscopic characteristics of OH defects in hydrous forsterite The first-principles calculation and ¹ H and ²⁹ Si NMR measurements in this study suggest that different OH defects in hydrous forsterite can be unambiguously distinguished by ¹ H and ²⁹ Si NMR. The most plausible configurations of the 4H for 1Si substitution in forsterite ((4H) _{Si} models 1 and 2) have one H ion on O2 or O3 pointing away from the tetrahedral center and located inside an interstitial octahedral site I2. They are characterized by relatively small ¹ H isotropic chemical shifts, and coexistence of protons with weak and strong dipolar couplings, resulting in two components in both ¹ H static and MAS NMR spectra: a narrower component corresponding to protons pointing away
 662 663 664 665 666 667 668 669 	NMR and vibrational spectroscopic characteristics of OH defects in hydrous forsterite The first-principles calculation and ¹ H and ²⁹ Si NMR measurements in this study suggest that different OH defects in hydrous forsterite can be unambiguously distinguished by ¹ H and ²⁹ Si NMR. The most plausible configurations of the 4H for 1Si substitution in forsterite ((4H) _{Si} models 1 and 2) have one H ion on O2 or O3 pointing away from the tetrahedral center and located inside an interstitial octahedral site I2. They are characterized by relatively small ¹ H isotropic chemical shifts, and coexistence of protons with weak and strong dipolar couplings, resulting in two components in both ¹ H static and MAS NMR spectra: a narrower component corresponding to protons pointing away from the tetrahedral center, and a broader component corresponding to the remaining protons that are clustered in the
 662 663 664 665 666 667 668 669 670 	NMR and vibrational spectroscopic characteristics of OH defects in hydrous forsterite The first-principles calculation and ¹ H and ²⁹ Si NMR measurements in this study suggest that different OH defects in hydrous forsterite can be unambiguously distinguished by ¹ H and ²⁹ Si NMR. The most plausible configurations of the 4H for 1Si substitution in forsterite ((4H) _{Si} models 1 and 2) have one H ion on O2 or O3 pointing away from the tetrahedral center and located inside an interstitial octahedral site I2. They are characterized by relatively small ¹ H isotropic chemical shifts, and coexistence of protons with weak and strong dipolar couplings, resulting in two components in both ¹ H static and MAS NMR spectra: a narrower component corresponding to protons pointing away from the tetrahedral center, and a broader component corresponding to the remaining protons that are clustered in the vicinity of the vacant tetrahedra (along tetrahedral edges). These two components (centered near 1.2 and 2.4 ppm,
 662 663 664 665 666 667 668 669 670 671 	NMR and vibrational spectroscopic characteristics of OH defects in hydrous forsterite The first-principles calculation and ¹ H and ²⁹ Si NMR measurements in this study suggest that different OH defects in hydrous forsterite can be unambiguously distinguished by ¹ H and ²⁹ Si NMR. The most plausible configurations of the 4H for 1Si substitution in forsterite ((4H) _{Si} models 1 and 2) have one H ion on O2 or O3 pointing away from the tetrahedral center and located inside an interstitial octahedral site I2. They are characterized by relatively small ¹ H isotropic chemical shifts, and coexistence of protons with weak and strong dipolar couplings, resulting in two components in both ¹ H static and MAS NMR spectra: a narrower component corresponding to protons pointing away from the tetrahedral center, and a broader component corresponding to the remaining protons that are clustered in the vicinity of the vacant tetrahedra (along tetrahedral edges). These two components (centered near 1.2 and 2.4 ppm, respectively, at 30 kHz MAS) constitute the dominant proton species in the ¹ H NMR static and MAS NMR spectra of

673 revealed peaks shifted from that of OH-free forsterite, with a narrower peak exhibiting a positive shift of about 0.8 ppm, and a broader peak encompassing the range of little and smaller negative shifts. The former may be attributed to 674 Si in the vicinity of a proton pointing away from the vacant tetrahedral center and bonded to O3 ((4H)_{Si} model 2), and 675 676 the latter to Si in the vicinity of other protons associated with (4H)_{Si} defects (including model 1) on the basis of first-principles calculation result. 677 We also observed a very weak and even narrower peak near 7.3 ppm in the ¹H MAS NMR spectra of hydrous 678 forsterite. This matches well with the calculated ¹H chemical shift and peak width (free from broadening due to dipolar 679 couplings) for the substitution of 2H for 1Mg in an M1 site of forsterite ($(2H)_{M1}$ model 1). The significantly larger ¹H 680 chemical shift for protons associated with the (2H)_{M1} model than the (4H)_{Si} models is correlated with the stronger 681 hydrogen bonding for the former, which in turn reflects difference in bonding environments of the OH groups (with 682 the former bonded to a Si, and the latter only bonded to Mg). The first-principles calculation also predicts two ²⁹Si 683 NMR peaks shifted from that of defect-free forsterite by 1.6 and -3.7 ppm associated with the (2H)_{M1} defect. We did 684 not observe peaks assignable to such Si in the ¹H-²⁹Si CP-MAS NMR spectra, which is unsurprising because of its 685 low concentration. These ¹H and ²⁹Si NMR characteristics can be used to identify and quantify the different types of 686 687 OH defects in hydrous forsterite. The Raman spectra for the forsterite sample in this study contain four major high-frequency O-H stretching 688 vibrational bands near 3612, 3579, 3567 and 3547 cm⁻¹, similar to previously reported Raman and infrared spectra for 689 hydrous forsterite synthesized at high pressure (e.g., Bali et al. 2008; Bolfan-Casanova et al. 2014; Lemaire et al. 2004; 690 Smyth et al. 2006). As there is a negative correlation between ¹H chemical shift and O-H stretching frequency (Xue 691 and Kanzaki 2009), these high O-H stretching frequencies are consistent with (4H)_{Si} defects, as was confirmed by 692 693 first-principles calculations (Balan et al. 2011; Umemoto et al. 2011). The dominance of protons associated with (4H)_{Si} defects as revealed by ¹H and ²⁹Si NMR is also in supportive of such an assignment. Although trace amount of protons 694 associated with (2H)_{M1} defects was identified by ¹H MAS NMR, no corresponding bands in the Raman spectra are 695 observed because of its low abundance. They are expected to give low O-H stretching frequencies near 3160-3220 696

697	cm ⁻¹ , from the known negative correlation between ¹ H chemical shift and O-H stretching frequency, and from
698	previous first-principles calculation results for the (2H) _{M1} model (Balan et al. 2011; Umemoto et al. 2011) and infrared
699	spectroscopic data for forsterite samples synthesized at different pressure and silica activity conditions (e.g., Bali et al.
700	2008; Berry et al. 2005; Kovacs et al. 2010; Lemaire et al. 2004).
701	As outlined in the Introduction, despite convincing evidence for the high-frequency character of O-H stretching
702	bands for (4H) _{Si} defects from previous first-principles calculations, detailed assignment for experimentally observed
703	O-H stretching bands in this region, especially regarding the nature of one major band near 3550 cm ⁻¹ , for forsterite
704	(and olivine in general) remained not well constrained. Our study may shed new light on this.
705	A previous low-temperature infrared study by Ingrin et al. (2013) on a hydrous forsterite sample postulated that two
706	O-H stretching bands, including one near 3550 cm ⁻¹ at room temperature (near 3566 cm ⁻¹ at -194 °C), could be due to
707	(charged) H ions in interstitial positions because they exhibit stronger temperature-dependent frequency and peak
708	width changes than other O-H stretching bands above 3450 cm ⁻¹ . A subsequent first-principles calculation study by
709	Balan et al. (2014) further proposed that the broad band near 3550 cm ⁻¹ may be due to a (charged) interstitial OH
710	group next to a five-coordinate Si. This band is ubiquitously observed in hydrous olivine synthesized at relatively high
711	pressure, accounting for about 1/4 of the total intensities (cf. Ingrin et al. 2013), and is also clearly observed in the
712	Raman spectra from this study. If a quarter of the protons are associated with five-coordinate Si, a ²⁹ Si NMR peak due
713	to the latter should be readily observable (likely with intensity of similar order of magnitude compared to those for Si
714	associated with $(4H)_{Si}$ defects) in ¹ H- ²⁹ Si CP-MAS NMR spectra. However, no peaks in the region expected for
715	five-coordinate Si (around -124 to -150 ppm: Stebbins and Xue 2014; Xue et al. 2010) were observed in the ¹ H- ²⁹ Si
716	CP-MAS NMR spectra of this study (not shown). Considering that charged defects are in general energetically less
717	favorable than neutral defects, it is doubtful that they could be present at such high abundance. Instead, as detailed
718	below, the observed O-H stretching band near 3550 cm^{-1} could be simply associated with neutral (4H) _{Si} defects that
719	have one proton pointing away from the vacant tetrahedral center and located in an adjacent interstitial site.
720	Ingrin et al. (2013) postulated (charged) H atoms in interstitial positions to explain O-H stretching bands of greater

