1	Revision 1
2	Phase relations of MgFe ₂ O ₄ at conditions of the deep upper mantle and
3	transition zone
4	
5	Laura Uenver-Thiele ¹ , Alan B. Woodland ¹ , Tiziana Boffa Ballaran ² , Nobuyoshi
6	MIYAJIMA ² AND DAN J. FROST ²
7	
8	¹ Institut für Geowissenschaften, Goethe-Universität Frankfurt, Altenhöferallee 1, D - 60438
9	Frankfurt am Main, Germany
10	² Bayerisches Geoinstitut, Universität Bayreuth, D - 95440 Bayreuth, Germany
11	
12	Keywords: magnesioferrite, MgFe2O4, Mg2Fe2O5, deep upper mantle, transition zone, high
13	pressure
14	
15	ABSTRACT
16	
17	Phase relations of magnesioferrite (MgFe ₂ O ₄) have been studied between 8 and 18 GPa
18	and 1000-1600 °C using multi-anvil experiments. At 8-10 GPa and 900-1200 °C, MgFe ₂ O ₄
19	breaks down to $Fe_2O_3 + MgO$. At higher temperatures, a new phase appears along with Fe_2O_3 .
20	Although this new phase is unquenchable, EPMA and TEM data point to a composition with

21	Mg ₅ Fe ₂ O ₈ or Mg ₄ Fe ₂ O ₇ stoichiometry. Depending on pressure and temperature, other
22	stoichiometries also appear to be stable together with Fe ₂ O ₃ . In terms of pressure, the stability
23	field of the unquenchable phases + hematite widens with increasing temperature to 3 ± 1 GPa at
24	~1400 °C, and then narrows to ~1 GPa at 1600 °C. The recoverable assemblage of $Mg_2Fe_2O_5$ +
25	Fe_2O_3 becomes stable between 11-13 GPa. The $Mg_2Fe_2O_5 + Fe_2O_3$ assemblage is stable up to at
26	least 18 GPa at 1300°C without any evidence of a hP-MgFe ₂ O ₄ phase. In addition, hematite plays
27	an important role in the phase relations of MgFe ₂ O ₄ by being present over a wide range in
28	pressure and temperature together with a Mg-rich Fe-oxide. Interestingly, hematite incorporates
29	variable amounts of Mg whereby its concentration appears to be a function of temperature. This
30	experimental study has implications for interpreting inclusions in natural diamonds where
31	magnesioferrite occurs by placing a maximum pressure stability on the formation of this phase.
32	Through these inclusions, it also provides constraints on diamond formation and their subsequent
33	evolution prior to eruption. For example, the occasional observation of nano-sized
34	magnesioferrite within (Mg,Fe)O inclusions must have either formed from a high-pressure
35	precursor phase with a different stoichiometry at transition zone or upper lower mantle
36	conditions, or it exsolved directly from the host (Mg,Fe)O under upper mantle conditions (i.e. <
37	9-10 GPa). Since a number of studies report a variety of non-silicate inclusions with simple oxide
38	compositions, including magnesioferrite, magnetite or ferropericlase, such inclusions provide
39	evidence for variable redox conditions at the time of entrapment.

INTRODUCTION

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am-2017-5871

43 Spinel structured minerals with the chemical formula AB_2O_4 are of particular interest in 44 having the ability to incorporate ferric (Fe³⁺) and ferrous (Fe²⁺) cations into their structure, which 45 makes their stability sensitive to redox conditions. Such phases commonly occur in the peridotitic 46 upper mantle and transition zone. Magnesioferrite (MgFe³⁺₂O₄) is an example of such Fe³⁺-47 bearing end member components that may be stable at such high pressure and temperature 48 conditions. MgFe₂O₄ exhibits a cubic crystal structure (space group *Fd-3m*) with one tetrahedral 49 and two octahedral sites per AB_2O_4 formula unit.

The high-pressure behavior of a number of spinel group minerals has been experimentally 50 51 investigated over the last few decades, with a main interest being the nature of the "post-spinel" 52 phase at conditions of the deep upper mantle and transition zone (e.g. Huang and Bassett 1986; 53 Akaogi et al. 1999; Wang et al. 2003; Levy et al. 2004; Schollenbruch et al. 2010; Woodland et al. 2012; Ono et al. 2006; Kyono et al. 2012; Enomoto et al. 2009; Ishii et al. 2014, 2015). Apart 54 from experimental studies, mineral inclusions in diamonds brought up to the surface provide a 55 direct window into the Earth's interior. Thus, minerals entrapped by diamond represent a local 56 part of the Earth's mantle. But interpreting the chemical signatures of these minerals can be 57 58 hampered by fractures in diamond, which allows metasomatic interactions and/or changes in 59 redox state. Additionally, high pressure-temperature phases can also decompose during upwelling. 60

With regard to spinel group minerals, it has been reported that they transform into denser
orthorhombic structures of CaFe₂O₄ (*Pnma*), CaTi₂O₄ (*Cmcm*) or CaMn₂O₄ (*Pbcm*) type at high
pressures (e.g. Andrault and Bolfan-Casanova, 2001; Yamanaka et al. 2008) or disproportionate.
For example, at ~10 GPa and 700-1400 °C magnetite (FeFe₂O₄) breaks down to Fe₄O₅ + Fe₂O₃
(Woodland et al. 2012), while hercynite (FeAl₂O₄) and spinel (MgAl₂O₄) decompose into their
constituent oxides (Schollenbruch et al. 2009; Akaogi et al. 1999). Andrault and Bolfan-

67	Casanova (2001) studied magnesioferrite by in situ X-ray diffraction at high pressures (> 20 GPa)
68	using YAG laser annealing in a diamond anvil cell and reported a phase transformation at ~ 25
69	GPa, apparently to a CaMn ₂ O ₄ -type polymorph. Combining their P-V-T data on magnesioferrite
70	with available thermodynamic data, Levy et al. (2004) proposed a phase diagram for MgFe ₂ O ₄
71	that included a large stability field of $MgO + Fe_2O_3$ at intermediate pressure and temperature
72	conditions, together with an assumed field of a hP-MgFe ₂ O ₄ phase at $P > 17$ GPa. However,
73	Levy et al. (2004) never produced the hP-MgFe ₂ O ₄ phase and they had no direct experimental
74	evidence for the existence of a $MgO + Fe_2O_3$ stability field at room temperature even up to 35
75	GPa.
76	In natural samples, magnesioferrite has been identified in ferropericlase inclusions
77	occurring in diamond (Harte et al. 1999; Wirth et al., 2014). From their TEM observations,
78	Wirth et al. (2014) suggested that the magnesioferrite might have previously been a hP-MgFe ₂ O ₄
79	phase, formed by exsolution from an Fe ³⁺ -bearing (Mg,Fe)O host during decompression enroute
80	from the lower mantle. However, such an interpretation is dependent on the high-pressure phase
81	relations of MgFe ₂ O ₄ , which are currently only poorly constrained as just described.
82	The discovery of new oxides with M_4O_5 stoichiometry (Enomoto et al. 2009, Lavina et al.
83	2011, Woodland et al. 2012, Ishii et al. 2014, 2015; Myhill et al. 2016) opens the possibility that
84	analogous behavior may occur in the Mg-Fe ³⁺ -system. In fact, complete substitution of Mg into
85	Fe ₄ O ₅ , producing the new oxide phase Mg ₂ Fe ₂ O ₅ has been recently reported (Boffa Ballaran et
86	al., 2015). This phase exhibits the CaFe ₃ O ₅ -type structure (Boffa Ballaran et al., 2015).
87	Considering the phase relations of other simple oxides, the stability of Mg ₂ Fe ₂ O ₅ may also have
88	implications for the MgFe ₂ O ₄ system. Thus, our experimental study aims to investigate the phase
89	relations of magnesioferrite at high pressures and temperatures to (1) identify the conditions for
90	the breakdown of magnesioferrite, (2) verify the stability of a possible hP-MgFe ₂ O ₄ phase and (3)
	4

91	to assess whether $Mg_2Fe_2O_5$ is relevant to the $MgFe_2O_4$ bulk composition. Considering the
92	occurrence of magnesioferrite in diamonds (e.g. Harte et al. 1999; Wirth et al. 2014), we then go
93	on to briefly discuss the implications of our results for the Earth's upper mantle and transition
94	zone.
95	
96	EXPERIMENTAL METHODS
97	
98	Starting materials
99	
100	Stoichiometric mixtures of Fe ₂ O ₃ and MgO or pre-synthesized magnesioferrite were used
101	for high-pressure experiments (Table 1). Fe ₂ O ₃ and MgO were pre-sintered in air at 1000 °C. For
102	synthesizing MgFe ₂ O ₄ a stoichiometric mixture of Fe ₂ O ₃ and MgO was ground together and
103	pressed into pellets and sintered in air in a muffle furnace (at 1atm) at 1000 °C for 40 hrs. After
104	regrinding and repressing into pellets, the sample was sintered again at 1000 °C for 24 hrs, then
105	at 950 °C (24 hrs), followed by a final cycle at 900 °C (24 hrs). The sample was then removed
106	from the furnace and allowed to cool to room temperature. The resulting product was fine grained
107	and had a light reddish-brown color. Several fragments were analyzed by electron microprobe
108	(EPMA) to verify homogeneity and composition. X-ray powder diffraction revealed virtually
109	pure magnesioferrite with a unit-cell parameter of $a_o = 8.3875(1)$ Å with only a minor trace of
110	Fe ₂ O ₃ . Comparing with the results of O'Neill et al. (1992), this unit-cell parameter indicates a
111	stoichiometric composition with a degree of inversion of $x = 0.84$.
112	
113	Experimental procedure

