1	Revision 2
2	Synthetic potassic-ferro-richterite: 2. Single-crystal HT-FTIR spectroscopy
3	and hints on the deprotonation process of Fe-dominant amphiboles
4	
5	GIANCARLO DELLA VENTURA ^{1,2*} , UMBERTO SUSTA ¹ , FABIO BELLATRECCIA ^{1,2} ,
6	AUGUSTO MARCELLI ² , GÜNTHER J. REDHAMMER ³ AND ROBERTA OBERTI ⁴
7	
8	¹ Dipartimento di Scienze, Università di Roma Tre, I-00146 Roma, Italy
9	² INFN-LNF, I-00044 Frascati, Italy
10	³ Department of Materials Science & Physics, University of Salzburg,
11	5020 Salzburg, Austria
12	⁴ CNR-Istituto di Geoscienze e Georisorse, Sede secondaria di Pavia, I-27100 Pavia, Italy
13	
14	
15	* Corresponding author.
16	e-mail: giancarlo.dellaventura@uniroma3.it
17	
18	

19

ABSTRACT

20	High-Temperature Fourier Transform Infrared (HT-FTIR) spectroscopy was used to
21	characterize the deprotonation process of synthetic potassic-ferro-richterite of composition
22	${}^{A}(K_{0.90}Na_{0.07})^{B}(Ca_{0.54}Na_{1.46})^{C}(Fe^{2+}_{4.22}Fe^{3+}_{0.78})^{T}Si_{8}O_{22}{}^{W}(OH_{1.70}O^{2-}_{0.30}). Unpolarized single-$
23	crystal spectra were collected both in situ and on quenched samples, and heating experiments
24	were conducted in air, at a rate of 10° C/min. The room- <i>T</i> spectrum measured before
25	annealing shows a main band at 3678 cm ⁻¹ and a minor band at 3622 cm ⁻¹ ; these are assigned
26	to local configurations involving Fe^{2+} at $M(1)M(1)M(3)$ and facing a filled and an empty
27	alkali-site, respectively. At 400 °C, a new band grows at 3656 cm ⁻¹ ; this is the most intense
28	feature in the pattern at 450 °C. At $T \ge 500$ °C, all peaks decrease drastically in intensity, and
29	finally disappear at $T > 600$ °C. The total absorbance measured <i>in situ</i> increases significantly
30	in the 25 °C < T < 450 °C range, although the spectra collected on quenched samples show no
31	OH loss in the same <i>T</i> range. This feature is consistent with an increase of the absorption
32	coefficient (ϵ) with <i>T</i> , the reason for which is still unclear. However, this feature has
33	significant implications for the quantitative use of FTIR data in HT experiments. Examination
34	of the relevant OH-stretching bands shows that iron oxidation occurs preferentially at the M
35	sites associated with occupied A sites. The deprotonation temperature indicated by FTIR for
36	single-crystals is around 100 °C higher that that obtained by HT-X-ray diffraction (XRD) on
37	single-crystal by Oberti et al. (2016), whereas that obtained by HT- XRD on powders is
38	intermediate. This unexpected observation can be explained by considering that: (1) the iron
39	oxidation process, which is coupled to deprotonation and is probed by XRD, occurs
40	preferentially at the crystal surface where it is triggered by the availability of atmospheric
41	oxygen; (2) the proton diffusion, probed by FTIR, is slower that the electron diffusion probed
42	by XRD; thus, the temperature shift may be explained by a much longer escape path for H in
43	single-crystals than in powders. These results suggest that possible effects due to crystals size
44	should be carefully considered in HT experiments done on Fe-rich silicates.

- 46 Keywords: HT-FTIR spectroscopy, amphiboles, potassic-ferro-richterite, deprotonation
- 47 process

48

INTRODUCTION

49	The physical and crystal-chemical properties of solids strongly depend on temperature,
50	and for this reason many disciplines, such as mineralogy, ceramic science, chemical, electrical
51	and mechanical engineering, metallurgy and physics make use high-temperature (HT) studies.
52	Most HT processes involve chemical transformations and phase transitions that need to be
53	characterized by using combinations of <i>in situ</i> analytical techniques, such as HT-diffraction
54	(either on single crystals or powders), thermal analysis (TG/DTA), and HT spectroscopies.
55	Relevant to this point is the fact that many HT reactions in minerals involve the loss and
56	subsequent migration of hydrogen or molecular species containing hydrogen. Also,
57	deprotonation processes are associated with simultaneous oxidation of multivalent elements,
58	such as Fe or Mn, with significant consequences for the physical properties of the mineral
59	itself and of the rock where it occurs. For example, enhanced electrical conductivity in the
60	Earth's crust and in the upper mantle has been related to similar processes occurring in
61	subducted amphibolites (e.g., Schmidbauer et al. 2000; Wang et al. 2012). Hence, an accurate
62	knowledge of the temperature effects on the physical properties of minerals is relevant to
63	model geophysical phenomena. However, deprotonation reactions in Fe-rich or Fe-dominant
64	hydrous minerals and their role on both electrical conductivity and magnetic properties are
65	still poorly known.
66	Early HT studies on Fe-dominant amphiboles date back to the 1960-70s (Addison et

al. 1962a, 1962b; Addison and Sharp, 1962, 1968; Addison and White, 1968; Ernst and Wai,
1970), because of the emerging technological relevance of these materials for a variety of
applications (e.g., fire-proof textiles, thermo-acoustic insulators, construction materials, water
pipes, electrical components, etc.). Structural phenomena accompanying the oxidation of iron
in amphiboles were later addressed by Ungaretti (1980), Clowe et al. (1988) and Phillips et al.
(1988, 1989, 1991).

After the review provided by Welch et al. (2007), increasing efforts have been devoted to the study of different amphibole compositions at non-ambient conditions, and several features controlling the crystal-chemical and crystal-structural adjustments accompanying H*T* treatments have been discussed in detail (Welch et al. 2011; Zema et al. 2012; Oberti et al. 2012, 2013, 2016). However, notable issues still need to be understood, including the mechanisms and kinetics of proton diffusion throughout the crystal structure, and the role of multiple-valence elements, notably Fe, in this process.

This study represents a further step of an ongoing project on the high-T study of Fe-80 rich amphiboles done by using a fully multidisciplinary approach, including microchemistry 81 82 (EMP and SEM), X-ray diffraction, and spectroscopic methods (FTIR, Mössbauer). In this 83 paper we describe, in particular, FTIR data obtained at HT on the same synthetic amphibole studied by HT single-crystal XRD (SC-XRD) by Oberti et al. (2016). This work is intended to 84 85 (1) integrate the HT SC-XRD results for a better description of the deprotonation process, and (2) study the temperature dependence of the OH-stretching bands in a Fe-bearing amphibole 86 87 with a simple and well-constrained composition, by combining measurements done *in situ* and on quenched materials. According to recent work (e.g., Zhang et al. 2007; Radica et al. 88 2016a) the behavior of hydroxyl-related bands during HT-FTIR experiments still needs to be 89 90 properly understood to allow using the spectroscopic data for quantitative studies.