721	anharmonicity on the assumption that vibrational bands corresponding to a given defect should exhibit similar
722	anharmonic properties. However, there is no compelling evidence to support this assumption. Even for neutral $(4H)_{Si}$
723	defects, the proton pointing away from the vacant tetrahedral center and located in an adjacent interstitial site has a
724	different local environment compared to the remaining protons, and thus could have different proton dynamics. Balan
725	et al. (2011) has reported H atomic displacement for the O-H stretching normal modes of $(4H)_{Si}$ models (Si_3 and
726	Si_4), similar to the lowest-energy models 1 and 2 in this study, from first-principles calculation. Inspection of their
727	results reveals that the O-H stretching vibration of the O-H bond pointing away from the tetrahedral center is in fact not
728	strongly coupled with those of other O-H bonds, and dominantly contributes to a normal mode near 3572 cm ⁻¹ for
729	model Si_3 and near 3402 cm ⁻¹ for model Si_4, respectively. These two normal modes both have strong intensities
730	along a and b directions in the calculated polarized infrared spectra. The experimentally observed band near 3550 cm ⁻¹
731	has been reported to exhibit the strongest intensity along b and lower but significant intensity along a in polarized
732	infrared spectra (cf. Ingrin et al. 2013), in reasonable though not perfect agreement with those calculated for the two
733	normal modes. The normal mode near 3572 cm ⁻¹ for model Si_3 (model 1 in this study) could, in particular,
734	correspond to the experimentally observed band near 3550 cm ⁻¹ , given its better agreement in frequency. In fact, Ingrin
735	et al. (2013) has already pointed out that the other three major experimentally observed O-H stretching bands match
736	reasonably well with three of the four calculated bands of model Si_3 by Balan et al. (2011) in terms of both frequency
737	and pleochroic property (with the band near 3612 cm ⁻¹ polarized along <i>a</i> , the band near 3579 cm ⁻¹ polarized along both
738	a and b, and the band near 3567 cm ⁻¹ polarized along c in polarized infrared spectra), but they could not readily assign
739	the fourth calculated band to any major observed band. The attribution of the experimentally observed major band
740	near 3550 cm ⁻¹ to the same $(4H)_{Si}$ model would provide the last missing piece of the puzzle.
741	Therefore, the major O-H stretching bands observed near 3612, 3579, 3567 and 3550 cm ⁻¹ at room temperature
742	(near 3614, 3581, 3568 and 3566 cm ⁻¹ at -194 °C according to Ingrin et al. 2013) in Raman and infrared spectra of
743	hydrous forsterite could correspond to the four normal modes of (4H) _{Si} model 1 in this study, with calculated
744	frequencies (at 0 K) of 3591, 3540, 3520, and 3572 cm ⁻¹ by Balan et al. (2011) and 3626, 3572, 3554 and 3612 cm ⁻¹

745	by Umemoto et al. (2011). The (4H) _{Si} model 2 (of similar calculated enthalpy) has been reported to give calculated
746	O-H stretching frequencies of 3555, 3512, 3494 and 3402 cm ⁻¹ by Balan et al. (2011), and 3589, 3541, 3525 and 3433
747	cm ⁻¹ by Umemoto et al. (2011). It could contribute to some other weaker O-H stretching bands in the high-frequency
748	region (e.g., near 3480 cm ⁻¹), which have often been observed in previous infrared and Raman studies of hydrous
749	forsterite (e.g., Bali et al. 2008; Bolfan-Casanova et al. 2014; Kovacs et al. 2010; Lemaire et al. 2004; Smyth et al.
750	2006), but were not detected by Raman in this study possibly due to poor signal/noise. The vibrational spectroscopic
751	data are thus in complete agreement with the conclusion derived from ¹ H and ²⁹ Si NMR data, and together suggest
752	that $(4H)_{Si}$ defects corresponding to both of the two lowest-energy models 1 and 2 (with one hydrogen on O2 and O3,
753	respectively, pointing away from the tetrahedral center) are present in the hydrous forsterite structure. There is no need
754	to invoke charged interstitial OH groups to explain the observed O-H stretching bands.
755	In note by passing for completeness, for olivine samples containing Fe^{2+} , Fe^{3+} and other trace elements, additional
756	O-H stretching vibrational bands associated with these cations might be expected in vibrational spectra (e.g., 3572 and
757	3525 cm^{-1} associated with Ti^{4+} ; one or more bands between 3300 and 3400 cm ⁻¹ associated with trivalent cations such
758	as Fe ³⁺ , Cr ³⁺) (Balan et al. 2011; Berry et al. 2005; Berry et al. 2007).
759	
760	Hydrogen incorporation mechanisms in forsterite as a function of pressure and composition
761	Our study has unambiguously confirmed that the dominant hydrogen incorporation mechanism in forsterite at 12
762	GPa is hydrogarnet-like with 4H substituting for 1Si in a tetrahedral site, but unlike hydrogarnet with unique
763	configurations of one proton on O2 or O3 pointing away from the vacant tetrahedral center and located inside an
764	interstitial octahedral site. Protons substituting for Mg in an M1 site were also detected, but at very low concentration
765	(< 0.1% of the total content). The detection of the latter by ${}^{1}H$ MAS NMR in our sample was largely a result of greater
766	sensitivity because it has a much narrower peak width than protons substituting for Si.
767	The spectroscopic characteristics for the different OH defects in hydrous forsterite described in the previous section
768	can be used to systematically reexamine the incorporation mechanisms of hydrogen in Mg2SiO4 forsterite (and

769	(Mg,Fe) ₂ SiO ₄ olivine) under a wider range of pressure and chemical conditions, by inspecting infrared and Raman
770	data reported thus far. Previously reported infrared and Raman data for hydrous forsterite (and often also
771	(Mg,Fe) ₂ SiO ₄ olivine) synthesized at a range of pressures above 3 GPa (e.g., Bali et al. 2008; Kohlstedt et al. 1996;
772	Mosenfelder et al. 2006; Otsuka and Karato 2011; Smyth et al. 2006; Withers et al. 2011) can now be interpreted
773	consistently, with the new guide described above, as suggesting the (4H)si defects being the dominant species,
774	regardless of silica activity, because the spectra are generally dominated by high-frequency O-H stretching bands >
775	3450 cm^{-1} . A weak, low-frequency O-H stretching band near 3160 cm^{-1} , attributable to the $(2H)_{M1}$ defects, is also
776	visible in the infrared spectra for some of these samples, e.g. forsterite samples (enstatite-buffered) synthesized at 6 and
777	9 GPa by Bali et al. (2008). These results are in general consistent with the present study, suggesting that the $(4H)_{Si}$
778	defects are the dominant species, but the $(2H)_{M1}$ defects may exist in minor amounts at >3 GPa.
779	Previously reported infrared data for hydrous forsterite (and (Mg,Fe)2SiO4 olivine) produced at lower pressures (<
780	3 GPa) (e.g., Bali et al. 2008; Berry et al. 2005; Demouchy and Mackwell 2003; Grant et al. 2006; Lemaire et al. 2004;
781	Padrón-Navarta et al. 2014) can now be (re-)interpreted as indicating variation in the proportion of the two types of
782	OH defects with silica activity, with low silica activity favoring the (4H) _{Si} defects and high silica activity favoring the
783	$(2H)_{M1}$ defects, although quantitatively there are inconsistencies among different studies in the relative intensities.
784	Because of the high sensitivity of ¹ H MAS NMR in detecting the very narrow peak due to protons associated with the
785	$(2H)_{M1}$ defects, and the quantitative nature of NMR spectroscopy (without the need for frequency- or site- dependent
786	calibration factor as required by infrared spectroscopy), it would be useful in the future to conduct a systematic NMR
787	study on hydrous forsterite samples synthesized at a range of pressures and silica activities to better quantify the
788	pressure and compositional dependency of the two hydrogen incorporation mechanisms in forsterite.
789	
790	Implications
791	The effect of hydrogen incorporation on mineral properties, such as diffusivity, electrical conductivity and
792	mechanical strength, are expected to strongly depend on how hydrogen ions are incorporated in the crystal structure. A