6
0

115	High pressure-temperature experiments were performed at the University of Frankfurt and
116	the Bayerisches Geoinstitut, Bayreuth over a P-T range of 8-18 GPa and 900-1600 °C (see Table
117	1). Individual run conditions are presented in Table 1. The experiments performed at the
118	University of Frankfurt were conducted in an 800t Walker-type multi-anvil apparatus (Walker et
119	al. 1990) giving maximum load pressure of 14 GPa. Pressure calibration as well as the cell
120	assembly design are described in detail by Brey et al. (2008). Experiments carried out at the
121	Bayerisches Geoinstitut Bayreuth were performed using 500t, 1000t and 5000t multi-anvil
122	presses. The pressure calibration and setup of those multi-anvil presses are reported in Keppler
123	and Frost (2005). The assembly at the University of Frankfurt uses Re-foil as a heater, whilst
124	LaCrO ₃ is employed as heater at the Bayerisches Geoinstitut. The temperature was monitored by
125	$W_3/Re_{97}-W_{25}/Re_{75}$ thermocouples with the electromotive force uncorrected for pressure.
126	Uncertainties in pressure and temperature are ± 0.5 GPa and $\pm 30-50$ °C, respectively (Keppler and
127	Frost 2005).
128	Sample powders were packed into capsules made from Pt foil, along with a small amount
129	of PtO ₂ placed at the bottom and/or the top of the capsule in order to keep the oxygen fugacity
130	(fO ₂) high during the experiment. At such a high fO ₂ , Fe-loss to Pt metal is negligible. Pieces of
131	Pt-foil were placed between the starting material and the PtO ₂ to minimize direct contact. In
132	earlier experiments, we found that Pt can be locally incorporated in our oxide phases, when PtO_2
133	was in direct contact with our starting materials. In some experiments two capsules could be
134	employed, allowing the simultaneous use of two different starting materials to directly monitor
135	reaction direction (see Table 1).
136	Experiments followed the standard procedure of cold pressurizing, with subsequent

heating to the desired temperature at a rate of \sim 50 °C/min. Isobaric quenching of the experiments

138 was achieved by turning off the power to the furnace, after which the sample was decompressed. 139 The cooling rate was $\sim 200-250 \text{ °C s}^{-1}$.

- 140
- 141

ANALYTICAL METHODS

142

143 Run products were analyzed by EPMA, powder X-ray diffraction and/or transmission electron microscopy (TEM). A few fragments of each sample were mounted in epoxy, polished 144 145 and carbon coated for microprobe analysis. Measurements were carried out with a five-146 spectrometer JEOL JXA-8900 superprobe at the University of Frankfurt. Pure MgO, Fe₂O₃ and Pt metal were employed as primary standards. A CITZAF algorithm was used for matrix 147 correction (Armstrong 1993). Measurements were performed in wavelength-dispersive mode 148 149 using 15 kV accelerating voltage, a beam current of 20 nA and a beam spot size of $1\mu m$. Integration times for Fe and Pt were 40 s on the peak and 20 s on background. An integration 150 time of 40 s on the peak and background was adjusted for Mg. Backscattered electron images 151 were taken to investigate microtextures and to verify homogeneity of the mineral grains. If the 152 153 grains were large enough (>20 μ m), 3-5 points were measured on a single grain. Further phase identification was performed with X-ray powder diffraction patterns that 154 were collected on two diffractometers. One was a Philips X'Pert PRO diffractometer at the 155 156 Bayerisches Geoinstitut, Bayreuth using monochromatic Co K α ($\lambda = 1.78897$ Å) radiation selected with a focusing monochromator, a symmetrically cut curved Johansson Ge (111) crystal 157 and equipped with a Philips X'celerator detector. Silicon (NIST SRM 640c) was added as an 158 internal standard. Data were collected between 10° and 120° 2 0 at 40 kV and 40 mA. Other 159 patterns were collected with a STOE Stadi P diffractometer at the University of Frankfurt 160 operating at 45 kV and 35 mA and using monochromatic Mo K α ($\lambda = 0.70926$ Å) radiation, 161

162	along with a linear PSD or a Mythen detector. In this later case, the sample material containing a
163	Si internal standard (cross-calibrated with the standard in Bayreuth) was mounted in a 0.5 mm
164	diameter capillary and measured in transmission mode between 1°-100° 2 θ . Unit-cell parameters
165	were determined from full-pattern Rietveld refinements using the General Structure Analysis
166	System (GSAS, Larson and van Dreele 1994) software package and the EXPGUI interface of
167	Toby (2001).
168	TEM analysis was carried out using FEI Titan G2 80-200 S/TEM equipped with 4 SDD
169	energy-dispersive X-ray spectrometers, operated at 200 kV. One of the recovered samples
170	(M568) was cut and polished to make a thin section. The thin section was mounted on a Mo grid
171	and Ar-ion milled to electron transparency at accelerating voltages of 4.0 kV with an incident
172	angle of 8° using a precision ion polishing system (Gatan, model 691). The sample foil was
173	coated with amorphous carbon in order to reduce charging.
174	
175	RESULTS AND DISCUSSION
176	
177	The use of different starting mixtures permitted us to demonstrate the direction of reaction
178	and, thus to determine the stable phase assemblage at the conditions of a given experiment
179	(Table 1). Broadly using the proposed phase diagram of Levy et al. (2004), we employed either
180	$MgFe_2O_4$ or stoichiometric mixtures of $MgO + Fe_2O_3$ to unequivocally demonstrate which
181	assemblage was stable at a given pressure and temperature. In a number of cases, two separate
182	capsules with different starting materials were included in a single experiment. In other cases,
183	
105	10% MgFe ₂ O ₄ was mixed together with MgO + Fe ₂ O ₃ to minimize potential kinetic problems

then be monitored from the relative phase proportions determined from refinement of the X-ray 185 186 diffraction pattern.

Depending on the pressure and temperature of the experiment, the duration varied from 187 1.5-24 hrs (see Table 1). Backscattered electron imaging of the run products confirms significant 188 grain growth and essentially complete recrystallization. Most samples revealed homogenous and 189 190 well-crystalized grains, whereas a number of experiments (e.g. M553, M568, V8410; Table 1) contained grains that exhibited extremely fine-grained internal textures, suggesting reaction had 191 192 occurred during quenching (see below). Stoichiometric calculations based upon microprobe 193 analyses indicate that, with the help of a little PtO₂, the oxygen fugacity had been kept high enough so that the iron remained in the ferric state for the duration of the experiments. At such 194 oxidizing conditions, incorporation of Pt into the oxide phases needed to be monitored, as 195 hematite with up to $\sim 7 \text{ wt}\% \text{ PtO}_2$ or MgFe₂O₄ with up to 1 wt% were observed in a few samples, 196 for crystals in direct contact with PtO₂. Such samples were not considered when assessing the 197 phase relations of MgFe₂O₄. No measureable or only traces of Pt were observed in either 198 ferropericlase or the new $Mg_2Fe_2O_5$ phase (Table 2). Magnesite appeared in trace quantities in a 199 200 number of samples (see Table 1, 2). This was possibly introduced into the experiments as adsorbed CO₂ on the PtO₂ powder, which has a very fine grain size. Although the presence of 201 magnesite alters the bulk composition, the small amounts should have negligible effect on the 202 203 stability of the coexisting oxide phases.

204

- 205
 - The breakdown of MgFe₂O₄ at low temperatures
- 206
- 207 At 8-10 GPa and temperatures of 900-1200 °C MgFe₂O₄ was observed to breakdown to 208 its constituent oxide phases according to the reaction:

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am-2017-5871

209	$MgFe_2O_4 = MgO + Fe_2O_3$	(1)
210	mf per hem	
211	Backscatter electron images reveal that where magnesioferrite was stable, it produced	
212	grains up to 150 μ m in size, whereas mixtures of MgO and Fe ₂ O ₃ were much finer grained (~7)	10
213	μ m, compare Fig. 1a and 1b). The measured cell parameter for periclase in our experiments	
214	agrees with the value of $a_0 = 4.2110$ Å reported for MgO by Hazen (1976) (Table 3). The	
215	position of the phase boundary can be described by the following equation (see Fig. 2):	
216		
217	$P [GPa] = 6.7 \times 10^{-3} \times T [^{\circ}C] + 1.8$	
218		
219	The boundary computed by Levy et al. (2004) lies at significantly higher pressures. Or	1
220	the other hand, the database of Holland and Powell (2011) seems to reproduce our results	
221	reasonably well, even if their slope is much steeper than that implied from our data.	
222		
223	MgFe ₂ O ₄ breakdown at higher temperature	
224		
225	At temperatures > 1200 °C and 9-10 GPa, MgFe ₂ O ₄ no longer breaks down directly to	
226	MgO + Fe ₂ O ₃ . Although the powder diffraction patterns often contain peaks consistent with	
227	hematite, MgO and MgFe ₂ O ₄ , the peaks are broad and difficult to refine, suggesting that these	;
228	phases are poorly crystalline or of extremely fine grain size. Furthermore, there are additional	
229	diffraction peaks that do not belong to any of these phases. In these cases, estimated phase	
230	proportions of MgO and Fe ₂ O ₃ are significantly different from those observed in the lower	
231	temperature experiments. Following the phase diagram of Levy et al. (2004), a transformation	ı to
232	hp-MgFe ₂ O ₄ would be expected. However, neither our microprobe analyses nor our powder	

233	diffraction patterns are consistent with a high-pressure polymorph being present. The
234	orthorhombic structures frequently encountered in post-spinel transitions (i.e. the CaFe ₂ O ₄ ,
235	CaTi ₂ O ₄ and CaMn ₂ O ₄ -type structures), tetragonally distorted structures (e.g. Yong et al. 2012;
236	Kyono et al. 2012) proved to be inconsistent with our data. The diffraction peaks also cannot be
237	fitted with the Mg ₂ Fe ₂ O ₅ structure (Boffa Ballaran et al. 2015). Nevertheless, XRD patterns and
238	microprobe analyses of the run products confirm the breakdown of MgFe ₂ O ₄ at pressures of ~9-
239	10 GPa \pm 0.5 GPa and temperatures > 1200 °C (Table 1, 2, Fig. 3).