To help following the discussion below, we schematically present in Figure 1 the 91 92 relevant part of the C2/m amphibole structure sampled across the A site. The O-H group is 93 directly bonded to a trimer of M(1)M(3) octahedra and is directed toward the alkali 94 cation (in the present case K) which may occur at two different (split) positions centered at 95 the A site (Fig. 1); for symmetry reasons, the same arrangement occurs on the opposite side of 96 the alkali cation, which thus interacts with two OH groups bonded to two distinct strip of octahedra piling up along a^* (for more details, see Della Ventura et al. 2007). This local 97 98 arrangement can be expressed via the M(1)M(1)M(3)-OH-A-OH-M(1)M(3) configuration

99	notation (Della Ventura et al. 1999). Robert et al. (1999) have shown that in amphiboles there
100	is vibrational coupling between two O-H groups facing across the alkali site, while no
101	coupling is observed across an unoccupied A site or along the $O(3)$ - $O(3)$ edge connecting two
102	OH groups on both sides of the same strip of octahedra. When the A site is occupied, any
103	perturbation of the anionic population at one of the two facing $O(3)$ sites (e.g. substitution of
104	OH^{-} with F ⁻ , Cl ⁻ or O ²⁻) involves a shift of the A cation (e.g. Hawthorne et al. 1996), and thus
105	a change in the O-HA repulsive interaction. In such a case, the O-H stretching frequency is
106	also modified, whereas in A-site empty amphiboles it is not (Robert et al. 1999). In other
107	words, the alkali cation acts as a bridge by vibrationally connecting two facing O(3) anions
108	(Fig. 1), and this feature is extremely important for the interpretation of the IR spectra of
109	amphiboles with complex compositions (Della Ventura et al. 2001, 2014). This effect has
110	been verified in OH-F substituted richterites (e.g. Robert et al. 1989, 1999) and pargasite
111	(Robert et al. 2000), while Della Ventura et al. (2007) have shown that the same is true for
112	partially deprotonated amphiboles.
113	
114	MATERIALS AND METHODS
115	The synthesis of the sample studied in this paper (labeled Ri1) has been described in
116	detail by Redhammer and Roth (2002), and its structural characterization is reported in Oberti
117	et al. (2016). These authors showed that the crystal-chemical formula of amphibole Ri1,
118	obtained by combining EMP analysis, structure refinement of SC-XRD data and FTIR
119	spectroscopy is: ${}^{A}(K_{0.90}Na_{0.07})^{B}(Ca_{0.54}Na_{1.46})^{C}(Fe^{2+}_{4.22}Fe^{3+}_{0.78})^{T}Si_{8}O_{22}{}^{W}(OH_{1.70}O^{2-}_{0.30})$. The
120	Fe^{2+}/Fe^{3+} in particular was determined on the basis of refined bond-distances (Oberti et al.
121	2016). Although still in the compositional field of richterite, this sample falls close to the
122	richterite - arfvedsonite boundary (see Hawthorne and Oberti 2007 and Hawthorne et al.
123	2012) for systematic issues on amphibole nomenclature).

124	Unpolarized single-crystal HT-FTIR spectra were collected both in situ and on
125	quenched crystals at the Laboratori Nazionali di Frascati of the INFN (Frascati) using a
126	Linkam 1400XY heating stage, fitted on a Bruker Hyperion 3000 FTIR microscope equipped
127	with a 15X Schwarzschild objective and a MCT N_2 -cooled detector. The microscope was
128	attached to a Vertex optical bench equipped with a KBr beamsplitter and a globar IR source;
129	the beam was reduced to 50 $\mu m,$ and 256 spectra were averaged for both mineral and
130	background; the nominal resolution was 4 cm ⁻¹ . The sample was prepared as a doubly
131	polished 100 μ m thick section, and cut into two fragments, for use in two different
132	experiments. The orientation of the crystal slab was not determined, but considering that
133	during polishing the sample tended to sit on the easy cleavage direction, it is believed to be
134	approximately parallel to (110). In the first experiment, FTIR spectra were collected in situ
135	every 25 °C for 25 < T < 500 °C and every 50 °C for 500 < T < 600 °C. The heating rate of 10
136	$^{\circ}$ C/min was used, and the spectrum was collected immediately on reaching the set <i>T</i> in order
137	to avoid the effects of the relatively fast kinetics of deprotonation at high temperature. The
138	second experiment was carried out by using the same heating rate, but the FTIR spectra were
139	collected every 50 °C on samples quenched to room-T after annealing the crystal at the
140	desired temperature. After each room-T measurement, the sample was quickly (50 °C/min) re-
141	heated to continue the ramp, and so on.
142	

143

RESULTS

In this section, we compare the two sets of FTIR data. To the best of our knowledge,
this comparison has never been done for amphiboles and is of general methodological interest
to evaluate critically the results of FTIR analysis.

The spectrum collected on the crystal before annealing shows, in the principal OHstretching region, a main band at 3678 cm⁻¹ and a minor band at 3622 cm⁻¹; a shoulder at 3656 cm⁻¹ is also evident on the lower frequency side of the main band (Fig. 2). Following the

150	systematic work on the FTIR spectroscopy of richterite specimens with different cation
151	occupancies at the octahedral sites (e.g., Della Ventura 1992; Della Ventura et al. 1996, 1997,
152	1998, 2005a, 2005b, 2016; Iezzi et al. 2004, 2005), and considering the well-defined
153	composition of the sample under study, the main band at 3678 cm ⁻¹ is assigned to the
154	$^{M(1)}$ Fe ^{2+$M(1)$} Fe ^{2+$M(3)$} Fe ²⁺ -OH local environment, with the OH dipole pointing toward an
155	occupied A site, while the lower-frequency band at 3622 cm^{-1} can be assigned to the same
156	local configuration but with the O-H group pointing toward an empty A site. According to the
157	results of the structure refinement (Oberti et al. 2016), the shoulder at 3656 cm ⁻¹ can be
158	assigned to the presence of a minor, but nonetheless significant, oxo-component in the
159	structure. This assignment is based on the work of Della Ventura et al. (2007) who showed
160	that in A-site filled amphiboles, anytime Fe^{3+} occurs at the $M(1)M(1)M(3)$ trimer of octahedra,
161	at least one of the $O(3)$ sites in the trimer is deprotonated to maintain electroneutrality; if no
162	Fe^{3+} occurs in the $M(1)M(1)M(3)$ trimer facing on the other site of the A cavity (Fig. 1a), the
163	local configuration is $Fe^{2+}Fe^{2+}Fe^{2+}-OH-A-O^{2-}-Fe^{3+}Fe^{2+}Fe^{2+}$. In such a case, the A cation
164	moves away from the center of the A cavity in the direction of the deprotonated trimer, so that
165	the H^+ A^+ interaction decreases and the O-H stretching band shifts by ~20 cm ⁻¹ towards
166	lower wavenumbers because of the weakening of the O-H bond (Della Ventura et al. 2007);
167	this is exactly what we observe in Figure 2.
168	In the NIR region, two relatively broad but well-defined peaks are observed at 4255
169	and 4155 cm ⁻¹ , respectively (Fig. 2). This region of the spectrum is poorly understood for

amphiboles; according to literature data (e.g., Clark et al. 1990; Mustard 1992; Laukamp

171 2012), these bands can be assigned to the combination of stretching and libration vibrations of

the O-H dipole.