793	previous theoretical calculation has evaluated the migration barriers for proton from magnesium vacancy to interstitial
794	sites and from interstitial to interstitial sites for forsterite, but did not consider migration from Si vacancies because of
795	"the very large energy barriers associated with Si vacancy" (Verma and Karki 2009). However, the (4H) _{Si} model
796	considered in that study has a configuration with the H on O1 migrated to the exterior of the vacant tetrahedron and
797	those on O2 and O3's staying on the tetrahedral faces. Our study, as well as the recent studies by Balan et al. (2011)
798	and Umemoto et al. (2011), has revealed that this is not the lowest-energy configuration, and the most plausible
799	configurations, instead, have one hydrogen (on O2 or O3) pointing away from the vacant tetrahedral center and
800	located inside an adjacent interstitial octahedral site. It is worth further theoretical calculation to investigate whether the
801	positioning of one proton of the (4H)si defect in an interstitial octahedral site could yield lower-energy barriers for
802	proton migration and provide a favorable path for proton diffusion in olivine.
803	Despite diverse interpretations in the literature, the dominance of protons associated with Si vacancies in olivine
804	at relatively high pressure (> 3 GPa) implies that such protons should be largely responsible for the observed reduction
805	of mechanical strength (Hirth and Kohlstedt 2003), Si diffusivities (Costa and Chakraborty 2008; Fei et al. 2013) and
806	electrical conductivities (Dai and Karato 2014a; Dai and Karato 2014b; Poe et al. 2010; Wang et al. 2006; Yoshino et
807	al. 2009) of olivine associated with hydrogen incorporation within the corresponding pressure range. For example, for
808	the electrical conductivity data of olivine, although the (2H) _{Mg} defect has often been envisioned (Karato 1990; Karato
809	2013; Karato 2015), almost all the samples of electrical conductivity measurements can now be (re-)interpreted as
810	dominated by $(4H)_{Si}$ defects, judging from the reported infrared spectra (with dominantly high-frequency O-H
811	stretching bands > 3450 cm ⁻¹) (Dai and Karato 2014a; Dai and Karato 2014b; Poe et al. 2010; Wang et al. 2006;
812	Yoshino et al. 2009). Atomistic interpretations of physical properties based on structural information from
813	spectroscopic observations are desirable. It is also worth mentioning that although the $(2H)_{Mg}$ defects detected in our
814	study is minor, and is in general expected to be a less important hydrogen incorporation mechanism in olivine at high
815	pressure (>3 GPa), its concentration is likely greater than that of intrinsic Mg vacancies, and thus could still play a
816	non-negligible role for Mg diffusion in olivine containing OH defects.

817	At pressures <3 GPa, as described above, the limited available infrared spectroscopic data in the literature can
818	now be (re-)interpreted as showing dependency of the OH defects on silica activity, with the $(2H)_{Mg}$ defects playing a
819	greater role at high silica activity. There have been few electrical conductivity measurements at such pressure range,
820	although a H-D inter-diffusion experiment for a natural San Carlos olivine conducted at 2 GPa (buffered by enstatite)
821	(Du Frane and Tyburczy 2012) has often been evoked to explain electrical conductivity results obtained at higher
822	pressures (e.g., Karato 2013; Karato 2015). The study of Du Frane and Tyburczy (2012) did not report any infrared or
823	Raman spectra to directly reveal the hydrogen incorporation mechanism. If the trend of silica activity dependency
824	reported thus far is robust, one would expect samples of Du Frane and Tyburczy (2012) to be dominated by $(2H)_{Mg}$
825	defects. On the other hand, samples of electrical conductivity measurements reported thus far at higher pressures are
826	dominated by (4H)si defects, as described above, and thus the H-D inter-diffusion result of Du Frane and Tyburczy
827	(2012) might not be directly applicable. Clearly, more systematic studies on both hydrogen incorporation mechanisms
828	and physical properties, ideally with all samples used for the latter carefully characterized by spectroscopy for OH
829	speciation, at a range of pressures and compositions are desirable.
830	Finally, our study demonstrated that the combined careful ¹ H and ²⁹ Si NMR measurements and first-principles
831	calculation approach is very effective in revealing the detailed hydrogen incorporation mechanism in nominally
832	anhydrous minerals. We are in the process of investigating other important nominally anhydrous mantle minerals
833	(including higher-pressure polymorphs of olivine (wadsleyite, ringwoodite), enstatite and grossular) using a similar
834	approach to gain greater insights into the general principles governing hydrogen incorporation in silicate minerals. The
835	combined solid-state NMR and first-principles calculation approach should also be effective for the study of hydrogen
836	incorporation (and other structural aspects) in other inorganic materials.
837	
838	Acknowledgements. We are grateful to Istvan Kovacs (associate editor), Simon Kohn and an anonymous

reviewer for helpful comments and suggestions. Part of this study was carried out during the Misasa International

840 Student Intern Program 2015 (participated by D.T. & D. L.), which was supported by a "Special Expenditure" funded

841	by the Ministry of Education, Culture, Sports, Science and Technology of Japan. We thank Yusuke Yachi and
842	Tsutomu Ota for assistance with EPMA analysis.
843	
844	References Cited
845	Ashbrook, S.E., Le Polles, L., Pickard, C.J., Berry, A.J., Wimperis, S., and Farnan, I. (2007a)
846	First-principles calculations of solid-state 17 O and 29 Si NMR spectra of Mg ₂ SiO ₄ polymorphs.
847	Physical Chemistry Chemical Physics, 9, 1587-1598.
848	Ashbrook, S.E., Berry, A.J., Frost, D.J., Gregorovic, A., Pickard, C.J., Readman, J.E., and Wimperis, S.
849	(2007b) ¹⁷ O and ²⁹ Si NMR parameters of MgSiO ₃ phases from high-resolution solid-state NMR
850	spectroscopy and first-principles calculations. Journal of the American Chemical Society, 129,
851	13213-13224.
852	Bai, Q., and Kohlstedt, D.L. (1992) Substaintial hydrogen solubility in olivine and implications for water
853	storage in the mantle. Nature, 357, 672-674.
854	(1993) Effects of chemical environment on the solubility and incorporation mechanism for hydrogen
855	in olivine. Physics and Chemistry of Minerals, 19, 460-471.
856	Bak, M., and Nielsen, N.C. (1997) REPULSION, A Novel Approach to Efficient Powder Averaging in
857	Solid-State NMR. Journal of Magnetic Resonance, 125, 132-139.
858	Bak, M., Rasmussen, J.T., and Nielsen , N.C. (2000) SIMPSON: A General Simulation Program for
859	Solid-State NMR Spectroscopy Journal of Magnetic Resonance, 147, 296-330.
860	Balan, E., Ingrin, J., Delattre, S., Kovacs, I., and Blanchard, M. (2011) Theoretical infrared spectrum of
861	OH-defects in forsterite. European Journal of Mineralogy, 23, 285-292.
862	Balan, E., Blanchard, M., Lazzeri, M., and Ingrin, J. (2014) Contribution of interstitial OH groups to the
863	incorporation of water in forsterite. Physics and Chemistry of Minerals, 41, 105-114.
864	Bali, E., Bolfan-Casanova, N., and Koga, K.T. (2008) Pressure and temperature dependence of H

- solubility in forsterite: An implication to water activity in the Earth interior. Earth and Planetary
 Science Letters, 268, 354-363.
- Berry, A.J., Hermann, J., O'Neill, H.S.C., and Foran, G.J. (2005) Fingerprinting the water site in mantle
 olivine. Geology, 33, 869-872.
- 869 Berry, A.J., O'Neill, H.S.C., Hermann, J., and Scott, D.R. (2007) The infrared signature of water
- associated with trivalent cations in olivine. Earth and Planetary Science Letters, 261, 134-142.
- 871 Bielecki, A., Kolbert, A.C., and Levitt, M.H. (1989) Frequency-switched pulse sequences: homonuclear
- decoupling and dilute spin NMR in solids. Chemical Physics Letters, 155, 341-346.
- 873 Blanchard, M., Balan, E., and Wright, K. (2009) Incorporation of water in iron-free ringwoodite: A
- first-principles study. American Mineralogist, 94, 83-89.
- Bolfan-Casanova, N., Montagnac, G., and Reynard, B. (2014) Measurement of water contents in olivine
 using Raman spectroscopy. American Mineralogist, 99, 149-156.
- Braithwaite, J.S., Wright, K., and Catlow, C.R.A. (2003) A theoretical study of the energetics and IR
 frequencies of hydroxyl defects in forsterite. Journal of Geophysical Research-Solid Earth, 108,
 2284.
- Brodholt, J.P., and Refson, K. (2000) An ab initio study of hydrogen in forsterite and a possible
 mechanism for hydrolytic weakening. Journal of Geophysical Research-Solid Earth, 105,
 18977-18982.
- Brown, S.P. (2007) Probing proton-proton proximities in the solid state. Progress in Nuclear Magnetic
 Resonance Spectroscopy, 50, 199-251.
- Charpentier, T. (2011) The PAW/GIPAW approach for computing NMR parameters: A new dimension
 added to NMR study of solids. Solid State Nuclear Magnetic Resonance, 40, 1-20.
- 887 Cheng, V.B., Suzukawa, H.H., and Wolfsberg, M. (1973) Investigations of a nonrandom numerical
- method for multidimensional integration. The Journal of Chemical Physics, 59, 3992-3999.