An important characteristic of the run products in this pressure-temperature range is their 240 241 texture, as revealed by BSE-imaging. They are marked by the presence of coarse-grained hematite coexisting with another phase that clearly has a much lower mean atomic number (Fig. 242 4a). The presence of well-developed triple junctions provides textural evidence for equilibrium 243 conditions in these experiments (Fig. 4a, 4b). In many cases, the additional phase can also be 244 quite coarse-grained (> 100 μ m, Fig. 4b), even though the grains themselves have a very fine 245 246 internal structure (Fig. 4b, 4c). Thus, it appears that this phase has decomposed or at least 247 partially decomposed either during temperature quenching or decompression. The coexistence of 248 hematite in the experiments indicates that this phase must have been substantially richer in Mg 249 than the MgFe₂O₄ starting composition. We can rule out Mg₂Fe₂O₅ since it is known to be recoverable from 15 GPa and ~1550 °C and there is no reason to suspect that its behavior should 250 251 be different at somewhat lower pressures (Boffa-Ballaran et al. 2015). In spite of its unquenchable nature, the resultant very fine grain size of the mixture ($<< 1 \mu m$ and see below) 252 253 means that microprobe analyses average over a significant volume and can give an indication of 254 the composition of the original phase. In fact, for a given sample multiple microprobe analyses yield consistent compositions, reproducible within \pm 1-2 wt%. For example, compositions of 50.5 255

256	wt% MgO and 44.6 wt% FeO (sample M551) and 55.9 wt% MgO and 41.6 wt% FeO (sample
257	M568) suggest stoichiometries for the unquenchable phase of $Mg_4Fe_2O_7$ and $Mg_5Fe_2O_8$,
258	respectively, when charge balance is assumed (Table 4). This assessment also indicates that Fe
259	was maintained in the ferric state during the experiments through the presence of the PtO ₂ . These
260	derived compositions are also inconsistent with the Mg ₂ Fe ₂ O ₅ stoichiometry (Table 4).

Sample M568 was investigated by TEM in order to obtain additional compositional and 261 262 textural information about the unquenchable phase. Dark field images reveal a vermicular 263 intergrowth of two phases at the scale of ~ 10 nm consistent with spinodal decomposition as 264 suspected from the BSE images (Fig. 5a). STEM-EDX chemical mapping yields two distinct chemical domains: a Fe-rich domain with a composition corresponding to MgFe₂O₄ and a Fe-265 266 poor domain, much richer in Mg (Fig. 5b). Electron diffraction patterns made by Fast Fourier Transforms (FFT) in the HRTEM of the Fe-rich domains confirm a cubic spinel structure (Fig. 267 268 5c) consistent with the measured $MgFe_2O_4$ composition, while the Mg-rich domains exhibit a 269 rock salt structure, as expected for MgO (Fig. 5d). Results of chemical mapping over the large area yield a bulk composition of Mg₅Fe₂O₈, which agrees with the microprobe measurement for 270 271 this sample (Table 2 and 4).

272 Since we cannot definitively identify the structure and composition of this Mg-rich phase or phases stable at high temperatures and pressures, we informally refer to it as an 273 274 "unquenchable" phase (UQ). Thus, we propose that $MgFe_2O_4$ breaks down to an assemblage of hematite and an unquenchable Mg-Fe oxide with an original stoichiometry of e.g. Mg₄Fe₂O₇ or 275 276 Mg₅Fe₂O₈ depending on the exact pressure and temperature of the experiment. In our phase diagram, we have chosen to lump this region together into a single field, even though in detail 277 278 more than one Mg-rich phase may be stable in this region (Fig. 3). In fact, a variety of 279 hypothetical compositions can be considered that can be matched up with observed bulk

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am-2017-5871

13

280	microprobe analyses (Table 4, Fig. 6, 7). The coexistence of a particular phase stoichiometry with
281	hematite requires that all other phases lying in between are unstable at the given pressure and
282	temperature. Two experiments (M630, M632; Table 1) also exhibit an unquenchable phase
283	coexisting with hematite, but yield a composition anomalously high in Mg (i.e. \sim 76 wt % MgO
284	and ~24 wt % FeO; Table 2). This composition would imply a $Mg_{11}Fe_2O_{14}$ stoichiometry and is
285	consistent with the qualitatively higher proportion of coexisting hematite in these samples
286	compared with those containing other unquenchable phases. Considering the distribution of the
287	different stoichiometries as a function of pressure and temperature (Table 1), the unquenchable
288	phase appears to exhibit a general decrease in Mg content with increasing temperature, away
289	from the MgO + Fe_2O_3 stability field. However a more precise analysis is precluded by the
290	inherent uncertainties in the pressure and temperature of the individual experiments (see above).
291	Although the exact nature of the unquenchable phases remains unknown, our experiments at ~ 10
292	GPa and above 1200 °C demonstrate that the boundary delineating the MgFe ₂ O ₄ breakdown
293	reaction is virtually isobaric (Fig. 3). In situ measurements will be necessary to provide more
294	precise information about the true nature of the Mg-Fe oxides stable above ~ 10 GPa.
295	
296	Stability of Mg ₂ Fe ₂ O ₅ + Fe ₂ O ₃

297

The stability field for the unquenchable phases and hematite is rather narrow in terms of pressure, giving way to the recoverable assemblage of $Mg_2Fe_2O_5 + Fe_2O_3$ (Fig. 3, Table 1). This field was not foreseen by Levy et al. (2004). $Mg_2Fe_2O_5$ is isostructural with Fe_4O_5 (Boffa Ballaran et al. 2015) and is easily distinguishable from other phases in X-ray powder diffraction patterns (Fig. 8). The unit-cell parameters are given in Table 5 and are very similar to those

303	published for the Mg-endmember $Mg_2Fe_2O_5$ in Boffa-Ballaran et al. (2015). This implies little or
304	only minor reduction of ferric to ferrous iron. The occurrence of large crystals in some samples
305	compared to other assemblages (Fig. 1a, 1b) demonstrates its quenchable nature without any
306	apparent spinodal-like texture. With increasing pressure, $Mg_2Fe_2O_5 + Fe_2O_3$ becomes stable to
307	lower temperatures at the expense of $MgO + Fe_2O_3$ indicating this boundary has a negative slope
308	(Fig. 3). The $Mg_2Fe_2O_5 + Fe_2O_3$ assemblage is stable up to at least 18 GPa, with additional
309	experiments underway to investigate the full breadth of its stability field.

- 310
- 311

High-pressure behavior of hematite

312

The phase relations of magnesioferrite as depicted in Figure 3 demonstrate that hematite 313 314 plays an important role in post-spinel assemblages. It occurs with a variety of phases that always have a higher Mg/Fe³⁺ than that present in MgFe₂O₄. The coexistence of hematite also implies 315 that no other phases with lower Mg/Fe³⁺ (i.e. a Mg-bearing solid solution of Fe₁₃O₁₉; Merlini et 316 al. 2015) are stable within the pressure and temperature range of our experiments. However, at 317 318 such high pressures the hematite is not pure Fe_2O_3 , but was found to incorporate up to ~3.5 wt% MgO (≙0.135 c.p.f.u.). This is not an analytical artifact since we observe Mg contents to increase 319 320 with increasing temperature of the experiment (Fig. 9a). In addition, the lattice parameters and molar volume systematically change with measured Mg concentration (Table 6, Figs. 9b, 9c, 9d). 321 The substitution of divalent Mg for Fe³⁺ can be understood in terms of a Mg₃O₃ component, 322 where two Fe³⁺ cations are replaced by Mg and an additional Mg cation occupies a normally 323 adjacent vacant site in the crystal structure (Berry et al. 1998, 2000). Whilst α- Fe₂O₃ has pairs of 324 325 face-sharing FeO₆ octahedra along [001], the incorporation of Mg leads to the formation of

326	triplets along the same crystallographic direction. In this way charge balance is maintained, but
327	stoichiometry deviates from the ideal two cations per three oxygens through the presence of
328	interstitial Mg (Table 6). Our data set is in good agreement with this structural model in so far as
329	the observed expansion along the <i>c</i> -axis is about twice that along the <i>a</i> -axis (see Figs. 9c and 8d).
330	The maximum extent of non-stoichiometry reaches 2.045 cations on a three-oxygen basis (Table
331	6), which should act to stabilize the assemblage hematite + MgO. As a result, we would expect
332	the phase boundary between $MgFe_2O_4$ and this assemblage to shift to lower pressures. However,
333	hematite in this range of pressure and temperature contains less Mg, reaching a maximum non-
334	stoichiometry of 2.019 cations on a three-oxygen basis in sample M588 (Table 6). Assuming that
335	Raoult's law is valid over this small compositional range (mole fraction of hematite = 0.981), we
336	can estimate the effect of solid solution on the position of the phase boundary. In this case, the
337	free energy difference amounts to only several hundred joules, which implies a shift of < 0.1
338	GPa. Thus, this effect cannot account for the observed discrepancy between our results for
339	equilibrium (1) and the calculations of Levy et al. (2004).