Finally, minor peaks are present at 3730 and 3562 cm⁻¹, respectively. The frequency of the former would correspond to that of local arrangements containing only Mg (e.g., Robert et al. 1989, Della Ventura 1992, Gottschalk and Andrut 1998). However, as sample Ri1 does not

contain Mg, this band must be assigned to overtone/combination mode of framework
vibrations; note that such absorptions are invisible in powder FTIR data, but may show up in
single-crystal data. The minor peak at 3562 cm⁻¹ cannot be assigned to any of the cationic
permutations compatible with the composition of the sample, and should be due to some
mica-like local configurations (biopyribole defects) or again to overtone/combination modes
of the silicate structure. In any case, because of their low intensity, these bands can be
neglected in the following discussion.

Single-crystal HT-FTIR spectra were first collected in situ (Fig. 3a). Up to 400 °C, the 183 main band at 3678 cm⁻¹ broadens, shifts to lower wavenumbers and increases in intensity. At 184 450 °C, it is replaced by a broad and multicomponent band centered around 3656 cm⁻¹. At 185 higher temperatures, the bands disappear abruptly and the signal becomes extremely noisy. At 186 $T \ge 550$ °C no peak can be resolved from the background. In the attempt to achieve a better 187 resolution, FTIR spectra were collected at room-T on quenched samples; they are plotted in 188 Figure 3b using the same absorbance scale. Up to 350 °C, a very limited variation in band 189 intensity and shape is observed. The band centered at 3656 cm⁻¹ becomes discrete at 400 °C. 190 but the 3678 cm⁻¹ band still is the major feature in the spectrum. The spectrum collected at 191 450 °C is very different from the previous ones: the band at 3656 cm⁻¹ is now the most 192 intense, and that at 3678 cm⁻¹ has lost most of its intensity. At $T \ge 500$ °C, the absorbance 193 decreases drastically, so that at 600 °C the sample retains a very minor amount of OH. 194 Figure 4 compares, as an example, the O-H stretching bands measured at 400 °C on 195

the studied sample both *in situ* and after quenching. The resolution between the main bands at 3678 and 3656 cm⁻¹ is lost in the spectrum collected *in situ*, due to the combined effects of a general broadening and of a different red shift of all the absorption components. Indeed, the downward shift of the 3678 cm⁻¹ component (assigned to the O-H dipole interacting with an alkali A cation), is twice that of the band at 3622 cm⁻¹, (assigned to the O-H dipole pointing toward an empty *A*-site): $\Delta v = 20$ cm⁻¹ vs. 10 cm⁻¹. This feature is in agreement with the fact

202	that the increase in atom vibration at HT helps to reduce the repulsive coulombic interactions
203	between the hydrogen of the O-H dipole and the A cation. Single-crystal XRD shows that the
204	A cations at HT tend to order at the $A(m)$ sub-site, which is displaced towards the side of the A
205	cavity (Oberti et al. 2016). Moreover, the overall intensity (area) of the band varies
206	significantly in the two experiments.
207	Figure 5 compares the evolution of the integrated intensity measured either in situ or
208	after quenching at any temperature, scaled to the intensity at room- $T(^{T}I / ^{RT}I \cdot 100)$.
209	Integration ranges were 3710-3600 cm ⁻¹ for the OH-stretching region, and 4300-4100 cm ⁻¹ for
210	the combination region. In the OH-stretching region we observe a significant increase of the
211	intensity collected in situ, which almost doubles in the 400-425 °C range, a result which is
212	difficult to explain. In contrast, the intensity data collected after quenching indicate a constant
213	OH content up to 400 °C, followed by an abrupt OH loss in the <i>T</i> range 400-500 °C. At 500
214	°C, low amounts (~10%) of OH are still present in the amphibole, whereas almost no OH is
215	present at $T > 600$ °C. Focusing on the weak bands due to combination modes at 4255 and
216	4155 cm ⁻¹ , their total absorption measured <i>in situ</i> is constant up to 400 °C, and then decreases
217	abruptly.
218	
219	DISCUSSION
220	Changes in the absorptivity of the OH-bond in potassic-ferro-richterite vs. T
221	Previous HT-FTIR studies have clearly shown that absorption bands typically broaden
222	and shift with increasing T. This feature has been observed in many different minerals (e.g.,
223	Aines and Rossman 1985; Yamagishi et al. 1997; Tokiway and Nakashima 2010a,b; Zhang et
224	al. 2005, 2006, 2007, 2010) and glasses (Keppler and Bagdassarov 1993). Zhang et al. (2007)
225	discussed the occurrence of changes in the absorption coefficients with T , an issue that would

- 226 have significant consequences for quantitative studies based on the Beer-Lambert
- relationship. Moreover, Zhang et al. (2007) and Radica et al. (2016a) noted that the

228	absorbance of the different vibrational modes (e.g., fundamental vs. multiphonon) measured
229	on a single sample may vary as a function of T in different ways. In the Beer-Lambert
230	relationship, $\varepsilon = A/d \cdot C$, ε is the molar absorptivity, A the measured absorbance (either linear
231	or integrated), d the sample thickness, and C the concentration of the molecule studied. Thus,
232	$\boldsymbol{\epsilon}$ is the coefficient relating the intensity measured experimentally to the amount of the
233	molecule (or molecular group) absorbing the incoming radiation. In quantitative studies, $\boldsymbol{\epsilon}$
234	must be either calibrated for any matrix or evaluated on the basis of empirical relationships
235	(e.g., Paterson 1982; Libowitzky and Rossman 1997). In HT studies, it is generally assumed
236	that ε is constant over the temperature range examined, although there is increasing evidence
237	(Yamagishi et al. 1997; Whiters et al. 1999; Okumura and Nakashima 2005; Zhang et al.
238	2007, 2010; Tokiway and Nakashima 2010a; Radica et al. 2016b) that this is not the case.
239	For the amphibole studied in this work, two different trends are obtained for the
240	intensity of the principal OH-band when collecting spectra in situ or after quenching (Fig. 5).
241	Spectra collected on quenched samples show a constant OH concentration (C) up to 400 °C.
242	In the present case, the sample thickness can be considered constant because the expansion
243	coefficients obtained by Oberti et al. (2016) are quite low. Therefore, in the Beer-Lambert
244	relationship given above, the significant increase in absorption intensity observed during in
245	situ measurements can be attributed solely to a T-induced increase in the integral molar
246	absorptivity (ε).
- ·-	