889	Cho, H., and Rossman, G.R. (1993) Single-crystal NMR-studies of low-concentration hydrous species in
890	minerals - grossular garnet. American Mineralogist, 78, 1149-1164.
891	Cohen-Addad, C., Ducros, P., Durif, A., Bertaut, E.F., and Delapalme, A. (1964) Détermination de la
892	position des atomes d'hydrogène dans l'hydrogrinat Al ₂ O ₃ , 3CaO, 6H ₂ O par résonance
893	magnétique nucléaire et diffraction neutronique. Journal de Physique, 25, 478-483.
894	Conroy, H. (1967) Molecular Schrödinger Equation. VIII. A New Method for the Evaluation of
895	Multidimensional Integrals. The Journal of Chemical Physics, 47, 5307-5318.
896	Costa, F., and Chakraborty, S. (2008) The effect of water on Si and O diffusion rates in olivine and
897	implications for transport properties and processes in the upper mantle. Physics of the Earth and
898	Planetary Interiors, 166, 11-29.
899	Crepisson, C., Bureau, H., Blanchard, M., Ingrin, J., and Balan, E. (2014) Theoretical infrared spectrum
900	of partially protonated cationic vacancies in forsterite. European Journal of Mineralogy, 26,
901	203-210.
902	Dai, L., and Karato, S. (2014a) High and highly anisotropic electrical conductivity of the asthenosphere
903	due to hydrogen diffusion in olivine. Earth and Planetary Science Letters, 408, 79-86.
904	(2014b) The effect of pressure on the electrical conductivity of olivine under the hydrogen-rich
905	conditions. Physics of the Earth and Planetary Interiors, 232, 51-56.
906	Dal Corso, A. (2014) Pseudopotentials periodic table: From H to Pu. Computational Materials Science,
907	95, 337-350.
908	Demouchy, S., and Mackwell, S. (2003) Water diffusion in synthetic iron-free forsterite. Physics and
909	Chemistry of Minerals, 30, 486-494.
910	Du Frane, W.L., and Tyburczy, J.A. (2012) Deuterium-hydrogen exchange in olivine: Implications for
911	point defects and electrical conductivity. Geochemistry, Geophysics, Geosystems, 13, Q03004.
912	Fei, H., Wiedenbeck, M., Yamazaki, D., and Katsura, T. (2013) Small effect of water on upper-mantle

913	rheology based on silicon self-diffusion coefficients. Nature, 498, 213-215.
914	Ferot, A., and Bolfan-Casanova, N. (2012) Water storage capacity in olivine and pyroxene to 14 GPa:
915	Implications for the water content of the Earth's upper mantle and nature of seismic
916	discontinuities. Earth and Planetary Science Letters, 349, 218-230.
917	Finger, L.W., Hazen, R.M., and Prewitt, C.T. (1991) Crystal structures of Mg ₁₂ Si ₄ O ₁₉ (OH) ₂ (phase B)
918	and Mg ₁₄ Si ₅ O ₂₄ (phase AnhB). American Mineralogist, 76, 1-7.
919	Gaetani, G.A., O'Leary, J.A., Koga, K.T., Hauri, E.H., Rose-Koga, E.F., and Monteleone, B.D. (2014)
920	Hydration of mantle olivine under variable water and oxygen fugacity conditions. Contributions
921	to Mineralogy and Petrology, 167, 965.
922	Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Chiarotti, G.L.,
923	Cococcioni, M., Dabo, I., and others. (2009) QUANTUM ESPRESSO: a modular and
924	open-source software project for quantum simulations of materials. Journal of Physics:
925	Condensed Matter, 21, 395502.
926	Grant, K.J., Kohn, S.C., and Brooker, R.A. (2006) Solubility and partitioning of water in synthetic
927	forsterite and enstatite in the system MgO-SiO ₂ -H ₂ O±Al ₂ O ₃ . Contributions to Mineralogy and
928	Petrology, 151, 651-664.
929	Griffin, J.M., and Ashbrook, S.E. (2013) Chapter Five - Solid-State NMR of High-Pressure Silicates in
930	the Earth's Mantle. In A.W. Graham, Ed. Annual Reports on NMR Spectroscopy, Volume 79, p.
931	241-332. Academic Press.
932	Griffin, J.M., Berry, A.J., Frost, D.J., Wimperis, S., and Ashbrook, S.E. (2013) Water in the Earth's
933	mantle: a solid-state NMR study of hydrous wadsleyite. Chemical Science, 4, 1523-1538.
934	Haiber, M., Ballone, P., and Parrinello, M. (1997) Structure and dynamics of protonated Mg ₂ SiO ₄ : An
935	ab-initio molecular dynamics study. American Mineralogist, 82, 913-922.
936	Hazen, R.M., Downs, R.T., Finger, L.W., and Ko, J. (1993) Crystal chemistry of ferromagnesian silicate

937	spinels: Evidence for Mg-Si disorder. American Mineralogist, 78, 1320-1323.
938	Hirth, G., and Kohlstedt, D.L. (2003) Rheology of the upper mantle and the mantle wedge: a view from
939	the experimentalists. In J. Eiler, Ed. Inside the Subduction Factory. Geophysical Monograph
940	Series, 138, p. 83-105. American Geophysical Union, Washington, D.C.
941	Hohwy, M., Bildsøe, H., Jakobsen, H.J., and Nielsen, N.C. (1999) Efficient Spectral Simulations in NMR
942	of Rotating Solids. The γ -COMPUTE Algorithm. Journal of Magnetic Resonance, 136, 6-14.
943	Horiuchi, H., and Sawamoto, H. (1981) B-Mg ₂ SiO ₄ : Single-crystal X-ray diffraction study. American
944	Mineralogist, 66, 568-575.
945	Horiuchi, H., Morimoto, N., Yamamoto, K., and Akimoto, S. (1979) Crystal structure of
946	2Mg ₂ SiO ₄ .3Mg(OH) ₂ , a new high-pressure structure type. American Mineralogist, 64, 593-598.
947	Hugh-Jones, D.A., and Angel, R.J. (1994) A compressional study of MgSiO ₃ orthoenstatite up to 8.5 GPa.
948	American Mineralogist, 79, 405-410.
949	Hushur, A., Manghnani, M.H., Smyth, J.R., Nestola, F., and Frost, D.J. (2009) Crystal chemistry of
950	hydrous forsterite and its vibrational properties up to 41 GPa. American Mineralogist, 94,
951	751-760.
952	Ingrin, J., Liu, J., Depecker, C., Kohn, S.C., Balan, E., and Grant, K.J. (2013) Low-temperature evolution
953	of OH bands in synthetic forsterite, implication for the nature of H defects at high pressure.
954	Physics and Chemistry of Minerals, 40, 499-510.
955	Kagi, H., Parise, J.B., Cho, H., and Rossman, G.R. (2000) Hydrogen bonding interactions in phase A
956	[Mg ₇ Si ₂ O ₈ (OH) ₆] at ambient and high pressure. Physics and Chemistry of Minerals, 27, 225-233.
957	Kanzaki, M. (2010) Crystal structure of a new high-pressure polymorph of topaz-OH. American
958	Mineralogist, 95, 1349-1352.
959	Kanzaki, M., and Xue, X. (2012) Structural characterization of moganite-type AlPO ₄ by NMR and
960	powder X-ray diffraction. Inorganic Chemistry, 51, 6164-6172.

961	(2016) Cation distribution in Mg-Zn olivine solid solution: a ²⁹ Si MAS NMR and first-principles
962	calculation study. Journal of Mineralogical and Petrological Sciences, 111, 292-296.
963	Kanzaki, M., Stebbins, J.F., and Xue, X. (1992) Characterization of crystalline and amorphous silicates
964	quenched from high pressure by ²⁹ Si MAS NMR spectroscopy. In Y. Syono, and M.H. Manghnani,
965	Eds. High-Pressure Research: Application to Earth and Planetary Sciences, 67, p. 89-100. Terra
966	Scientific Publishing Company, Tokyo.
967	Karato, S. (1990) The role of hydrogen in the electrical conductivity of the upper mantle. Nature, 347,
968	272-273.
969	(2013) Theory of isotope diffusion in a material with multiple species and its implications for
970	hydrogen-enhanced electrical conductivity in olivine. Physics of the Earth and Planetary Interiors,
971	219, 49-54.
972	(2015) Some notes on hydrogen-related point defects and their role in the isotope exchange and
973	electrical conductivity in olivine. Physics of the Earth and Planetary Interiors, 248, 94-98.
974	Keppler, H., and Rauch, M. (2000) Water solubility in nominally anhydrous minerals measured by FTIR
975	and ¹ H MAS NMR: the effect of sample preparation. Physics and Chemistry of Minerals, 27,
976	371-376.
977	Keppler, H., and Smyth, J.R., Eds. (2006) Water in Nominally Anhydrous Minerals, 62, 478 p. Reviews
978	in Mineralogy and Geochemistry, Mineralogical Society of America, Chantilly, Virginia.
979	Koch-Muller, M., Dera, P., Fei, Y., Hellwig, H., Liu, Z., Van Orman, J., and Wirth, R. (2005)
980	Polymorphic phase transition in Superhydrous Phase B. Physics and Chemistry of Minerals, 32,
981	349-361.
982	Koch-Muller, M., Matsyuk, S.S., Rhede, D., Wirth, R., and Khisina, N. (2006) Hydroxyl in mantle
983	olivine xenocrysts from the Udachnaya kimberlite pipe. Physics and Chemistry of Minerals, 33,
984	276-287.