341 Comparison with other Mg and Fe-bearing oxide systems

342

Aside from ringwoodite, mantle-derived spinels have major element compositions dominated by Mg and Fe²⁺, along with Fe³⁺, Cr and/or Al as trivalent cations. Therefore, it is of interest to compare the phase relations in different endmember systems in order to predict the behavior of more complex solid solutions and to understand how the incorporation of certain cations may affect phase stabilities. We have demonstrated that the phase relations for MgFe₂O₄ are rather more complicated than proposed by Levy et al. (2004). At about 9 GPa and

349	temperatures up to 1200 °C, MgFe ₂ O ₄ breaks down to its constituent oxides: MgO + Fe ₂ O ₃ . This
350	contrasts with the Mg-free analog FeFe ₂ O ₄ , where no such field has been observed
351	(Schollenbruch et al. 2011; Huang and Bassett 1986). Instead, magnetite breaks down at 9.5-11
352	GPa and 700-1400 °C by undergoing a disproportionation reaction to $Fe_4O_5 + Fe_2O_3$ (Woodland
353	et al. 2012). In the MgFe ₂ O ₄ system, $Mg_2Fe_2O_5 + Fe_2O_3$ does become stable at somewhat higher
354	pressures (Fig. 3, 10), but magnesioferrite does not directly break down to this assemblage. In
355	this case, there is an intervening field involving one or more unquenchable Mg-Fe oxides that
356	appear to have more complex stoichiometries (see above). Thus, substitution of Mg for Fe^{2+} in
357	the presence of Fe ³⁺ does not just lead to a shift in phase boundaries to different pressures and
358	temperatures, but it alters the phase relations by stabilizing additional phase fields. On the other
359	hand, it is notable that the high-pressure stabilities of magnesioferrite and magnetite are similar
360	(they lie within a couple of GPa at a given temperature, see Fig. 10).

In Cr-bearing compositions, phase relations exhibit similarities and differences compared 361 to the Fe³⁺-bearing endmembers (Fig. 10). Recent studies on chromite (FeCr₂O₄) and 362 magnesiochromite (MgCr₂O₄) by Ishii et al. (2014, 2015) also highlight the influence of Mg^{2+} on 363 the phase relations of Cr-spinels. In a fashion analogous to magnetite, chromite breaks down to 364 $Fe_2Cr_2O_5 + Cr_2O_3$, although $Fe_2Cr_2O_5$ has apparently a slightly different crystal structure than 365 that observed for Fe₄O₅. Magnesiochromite reacts directly to $Mg_2Cr_2O_5 + Cr_2O_3$ (Ishii et al. 366 2015), without any intermediate phase field, which contrasts with that observed for MgFe₂O₄. On 367 the other hand, MgCr₂O₄ also breaks down to its constituent oxides at low temperatures, like 368 MgFe₂O₄ does. Such a phase field is clearly not favored in Fe²⁺-bearing endmembers regardless 369 of whether Fe³⁺ or Cr is the trivalent cation. The high-pressure stability limits of chromite and 370 magnesiochromite are nearly identical (Fig. 10, Ishii et al. 2014, 2015) and lie 2-5 GPa higher 371 than those for the Fe³⁺-bearing spinel phases. 372

373	The Mg-bearing spinel, MgAl ₂ O ₄ , exhibits different phase relations in that it breaks down
374	to its constituent oxides (MgO + Al_2O_3) at 15-16 GPa and over a wide range of temperatures
375	(1000-1600°C, Liu 1975; Akaogi et al. 1999). At temperatures > 1900°C, Enomoto et al. (2009)
376	reported that MgO + Al_2O_3 reacts to form the assemblage Mg ₂ Al ₂ O ₅ + Al_2O_3 at 20-26 GPa. These
377	relations are not unlike those observed for MgFe ₂ O ₄ (Fig. 3, 10) and MgCr ₂ O ₄ (Ishii et al. 2015),
378	albeit with the different phase fields occurring at much higher temperatures. As illustrated in
379	Figure 10, the maximum pressure stabilities of the Mg-bearing spinel-structured phases in their
380	respective systems have the following sequence: $MgAl_2O_4 > MgCr_2O_4 > MgFe_2O_4$.
381	The Fe ²⁺ bearing analog to spinel, hercynite (FeAl ₂ O ₄), disproportionates into a mixture
382	of corundum and wüstite at 7–8.5 GPa and temperatures of 900-1700 $^{\circ}$ C (Schollenbruch et al.
383	2009). The constituent oxides remain stable up to at least 24 GPa and 1700 °C, with no evidence
384	for a Fe ₂ Al ₂ O ₅ phase becoming stable. However, considering the results of Enomoto et al. (2009),
385	it is still possible that an assemblage of $Fe_2Al_2O_5 + Al_2O_3$ might be stable above 1700 °C.
386	Comparison of the Fe ²⁺ -bearing systems reveals that the sequence of maximum pressure stability
387	for the spinel-structured phases is $FeCr_2O_4 > FeFe_2O_4 > FeAl_2O_4$, which is quite different from
388	that of the Mg-bearing analogs (Fig. 10).
389	
390	IMPLICATIONS FOR THE MANTLE
391	
392	Studies of inclusions in diamonds provide direct information about the conditions and
393	composition of the Earth's deep interior, at least of the local domain in which a diamond
394	crystallized. For example, inclusions can potentially give evidence for the prevailing pressure-
395	temperature, and possibly oxygen fugacity conditions during entrapment. A number of studies

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am-2017-5871

18

396	report a variety of non-silicate inclusions with simple oxide compositions, including magnetite,
397	wüstite and metallic Fe (e.g. Meyer 1987; Stachel et al. 1998). Their occurrence together in a
398	single diamond emphasizes the fact that diamond formation may take place in a significant redox
399	gradient (Stachel et al. 1998).
400	Inclusions of (Mg,Fe)O in diamond are often considered to indicate a deep origin in the
401	lower mantle (e.g. Harte et al. 1999). Samples from Juina Province, Brazil are particularly
402	noteworthy in that the inclusions also contain nm-sized magnesioferrite (Harte et al. 1999; Wirth
403	et al. 2014; Kaminsky et al. 2015; Palot et al. 2016). In their TEM study, Wirth et al. (2014)
404	identified platelets of (Mg _{0.5} Fe _{0.5})Fe ₂ O ₄ occurring along dislocations or at the diamond-inclusion
405	interface. In addition, magnetite, Al-bearing spinel and a Fe-Ni alloy were also found to occur
406	within the host inclusion. The observed microtextures were interpreted by Wirth et al. (2014) as
407	indicating that $(Mg_{0.5}Fe_{0.5})Fe_2O_4$ originally formed as a high-pressure polymorph that reverted to
408	magnesioferrite during decompression. Palot et al. (2016) also reported magnesioferrite with an
409	approximate composition of Mg(Fe _{0.75} ,Cr _{0.17} ,Al _{0.08}) ₂ O ₄ decorating dislocations and occurring as
410	10-20 nm euhedral crystals within another (Mg,Fe)O included in diamond from the same
411	location. Based upon a phase diagram valid for 1 atm, they considered this phase to have formed
412	during uplift, but still within the lower mantle at pressures > 25 GPa. Furthermore, the occurrence
413	of euhedral precipitates was interpreted as indicating that the magnesioferrite formed directly
414	from the ferropericlase host. However, our phase relations presented in Figure 3 and Figure 10
415	demonstrate that 1) magnesioferrite is not stable at such pressures and 2) magnesioferrite does
416	not directly transform into a high-pressure polymorph, hp-MgFe ₂ O ₄ not being stable up to 18
417	GPa, at least at 1300 °C. Such a hp-MgFe ₂ O ₄ phase may be stable at still higher pressures, as
418	reported by Andrault and Bolfan-Casanova (2001). However, there must be an intervening
419	stability field with the assemblage "O5" phase + sesquioxide solid solution (i.e. a Fe2O3-rich