The very intriguing point in Figure 5 is that the intensities measured *in situ* for the studied amphibole *increase* significantly in the *T* range considered, and even almost double close to the onset of deprotonation (around 400-425 °C). In contrast, all previous H*T*-FTIR studies so far published indicate, for the fundamental modes, a *decrease* in the H₂O/OH intensity during heating (e.g., Zhang et al. 2007; Tokiway and Nakashima 2010a). Multiphonon (combination or overtone) bands have been shown to increase in intensity in

some minerals, a notable case being provided by talc (Zhang et al. 2007); however, in

254 potassic-ferro-richterite the combination modes have a constant absorbance in the examined HT range (Fig. 5). It is also worth noting that a similar increase in the intensity of the 255 256 fundamental stretching band as a function of T seems to be typical of CO_2 ; this feature has been recently observed in cordierite (Radica et al. 2016a) and in different sodalite-group 257 minerals (unpublished). 258 The first important consequence of this finding is that in situ FTIR data cannot be 259 260 converted directly into quantitative information for the studied amphibole. The reason for the dependence of the molar absorptivity on temperature is still not clear (see also early literature, 261 262 such as Hoover et al. 1969). In the case of muscovite, Tokiway and Nakashima (2010a) related the change in molar absorptivity to a tilting of the O-H vector with respect to the c^* 263 crystallographic direction for increasing T, namely from 75° at RT to 43° at 650 °C. Indeed, a 264 tilt of the O-H vector would change its projection on to the (001) plane (perpendicular to the 265 IR beam), thus *reducing* the measured absorbance (see also Libowitzky and Rossman, 1996 266 267 and Della Ventura et al. 2014 for a discussion of this issue). For potassic-ferro-richterite we have no evidence of a similar behavior because the position of the H atom in HT structure 268 refinements done by Oberti et al. (2016) could not be determined. 269 270 The reason for the anomalous increase in the intensity reported in Figure 5 is therefore currently unknown. We can only note that it is being observed in other Fe-dominant 271 272 amphiboles such as riebeckite (Susta 2016) and ferro-actinolite (unpublished), on both singlecrystals and powders. Moreover, in all Fe-rich amphiboles we have examined so far the 273 274 increase in absorption is not linear but is enhanced at higher T, similar to Figure 5, and such a 275 behavior, although less pronounced, is observed also when using powders (Susta 2016). 276 An increase in intensity could in principle result from mode-mode coupling at HT of absorptions with close wavenumbers, and this could be the case for the 3678 and 3656 cm^{-1} 277 278 bands. However at the present we have no elements to support this hypothesis. Additional work is needed on amphiboles with different compositions to understand whether this peculiar 279

absorption behavior is due to the chemistry, i.e. to the presence of Fe, and the phenomena

accompanying its oxidation at H*T* conditions.

282

283 The behavior of potassic-ferro-richterite during heating

Figure 6 compares the evolution as a function of T of the unit-cell volume (data from 284 Oberti et al. 2016) against the evolution of the OH-stretching absorbance (quenched data, see 285 286 Figure 5) in sample Ri1. According to the work of Oberti et al. (2016), the unit-cell parameters expand linearly up to ~ 300 °C; in the T range 300-400 °C there is an abrupt 287 contraction of all the edges, and then the expansion of the unit cell of the deprotonated phase 288 continues steady until 800 °C (Fig. 6). Structure refinements at selected T revealed that in the 289 300-400 °C T interval virtually all H is lost and electroneutrality at the anionic O(3) site is 290 maintained by the oxidation of an equal amount of ^CFe²⁺ to ^CFe³⁺. Careful inspection of the 291 evolution of the refined site-scatterings and bond-lengths at the octahedral sites suggests that 292 293 Fe oxidation occurs almost exclusively at the M(1) site, while the M(3) and M(2) sites are virtually unaffected. For 400 °C < T < 800 °C the related oxo-amphibole ("oxo-ferro-294 295 richterite") is stable, and its structure is perfectly retained upon reversal to room-T, with a linear decrease of all unit-cell parameters. Interestingly, an inverse trend as a function of T is 296 observed for the β angle, which decreases with T in potassic-ferro-richterite but increases in 297 its deprotonated counterpart (Oberti et al. 2016). It must be stressed, however, that the T range 298 of stability reported for potassic-ferro-richterite is valid for 1 atmosphere in air, and that it is 299 likely to change at different (water) pressures, typical of the deep crust, or under different 300 oxidizing conditions. 301

The H*T*-FTIR data collected during the present work add further information to model the process described by H*T*-SC-XRD. The evolution of the overall intensity of the OH signal, measured on quenched samples for the 3710-3600 cm⁻¹ integration range (Fig. 6), is consistent with the behavior observed by X-ray diffraction: it does not indicate any significant

306	loss of hydrogen up to 400 °C, while deprotonation occurs in a relatively narrow T range (100
307	°C). The intriguing point in Figure 6 is, however, that HT-SC-FTIR shows the onset of
308	deprotonation at about 400 °C, which is about 100 °C higher than that reported by Oberti et
309	al. (2016) for the same amphibole studied by HT-SC-XRD. This large T shift cannot be
310	assigned to experimental artifacts. A malfunction or incorrect calibration of the thermocouple
311	can be ruled out, because both heating systems (our HT stage and the microfurnace used by
312	Oberti and co-workers) were calibrated against the melting point of a series of known
313	substances. Although the duration of SC-FTIR (~ 2 hrs) and SC-XRD (~ 48 hrs) heating
314	experiments is different, refinement of X-ray powder diffraction data collected in situ for the
315	same sample (unpublished) using a heating regime very similar to that used for HT-SC-FTIR
316	(~ 2 hrs) yielded a deprotonation onset of ~ 350 °C, hence intermediate between the values
317	observed for single crystals. Useful information to solve this conundrum is provided by the
318	results of Susta (2016) on riebeckite. Because a larger amount of sample was available, HT-
319	FTIR data were collected <i>in situ</i> and under the same experimental conditions both on a single
320	crystal and on powders. Again, the onset T of deprotonation is ~100 °C lower for powders
321	than for single crystal. We can thus conclude that XRD techniques are not affected by crystal
322	size, whereas FTIR spectroscopy yields a deprotonation $T \sim 50/100$ °C higher for single
323	crystals than for powders. A possible explanation is that proton diffusion (probed by FTIR) is
324	slower than electron diffusion. The way by which protons/hydrogen move across the
325	amphibole crystal is not fully understood; a feasible model is by protons hopping between
326	deprotonated $O(3)$ sites along the strip of octahedra, hence along the <i>c</i> crystallographic
327	direction (Susta 2016). The persistence of the O-H stretching absorption in the spectra at T
328	conditions where X-ray diffraction shows that the iron oxidation is proceeding (Fig. 6) is
329	compatible with transient O-H bonds continuously created during the hopping of the proton
330	towards the surface. The complete deprotonation is therefore observed at higher T on single-
331	crystals where the diffusion path has to be order of magnitude longer than in powders.