- 985Kohlstedt, D.L., Keppler, H., and Rubie, D.C. (1996) Solubility of water in the α , β and γ phases of986(Mg,Fe)₂SiO₄. Physics and Chemistry of Minerals, 123, 345-357.
- 987 Kohn, S.C. (1996) Solubility of H₂O in nominally anhydrous mantle minerals using ¹H MAS NMR.
- 988 American Mineralogist, 81, 1523-1526.
- --- (2006) Structural studies of OH in nominally anhydrous minerals using NMR. Reviews in Mineralogy
 and Geochemistry, 62, 53-66.
- Kovacs, I., O'Neill, H.S.C., Hermann, J., and Hauri, E.H. (2010) Site-specific infrared O-H absorption
 coefficients for water substitution into olivine. American Mineralogist, 95, 292-299.
- 993 Kovacs, I., Green, D.H., Rosenthal, A., Hermann, J., O'Neill, H.S., Hibberson, W.O., and Udvardi, B.
- 994 (2012) An Experimental Study of Water in Nominally Anhydrous Minerals in the Upper Mantle
 995 near the Water-saturated Solidus. Journal of Petrology, 53, 2067-2093.
- Kudoh, Y., Kuribayashi, T., Kagi, H., and Inoue, T. (2006) Cation vacancy and possible hydrogen
 positions in hydrous forsterite, Mg_{1.985}Si_{0.993}H_{0.06}O₄, synthesized at 13.5 GPa and 1300 °C.

Journal of Mineralogical and Petrological Sciences, 101, 265-269.

- Lager, G.A., Armbruster, T., and Faber, J. (1987) Neutron and X-ray diffraction study of hydrogarnet
 Ca₃Al₂(O₄H₄)₃. American Mineralogist, 72, 756-765.
- Lager, G.A., Armbruster, T., Rotella, F.J., and Rossman, G.R. (1989) OH substitution in garnets: X-ray
 and neutron diffraction, infrared, and geometric-modeling studies. American Mineralogist, 74,
 840-851.
- Lemaire, C., Kohn, S.C., and Brooker, R.A. (2004) The effect of silica activity on the incorporation
 mechanisms of water in synthetic forsterite: a polarised infrared spectroscopic study.
- 1006 Contributions to Mineralogy and Petrology, 147, 48-57.
- Libowitzky, E. (1999) Correlation of O-H stretching frequencies and O-H…O hydrogen bond lengths in
 minerals. Monatshefte fur Chemie, 130, 1047-1059.

- Libowitzky, E., and Beran, A. (1995) OH defects in forsterite. Physics and Chemistry of Minerals, 22,
 387-392.
- Litasov, K.D., Ohtani, E., Kagi, H., Jacobsen, S.D., and Ghosh, S. (2007) Temperature dependence and
 mechanism of hydrogen incorporation in olivine at 12.5-14.0 GPa. Geophysical Research Letters,
 34, L16314.
- Malfait, W.J., and Xue, X. (2010) The nature of hydroxyl groups in aluminosilicate glasses: quantifying
 Si-OH and Al-OH abundances along the SiO₂-NaAlSiO₄ join by ¹H, ²⁷Al-¹H and ²⁹Si-¹H NMR
 spectroscopy. Geochimica et Cosmochimica Acta, 74, 719-737.
- 1017 Manghnani, M.H., Hushur, A., Smyth, J.R., Nestola, F., Dera, P., Sekar, M., Amulele, G., and Frost, D.J.
- 1018 (2013) Compressibility and structural stability of two variably hydrated olivine samples (Fo₉₇Fa₃)
- 1019 to 34 GPa by X-ray diffraction and Raman spectroscopy. American Mineralogist, 98, 1972-1979.
- Maricq, M.M., and Waugh, J.S. (1979) NMR in rotating solids. Journal of Chemical Physics, 70,
 3300-3316.
- Matsyuk, S.S., and Langer, K. (2004) Hydroxyl in olivines from mantle xenoliths in kimberlites of the
 Siberian platform. Contributions to Mineralogy and Petrology, 147, 413-437.
- Matveev, S., O'Neill, H.S., Ballhaus, C., Taylor, W.R., and Green, D.H. (2001) Effect of silica activity on
 OH⁻ IR spectra of olivine: Implications for low-aSiO₂ mantle metasomatism. Journal of Petrology,
 42, 721-729.
- Miller, G.H., Rossman, G.R., and Harlow, G.E. (1987) The natural occurrence of hydroxide in olivine.
 Physics and Chemistry of Minerals, 14, 461-472.
- Momma, K., and Izumi, F. (2011) VESTA 3 for three-dimensional visualization of crystal, volumetric
 and morphology data. Journal of Applied Crystallography, 44, 1272-1276.
- 1031 Mosenfelder, J.L., Deligne, N.I., Asimow, P.D., and Rossman, G.R. (2006) Hydrogen incorporation in
- 1032 olivine from 2-12 GPa. American Mineralogist, 91, 285-294.

- 1033 Ohashi, Y. (1984) Polysynthetically-twinned structures of enstatite and wollastonite. Physics and
- 1034 Chemistry of Minerals, 10, 217-229.
- 1035 Otsuka, K., and Karato, S. (2011) Control of the water fugacity at high pressures and temperatures:
- 1036 Applications to the incorporation mechanisms of water in olivine. Physics of the Earth and
- 1037 Planetary Interiors, 189, 27-33.
- Padrón-Navarta, J.A., Hermann, J., and O'Neill, H.S.C. (2014) Site-specific hydrogen diffusion rates in
 forsterite. Earth and Planetary Science Letters, 392, 100-112.
- Perdew, J.P., Burke, K., and Ernzerhof, M. (1996) Generalized gradient approximation made simple.
 Physical Review Letters, 77, 3865-3868.
- 1042 Perdew, J.P., Ruzsinszky, A., Csonka, G.I., Vydrov, O.A., Scuseria, G.E., Constantin, L.A., Zhou, X., and
- Burke, K. (2008) Restoring the Density-Gradient Expansion for Exchange in Solids and Surfaces.
 Physical Review Letters, 100, 136406.
- Phillips, B.L., Burnley, P.C., Worminghaus, K., and Navrotsky, A. (1997) ²⁹Si and ¹H NMR spectroscopy
 of high-pressure hydrous magnesium silicates. Physics and Chemistry of Minerals, 24, 179-190.
- 1047 Pickard, C.J., and Mauri, F. (2001) All-electron magnetic response with pseudopotentials: NMR
- 1048 chemical shifts. Physical Review B, 63, 245101.
- Piriou, B., and McMillan, P. (1983) The high-frequency vibrational spectra of vitreous and crystalline
 orthosilicates. American Mineralogist, 68, 426-443.
- Poe, B.T., Romano, C., Nestola, F., and Smyth, J.R. (2010) Electrical conductivity anisotropy of dry and
 hydrous olivine at 8 GPa. Physics of the Earth and Planetary Interiors, 181, 103-111.
- Shaw, D.M., and Tse, J.S. (2007) Vibrational dynamics in H⁺-substituted forsterite: A first-principles
 molecular dynamics study. American Mineralogist, 92, 1593-1600.
- 1055 Smyth, J.R., Frost, D.J., Nestola, F., Holl, C.M., and Bromiley, G. (2006) Olivine hydration in the deep
- 1056 upper mantle: Effects of temperature and silica activity. Geophysical Research Letters, 33,

1057 L15301.

- 1058 Stebbins, J.F. (1995) Nuclear magnetic resonance spectroscopy of silicates and oxides in geochemistry
- and geophysics. In T.J. Ahrens, Ed. Mineral Physics & Crystallography, A Handbook of Physical
 Constants, p. 303-331. American Geophysical Union, Washington, DC.
- Stebbins, J.F., and Xue, X. (2014) NMR Spectroscopy of Inorganic Earth Materials. Reviews in
 Mineralogy and Geochemistry, 78, 605-653.
- 1063 Stebbins, J.F., Panero, W.R., Smyth, J.R., and Frost, D.J. (2009) Forsterite, wadsleyite, and ringwoodite

1064 (Mg₂SiO₄): ²⁹Si NMR constraints on structural disorder and effects of paramagnetic impurity ions.
 1065 American Mineralogist, 94, 626-629.

- 1066 Umemoto, K., Wentzcovitch, R.M., Hirschmann, M.M., Kohlstedt, D.L., and Withers, A.C. (2011) A
- first-principles investigation of hydrous defects and IR frequencies in forsterite: The case for Si
 vacancies. American Mineralogist, 96, 1475-1479.
- 1069 Verma, A.K., and Karki, B.B. (2009) Ab initio investigations of native and protonic point defects in
- Mg_2SiO_4 polymorphs under high pressure. Earth and Planetary Science Letters, 285, 140-149.
- 1071 Vinogradov, E., Madhu, P.K., and Vega, S. (1999) High-resolution proton solid-state NMR spectroscopy
 1072 by phase-modulated Lee-Goldburg experiment. Chemical Physics Letters, 314, 443-450.
- Walker, A.M., Wright, K., and Slater, B. (2003) A computational study of oxygen diffusion in olivine.
 Physics and Chemistry of Minerals, 30, 536-545.
- Walker, A.M., Demouchy, S., and Wright, K. (2006) Computer modelling of the energies and vibrational
 properties of hydroxyl groups in α- and β-Mg₂SO₄. European Journal of Mineralogy, 18,
 529-543.
- Walker, A.M., Hermann, J., Berry, A.J., and O'Neill, H.S.C. (2007) Three water sites in upper mantle
 olivine and the role of titanium in the water weakening mechanism. Journal of Geophysical
 Research-Solid Earth, 112, B05211.