420	phase) between the fields of magnesioferrite and the high-pressure polymorph. This is also the
421	case for Cr-bearing compositions (Fig. 10, Ishii et al. 2014, 2015). It is important to note that
422	Wirth et al. (2014) reported the presence of an additional, unidentifiable phase located between
423	the magnesioferrite platelets, implying that the precursor had a stoichiometry different from that
424	of spinel. An alternative interpretation could be that at transition zone conditions, $Mg_2Fe_2O_5$
425	initially exsolved from the host (Mg,Fe)O, and during upwelling subsequently reacted to one or
426	other of our unquenchable Mg-Fe oxides (e.g. $Mg_4Fe_2O_7$ or $Mg_5Fe_2O_8$ etc.) before further
427	reacting to magnesioferrite upon reaching its stability field in the upper mantle (i.e. 9-10 GPa).
428	The presence of magnesioferrite led both Wirth et al. (2014) and Palot et al. (2016) to
429	propose that the original (Mg,Fe)O had a significant non-stoichiometry (i.e. Fe ³⁺ content).
430	However, such a degree of non-stoichiometry is inconsistent with experimental data
431	(McCammon et al. 1998). Another possibility is in situ oxidation through reaction with a small
432	amount of carbonate-bearing (fluid or a solid) that was trapped along with the (Mg,Fe)O
433	inclusion. A coupled reaction of the form: 2 FeO (oxide) + $CO_2 = C + Fe_2O_3$ (oxide) would
434	produce diamond together with ferric iron that would drive the formation of an additional phase
435	such as Mg ₂ Fe ₂ O ₅ . In fact, Palot et al. (2016) report the coexistence of brucite in the host
436	ferropericlase, providing direct evidence for the presence of a fluid. Carbonate inclusions have
437	been reported in other diamonds from the same locality (Kaminsky et al. 2009, 2013), further
438	supporting this possibility.
439	The mechanism of carbon-iron redox-coupling to produce diamond along with a
440	coexisting Fe ³⁺ -bearing phase does not have to be restricted to isolated inclusions, but can also
441	have relevance for the diamond-formation process in general. Although they are not expected to

442 be stable at the ambient oxidation state of the transition zone (i.e. near metal saturation, Frost and

443	McCammon, 2008), such Fe ³⁺ -rich phases can develop locally where strong redox gradients
444	attend diamond formation (Stachel et al. 1998). On the other hand, the many similarities between
445	MgFe ₂ O ₄ and other AB_2O_4 endmember systems (where A and B stand for divalent and trivalent
446	cations, respectively) suggest phases like $A_2B_2O_5$ can form complex solid solutions involving
447	trivalent cations other than Fe ³⁺ . Such substitutions can act to expand the redox stability of these
448	phases. So far unique to MgFe ₂ O ₄ is the occurrence of Mg-Fe oxides with more complex
449	stoichiometries like $Mg_4Fe_2O_7$ or $Mg_5Fe_2O_8$, or even $Mg_{11}Fe_2O_{14}$. Whether these phases can also
450	form solid solutions awaits further study. Although Fe ₅ O ₆ has been reported (Lavina & Meng
451	2015; Woodland et al. 2015), it is not a stable phase in a Fe ₃ O ₄ bulk composition (Woodland et
452	al. 2015). Interestingly, one of the unquenchable phases encountered at 10 GPa and 1500 $^\circ$ C had
453	a $Mg_3Fe_2O_6$ stoichiometry, which would represent an analog to Fe_5O_6 (Table 1). Whether this
454	Mg-endmember has a large stability field (or is quenchable) in more Mg-rich bulk compositions
455	remains to be investigated.
456	Magnesioferrite and magnetite have very similar high-pressure stabilities, both breaking

Magnesioferrite and magnetite have very similar high-pressure stabilities, both breaking down at 9-10 GPa (Schollenbruch et al. 2011; Woodland et al. 2012). Although the phase relations of magnetite have received much attention over the years, no additional oxide phases with stoichiometries of e.g. $Mg_4Fe_2O_7$ or $Mg_5Fe_2O_8$ have been reported. The high pressuretemperature behavior of solid solutions along the $MgFe_2O_4 - FeFe_2O_4$ could be of further interest, in that their composition is more applicable for the Earth's mantle. Thus, an experimental study on the phase relations of $(Mg_{0.5}Fe_{0.5})Fe_2O_4$ similar to that identified by Wirth et al. (2014) in their ferropericlase inclusion is currently underway.

464

465

ACKNOWLEDGMENTS

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am-2017-5871

466

2	1
2	T

467	This work was supported by the Deutsche Forschungsgemeinschaft through grants WO 652/20-1
468	and BO 2550/7-1 to ABW and TBB, respectively. E. Alig and H. Höfer are thanked for helping
469	with the X-ray powder diffraction and microprobe measurements, respectively. The manuscript
470	was improved through insightful comments from R. Myhill and an anonymous reviewer. Fruitful
471	discussions with R. Angel and F. Brenker are gratefully acknowledged.
472	
473	
474	REFERENCES CITED
475	
476	Akaogi, M., Hamada, Y., Suzuki, T., Kobayashi, M., and Okada, M. (1999) High pressure
477	transitions in the system MgAl ₂ O ₄ -CaAl ₂ O ₄ : a new hexagonal aluminous phase with implication
478	for the lower mantle. Physics of the Earth and Planetary Interiors, 115, 67–77.
479	
480	Andrault, D., and Bolfan-Casanova, N. (2001) High-pressure phase transformations in the
481	MgFe ₂ O ₄ and Fe ₂ O ₃ -MgSiO ₃ systems. Physics and Chemistry of Minerals. 28, 211-217.
482	
483	Armstrong, J.T. (1993) Matrix correction program CITZAF, Version: 3.5, California Institute of
484	Technology
485	
486	Berry, F.J., Bohorquez, A., Greaves, C., McManus, J., Moore, E.A., and Mortimer, M. (1998)
487	Structural characterization of divalent Magnesium-doped α -Fe ₂ O ₃ . Journal of Solid State
488	Chemistry, 140, 428-430.
489	

490	Berry, F.J., Greaves, C., Helgason, Ö., McManus, J., Palmer, H.M., and Williams, R.T. (2000)
491	Structural and Magnetic Properties of Sn-, Ti-, and Mg-Substituted α-Fe ₂ O ₃ : A Study by Neutron
492	Diffraction and Mössbauer Spectroscopy. Journal of Solid State Chemistry, 151, 157-162.
493	
494	Boffa Ballaran, T., Uenver-Thiele, L., Woodland, A.B., and Frost, D.J. (2015) Complete
495	substitution of Fe^{2+} by Mg in Fe ₄ O ₅ : The crystal structure of the Mg ₂ Fe ₂ O ₅ end-member.
496	American Mineralogist, 100, 628-632.
497	
498	Enomoto, A., Kojitan, i H., Akaogi, M., Miura, H., and Yusa, H. (2009) High-pressure transitions
499	in MgAl ₂ O ₄ and a new high-pressure phase of Mg ₂ Al ₂ O ₅ . Journal of Solid State Chemistry, 182,
500	389–395.
501	
502	Frost, D.J., and McCammon, C.A. (2008) The redox state of Earth's mantle. Annual Reviews of
503	Earth and Planetary Sciences, 36, 389-420. doi:10.1146/Annurev.Earth.36.031207.124322
504	
505	Hanrahan, M., Brey, G., Woodland, A., Altherr, R., and Seitz, HM. (2009) Towards a Li
506	barometer for bimineralic eclogites: experiments in CMAS. Contributions to Mineralogy and
507	Petrology, 158, 169–183.
508	
509	Harte, B., Harris, J.W., Hutchison, M.T., Watt, G.R., and Wilding, M.C. (1999) Lower mantle
510	mineral associations in diamonds from São Luiz, Brazil. In: Mantle Petrology: Field
511	Observations and High Pressure Experimentation. The Geochemical Society, Special Publication,
512	6, 125-153.
513	

- 514 Hazen, R.M. (1976) Effects of temperature and pressure on the cell dimension and X-ray
- temperature factors of periclase. American Mineralogist, 61, 266-271.
- 516
- 517 Holland, T.J.B., and Powell, R. (2011) An improved and extended internally consistent
- thermodynamic dataset for phases of petrological interest, involving a new equation of state for
- solids. Journal of Metamorphic Geology, 29, 333-383.
- 520
- 521 Huang, E., and Bassett, W.A. (1986) Rapid-determination of Fe₃O₄ phase-diagram by
- 522 synchrotron radiation. Journal of Geophysical Research, 91(B5), 4697–4703.
- 523

524 Ishii, T., Kojitani, H., Tsukamoto, S., Fujino, K., Mori, D., Inaguma, Y., Tsujino, N., Yoshino,

- 525 T., Yamazaki, D., Higo, Y., Funakoshi, K., and Akaogi, M. (2014) High-pressure phase
- transitions in $FeCr_2O_4$ and structure analysis of new post-spinel $FeCr_2O_4$ and $Fe_2Cr_2O_5$ phases
- 527 with meteoritical and petrological implications. American Mineralogist, 99, 1788-1797.
- 528
- 529 Ishii, T., Kojitani, H., Fujino, K., Yusa, H., Mori, D., Inaguma, Y., Matsushita, Y., Yamaura, K.,
- and Akaogi, M. (2015) High-pressure high-temperature transitions in MgCr₂O₄ and crystal
- structures of new $Mg_2Cr_2O_5$ and post-spinel $MgCr_2O_4$ phases with implications for ultrahigh-
- 532 pressure chromitites in ophiolites. American Mineralogist, 100, 59-65.
- 533
- 534 Kaminsky, F., Wirth, R., Matsyuk, S., Schreiber, A., and Thomas, R. (2009) Nyerereite and
- nahcolite inclusions in diamond: evidence for lower-mantle carbonatitic magmas. Mineralogical
 Magazine, 73, 5, 797-816.
- 537