332

333 Local order in the deprotonation process of potassic-ferro-richterite

Focusing on the crystal-chemical mechanisms involved in the deprotonation process, 334 Figure 3b shows that for T < 350 °C no significant change occurs in the OH-spectrum and 335 hence in the local environment of the OH dipole (namely, the cation occurring at the adjacent 336 sites). At 350 °C, a weak increase in the intensity of the 3656 cm⁻¹ component (the one 337 assigned to the ${}^{M(1)}$ Fe ${}^{2+M(1)}$ Fe ${}^{3+M(3)}$ Fe ${}^{2+}$ -OH-A- ${}^{O(3)}$ O²⁻ configurations) is observed, thus 338 providing the first signal of Fe oxidation close to the O(3) site. This component becomes 339 prominent at 400 °C, and is the main feature in the spectrum at $T \ge 450$ °C. The spectra 340 collected on quenched samples were decomposed using the Peakfit® program by Jandel 341 Scientific; the background was treated as linear and all bands were modeled as symmetric 342 Gaussian line-shapes (Della Ventura et al. 1996). The spectra were fitted to the smallest 343 344 number of peaks needed for an accurate description of the spectral profile, based on the knowledge of the behavior of OH bands in this spectral region (see a review by Hawthorne 345 and Della Ventura 2007). The spectral parameters (position and width) of some partially 346 overlapping peaks (see for example the 3656 cm⁻¹ component) were refined where these 347 348 peaks are most prominent, and then kept fixed during the refinement of the other samples. At convergence, the peak positions were released and the FWHM only were constrained to be 349 roughly constant in all spectra. Figure 7 shows the results of the spectral decompositions. 350 Residual intensity observed after fitting the 3678, 3656 and 3622 cm⁻¹ bands requires an 351 additional peak around 3641 cm^{-1} to be introduced in the model (Fig. 7). Given its frequency 352 353 and the controlled chemistry of the system, this band must be related to some configuration involving Fe³⁺; however, because its intensity is very low we will neglect it in the following 354 discussion. 355

Figure 8a shows the evolution with *T* of the relative integrated absorbance of the 3678 and 3656 cm⁻¹ components obtained from Figure 7. Note that the spectra have been collected

systematically on the same point of a crystal chip with a constant thickness. The intensity of 358 the higher-frequency band decreases only slightly between 300 and 400 °C, but disappears at 359 500 °C. In contrast, the lower-frequency component at 3656 cm⁻¹ increases slightly between 360 300 and 400 °C but increases significantly in the 400-500 °C range. Figure 8b shows the 361 absolute intensities of these two bands plotted against T. The intensity of the 3678 cm^{-1} 362 component is almost constant up to 400 $^{\circ}$ C, then decreases drastically; that of the 3656 cm⁻¹ 363 component increases slightly up to 400 °C and then starts dropping. At 500 °C, however, all 364 the OH remaining in the amphibole is related to this band, i.e., to the ${}^{M(1)}Fe^{2+M(1)}Fe^{3+M(3)}Fe^{2+-}$ 365 configuration locally associated to a $OH-A-^{O(3)}O^{2-}$ bridge. 366 The behavior of the OH-bands in Figure 8b confirms that the oxidation process occurs 367 via the creation of a local ${}^{O(3)}O^{2}$ -A- ${}^{O(3)}O^{2}$ order (Della Ventura et al. 2007). As a matter of 368 fact, if the oxidation of Fe at M(1) occurred randomly, we would have observed in Figure 8b a 369 significant increase in the 3656 cm⁻¹ component at the expense of the 3678 cm⁻¹ component, 370 but this is not the case because both bands decrease for T > 450 °C. Useful information is 371 provided by the evolution with temperature of the 3622 cm⁻¹ band (assigned to the 372 configurations including a vacant A-site), which is reported in Figure 9. The trends show that 373 although this band disappears rapidly at T > 400 °C (Fig. 9b), its intensity actually *increases* 374 relative to all other components (Fig. 9a). We can conclude that the local configurations 375 376 associated with a vacant A-site are less affected by the deprotonation process than those associated with an occupied A site. As a matter of fact, the presence of the A cation helps in 377 378 providing local electroneutrality to those anionic O(3) sites, which remain underbonded after 379 H loss, a suggestion first made by Ungaretti (1980). 380 The evidence discussed above suggests a crucial role played by local configuration on

observed in nature for A-filled Fe-dominant amphiboles. However, the great compositional

381

variety of amphibole requires a more systematic approach to this issue. The higher stability of

16

the deprotonation process. This results is consistent with the relatively lower thermal stability

384	A-vacant Fe-rich or Fe-dominant amphiboles is also in agreement with previous findings on
385	layer silicates (Zhang et al. 2007), where the presence of K at the interlayer site decreases
386	thermal stability, so that sericite (Zhang et al. 2005) has a lower deprotonation temperature
387	than tale (Ward 1975) and phyrophyllite (Wang et al. 2002).
388	
389	IMPLICATIONS
390	The stability of Fe-rich rock-forming minerals at non ambient conditions, particularly
391	at high temperatures, is of great relevance in Earth and planetary sciences; evolving Fe^{3+}/Fe^{2+}
392	ration in response of varying boundary conditions may affect properties such as rock's
393	magnetism and electrical conductivity, and may thus have significant consequences onto
394	geophysics (e.g., Wang et al. 2012).
395	By integrating HT-SC-FTIR spectroscopy with previous HT-SC-XRD results on a
396	synthetic potassic-ferro-richterite we significantly improved our knowledge of the
397	deprotonation process in amphiboles, which may be extended to other hydrous minerals. The
398	main implications of our work are:
399	(1) The deprotonation process of the studied amphibole proceeds via a simultaneous loss of
400	proton and oxidation of ferrous iron in order to maintain electroneutrality. Fe oxidation occurs
401	preferentially at the $M(1)$ site coordinating an OH group interacting with an alkali A cation.
402	(2) The results of HT-FTIR analysis are strongly dependent on crystal size. This point is far
403	less important with XRD because this technique provides data that are averaged over the
404	crystal, while FTIR spectroscopy in the mid-IR range yields information at a molecular scale.
405	Hence, deprotonation is detected by FTIR at lower <i>T</i> on powders than on single-crystals, also
406	suggesting a surface-driven process ruled by the availability of atmospheric oxygen (Addison
407	et al. 1962a, Hodgson et al. 1965, and Susta 2016).
408	(3) We provide the first evidence of a significant increase in the absorption coefficient with T ,

409 which should be related to a change in the electronic properties of the sample. Although this

- 410 feature still needs to be fully understood, this work implies that SC-FTIR spectroscopy in
- 411 non-ambient *T* studies should be done on quenched materials, or at least comparing
- 412 measurements done *in situ* with those done on quenched materials.