- 1081 Wang, D., Mookherjee, M., Xu, Y., and Karato, S. (2006) The effect of water on the electrical
- 1082 conductivity of olivine. Nature, 443, 977-980.
- 1083 Withers, A.C., Hirschmann, M.M., and Tenner, T.J. (2011) The effect of Fe on olivine H₂O storage
- 1084 capacity: Consequences for H_2O in the martian mantle. American Mineralogist, 96, 1039-1053.
- Wright, K., and Catlow, C.R.A. (1994) A computer simulation study of (OH) defects in olivine. Physics
 and Chemistry of Minerals, 20, 515-518.
- Wu, G., and Wasylishen, R.E. (1993) NMR lineshapes arising from a pair of nonequivalent homonuclear
 spins in magic-angle-spinning experiments. Journal of Magnetic Resonance A, 102, 183-189.
- 1089 Xue, X., and Kanzaki, M. (2004) Dissolution mechanisms of water in depolymerized silicate melts:
- 1090 Constraints from ¹H and ²⁹Si NMR spectroscopy and ab initio calculations. Geochimica et 1091 Cosmochimica Acta, 68, 5027-5057.
- 1092 --- (2007a) Al coordination and water speciation in hydrous aluminosilicate glasses: direct evidence from
 1093 high-resolution heteronuclear ¹H ²⁷Al correlation NMR. Solid State Nuclear Magnetic
- 1094 Resonance, 31, 10-27.
- --- (2007b) High-pressure δ-Al(OH)₃ and δ-AlOOH phases and isostructural hydroxides/oxyhydroxides:
 New structural insights from high-resolution ¹H and ²⁷Al NMR. Journal of Physical Chemistry B,
 111, 13156-13166.
- --- (2009) Proton distributions and hydrogen bonding in crystalline and glassy hydrous silicates and
 related inorganic materials: insights from high-resolution solid-state NMR spectroscopy. Journal
 of the American Ceramic Society, 92, 2803-2830.
- 1101 Xue, X., Kanzaki, M., and Fraser, D.G. (2002) The dissolution mechanisms of forsterite and enstatite:
- 1102 Constraints from ²⁹Si and ¹H MAS NMR. Geochimica et Cosmochimica Acta, 66, A853.
- 1103 Xue, X., Kanzaki, M., Fukui, H., Ito, E., and Hashimoto, T. (2006) Cation order and hydrogen bonding of
- 1104 high-pressure phases in the Al₂O₃-SiO₂-H₂O system: An NMR and Raman study. American

- 1105 Mineralogist, 91, 850-861.
- 1106 Xue, X., Kanzaki, M., and Shatskiy, A. (2008) Dense hydrous magnesium silicates, phase D and
- 1107 superhydrous B: New structural constraints from one- and two- dimensional ²⁹Si and ¹H NMR.
- American Mineralogist, 93, 1099-1111.
- Xue, X., Kanzaki, M., and Fukui, H. (2010) Unique crystal chemistry of two polymorphs of topaz-OH: a
 multi-nuclear NMR and Raman study. American Mineralogist, 95, 1276-1293.
- 1111 Yang, H., and Ghose, S. (1995) High temperature single crystal X-ray diffraction studies of the
- 1112 ortho-proto phase transition in enstatite, Mg₂Si₂O₆ at 1360 K. Physics and Chemistry of Minerals,
- 1113 22, 300-310.
- 1114 Yang, X.Z. (2016) Effect of oxygen fugacity on OH dissolution in olivine under peridotite-saturated
- 1115 conditions: An experimental study at 1.5-7 GPa and 1100-1300 °C. Geochimica Et
- 1116 Cosmochimica Acta, 173, 319-336.
- Yesinowski, J.P., Eckert, H., and Rossman, G.R. (1988) Characterization of hydrous species in minerals
 by high-speed ¹H MAS-NMR. Journal of American Chemical Society, 110, 1367-1375.
- 1119 Yoshino, T., Matsuzaki, T., Shatskiy, A., and Katsura, T. (2009) The effect of water on the electrical
- 1120 conductivity of olivine aggregates and its implications for the electrical structure of the upper
- 1121 mantle. Earth and Planetary Science Letters, 288, 291-300.
- Zaremba, S.K. (1966) Good lattice points, discrepancy, and numerical integration. Annali di Matematica
 Pura ed Applicata, 73, 293-317.
- 1124 Zigan, F., and Rothbauer, R. (1967) Neutronenbeugungsmessungen am brucit. Zeitschrift fur
- 1125 Kristallographie, 167, 137-143.
- 1126
- 1127

1128	
1129	Figure captions
1130	Figure 1. Typical unpolarized Raman spectrum in the O-H stretching region for a forsterite sample containing about
1131	$0.5 \text{ wt\% H}_2\text{O}.$
1132	Figure 2. ¹ H static and MAS NMR spectra (at a spinning rate of 10, 20 and 30 kHz from top to bottom as marked)
1133	obtained with a recycle delay time of 60 s (a), and expanded view around the central band for the MAS spectra (at
1134	a spinning rate of 10, 20 and 30 kHz from top to bottom as marked) (b) for a forsterite sample containing about 0.5
1135	wt% H2O. All spectra have been processed with a Gaussian line broadening function of 20 Hz, and plotted with the
1136	same maximum peak height.
1137	Figure 3. Expanded view around the central band of the ¹ H MAS NMR spectra obtained at a spinning rate of 20 kHz
1138	with a recycle delay time (d1) of 60 s (top) and 3 s (middle), and the difference spectrum of the two (bottom), for a
1139	forsterite sample containing about 0.5 wt% H_2O . All spectra are plotted with a common intensity scale. The red
1140	dashed line is a guide for the small component near 5 ppm that has a shorter ${}^{1}H T_{1}$ and is absent in the difference
1141	spectrum.
1142	Figure 4. 2D rotor-synchronized ¹ H NOESY spectra obtained at a spinning rate of 20 kHz with a recycle delay of 15 s
1143	and a mixing time of 2 μ s (a) and 200 ms (b) for a forsterite sample containing about 0.5 wt% H ₂ O. A Gaussian
1144	line broadening of 100 Hz has been applied to both dimensions. The contours are plotted in a nonlinear intensity
1145	scale with a minimum relative intensity of 0.05 (of the maximum) and a scale factor of 1.5. The dotted diagonal
1146	line is a guide for positions of diagonal peaks. Also plotted to the right are F2 cross sections at F1 positions of about
1147	7.3 ppm, 1.1 ppm and -3 ppm (bottom to top) with a common vertical scale for the former two and an expanded
1148	vertical scale (5^{\times}) for the latter.
1149	Figure 5. 2D rotor-synchronized ¹ H CRAMPS (FSLG) - MAS NMR spectra obtained at a spinning rate of 25 kHz
1150	with a recycle delay of 15 s and a mixing time of 2 μ s (a) and 200 ms (b) for a forsterite sample containing about

1151 0.5 wt% H₂O. A Gaussian line broadening of 100 Hz and 20 Hz have been applied to the F2 and F1 dimensions,

1152	respectively. The contours are plotted in a nonlinear intensity scale with a minimum relative intensity of 0.05 (of
1153	the maximum) and a scale factor of 1.5. The dotted diagonal line is a guide for positions of diagonal peaks. Also
1154	plotted to the right are F1 cross sections at F2 positions of about 7.3 ppm, 1.5 ppm and -2 ppm (bottom to top) with
1155	an expanded vertical scale ($5\times$) for the upper and bottom cross sections (relative to the middle one).
1156	Figure 6. ²⁹ Si MAS NMR spectrum obtained at a spinning rate of 20 kHz for a forsterite sample containing about 0.5
1157	wt% H2O. A Gaussian line broadening of 5 Hz has been applied. Fo: forsterite; CEn: low-pressure clinoenstatite.
1158	Figure 7. ²⁹ Si MAS NMR spectrum (top) and ¹ H- ²⁹ Si CP-MAS NMR spectra obtained at a contact time of 2, 4, 8 and
1159	20 ms (bottom to top as labelled) for a hydrous forsterite sample containing about 0.5 wt% H_2O . The spinning
1160	rate was 20 kHz for all. The four CP spectra are plotted with a common intensity scale for comparison. A Gaussian
1161	line broadening of 5 Hz has been applied to all spectra.
1162	Figure 8. Simulation result for ¹ H- ²⁹ Si CP-MAS NMR spectra obtained at a contact time of 2, 4, 8 and 20 ms (bottom
1163	to top as labelled) as shown in Figure 7, with three mixed Gaussian-Lorentzian components. The black dotted, red
1164	solid and blue solid curves represent the experimental spectra, simulated spectra and simulated components,
1165	respectively. Al the spectra are plotted with a common intensity scale for comparison. A Gaussian line broadening
1166	of 5 Hz has been applied to the experimental spectra.
1167	Figure 9. Crystal structure of representative lowest-energy forsterite $2 \times 1 \times 2$ supercell models with four H ions
1168	associated with a vacant tetrahedral Si site ((4H) _{Si} model 1) (\mathbf{a}), and two H ions associated with a vacant octahedral
1169	M1 site, each bonded to a SiO ₄ tetrahedron and forming a hydrogen bond with an oxygen on an adjacent SiO ₄
1170	tetrahedron ((2H) _{M1} model 1) (b). Blue tetrahedra and orange octahedra stand for SiO_4 tetrahedra and MgO_6
1171	octahedra, respectively. Red and white spheres stand for oxygen and hydrogen atoms. Thin black box delineates
1172	the supercell dimension. Drawn using the Vesta program (Momma and Izumi 2011).
1173	Figure 10. Configuration of the four hydrogen ions associated with a vacant tetrahedral site for the six studied $(4H)_{Si}$
1174	models as labelled. Drawn using the Vesta program (Momma and Izumi 2011).