538	Kaminsky, F.V. (2013) Carbonatitic inclusions in deep mantle diamond from Juina, Brazil: New
539	minerals in the carbonate-halide association. The Canadian Mineralogist, 51, 669-688.
540	
541	Kaminsky, F.V., Ryabchikov, I.D., McCammon, C.A., Longo, M., Abakumov, A.M., Turnerd,
542	S., and Heidari, H. (2015) Oxidation potential in the Earth's lower mantle as recorded by
543	ferropericlase inclusions in diamond. Earth and Planetary Science Letters, 417, 49-56.
544	
545	Keppler, H., and Frost, D.J. (2005) Introduction to minerals under extreme conditions. In:
546	Miletich R. (Edt). Mineral Behaviour at Extreme Conditions. EMU Notes in Mineralogy. 7, 1-30.
547	
548	Larson, A.C., and Von Dreele, R.B. (1994) GSAS General Structure Analysis System. Los
549	Alamo National Laboratory, New Mexico, USA
550	
551	Lavina, B., Dera, P., Kim, E., Meng, Y., Downs, R.T., Weck, P.F., Sutton, S.R, and Zhao, Y.
552	(2011) Discovery of the recoverable high-pressure iron oxide Fe_4O_5 . Proceedings of the National
553	Academy of Sciences. 108, 17281-17285.
554	
555	Lavina, B., and Meng, Y. (2015) Unraveling the complexity of iron oxides at high pressure and
556	temperature: Synthesis of Fe ₅ O ₆ . Science Advances 1:e1400260
557	
558	Levy, D., Diella, V., Dapiaggi, M., Sani, A., Gemmi, M., and Pavese, A. (2004) Equation of
559	state, structural behaviour and phase diagram of synthetic MgFe ₂ O ₄ , as a function of pressure and
560	temperature. Physics and Chemistry of Minerals. 31, 122-129.
561	

- Liu, L.G. (1975) Disproportionation of MgAl₂O₄ spinel at high-pressure and temperature.
- 563 Geophysical Research Letters, 2, 9-11.
- 564
- 565 McCammon, C., Peyronneau, J., and Poirier, J.-P. (1998) Low ferric iron content of (Mg,Fe)O at
- high pressures and temperatures. Geophysical Research Letters, 25, 1589-1592.
- 567
- 568 Merlini, M., Hanfland, M., Salamat, A., Petitgirard, S., Müller, H. (2015) The crystal structures
- of $Mg_2Fe_2C_4O_{13}$, with tetrahedrally coordinated carbon, and Fe13O19, synthesized at deep
- 570 mantle conditions. American Mineralogist, 100, 2001-2004.
- 571
- Meyer, H.O.A. (1987) Inclusions in diamond. In: Nixon P.H. ed., Mantle Xenoliths, John Wiley
 and Sons, New York, 501-523.
- 574
- 575 Myhill, B., Ojwang, D.O., Ziberna, L., Frost, D., Boffa Ballaran, T., Miyamjima, N. (2016). On
- the P-T- fO_2 stability of Fe4O5 and Fe5O6-rich phases: a thermodynamic and experimental study.
- 577 Contributions to Mineralogy and Petrology, 171, 5, 1-11.
- 578
- 579 Ono, S., Kikegawa, T., and Ohishi, Y. (2006) The stability and compressibility of MgAl₂O₄ high-580 pressure polymorphs. Physics and Chemistry of Minerals, 33, 200-206.
- 581
- 582 O'Neill, H.St.C., Annersten, H., and Virgo, D. (1992) The temperature dependence of the cation
- 583 distribution of magnesioferrite (MgFe₂O₄) from powder XRD structural refinements and
- 584 Mössbauer spectroscopy. American Mineralogist, 77, 725-740.
- 585

- 586 Palot, M., Jacobsen, S.D., Townsend, J.P., Nestola, F., Marquardt, K., Miyajima, N., Harris,
- 587 J.W., Stachel, T., McCammon, C.A., and Pearson, D.G. (2016) Evidence for H₂O-bearing fluids
- 588 in the lower mantle from diamond inclusion. Lithos, in press.
- 589
- 590 Tobi, B.H. (2001) EXPGUI, a graphical user interface for GSAS. Journal of Applied
- 591 Crystallography, 34, 210-213.
- 592
- 593 Schollenbruch, K., Woodland, A.B., and Frost, D.J. (2010) The stability of hercynite at high
- pressures and temperatures. Physics and Chemistry of Minerals, 37, 137-143.
- 595
- 596 Schollenbruch, K., Woodland, A.B., Frost, D.J., Wang, Y., Sanehira, T., and Langenhorst, F.
- 597 (2011) In situ determination of the spinel–post-spinel transition in Fe₃O₄ at high pressure and
- temperature by synchrotron X-ray diffraction. American Mineralogist, 96, 820-827.
- 599
- 600 Wang, Z., Downs, R.T., Pischedda, V., Shetty, R., Saxena, S.K., Zha, C.S., Zhao, Y.S., Schiferl,
- 601 D., and Waskowska, A. (2003) High-pressure x-ray diffraction and Raman spectroscopic studies
- of the tetragonal spinel CoFe₂O₄. Physical Review B, 68, 094101.
- 603
- Wirth, R., Dobrzhinetskay, L., Harte, B., Schreiber, A., and Green, H.W. (2014) High-Fe
- 605 (Mg,Fe)O inclusion in diamond apparently from the lowermost mantle. Earth and Planetary
- 606 Science Letters, 404, 365–375.
- 607

608	Woodland, A.B., Frost, D.J., Trots, D.M., Klimm, K., and Mezouar, M. (2012) In situ
609	observation of the breakdown of magnetite (Fe $_3O_4$) to Fe $_4O_5$ and hematite at high pressures and
610	temperatures. American Mineralogist, 97, 1808-1811.
611	
612	Woodland A., Uenver-Thiele, L., and Boffa Ballaran, T. (2015) Synthesis of Fe ₅ O ₆ and the high-
613	pressure stability of Fe^{2+} - Fe^{3+} -oxides related to Fe_4O_5 . Goldschmidt Abstracts, 3446.
614	
615	Yamanaka, T., Uchida, A., and Nakamoto, Y. (2008) Structural transition of post-spinel phases
616	CaMn ₂ O ₄ , CaFe ₂ O ₄ and CaTi ₂ O ₄ under high pressures up to 80 GPa. American Mineralogist, 93,
617	1874-1881.
618	
619	Figure captions
620	
620 621	Figure 1. BSE image of a) a large crystal of Mg ₂ Fe ₂ O ₅ (experiment H3975; crystal structure
620 621 622	Figure 1. BSE image of a) a large crystal of $Mg_2Fe_2O_5$ (experiment H3975; crystal structure published in Boffa-Ballaran et al. 2015) in comparison with b) fine grained Fe ₂ O ₃ + MgO
620 621 622 623	Figure 1. BSE image of a) a large crystal of $Mg_2Fe_2O_5$ (experiment H3975; crystal structure published in Boffa-Ballaran et al. 2015) in comparison with b) fine grained $Fe_2O_3 + MgO$ (experiment M569).
620 621 622 623 624	Figure 1. BSE image of a) a large crystal of $Mg_2Fe_2O_5$ (experiment H3975; crystal structure published in Boffa-Ballaran et al. 2015) in comparison with b) fine grained $Fe_2O_3 + MgO$ (experiment M569).
620 621 622 623 624 625	 Figure 1. BSE image of a) a large crystal of Mg₂Fe₂O₅ (experiment H3975; crystal structure published in Boffa-Ballaran et al. 2015) in comparison with b) fine grained Fe₂O₃ + MgO (experiment M569). Figure 2. Position of the boundary between MgFe₂O₄ and the MgO + Fe₂O₃ phase fields as a
620 621 622 623 624 625 626	 Figure 1. BSE image of a) a large crystal of Mg₂Fe₂O₅ (experiment H3975; crystal structure published in Boffa-Ballaran et al. 2015) in comparison with b) fine grained Fe₂O₃ + MgO (experiment M569). Figure 2. Position of the boundary between MgFe₂O₄ and the MgO + Fe₂O₃ phase fields as a function of pressure and temperature. The phase boundary of Levy et al. (2004) and that
620 621 622 623 624 625 626 627	 Figure 1. BSE image of a) a large crystal of Mg₂Fe₂O₅ (experiment H3975; crystal structure published in Boffa-Ballaran et al. 2015) in comparison with b) fine grained Fe₂O₃ + MgO (experiment M569). Figure 2. Position of the boundary between MgFe₂O₄ and the MgO + Fe₂O₃ phase fields as a function of pressure and temperature. The phase boundary of Levy et al. (2004) and that calculated from the Holland and Powell (2011) database are plotted for comparison. All symbols
620 621 622 623 624 625 626 627 628	 Figure 1. BSE image of a) a large crystal of Mg₂Fe₂O₅ (experiment H3975; crystal structure published in Boffa-Ballaran et al. 2015) in comparison with b) fine grained Fe₂O₃ + MgO (experiment M569). Figure 2. Position of the boundary between MgFe₂O₄ and the MgO + Fe₂O₃ phase fields as a function of pressure and temperature. The phase boundary of Levy et al. (2004) and that calculated from the Holland and Powell (2011) database are plotted for comparison. All symbols are experiments from this study. A representative error bar in terms of pressure and temperature
620 621 622 623 624 625 626 627 628 629	 Figure 1. BSE image of a) a large crystal of Mg₂Fe₂O₅ (experiment H3975; crystal structure published in Boffa-Ballaran et al. 2015) in comparison with b) fine grained Fe₂O₃ + MgO (experiment M569). Figure 2. Position of the boundary between MgFe₂O₄ and the MgO + Fe₂O₃ phase fields as a function of pressure and temperature. The phase boundary of Levy et al. (2004) and that calculated from the Holland and Powell (2011) database are plotted for comparison. All symbols are experiments from this study. A representative error bar in terms of pressure and temperature is given in the legend for reference.