413

- 414 Acknowledgements
- 415 Sincere thanks are due to B. Mihailova (Hamburg), M. Welch (London) and an anonymous
- 416 referee for their valuable and positive criticism.

418 **REFERENCES CITED** Addison, C.C., Addison, W.E., Neal, G.H., and Sharp, J.H. (1962a) Amphiboles. Part I. The 419 oxidation of crocidolite. Journal of Chemical Society, 1468-1471. 420 Addison, W.E., Neal, G.H., and Sharp, J.H. (1962b) Amphiboles. Part II. The kinetics of 421 oxidation of crocidolite. Journal of Chemical Society, 1472-1475. 422 Addison, W.E., and Sharp, J.H. (1962) Amphiboles. Part III. The reduction of crocidolite. 423 424 Journal of Chemical Society, 3693-3698. Addison, W.E., and Sharp, J.H. (1968) Redox behavior of iron in hydroxylated silicates. 425 Eleventh Conference on Clays and Clay Minerals. Abstracts, 95-104. 426 Addison, W.E., and White, A.D. (1968) The oxidation of Bolivian crocidolite. Mineralogical 427 Magazine, 36, 791-796. 428 Aines, R.D. and Rossman, G.R. (1985) The high temperature behavior of trace hydrous 429 components in silicate minerals. American Mineralogist, 70, 1169-1179. 430 Clark, R.N., King, T.V.V., Klejwa, M., Swayze, G.A., and Vergo, N. (1990) High spectral 431 resolution reflectance spectroscopy of minerals. Journal of Geophysical Researches, 95, 432 12653-12680. 433 Clowe, C.A., Popp, R.K., and Fritz, F.J. (1988) Experimental investigation of the effect of 434 oxygen fugacity on ferric-ferrous ratios and unit-cell parameters of four natural clino-435 amphiboles. American Mineralogist, 73, 487-499. 436 Della Ventura, G. (1992) Recent developments in the synthesis and characterization of 437 amphiboles. Synthesis and crystal-chemistry of richterites. Trends in Mineralogy, 1, 438 153-192. 439 Della Ventura, G., Robert, J.-L., and Hawthorne, F.C. (1996) Infrared spectroscopy of 440 synthetic (Ni,Mg,Co)-potassium-richterite. Geochimica and Cosmochimica Acta, vol. 441 spec. 5, 55-63. 442

443	Della Ventura, G., Robert, JL., Raudsepp, M., Hawthorne, F.C., and Welch, M. (1997) Site
444	occupancies in synthetic monoclinic amphiboles: Rietveld structure-refinement and
445	infrared spectroscopy of (nickel, magnesium, cobalt)-richterite. American Mineralogist,
446	82, 291-301.
447	Della Ventura, G., Robert, JL., Hawthorne, F.C., Raudsepp, M., and Welch, M.D. (1998)
448	Contrasting ^[6] Al ordering in synthetic Mg- and Co-pargasite. Canadian Mineralogist,
449	36, 1237-1244.
450	Della Ventura, G., Hawthorne, F.C., Robert, JL., Delbove, F., Welch, M.D., Raudsepp, M.
451	(1999) Short-range order of cations in synthetic amphiboles along the richterite -
452	pargasite join. European Journal of Mineralogy, 11, 79-94.
453	Della Ventura, G., Robert, JL., Sergent, J., Hawthorne, F.C., Delbove, F. (2001) Constraints
454	on F vs. OH incorporation in synthetic ^[6] Al-bearing monoclinic amphiboles. European
455	Journal of Mineralogy, 13, 841-847.
456	Della Ventura, G., Redhammer, G.J., Iezzi, G., Hawthorne, Papin, A., and Robert, JL.
457	(2005a) A Mössbauer and FTIR study of synthetic amphiboles along the
458	magnesioriebeckite – ferri-clinoholmquistite join. Physics and Chemistry of Minerals,
459	32, 103-113.
460	Della Ventura, G., Iezzi, G., Redhammer, G.J., Hawthorne, F.C., Scaillet, B., and Novembre,
461	D. (2005b) Synthesis and crystal-chemistry of alkali amphiboles in the system Na ₂ O-
462	MgO-FeO-Fe ₂ O ₃ -SiO ₂ -H ₂ O as a function of f_{O2} . American Mineralogist, 90, 1375-
463	1383.
464	Della Ventura, G., Oberti, R., Hawthorne, F.C., and Bellatreccia, F. (2007) Single-crystal
465	FTIR study Ti-rich pargasites from Lherz: the spectroscopic detection of $^{O3}O^{2-}$ in
466	amphiboles. American Mineralogist, 92, 1645-1651.

467 Della Ventura, G., Bellatreccia, F., Kadica, F., Chopin, C. and Oberti, R. (2

- arrojadite enigma III. The incorporation of volatiles: a polarised FTIR spectroscopy
- study. European Journal of Mineralogy, 26, 679-688.
- 470 Della Ventura, G., Redhammer, G.J., Robert, J.L., Sergent, J. and Iezzi, G. (2016) Synthesis
- 471 and crystal chemistry of amphiboles along the join richterite ferrorichterite: a
- 472 combined spectroscopic (FTIR, Mössbauer), XRPD and microchemical study. Canadian
 473 Mineralogist, in press.