1175 Figure 11. Structure of the (4H)_{Si} model 5 with three adjacent interstitual octahedral sites I2 (outlined in grey

- 1176 octahedra) each occupied by a hydrogen ion. Others as Figures 9-10. The I2 interstitual sites alternate with M2 sites
- along c direction. The vacant tetrahedron is below the paper with O1 apex pointing into the paper. The other apexes
- 1178 at the base of the vacant tetrahedra (O2, O3, O3') and the H atoms bonded to each (H4, H1, H3) are labelled. Note
- 1179 that for (4H)_{Si} models 1 to 4, one or two of the three I2 interstitual octahedral sites would each accommodate a
- 1180 hydrogen ion. Drawn using the Vesta program (Momma and Izumi 2011).
- 1181 **Figure 12**. Comparison of experimental ¹H static NMR spectrum for hydrous forsterite as in Figure 2, with simulated
- ¹H static NMR powder spectra for the two lowest-energy (4H)_{Si} models 1 and 2, and the (2H)_{Ml} model 1, as
- 1183 labelled, using the SIMPSON program (Bak et al. 2000).
- 1184 **Figure 13**. Comparison of experimental ¹H MAS NMR spectrum for hydrous forsterite as in Figure 2, with simulated
- ¹H MAS NMR powder spectra for the two lowest-energy $(4H)_{Si}$ models 1 and 2, and the $(2H)_{M1}$ model 1, as
- 1186 labelled, using the SIMPSON program (Bak et al. 2000), all at a spinning rate of 20 kHz.

Phase	Formula	V, calc (Å ³)	V, exp (Å ³)	H site	$\sigma_i^{\rm H}$, calc (ppm)	$\delta^{\rm H}_i,$ calc (ppm)	δ ^H _i , exp (ppm)	Si site	σ _i ^{Si} , calc (ppm)	δ ^{si} , calc (ppm)	δ ^{Si} , exp (ppm)	Ref, structure ^a	Ref, NMR ^a
forsterite	Mg ₂ SiO ₄	290.85	290.107(17)						408.15	-61.80	-61.8	[1]	[11],[12]
wadsleyite	Mg ₂ SiO ₄	541.55	538.14						426.52	-80.17	-78.7	[2]	[11]
ringwoodite	Mg ₂ SiO ₄	527.62	525.73(4)						428.56	-82.21	-81.3	[3]	[11]
protoenstatite	MgSiO ₃	431.82							432.65	-86.30	-84.9	[4]	[13]
clinoenstatite	MgSiO ₃	417.00	415.5(2)					Sil	431.77	-85.42	-83.3	[5]	[14]
								Si2	427.73	-81.38	-80.5		
orthoenstatite	MgSiO ₃	835.26	833.0(1)					Sil	431.54	-85.19	-83.2	[6]	[15],[16]
								Si2	427.88	-81.53	-80.7		
brucite	Mg(OH) ₂	39.23	40.75		29.31	0.00	0.0					[7]	[17]
phase A	Mg7Si2O8(OH)6	508.59	511.23(2)	H1	25.96	3.35	3.6	Sil	414.61	-68.26	-70.6	[8]	[14],[17]
				H2	27.16	2.15	2.2	Si2	410.34	-63.99	-63.9		
phase B	Mg ₁₂ Si ₄ O ₁₉ (OH) ₂	1469.79	1458.4(3)	H1	26.33	2.98	3.3	Si1	513.34	-166.99	-170.4	[9]	[18]
				H2	25.82	3.49	4.7	Si2	411.77	-65.42	-64		
								Si3	421.40	-75.05	-75.8		
								Si4	420.65	-74.30	-75		
superhydrous B	Mg ₁₀ Si ₃ O ₁₄ (OH) ₄	625.12	625.71	H1	25.85	3.46	3.82	Si1	508.96	-162.61	-166.6	[10]	[19]
				H2	25.82	3.49	3.92	Si2	420.09	-73.74	-74.5		

Table 1. Comparison of calculated unit cell volumes (V) and ²⁹Si and ¹H NMR parameters at 0 GPa with experimental data under ambient condition for selected Mg silicate minerals

^a [1] Smyth et al. (2006); [2] Horiuchi and Sawamoto (1981); [3] Hazen et al. (1993); [4] Yang and Ghose (1995); [5] Ohashi (1984); [6] Hugh-Jones and Angel (1994); [7] Zigan and Rothbauer (1967); [8] Kagi et al. (2000); [9] Finger et al. (1991); [10] Koch-Muller et al. (2005); [11] Stebbins et al. (2009); [12] This study; [13] Xue et al. (2002); [14] Kanzaki et al. (1992); [15] Ashbrook et al. (2007b); [16] Xue and Kanzaki (unpublished data); [17] Xue and Kanzaki (2009); [18] Phillips et al. (1997); [19] Xue et al. (2008).

1187

²⁹Si FWHM ¹H FWHM^a $\delta^{\rm H}_i(\text{ppm})$ ²⁹Si Peak $\delta_{i}^{\,Si}\left(ppm\right)$ ¹H Peak (ppm) (ppm) 1.15 MAS -61.7 1 1.2 0.18 2 8.7 CP, peak 1 2.4 -60.9 0.17 CP, peak 2 3 7.3 0.14 -61.7 0.42 CP, peak 3 -62.1 0.45 ^a FWHM at 30 kHz MAS.

Table 2. ¹H and ²⁹Si NMR parameters of hydrous forsterite

1189

		0 GPa					12 GPa			
Model	E (Ry)	$\Delta E(Ry)$	$\Delta E (eV)$	ΔE (kJ/mol)	$V(Å^3)$	E(Ry)	H (Ry)	ΔH (Ry)	ΔH (eV)	ΔH (kJ/mol)
forsterite ^a	-4426.1863				 1073.78	-4425.9553	-4420.0436			
(4H) _{Si} model 1	-4384.9299	0.0000	0.000	0.04	1075.20	-4384.6933	-4378.7738	0.0000	0.000	0.00
(4H) _{Si} model 2	-4384.9299	0.0000	0.000	0.00	1075.63	-4384.6929	-4378.7710	0.0028	0.038	3.64
(4H) _{Si} model 3	-4384.9235	0.0065	0.088	8.47	1076.45	-4384.6857	-4378.7593	0.0145	0.198	19.07
(4H) _{Si} model 4	-4384.9128	0.0171	0.232	22.41	1076.70	-4384.6742	-4378.7465	0.0273	0.372	35.88
(4H) _{Si} model 5	-4384.9023	0.0276	0.376	36.29	1078.40	-4384.6633	-4378.7262	0.0476	0.648	62.52
(4H) _{Si} model 6	-4384.9148	0.0151	0.206	19.88	1075.29	-4384.6786	-4378.7587	0.0152	0.206	19.89
(2H) _{M1} model 1	-4395.5279	0.0000	0.000	0.00	1070.71	-4395.2909	-4389.3962	0.0000	0.000	0.00
(2H) _{M2} model 1	-4395.4797	0.0483	0.657	63.38	1071.98	-4395.2381	-4389.3364	0.0599	0.814	78.57

Table 3. Enthalpies of forsterite 2×1×2 supercell models at 0 and 12 GPa from DFT calculation

Note: E: internal energy; V: volume; H: enthalpy; $\Delta H (\Delta E)$: enthalpy (energy) difference relative to the lowest-enthalpy model of a given stoichiometry at a given pressure. H = E + PV.

^a Forsterite expressed in terms of $2 \times 1 \times 2$ supercell for easy comparison.