631	Figure 3. Phase diagram for magnesioferrite between 8-18 GPa and 900-1600°C. Errors in
632	pressure and temperature are 0.5 GPa and \pm 30-50°C, respectively (Keppler and Frost 2005). Also
633	shown in gray are the phase boundaries proposed by Levy et al. (2004). Above 1200°C,
634	magnesioferrite breaks down to Fe ₂ O ₃ and an unquenchable, Mg-rich phase. At higher pressures
635	(>14 GPa) the assemblage Mg ₂ Fe ₂ O ₅ + Fe ₂ O ₃ becomes stable (see text). UQ: unquenchable phase
636	
637	Figure 4. a) Backscatter image of sample V8410 exhibiting large crystals of hematite surrounded
638	by the unquenchable phase with mottled texture. b) Experiment M553 exhibits the
639	"unquenchable" phase. Grain boundaries of larger crystals with triple junctions can be observed
640	indicating equilibrium conditions at given pressure and temperature of the experiment.
641	Abbreviations: hem = hematite, mgs = magnesite. c) Backscatter image of sample M551
642	illustrating the texture of the "unquenchable" phase, which decomposed to MgO and Fe ₂ O ₃ .
643	
644	Figure 5. a) Dark-field TEM image of the unquenchable phase in sample M568, illustrating
645	vermicular intergrowths. The domains with white contrast correspond to Fe-enriched
646	magnesioferrite. The inset is an iron elemental map of the squared area. The STEM-EDX map of
647	Fe concentrations denotes two intimately intergrowth phases with different compositions. b) A
648	high resolution TEM image of a fine mixture of MgO (periclase) and MgFe ₂ O ₄ (magnesioferrite),
649	indicating a topotactic relationship of their lattice fringes of oxygen close-packed planes (white
650	arrow heads). c) Fast Fourier Transform (FFT) pattern from image of the Fe-rich domain,
651	indexed as a cubic spinel structure. d) FFT pattern from the Mg-rich domain, indexed as having
652	the rock salt (rs) structure. Some additional diffraction spots, e.g., $d = 0.26$ nm originate from the
653	Fe-rich domain.

28

Figure 6. The MgO-FeO_{1.5} binary with stoichiometries of known and hypothetical phases

654

655

656

indicated.

657 Figure 7. Chemical compositions of representative run products plotted in terms of their MgO 658 659 and FeO contents in weight %. Plotted are hematite, magnesioferrite (O_4) and Mg₂Fe₂O₅ (O_5) as quenchable phases and bulk chemical analyses of the unquenchable phases that are consistent 660 with the hypothetical stoichiometries of Mg₃Fe₂O₆ (O_6), Mg₄Fe₂O₇ (O_7), Mg₅Fe₂O₈ (O_8), 661 662 $Mg_6Fe_2O_9(O_9)$ or $Mg_{11}Fe_2O_{14}(O_{14})$. 663 Figure 8. Comparison of powder X-ray diffraction patterns of Mg₂Fe₂O₅ and MgFe₂O₄. 664 665 666 Figure 9. a) Variation in Mg content (cations per formula unit, c.p.f.u.) in hematite as a function 667 of temperature of the experiment. Systematic variations in molar volume, b), and the lattice 668 669 parameters, c) and d), as a function of measured Mg content in hematite. Error bars represent uncertainties from refinement of the powder diffraction patterns. Where there are no error bars, 670 the errors are about the size of the symbol. 671 672 Figure 10. Comparison of the conditions of the breakdown of spinel-structured phases in several 673 end member compositions. Stability fields for the constituent oxide and $A_2B_2O_5 + M_2O_3$ 674 assemblages are also displayed in systems where they are stable. Data sources: hercynite 675 (FeAl₂O₄), Schollenbruch et al. (2009); magnetite (Fe₃O₄), Woodland et al. (2012); chromite 676

29

677	(FeCr ₂ O ₄), Ishii et al. (2014); magnesiochromite (MgCr ₂ O ₄), Ishii et al. (2015), spinel
678	(MgAl ₂ O ₄), Akaogi et al. (1999) and Enomoto et al. (2009).
679	
680	
681	
682	
683	
684	
685	
686	
687	
688	
689	
690	
691	
692	
693	
694	
695	
696	
697	

Experiment	starting material	pressure [GPa]	temperature [°C]	run duration [h]	run products ¹	Unit-cell parameter of MgFe ₂ O ₄ [Å]
M573	$MgO + Fe_2O_3$	8	900	20	per + hem	-
M585	10% MgFe ₂ O ₄ +90% MgO+ Fe ₂ O ₃	8	900	24	per + hem	-
M518	MgFe ₂ O ₄	8	1100	5.5	mf	8.3808(1)
M517	MgFe ₂ O ₄	8	1300	5.5	mf	8.3826(2)
M592	10% MgFe ₂ O ₄ + 90% MgO+ Fe ₂ O ₃	8	1500	2	mf	8.3810(4)
M577	MgFe ₂ O ₄ syn.	9	900	24	per + hem	-
M593	10% MgFe ₂ O ₄ +90% MgO+ Fe ₂ O ₃	9	1000	18	per + hem	-
V862o	$MgO + Fe_2O_3$	9	1100	5.5	mf	8.3824(2)
V862u	MgFe ₂ O ₄	9	1100	5.5	mf	8.3799(1)
V864o	MgFe ₂ O ₄	9	1300	4.5	mf	8.3814(0)
V864u	$MgO + Fe_2O_3$	9	1300	4.5	mf	8.3812(2)
V8650	$MgO + Fe_2O_3$	9	1300	1.5	mf	8.3820(0)
V865u	MgFe ₂ O ₄	9	1300	1.5	mf	8.3812(2)
M594	10% MgFe ₂ O ₄ + 90% MgO+ Fe ₂ O ₃	9	1500	3	mf	8.3807(2)
M569	MgFe ₂ O ₄	10	1000	17	per + hem	-
M588	10% MgFe ₂ O ₄ +90% MgO+ Fe ₂ O ₃	10	1200	5	per + hem	-
V841o	$MgO + Fe_2O_3$	10	1300	5.5	$UQ-O_7 + UQ-O_8 + hem$	-
M553	$2MgO + Fe_2O_3$	10	1400	4	$UQ-O_7 + hem$	-
M629	MgFe ₂ O ₄	10	1500	3	$mf + hem + UQ-O_6 + (mgs)$	-
M633	MgFe ₂ O ₄	10	1600	1.5	$mf + UQ-O_6$	8.3794(7)
M632	MgFe ₂ O ₄	11	1300	4.5	$hem + UQ-O_{14}$	-
M631	MgFe ₂ O ₄	11	1450	4	$hem + UQ-O_8$	-
M616	$MgFe_2O_4$	11	1600	2	$O_5 + hem$	-
M630	MgFe ₂ O ₄	12	1350	4	$hem + UQ\text{-}O_{14}$	-
M568	$MgO + MgFe_2O_4$	12	1400	5	UQ-O ₈ + hem	-
M583	$MgFe_2O_4$	12	1500	4	$UQ-O_7 + O_5 + hem$	-
M590	MgFe ₂ O ₄	13	1200	4	per + hem	-
M617	$MgFe_2O_4$	13	1400	5.5	$O_5 + hem + UQ-O_9$	-
M551	$2MgO + Fe_2O_3$	13	1500	3.5	$UQ-O_7 + hem$	-
Z1463o	MgFe ₂ O ₄	14	1400	3	$O_5 + hem$	-
Z1461o	MgFe ₂ O ₄	16	1300	3	$per + hem + O_5$	-
H3889	MgFe ₂ O ₄	18	1300	5.5	$O_5 + hem + (mgs)$	-
H4084	$M\sigma\Omega + M\sigma Fe_2\Omega_4$	18	1200	4 5	per + hem	_

Table 1. Experimental conditions and run products, including unit-cell parameters of magnesioferrite.

¹per: periclase; hem: hemaitie; mf: magnesioferrite; (mgs): traces of magnesite; O₅: Mg₂Fe₂O₅; UQ-O₆: unquenchable phase with a stoichiometry of Mg₃Fe₂O₆; UQ-O₇: unquenchable phase with a stoichiometry of Mg₄Fe₂O₇; UQ-O₈: unquenchable phase with a stoichiometry of Mg₃Fe₂O₈; UQ-O₉: unquenchable phase with a stoichiometry of Mg₆Fe₂O₉; UQ-O₁₄: unquenchable phase with a stoichiometry of Mg₁Fe₂O₁₄

698

699

Table 2. Representative electron microprobe data of experimental run products. Abbreviations as in Table 1. "b.d.l.": below detection limit, "n.a.": not analysed

Sample	H3889			M517	M518	M551	<u></u>	M553		M568		<u>_</u>	
MgO	2.99	48.54	32.28	21.22	22.17	50.53	3.49	2.82	49.61	55.87	56.39	2.39	2.42
FeO	85.95	1.33	62.39	72.49	71.41	44.58	86.24	86.5	45.53	41.56	41.33	87.43	87.79
PtO ₂	b.d.l.	0.05	0.13	b.d.l.	0.21	b.d.l.	b.d.1.	b.d.l.	b.d.l.	b.d.l.	0.03	0.02	b.d.l.
Totals	88.94	49.92	94.80	93.71	93.79	95.11	89.73	89.32	95.14	97.43	97.75	89.84	90.21
comment	hem	mgs	$Mg_2Fe_2O_5$	mf	mf	UQ-O ₇	hem	hem	UQ-O ₇	UQ-O ₈	UQ-O ₈	hem	hem