474 Ernst, W.G., and Wai, M.,(1970). Mössbauer, infrared, X-ray and optical study of cation

- 475 ordering and dehydrogenation in natural and heat-treated sodic amphiboles. American
 476 Mineralogist, 55, 1226-1258.
- 477 Gottschalk, M., and Andrut, M. (1998) Structural and chemical characterization of synthetic
- 478 (Na,K)-richterite solid-solutions by EMP, HRTEM, XRD and OH-valence vibrational
 479 spectroscopy. Physics and Chemistry of Minerals, 25, 101-111.
- 480 Hawthorne, F. C., and Della Ventura, G. (2007) Short-range order in amphiboles. In, F.C.
- 481 Hawthorne, R. Oberti, G. Della Ventura, and A. Mottana, Eds. Amphiboles: crystal
- 482 chemistry, occurrence, and health issues, 67, p. 173-222. Reviews in Mineralogy and
- 483 Geochemistry, Mineralogical Society of America, Chantilly, Virginia.
- Hawthorne, F.C., and Oberti, R., (2007) Amphiboles: Crystal Chemistry. In, F.C. Hawthorne,
- 485 R. Oberti, G. Della Ventura, and A. Mottana, Eds. Amphiboles: crystal chemistry,
- 486 occurrence, and health issues, 67, p. 1-54. Reviews in Mineralogy and Geochemistry,
- 487 Mineralogical Society of America, Chantilly, Virginia.
- 488 Hawthorne, F.C., Oberti, R. and Sardone, N. (1996) Sodium at the A site in clinoamphiboles:
- the effects of composition on patterns of order. Canadian Mineralogist, 34, 577-593.

- 491 Hawthorne, F.C., Oberti, R., Harlow, G.E., Maresch, W.V., Martin, R.F., Schumacher, J.C.,
- and Welch, M.D. (2012) Nomenclature of the amphibole supergroup. American
- 493 Mineralogist, 97, 2031-2048.
- Hodgson, A.A., Freeman, A.G., Taylor, H.F.V. (1965). The thermal decomposition of
 crocidolite from Koegas, South Africa. Mineralogical Magazine 35, 1965. 5-29.
- Hoover, G.P., Robinson, E.A., McQuate, R.S., Schreiber, H.D. and Spencer, J.N. (1969)
- 497 Temperature dependence of the molar absorptivity of the OH stretching vibration. The498 Journal of Physical Chemistry, 73, 4027-4029.
- 499 Keppler, H., and Bagdassarov, N.S. (1993) High-temperature FTIR spectra of H₂O in

rhyolite melt to 1300 °C. American Mineralogist, 78, 1324-1327.

501 Iezzi, G., Cámara, F., Della Ventura, G., Oberti, R., Pedrazzi, G., and Robert, J.-L. (2004)

502 Synthesis, crystal structure and crystal-chemistry of ferri-clinoholmquistite,

503 $Li_2Mg_3Fe^{3+}_2Si_8O_{22}(OH)_2$. Physics and Chemistry of Minerals, 31, 375-385.

- 504 Iezzi, G., Della Ventura, G., Hawthorne, F.C., Pedrazzi, G., Robert, J.-L., and Novembre, D.
- 505 (2005) The (Mg,Fe²⁺) substitution in ferri-clinoholmquistite, $\Box Li_2$ (Mg,Fe²⁺)₃ Fe³⁺₂ Si₈

506 O_{22} (OH)₂. European Journal of Mineralogy, 17, 733-740.

- 507 Laukamp, C., Termin, K.A., Pejcic, B., Haest, M., and Cudahy, T. (2012) Vibrational
- spectroscopy of calcic amphiboles applications for exploration and mining. European
 Journal of Mineralogy, 24, 863-878.
- Libowitzky, E., and Rossman, G.R. (1996) Principles of quantitative absorbance
- 511 measurements in anisotropic crystals. Physics and Chemistry of Minerals, 31, 375-385.
- Libowitzky, E., and Rossman, G.R. (1997) An IR absorption calibration for water in minerals.
- 513 American Mineralogist, 23, 319-327.
- 514 Mustard, J.F. (1992) Chemical analysis of actinolite from reflectance spectra. American
- 515 Mineralogist, 77, 345-358.

- 516 Oberti, R., Zema, M., and Boiocchi, M. (2012) High-temperature behaviour of
- 517 ferroholmquistite: thermal expansion and dehydrogenation. Proceedings of the 41st
- 518 Congress of the Italian Crystallographic Association, p. 136.
- 519 Oberti, R., Boiocchi, M., Welch, M.D., and Zema, M. (2013) Towards a model for HT
- 520 behaviour of (orthorhombic and monoclinic) amphiboles. Proceedings of the GAC-
- 521 MAC Meeting, p. 153, Mineralogical Association of Canada.
- 522 Oberti, R., Boiocchi, M., Zema, M., and Della Ventura, G. (2016) Synthetic potassic-ferro-
- richterite: 1. Composition, crystal structure refinement and HT behavior by in operando
- 524 single-crystal X-ray diffraction. Canadian Mineralogist, in press.
- 525 Okumura, S., and Nakashima, S. (2005) Molar absorptivities of OH and H₂O in rhyolitic glass

at room temperature and at 400–600 °C. American Mineralogist, 90, 441-447.

- Paterson, M.S. (1982) The determination of hydroxyl by infrared absorption in quartz, silicate
 glasses and similar materials. Bulletin de Minéralogie, 105, 20-29.
- Phillips, M.W., Popp, R.K., and Clowe, C.A. (1988) Structural adjustments accompanying
 oxidation-dehydrogenation in amphiboles. American Mineralogist, 73. 500-506.
- 531 Phillips, M.W., Draheim, J.E., Popp, R.K., Clowe, C.A., and Pinkerton, A. A. (1989) Effect
- of oxidation-dehydrogenation in tschermakitic hornblende. American Mineralogist,
 74, 764-773.
- Phillips, M.W., Popp, R.K., and Clowe, C.A. (1991) A structural investigation of oxidation
 effects in air-heated grunerite. American Mineralogist, 76. 1502-1509.

536 Radica, F., Della Ventura, G., Bellatreccia, F., and Cestelli Guidi, M. (2016a) HT-FTIR

- 537 micro-spectroscopy of cordierite: the CO_2 absorbance from in situ and quenched
- experiments. Physics and Chemistry of Minerals, 43, 63-41.
- 539 Radica, F., Della Ventura, G., Bellatreccia, F., Cinque, G., Cestelli Guidi, M. (2016b) The
- 540 diffusion kinetics of CO₂ in cordierite: an H*T*-FTIR micro-spectroscopy study.
- 541 Contribution to Mineralogy and Petrology, 171, 12. DOI 10.1007/s00410-016-1228-x