1191

1193

Table 4. Comparison of unit cell parameters of forsterite from DFT calculation at 0 GPa with experimental data under ambient condition													
Model/sample	H ₂ O content (wt%)	a(Å)	b (Å)	c(Å)	α(°)	β(°)	γ(°)	V(Å ³)	Δa^{a} (%)	Δb ^a (%)	Δc^{a} (%)	ΔV ^a (%)	Ref ^b
DFT calculation:													
forsterite	0	4.7613	10.2037	5.9867	90.00	90.00	90.00	290.8524	0.000	0.000	0.000	0.000	[1]
(4H) _{Si} model 1	1.618	4.7567	10.2261	5.9973	90.00	90.00	90.13	291.7238	-0.096	0.219	0.177	0.300	[1]
(4H) _{Si} model 2	1.618	4.7536	10.2287	6.0030	90.06	89.90	90.02	291.8866	-0.161	0.245	0.271	0.356	[1]
(4H) _{Si} model 3	1.618	4.7586	10.2309	6.0015	89.99	90.09	90.03	292.1802	-0.057	0.266	0.247	0.456	[1]
(4H) _{Si} model 4	1.618	4.7595	10.2378	5.9984	90.00	90.00	90.04	292.2834	-0.038	0.334	0.195	0.492	[1]
(4H) _{Si} model 5	1.618	4.7631	10.2435	6.0006	90.00	90.00	90.13	292.7723	0.038	0.390	0.231	0.660	[1]
(4H) _{Si} model 6	1.618	4.7605	10.2252	5.9925	90.26	90.07	90.02	291.6941	-0.016	0.210	0.096	0.289	[1]
(2H) _{M1} model 1	0.808	4.7705	10.2301	5.9558	90.32	90.16	90.22	290.6544	0.194	0.259	-0.516	-0.068	[1]
(2H) _{M2} model 1	0.808	4.7573	10.1983	6.0094	90.13	90.03	89.60	291.5433	-0.085	-0.053	0.379	0.238	[1]
Experimental ^c :													
Fo, anhydrous	<0.001	4.75518(18)	10.19853(22)	5.98215(22)	90	90	90	290.107(17)	0.00	0.00	0.00	0.000	[2]
SZ0408A	0.89	4.75454(39)	10.20675(75)	5.98625(39)	90	90	90	290.503(31)	-0.013	0.081	0.069	0.136	[2]
SZ0408B	0.85	4.75465(39)	10.20416(75)	5.98494(39)	90	90	90	290.373(31)	-0.011	0.055	0.047	0.091	[2]
SZ0410B	0.45	4.75574(17)	10.20383(58)	5.98383(51)	90	90	90	290.376(27)	0.012	0.052	0.028	0.092	[2]
SZ0411A	0.577	4.75659(36)	10.20096(65)	5.98258(48)	90	90	90	290.286(29)	0.030	0.024	0.007	0.061	[2]
SZ0409B	0.556	4.75517(46)	10.20481(66)	5.98640(38)	90	90	90	290.494(32)	0.000	0.062	0.071	0.132	[2]
SZ0501A	0.44	4.75463(48)	10.19925(55)	5.98346(39)	90	90	90	290.165(33)	-0.012	0.007	0.022	0.017	[2]
SZ0501B	0.34	4.75554(42)	10.19955(115)	5.98350(43)	90	90	90	290.226(42)	0.008	0.010	0.023	0.040	[2]
H2296	0.10	4.7557(10)	10.1977(16)	5.9821(8)	90	90	90	290.115(94)	0.011	-0.008	-0.001	0.002	[2]
Fo,hydrous	0.38(4)	4.756(1)	10.208(3)	5.988(2)	90	90	90	290.7(2)	0.017	0.093	0.098	0.208	[3]

Notes: Cell parameters from DFT calculation refer to a single unit cell. All relative to space group Pbnm.

^a Relative differences in cell constants and volume (%) with respect to H-free forsterite.

^b [1] This study; [2] Smyth et al. (2006); [3] Kudoh et al. (2006).

^c Hydrous forsterite samples by Smyth et al. (2006) synthesized at 12 GPa and 1100-1600°C; That of Kudoh et al. (2006) synthesized at 13.5 GPa and 1300°C.

Model	H site	$\delta^{\rm H}_i({\rm ppm})$	Comment
(4H) _{Si} model 1	H1	0.52	bonded to O3
	H2	0.06	bonded to O1
	H3	0.52	bonded to O3'
	H4 ^a	-0.44	bonded to O2
(4H) _{Si} model 2	H1 ^a	2.12	bonded to O3
	H2	1.41	bonded to O1
	H3	0.88	bonded to O3'
	H4	0.61	bonded to O2
(4H) _{Si} model 3	H1	1.03	bonded to O3
	H2	0.39	bonded to O1
	H3 ^a	1.80	bonded to O3'
	H4 ^a	-0.75	bonded to O2
(4H) _{Si} model 4	$\mathrm{H1}^{\mathrm{a}}$	0.71	bonded to O3
	H2	0.00	bonded to O1
	H3 ^a	0.71	bonded to O3'
	H4	0.36	bonded to O2
(4H) _{Si} model 5	$\mathrm{H1}^{\mathrm{a}}$	0.67	bonded to O3
	H2	0.30	bonded to O1
	H3 ^a	0.67	bonded to O3'
	H4 ^a	-1.02	bonded to O2
(4H) _{Si} model 6	H1	-1.03	bonded to O3
	H2	1.68	bonded to O1
	H3	1.05	bonded to O3'
	H4	1.09	bonded to O2
(2H) _{M1} model 1	H1, H2	7.67	bonded to O2
(2H) _{M2} model 1	H1	7.41	bonded to O3
	H2	5.86	bonded to O3

Table 5. $^1\!H$ isotropic chemical shifts ($\delta_i^H)$ of forsterite 2×1×2 supercell models from GIPAW calculations

1195

1197

Table 6. ²⁹Si isotropic chemical shifts (δ_t^{Si}) of forsterite 2×1×2 supercell models from GIPAW calculations

Model	Si site	$\delta_i^{Si} \text{(ppm)}$	$\Delta \delta_i^{\rm Si} \left(ppm ight)^a$	R(Si-H) (Å) ^b	Comment ^c
forsterite		-61.80	0.00		
(4H) _{Si} model 1	Si13	-61.54	0.26	2.562	close to H4-O2
	Others	-62.4~-61.3	$-0.6 \sim 0.5$ (av. 0.0)		
(4H) _{si} model 2	Si11	-60.17	1.63	2.348	close to H1-O3
	Others	-62.1~-61.6	$-0.3 \sim 0.2$ (av.0.1)		
(4H) _{si} model 3	Si10	-60.07	1.73	2.365	close to H3-O3
	Si13	-61.51	0.29	2.539	close to H4-O2
	Others	-62.7~-61.2	$-0.9 \sim 0.6$ (av. 0.0)		
(4H) _{Si} model 4	Si10	-60.27	1.53	2.373	close to H3-O3
	Si11	-60.27	1.53	2.373	close to H1-O3
	Others	-62.2~-61.3	$-0.4 \sim 0.5 (av.0.0)$		
(4H) _{si} model 5	Si10	-60.13	1.67	2.364	close to H3-O3
	Si11	-60.13	1.67	2.364	close to H1-O3
	Si13	-61.46	0.34	2.514	close to H4-O2
	Others	-62.8~-61.0	-1.0~0.8 (av. 0.0)		
(4H) _{si} model 6	All Si	-62.4~-61.3	$-0.6 \sim 0.5$ (av. 0.0)		
(2H) _{M1} model 1	Si1	-65.49	-3.69	2.272	Si-O2-H & -O3- V_{Ml} (edge-share)
	Si3	-60.22	1.58	2.572	Si-O1-V _{M1} (corner-share)
	Si6	-60.22	1.58	2.572	Si-O1-V _{M1} (corner-share)
	Si8	-65.49	-3.69	2.272	Si-O2-H & -O3- V_{Ml} (edge-share)
	Others	-61.9~-61.4	$-0.1 \sim 0.4$ (av. 0.1)		
(2H) _{M2} model 1	Si1	-63.59	-1.79	3.341	Si-O1-V _{M2} (corner-share)
	Si3	-66.75	-4.95	2.359	Si-O3-H & -O3-V _{M2} (edge-share)
	Si9	-62.47	-0.67	2.299	Si-O3-H (corner-share)
	Si10	-59.38	2.42	2.681	Si-O3-V _{M2} (corner-share)
	Si15	-60.53	1.27	3.340	Si-O2-V _{M2} (corner-share)
	Others	-62.0~-61.4	$-0.2 \sim 0.4$ (av. 0.1)		

^a Isotropic chemical shift difference from H-free forsterite. Numbers in brackets are the average values.

^b Si-H distance. For (4H)_{Si} models, only R(Si-H) \leq 3 Å are shown, whereas for (2H)_M models, the shortest R(Si-H) for all Si sites adjacent to the vacant M site are shown.

 $^{\rm c}\,V_{\rm M1}$ and $V_{\rm M2}$ stand for vacant M1 and M2 octahedron, respectively.

1198

(4H)_{si} model 1

Fig. 12