701

Sample	M569		M573	M577		M583			M588	M590	M592	
MgO	0.66	99.55	0.61	0.45	99.87	50.54	2.94	33.56	1.45	1.67	21.72	21.55
FeO	89.18	1.94	89.04	89.90	1.76	46.97	87.82	63.52	89.00	88.83	72.78	72.58
PtO ₂	b.d.l.	b.d.l.	0.11	b.d.l.	b.d.l.	b.d.1.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	0.03
Totals	89.84	101.49	89.76	90.35	101.63	97.51	90.76	97.08	90.45	90.50	94.50	94.16
comment	hem	MgO	hem	hem	MgO	UQ-O ₇	hem	Mg ₂ Fe ₂ O ₅	hem	hem	mf	mf

702

m594		m616		M617			M629				M630
21.01	21.05	3.04	32.95	2.09	33.61	61.86	21.64	2.92	48.40	45.11	76.59
72.41	72.76	86.12	63.05	87.69	62.70	36.39	73.38	88.29	1.32	51.24	24.01
b.d.1.	0.01	b.d.l.	b.d.l.	b.d.1.	b.d.l.	b.d.l.	0.06	b.d.l.	b.d.l.	0.05	b.d.1.
93.42	93.82	89.16	96.00	89.78	96.31	98.25	95.08	91.21	49.72	96.40	100.60
mf	mf	hem	Mg ₂ Fe ₂ O ₅	hem	Mg ₂ Fe ₂ O ₅	UQ-O ₉	mf	hem	mgs	UQ-O ₆	UQ-O ₁₄
	m594 21.01 72.41 b.d.1. 93.42 mf	m594 21.01 21.05 72.41 72.76 b.d.1. 0.01 93.42 93.82 mf mf	m594 m616 21.01 21.05 3.04 72.41 72.76 86.12 b.d.l. 0.01 b.d.l. 93.42 93.82 89.16 mf mf hem	m594 m616 21.01 21.05 3.04 32.95 72.41 72.76 86.12 63.05 b.d.l. 0.01 b.d.l. b.d.l. 93.42 93.82 89.16 96.00 mf mf hem Mg2Fe2O5	m594 m616 M617 21.01 21.05 3.04 32.95 2.09 72.41 72.76 86.12 63.05 87.69 b.d.l. 0.01 b.d.l. b.d.l. b.d.l. 93.42 93.82 89.16 96.00 89.78 mf mf hem Mg ₂ Fe ₂ O ₅ hem	$\begin{tabular}{ c c c c c c c c c c c c c c c c } \hline m594 & m616 & M617 \\ \hline 21.01 & 21.05 & 3.04 & 32.95 & 2.09 & 33.61 \\ \hline 72.41 & 72.76 & 86.12 & 63.05 & 87.69 & 62.70 \\ \hline b.d.1 & 0.01 & b.d.1 & b.d.1 & b.d.1 & b.d.1 \\ \hline 93.42 & 93.82 & 89.16 & 96.00 & 89.78 & 96.31 \\ \hline mf & mf & hem $M_{22}F_{2}O_{5}$ & hem $M_{22}F_{2}O_{5}$ \\ \hline \end{tabular}$	m594 m616 M617 21.01 21.05 3.04 32.95 2.09 33.61 61.86 72.41 72.76 86.12 63.05 87.69 62.70 36.39 b.d.l. 0.01 b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. 93.42 93.82 89.16 96.00 89.78 96.31 98.25 mf mf hem Mg2Fe2O5 hem Mg2Fe2O5 UQ-O9	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

703

Sample	M631		M632	M633		V841o				V8620		V862u
MgO	55.30	2.19	75.87	44.67	21.17	50.49	49.17	2.49	54.83	22.51	22.49	21.84
FeO	41.02	87.98	24.05	49.22	70.74	44.73	1.72	87.39	41.54	71.59	72.23	71.20
PtO ₂	0.00	0.00	0.08	0.25	0.03	n.a.	n.a.	n.a.	n.a.	0.02	0.00	0.00
Totals	96.32	90.17	100.00	94.14	91.94	95.22	50.89	89.88	96.37	94.12	94.72	93.04
comment	UQ- O ₈	hem	UQ-O ₁₄	UQ-O ₆	mf	UQ-O7	mgs	hem	UQ-O ₈	mf	mf	mf

Sample	V8640	V864u	V865u	V8650	Z1461o		Z1463o	
MgO	21.95	21.77	22.14	21.69	1.59	32.34	32.54	2.67
FeO	72.45	72.13	71.16	70.93	89.88	64.77	64.17	88.29
PtO ₂	0.00	0.00	n.a.	n.a.	0.00	0.00	0.00	0.00
Totals	94.40	93.90	93.30	92.62	91.47	97.11	96.71	90.96
comment	mf	mf	mf	mf	hem	Mg ₂ Fe ₂ O ₅	$Mg_2Fe_2O_5$	hem

Table 3. Unit-cell parameters of MgO.
Uncertainties in brackets are those
returned by the GSAS refinement.

Sample	MgO	
	a [Å]	V [Å ³]
M569	4.2120(1)	74.726(6)
M573	4.2120(2)	74.72(1)
M577	4.2118(1)	74.714(7)
M585	4.2119(8)	74.72(4)
M588	4.2109(1)	74.666(6)
M590	4.2112(2)	74.683(9)
M593	4.2118(2)	74.716(10)
H4084	4.2120(1)	74.724(4)

Table 4. Possible Fe-Mg oxide stoichiometries matched with their expected compositions as measured by bulk microprobe analysis.

EPMA ana	alysis [wt%]	possible stoichiometry
FeO	MgO	
72(1)	21(1)	MgFe ₂ ³⁺ O ₄
63(1)	33(1)	$Mg_2Fe_2^{3+}O_5$
51(1)	44(1)	$Mg_3Fe_2^{3+}O_6$
46(1)	50(1)	$Mg_4Fe_2^{3+}O_7$
41(1)	56(1)	$Mg_5Fe_2^{3+}O_8$
36(1)	61(1)	$Mg_6Fe_2^{3+}O_9$
24(1)	76(1)	$Mg_{11}Fe_2^{3+}O_{14}$

706

707

708

Sample	Mg ₂ Fe ₂ O ₅			
	a [Å]	<i>b</i> [Å]	c [Å]	V [Å ³]
M616	2.8863(16)	9.730(6)	12.540(6)	352.16(20)
M617	2.8870(4)	9.7225(15)	12.5527(15)	352.34(6)
H3889	2.8858(2)	9.7187(9)	12.5476(9)	351.91(3)
Z14610	2.8884(7)	9.7253(25)	12.5468(26)	352.45(9)
Z14630	2.8872(2)	9.7228(8)	12.5523(9)	352.36(3)

Table 5. Unit-cell parameters of Mg₂Fe₂O₅. Uncertainties in brackets are those returned by the GSAS refinement.

711

Table 6. Unit-cell parameters and molar volume of hematite as well as the Mgcontent in hematite

Experiment	hematite			
	<i>a</i> [Å]	c [Å]	V [Å ³]	Mg content (c.p.f.u.)
H3889	5.0482(2)	13.7873(7)	304.284(16)	0.1191(12)
M551	5.0579(2)	13.798(1)	305.688(28)	0.1377(12)
M573	5.0383(1)	13.7601(6)	302.496(13)	0.0243(5)
M568	5.0451(2)	13.7841(7)	303.847(15)	0.0952(11)
M569	5.0409(1)	13.7608(3)	302.824(7)	0.0262(6)
M577	5.0377(1)	13.7555(3)	302.326(7)	0.0177(5)
M585	5.0392(3)	13.763(2)	302.68(4)	0.0229(5)
M588	5.0399(1)	13.7639(3)	302.767(8)	0.0571(8)
M590	5.0426(1)	13.7708(7)	303.249(15)	0.0656(9)
M616	5.0445(4)	13.792(2)	303.96(3)	0.1208(12)
M617	5.0433(2)	13.7798(7)	303.527(15)	0.0826(10)
M630	5.0424(1)	13.7737(5)	303.291(11)	0.0785(10)
M631	5.0435(1)	13.7826(6)	303.622(14)	0.0862(10)
M632	5.0433(1)	13.7765(6)	303.463(14)	0.0768(10)
V841o	5.0469(1)	13.7778(8)	303.927(17)	0.0983(11)
Z1461o	5.0418(1)	13.7707(3)	303.146(6)	0.0618(9)
Z14630	5.0438(2)	13.7792(7)	303.580(16)	0.1041(11)

former grain boundaries

"unquenchable" phase

30 µm

50 µm

(b)

hem

"unquenchable" phase

• M568 Fe₂O₃

$$\boxplus$$
 M592 MgFe₂O₄
 \diamond M616 Mg₂Fe₂O₅
 \Rightarrow M629 Mg₃Fe₂O₆
 $+$ M551 Mg₄Fe₂O₇
 \times M568 Mg₅Fe₂O₈
 \triangle M617 Mg₆Fe₂O₉
 \Rightarrow M630/M632 Mg₇
 \times calculated compose
 $O_{6}^{\times} O_{7}^{\times} O_{8}^{\circ} O_{9}^{\circ}$
1.....
30 40 50 60 7
MgO [wt%]