- 542 Redhammer, G.J., and Roth, G. (2002) Crystal structure and Mössbauer spectroscopy of the
- 543 synthetic amphibole potassic-ferri-ferrorichterite at 298 K and low temperatures (80–
- 544 110 K). European Journal of Mineralogy, 14, 105-114.
- Robert, J.L., Della Ventura, G., and Thauvin, J.L. (1989) The infrared OH stretching region of
- 546 synthetic richterites in the system Na₂O K₂O CaO MgO SiO₂ H₂O-HF. European
- 547 Journal of Mineralogy, 1, 203-211.
- 548 Robert, J.-L., Della Ventura, G., Hawthorne, F.C. (1999) Near-infrared study of short-range
- disorder of OH and F in monoclinic amphiboles. American Mineralogist, 84, 86-91.
- 550 Robert, J.-L., Della Ventura, G., Welch, M., Hawthorne, F.C. (2000) OH-F substitution in
- 551 synthetic pargasite at 1.5 kbar, 850 °C. American Mineralogist, 85, 926-931.
- 552 Schmidbauer, E., Kunzmann, Th., Fehr, Th., and Hochleitner, R. (2000) Electrical resistivity
- and ⁵⁷Fe Mossbauer spectra of Fe-bearing calcic amphiboles. Physics and Chemistry
 of Minerals, 27, 347-356.
- Susta, U. (2016) Dehydration and deprotonation processes in minerals: development of new
 spectroscopic techniques. 164 p., Ph.D. Thesis, University of Roma Tre, Roma.
- 557 Tokiwai, K., and Nakashima, S. (2010a) Integral molar absorptivities of OH in muscovite at
- 20 to 650 °C by in-situ high-temperature IR microspectroscopy. American Mineralogist,
 95, 1052-1059.
- Tokiwai, K., and Nakashima, S. (2010b) Dehydration kinetics of muscovite by in situ infrared
 microspectroscopy. Physics and Chemistry of Minerals, 37, 91-101.
- 562 Ungaretti, L. (1980) Recent developments in X-ray single crystal diffractometry applied to the
- crystal-chemical study of amphiboles. Godisnjak Jugonslavenskog Centra za
- 564 Kristalografiju, 15. 29-65.
- 565 Wang, L., Zhang, M., Redfern, S.A.T., and Zang, Z.Y. (2002) Dehydroxylation and
- transformations of the 2:1 phyllosilicate pyrophyllite at elevated temperatures: an
- infrared spectroscopic study. Clays and Clay Minerals, 50, 272-283.

- 568 Wang, D., Guo, Y., Yu, Y., and Karato, S. (2012) Electrical conductivity of amphibole-
- bearing rocks: influence of dehydration. Contribution to Mineralogy and Petrology 164,
 17-25.
- 571 Ward, J.R. (1975) Kinetics of talc dehydroxylation. Thermochimica Acta, 13, 7-14.
- 572 Welch, M.D., Cámara, F., Della Ventura, G., and Iezzi, G. (2007) Non-ambient in situ studies
- of amphiboles. In F. C. Hawthorne, R. Oberti, G. Della Ventura, A. Mottana, Eds.,
- 574 Amphiboles: Crystal Chemistry, Occurrence, and Health Issues, 67, 223-260. Reviews
- 575 in Mineralogy and Geochemistry, Mineralogical Society of America, Chantilly, Virginia.
- 576 Welch, M.D., Cámara, F., and Oberti, R. (2011) Thermoelasticity and high-T behaviour of
- anthophyllite. Physics and Chemistry of Minerals, 38, 321-334.
- 578 Withers, A.C., Zhang, Y., and Behrens, H. (1999) Reconciliation of experimental results on
- H₂O speciation in rhyolitic glass using in situ and quenching techniques. Earth and
 Planetary Science Letters, 173, 343-349.
- 581 Yamagishi, H., Nakashima, S., and Ito, Y. (1997) High temperature infrared spectra of
- 582 hydrous microcrystalline quartz. Physics and Chemistry of Minerals, 24, 66-74.
- Zema, M., Welch, M.D., and Oberti, R. (2012) High-T behaviour of gedrite: thermoelasticity
- and dehydrogenation. Contributions to Mineralogy and Petrology, 163, 923-937.
- Zhang, M, Wang, L., Hirai, S., Redfern, S.A.T., and Salje, E.K.H. (2005) Dehydroxylation
- and CO₂ incorporation in annealed mica (sericite): an infrared spectroscopic study.
 American Mineralogist, 90, 173-180.
- Zhang, M., Qun Hui, Xiao-Jie Lou, Redfern, S.A.T., Salje, E.K.H., Tarantino, S. (2006)
- 589 Dehydroxylation, proton migration and structural changes in heated talc: an infrared
- 590 spectroscopic study. American Mineralogist, 91, 816-825.
- Zhang, M., Salje, E.K.H., Carpenter, M.A., Wang, J.Y., Groat, L.A., Lager, G.A., Wang, L.,
- Beran, A., and Bismayer, U. (2007) Temperature dependence of IR absorption of

- 593 hydrous/hydroxyl species in minerals and synthetic materials. American Mineralogist,
- *92*, 1502-1517.
- 595 Zhang, M., Redfern, S.A.T., Salje, E.K.H., Carpenter, M.A., and Hayward, C.L. (2010)
- 596 Thermal behaviour of vibrational phonons and hydroxyls of muscovite in
- 597 dehydroxylation: In situ high-temperature infrared spectroscopic investigations.
- 598 American Mineralogist, 95, 1444-1457.
- 599

600	FIGURE CAPTIONS
601	Figure 1. Schematic local structure of the amphiboles across the A site.
602	
603	Figure 2. Room-T single-crystal unpolarized spectra, collected on a 100 µm thick, section.
604	
605	Figure 3. HT-FTIR spectra (temperature in °C) collected (a) in situ during the heating ramp,
606	and (b) after quenching the sample annealed at the target T. Spectra plotted in each Figure
607	with the same absorbance scale.
608	
609	Figure 4. Comparison of the FTIR spectra collected in situ at 400 °C and after quenching the
610	sample annealed at the same T. Spectra plotted with the same absorbance scale.
611	
612	Figure 5. Comparison of the OH-stretching absorbance measured in situ (filled triangle) and
613	quenched samples (empty triangle) and the combination modes absorbance in situ (filled
614	diamond), as a function of increasing T . Integrated intensities obtained scaling the absorbance
615	at any temperature (^{T}I) to that at room- $T(^{RT}I)$. Integration ranges: 3710-3600 cm ⁻¹ for the OH-
616	stretching region and 4300-4100 cm ⁻¹ for the combination region.
617	
618	Figure 6 Evolution of the cell volume of potassic-ferro-richterite (from Oberti et al. 2016) vs.
619	the OH-stretching absorbance (quenched data) obtained in this study.
620	
621	Figure 7. Fitted OH-stretching spectra collected on quenched samples after annealing at the
622	indicated T. All spectra plotted with the same absorbance scale.
623	
624	Figure 8. Temperature dependence of the 3678 vs. 3660 cm ⁻¹ components as a function of T .
625	(a) relative intensity, (b) absolute intensity.
626	
627	Figure 9. Temperature dependence of the 3622 cm ^{-1} band as a function of <i>T</i> . (a) relative
628	intensity, (b) absolute intensity.

ays consult and cite the final, published document. See http://www.minsocam.org or GeoscienceW

absorbance

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press.

(DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am-2017-5859

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld