1 Revision 1

- 2 Title: Effect of composition on compressibility of skiagite-Fe-majorite garnet
- 3 **Authors:** Leyla Ismailova^{1,2,3}, Maxim Bykov¹, Elena Bykova¹, Andrei Bobrov⁴, Ilya
- 4 Kupenko^{1,5,6}, Valerio Cerantola^{1,5}, Denis Vasiukov^{1,2}, Natalia Dubrovinskaia², Catherine
- 5 McCammon¹, Michael Hanfland⁵, Konstantin Glazyrin⁷, Hanns-Peter Liermann⁷, Alexander
- 6 Chumakov⁵, Leonid Dubrovinsky¹

7 Affiliations:

- ¹Bayerisches Geoinstitut, University of Bayreuth, Universitätsstraße 30, D-95440 Bayreuth,
 Germany.
- ¹⁰ ²Laboratory of Crystallography, University of Bayreuth, Universitätsstraße 30, D-95440
- 11 Bayreuth, Germany
- ³ Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of
- 13 Sciences, 19 ul. Kosygina, Moscow 119991, Russia
- ⁴Department of Petrology, Geological Faculty, Moscow State University, 119991 Moscow,
 Russia
- ⁵ESRF-The European Synchrotron CS40220 38043 Grenoble Cedex 9 France
- ⁶Institut für Mineralogie, University of Münster, Corrensstr. 24, 48149 Münster, Germany
- ⁷Photon Sciences, Deutsches Elektronen-Synchrotron, Notkestrasse 85, D-22603 Hamburg,
- 19 Germany.
- 20 *Correspondence to: <u>leyla.isml@gmail.com</u>

21 Abstract

- 22 Skiagite-Fe-majorite garnets were synthesized using a multianvil apparatus at 7.5-9.5
- 23 GPa and 1400-1600 K. Single-crystal X-ray diffraction at ambient conditions revealed
- 24 that synthesized garnets contain 23 to 76 % of an Fe-majorite component. We found 25 that the substitution of Fe^{2+} and Si^{4+} for Fe^{3+} in the octahedral site decreases the unit-
- 25 that the substitution of Fe^{2+} and Si^{4+} for Fe^{3+} in the octahedral site decreases the unit-26 cell volume of garnet at ambient conditions. Analysis of single-crystal X-ray
- diffraction data collected on compression up to 90 GPa of garnets with different compositions reveals that with increasing majorite component the bulk modulus
- 29 increases from 159(1) to 172(1) GPa. Our results and literature data unambiguously
- 30 demonstrate that the total iron content and the Fe^{3+}/Fe^{2+} ratio in (Mg,Fe)-majorites 31 have a large influence on their elasticity. At pressures between 50 and 60 GPa we

observed a significant deviation from a monotonic dependence of the molar volumes
 of skiagite-Fe-majorite garnet with pressure, and over a small pressure interval the
 volume dropped by about 3%. By combining results from single-crystal X-ray
 diffraction and high-pressure synchrotron Mössbauer source spectroscopy we
 demonstrate that these changes in the compressional behavior are associated with
 changes of the electronic state of Fe in the octahedral site.

38 Keywords: skiagite-majorite garnet; single-crystal X-ray diffraction; Mössbauer
39 spectroscopy; equation of state; upper-mantle; transition zone

Garnets are among the most abundant phases in the upper mantle and transition zone; hence

40

42

41 **1.** Introduction

43 data on their behavior under extreme conditions is important for understanding the 44 composition, structure, and dynamics of the deep Earth's interior. According to the pyrolite 45 composition model, the Earth's upper mantle below 50 km is dominated by four major 46 phases: olivine ((Mg,Fe)₂SiO₄), orthopyroxene ((Mg,Fe)SiO₃), clinopyroxene 47 $((Ca(Mg,Fe^{2+})Si_2O_6), and garnet ((Mg,Fe,Ca)_3(Al,Fe,Cr)_2Si_3O_{12}) (Ringwood 1975; Ita and$ 48 Stixrude 1992). With increasing pressure, upper mantle minerals undergo several important 49 phase transitions. Olivine transforms to wadsleyite at a pressure of ~13.5 GPa, and then to 50 ringwoodite at ~18 GPa (Irifune et al. 2008). Ortho- and clinopyroxene progressively 51

51 dissolve in garnet, resulting in an excess of Mg and Si in the structure. The volume fraction of

52 garnet thereby increases from ~ 10 % to ~ 40 % or more in the transition zone, where garnet(s)

become majoritic (Si-rich) (Duffy and Anderson 1989; Irifune et al. 2008; Wood et al. 2013).

54 Natural garnets are usually complex solid solutions because the garnet structure can

55 accommodate a number of different divalent and trivalent cations. High-pressure garnet

56 endmembers include Mg-majorite $Mg_4Si_4O_{12}$, Fe^{2+} -majorite $Fe^{2+}_4Si_4O_{12}$, Na-majorite

57	Na2MgSi5O12 (Bobrov et al. 2008) and knorringite Mg3Cr2Si3O12 (Bykova et al., 2013;
58	Dymshits et al., 2014). While most cations in garnet occur in a single oxidation state $(Al^{3+},$
59	Ca^{2+} , Mg^{2+} , Cr^{3+}), iron commonly occurs as both Fe^{2+} and Fe^{3+} . The major Fe^{3+} -bearing
60	garnets are andradite (Ca ₃ Fe ₂ Si ₃ O ₁₂), khoharite (Mg ₃ Fe ₂ Si ₃ O ₁₂), and skiagite (Fe ₃ Fe ₂ Si ₃ O ₁₂)
61	(Amthauer et al., 1976; Luth et al., 1990; Woodland and Ross, 1994; Ismailova et al., 2015).
62	Skiagite garnet is important for the description of phase equilibria in mantle rocks. At
63	a fixed oxygen fugacity relative to a standard buffer such as fayalite-magnetite-quartz (FMQ),
64	garnet will be increasingly enriched in Fe^{3+} with increasing pressure (Wood et al. 1996).
65	Similarly, with increasing depth, garnet with fixed ferric iron content will be stabilized at
66	progressively lower oxygen fugacity relative to the FMQ buffer.(Wood et al. 2013). With
67	increasing pressure $Fe^{3+}/\Sigma Fe$ may also increase due to the redistribution of Fe^{3+} from
68	clinopyroxene to garnet (Woodland and Koch 2003) due to the expanding skiagite stability
69	field. At greater depths, skiagitic garnet accommodates an excess of Si that stabilizes a solid
70	solution with Fe^{2+} -majorite (Fe ₄ Si ₄ O ₁₂) (Woodland et al., 2009; Ismailova et al., 2015).
71	Mössbauer spectroscopy studies on garnet indicate that Fe ³⁺ occupies an octahedral
72	site (e.g., Amthauer et al., 1976). Thus, it is important to study the effect(s) of the majoritic
73	substitution ($2Fe^{3+} \leftrightarrow Fe^{2+}+Si^{4+}$) in the octahedral position. There is additional interest in
74	studies of iron in garnets at high pressure due to the possibility of compression-induced spin-
75	crossover (Friedrich et al. 2014, 2015; Stan et al. 2015).
76	In this paper we report the results of a study of synthetic pure-iron skiagite-majorite
77	garnet with different compositions using single crystal X-ray diffraction and synchrotron
78	Mössbauer source spectroscopy up to 90 GPa. We combine our data with those reported
79	earlier for different garnets in order to evaluate the effect of majoritic substitution on material
80	properties.
81	

82 2. Methods

83	Iron-bearing skiagite-majorite garnets with different compositions were synthesized
84	from stoichiometric mixtures of pure oxides: SiO ₂ , Fe ₂ O ₃ , and Fe _{1-x} O. For Mössbauer
85	spectroscopy experiments starting material was enriched with ⁵⁷ Fe. High temperatures and
86	high pressures were generated using a Kawai-type multi-anvil apparatus at Bayerisches
87	Geoinstitut (Bayreuth, Germany). Experimental conditions and compositions are listed in
88	Table 1. More details of the synthesis experiments can be found in Ismailova et al., (2015).
89	Crystals for single-crystal X-ray diffraction studies were selected based on the quality
90	of their diffraction peak profiles using an <i>in-house</i> high-brilliance rotating anode
91	diffractometer at Bayerisches Geoinstitut (Bayreuth, Germany). Pre-selected isometric
92	crystals of ~10 μ m in the longest dimension were loaded in diamond anvil cells (DACs) into
93	holes drilled through Re gaskets indented to 20-35 μ m thickness. First, the single-crystal data
94	were collected at ambient conditions. After that DACs were loaded with Ne at ~1.4 kbar.
95	Neon serves as a quasi-hydrostatic pressure transmitting medium. Below 10 GPa the pressure
96	was determined from ruby fluorescence, while above 10 GPa we used the diffraction lines of
97	crystallized Ne to determine the pressure (Fei et al. 2007). We used Boehler-Almax diamond
98	anvils with 250 μ m culets for measurements up to ~60 GPa, and beveled diamonds with 120
99	µm culets were used to achieve pressures up to 90 GPa.
100	Garnets with composition Ski69Maj31, Ski54Maj46, Ski24Maj76 were loaded into the
101	same DAC at a distance of ~10-15 μ m from each other. In order to achieve a perfect
102	alignment of the cell, a small particle of W was loaded along with three single crystals and a
103	ruby chip. First, the W particle was aligned in the beam, using it's strong absorption.
104	Secondly, garnet single crystals were aligned using the optical camera, using the position of
105	the W particle as a reference.
106	Single-crystal X-ray diffraction experiments were performed at the beamline ID09A at
107	ESRF, Grenoble, France (λ = 0.4151 Å; beam size, 10 × 10 μ m ²) (Merlini and Hanfland,
108	2013) and at the extreme conditions beamline ECB P02.2 at PETRA III, DESY, Hamburg,

109	Germany (λ = 0.2903 Å; beam size, 3 × 8 μ m ²) (Liermann et al. 2015). Diffraction images
110	were collected at various pressures using the following strategy: wide scans were collected
111	during ω rotation scans of $\pm 20^{\circ}$ with 40 seconds per frame; step scans were collected with
112	rotation of the cell of $\pm 38^{\circ}$ with a typical exposure time 0.5-1 seconds per frame. The
113	indexing of Bragg reflections, the intensity data reduction and the empirical absorption
114	correction were performed with the Agilent TM CrysAlisPro software (Oxford Diffraction
115	2006). Crystal structures were refined using Jana2006 (Petříček et al. 2014). Polyhedral
116	volumes were calculated using VESTA software (Momma and Izumi 2011). The Birch-
117	Murnaghan and Vinet equations of state coefficients were refined using the program EoSFit-
118	7c (Angel et al. 2014).
119	Synchrotron Mossbauer Source (SMS) spectra were recorded at the Nuclear
120	Resonance Beamline ID18 at ESRF using the (111) Bragg reflection of a ⁵⁷ FeBO ₃ single
120 121	Resonance Beamline ID18 at ESRF using the (111) Bragg reflection of a ⁵⁷ FeBO ₃ single crystal mounted on a Wissel velocity transducer driven with a sinusoidal wave form (Rüffer
120 121 122	Resonance Beamline ID18 at ESRF using the (111) Bragg reflection of a 57 FeBO ₃ single crystal mounted on a Wissel velocity transducer driven with a sinusoidal wave form (Rüffer and Chumakov 1996). The X-ray beam was focused to 20 μ m vertical and 10 μ m horizontal
120121122123	Resonance Beamline ID18 at ESRF using the (111) Bragg reflection of a 57 FeBO ₃ single crystal mounted on a Wissel velocity transducer driven with a sinusoidal wave form (Rüffer and Chumakov 1996). The X-ray beam was focused to 20 µm vertical and 10 µm horizontal dimensions using Kirkpatrick-Baez mirrors. The linewidth of the SMS and the absolute
 120 121 122 123 124 	Resonance Beamline ID18 at ESRF using the (111) Bragg reflection of a 57 FeBO ₃ single crystal mounted on a Wissel velocity transducer driven with a sinusoidal wave form (Rüffer and Chumakov 1996). The X-ray beam was focused to 20 µm vertical and 10 µm horizontal dimensions using Kirkpatrick-Baez mirrors. The linewidth of the SMS and the absolute position of the center shift (CS) were controlled before and after each measurement using a
 120 121 122 123 124 125 	Resonance Beamline ID18 at ESRF using the (111) Bragg reflection of a 57 FeBO ₃ single crystal mounted on a Wissel velocity transducer driven with a sinusoidal wave form (Rüffer and Chumakov 1996). The X-ray beam was focused to 20 µm vertical and 10 µm horizontal dimensions using Kirkpatrick-Baez mirrors. The linewidth of the SMS and the absolute position of the center shift (CS) were controlled before and after each measurement using a $K_2Mg^{57}Fe(CN)_6$ reference single line absorber. The velocity scale was calibrated using a 25
 120 121 122 123 124 125 126 	Resonance Beamline ID18 at ESRF using the (111) Bragg reflection of a 57 FeBO ₃ single crystal mounted on a Wissel velocity transducer driven with a sinusoidal wave form (Rüffer and Chumakov 1996). The X-ray beam was focused to 20 µm vertical and 10 µm horizontal dimensions using Kirkpatrick-Baez mirrors. The linewidth of the SMS and the absolute position of the center shift (CS) were controlled before and after each measurement using a $K_2Mg^{57}Fe(CN)_6$ reference single line absorber. The velocity scale was calibrated using a 25 µm thick natural α -Fe foil. Each spectrum took ~ 1-24 hours to collect. Spectra were fitted
 120 121 122 123 124 125 126 127 	Resonance Beamline ID18 at ESRF using the (111) Bragg reflection of a 57 FeBO ₃ single crystal mounted on a Wissel velocity transducer driven with a sinusoidal wave form (Rüffer and Chumakov 1996). The X-ray beam was focused to 20 µm vertical and 10 µm horizontal dimensions using Kirkpatrick-Baez mirrors. The linewidth of the SMS and the absolute position of the center shift (CS) were controlled before and after each measurement using a $K_2Mg^{57}Fe(CN)_6$ reference single line absorber. The velocity scale was calibrated using a 25 µm thick natural α -Fe foil. Each spectrum took ~ 1-24 hours to collect. Spectra were fitted using a full transmission integral with a normalized Lorentzian-squared source line shape

129 *3*.

Results/results and discussion

130 3.1 Structures of skiagite-Fe-majorite garnets at ambient conditions

131 Single crystals of garnets were measured first at ambient conditions. Synthesis conditions,

- 132 compositions, unit-cell volumes, and crystallographic data of skiagite-majorite garnets
- 133 collected at ambient conditions are given in **Table 1.** All garnets have structures with a cubic

space group $Ia\overline{3}d$ (#230) symmetry. The structural refinement revealed that the dodecahedral and tetrahedral sites are fully occupied by Fe and Si atoms, respectively. The octahedral site is also fully filled, but has a mixed (Fe and Si) occupancy.

137 Structural refinement also revealed that the synthesized garnets contain from 23.4(1)

mol. % to 76(5) mol. % of the end member iron-majorite ($Fe_4Si_4O_{12}$). An increase in Fe-

139 majorite content causes a decrease in the molar volume of the garnet (**Fig. 1**). If we linearly

140 extrapolate our data along the iron majorite-skiagite join, we obtain a unit cell volume for

141 pure majorite $Fe_4Si_4O_{12}$ of 1589.2 Å³, which is higher than the value obtained by Akaogi and

142 Akimoto (1977) (1558.89 Å³) from extrapolation of iron majorite (Fe₄Si₄O₁₂)-almandine

143 (Fe₃Al₂Si₃O₁₂) solubility data.

144 The crystal structure refinement shows that a change in the unit-cell volume is 145 associated with a decrease in the (Fe,Si)-O bond length of (Fe,Si)O₆ octahedra. Variations in 146 the bond length and polyhedral volumes are shown in Table 2 in comparison with the values 147 for pure skiagite predicted by Novak and Gibbs (1971). With increasing iron-majorite component along the skiagite-majorite join from (Ski_{100}) to (Ski_{24}) , the bond length decreases 148 from 1.98 Å to 1.957(5) Å, and the polyhedral volume reduces from 10.40 Å³ (Ski₁₀₀) to 149 9.9780 Å³ (Ski₂₄). Remarkably, garnet maintains cubic symmetry up to 76% of iron-majorite 150 151 content. In pyrope-majorite garnets a transition from cubic to tetragonal symmetry occurs at 152 80 % of Mg₄Si₄O₁₂ (Heinemann et al. 1997); Na-majorite-pyrope remains cubic with up to 153 70% of Na-majorite component, and knorringite-majorite garnet - with up to 97% of Mg-154 majorite (Sirotkina et al. 2015)

155 3.2 Equation of state of skiagite-majorite garnets at pressures up to 50 GPa

156 For measurements at high pressure we used garnet single crystals with four different157 compositions along the skiagite-majorite join:

158 - Ski_{76.6}Maj_{23.4} $Fe^{2+}_{3}(Fe^{2+}_{0.234(2)}Fe^{3+}_{1.532(1)}Si^{4+}_{0.234(2))}Si_{3}O_{12};$

- 159 Ski₆₉Maj₃₁ Fe²⁺₃(Fe²⁺_{0.31(2)}Fe³⁺_{1.39(2)}Si⁴⁺_{0.31(2)})Si₃O₁₂;
- 160 Ski₅₄Maj₄₆ Fe²⁺₃(Fe²⁺_{0.46(2)}Fe³⁺_{1.08(2)}Si⁴⁺_{0.46(2)})Si₃O₁₂;
- 161 Ski₂₄Maj₇₆ Fe²⁺₃(Fe²⁺_{0.76(5)}Fe³⁺_{0.48(5)}Si⁴⁺_{0.76(5)})Si₃O₁₂.

162 The unit cell volume variations with pressure were measured for Ski_{76.6}Maj_{23.4} up to 89 GPa

- and for Ski₆₉Maj₃₁, Ski₅₄Maj₄₆, and Ski₂₄Maj₇₆ up to 60 GPa (Fig. 2, Table S1-S4). All
- 164 studied garnets in the skiagite-majorite join show similar compressional behavior with unit
- 165 cell volumes decreasing monotonically with pressure increase up to 50 GPa.

166 A drastic change in the compressional behavior appears at pressures above 50 GPa

167 (Fig. 2). The pressure-volume relation obtained for Ski_{76.6}Maj_{23.4} up to 89 GPa can be fit by

168 two curves showing a clear discontinuity in the volume change at pressures between 50 and

169 60 GPa and a similar tendency is observed for other garnets (**Fig. 2**). In all cases the volume

170 reduction in the interval of 40 to 50 GPa is about 3.1-3.5 %, while between 50 and 60 GPa it

171 is about 4.7-5.5 %. Despite the clear discontinuity in the compressional behavior, no structural

172 transitions were detected from the structure refinements and skiagite-majorite garnets

173 maintained cubic symmetry even at highest pressures achieved. We refined the garnet

174 structure at every pressure point and no changes were observed.

175 We used the pressure-volume (P-V) data up to 50 GPa and a 3rd order Birch-

176 Murnaghan equation of state (EOS) to obtain the EOS parameters for the four investigated

177 garnets (Table 3). The ambient pressure bulk moduli K_{300,0} obtained in our study (164(3)-

178 169(3) GPa) are systematically higher than that of pure skiagite $Fe_3Fe_2Si_3O_{12}$ (157.4(3.0) GPa,

179 K'=6.7(8)) obtained by Woodland et al. (1999). The pressure derivatives of the bulk moduli

180 (K') in our fits are within the range 3.88(15) and 4.6(1).

181 *3.3 Behavior of coordination polyhedra upon compression.*

182 Accurate crystal structure refinement allows us to calculate the volumes of different

polyhedra and follow them as a function of pressure. The skiagite-Fe-majorite solid solution

184	is characterized by the substitution of Fe^{3+} for Fe^{2+} and Si^{4+} in the octahedral site: $2Fe^{3+}$
185	\leftrightarrow Fe ²⁺ +Si ⁴⁺ ; the dodecahedral site is occupied exclusively by Fe ²⁺ and the tetrahedral site is
186	occupied only by Si ⁴⁺ only. In order to avoid uncertainties introduced by correlations between
187	K and K' we fit the data using a 2^{nd} order Birch-Murnaghan equation of state (K'=4). Results
188	of the P-V fit (V_0 and $K_{300,0}$) for each individual polyhedron of studied garnets are given in
189	Table S5 (Supplementary) and the pressure dependence of the volumes for tetrahedra,
190	octahedra, and dodecahedra for garnet with composition Ski _{76.6} Maj _{23.4} are shown in Fig. 3.
191	As expected, SiO ₄ tetrahedra are stiff with bulk moduli between 386 and 483 GPa.
192	These values are typical for SiO ₄ tetrahedra in silicate garnets and are in good agreement with
193	data (327 to 434 GPa) reported earlier from both experimental and theoretical studies on
194	silicate garnets (Milman et al. 2001; Friedrich et al. 2014, 2015). The Fe ²⁺ O ₈ polyhedra are
195	much more compressible with bulk moduli of 101-115 GPa. At pressures up to about 50 GPa,
196	the compressibility of (Fe,Si)O ₆ octahedra for all studied garnets are similar and fall in the
197	range 216-233 GPa. At 50 GPa iron-bearing octahedra show a drastic decrease in volume
198	with a reduction of about 7 %. In contrast, FeO_8 and SiO_4 polyhedra show monotonically
199	varying behavior upon compression up to the highest pressure achieved in this study (Fig.3).
200	3.4 Synchrotron Mössbauer source spectroscopy
201	Synchrotron Mössbauer source spectra of Ski76.6Maj23.4 garnet were collected at several
202	pressures between ambient and 90 GPa (selected spectra are shown in Fig. 4 and hyperfine
203	parameters are presented in Table 4). Here we present the results directly related to the
204	changes in garnet crystal structure observed above 50 GPa, while detailed spectral analysis
205	and their interpretation will be published elsewhere. At pressures below ~50 GPa Mössbauer
206	spectra contain two components - one with higher and one with lower center shift (CS) and
207	quadrupole splitting (QS). The former has hyperfine parameters characteristic for Fe^{2+} in a
208	dodecahedral oxygen environment while the latter may be assigned to mixed Fe^{2+} and Fe^{3+} in
209	octahedra (Fig. 4). Up to 50 GPa, there are no any drastic changes in SMS spectra and

210	hyperfine parameters vary monotonically with pressure. Between 50 and 60 GPa there are
211	notable changes in the appearance of the component corresponding to Fe ³⁺ -dominated
212	octahedra, while the component corresponding to Fe^{2+} in FeO_8 dodecahedra remains almost
213	the same. There are several possibilities to fit spectra above 50 GPa. One is shown in Fig. 4
214	(c) with two components corresponding to $(Fe,Si)O_6$ octahedra – a doublet with CS even
215	lower that those observed below 50 GPa but with higher QS, and a singlet with relatively high
216	CS. Since CS of Fe^{3+} decreases and QS increases at the high spin to low spin crossover
217	(Bengtson et al. 2009; Hsu et al. 2011), while low spin Fe^{2+} in octahedral environment is
218	represented by a singlet (Kantor et al. 2006; Cerantola et al. 2015) we attribute the singlet and
219	the doublet components to low spin Fe^{2+} and Fe^{3+} , respectively.
220	

221 4. Discussion

222 *4.1 Effect of spin transition on the compressibility*

223 Recent experimental and theoretical studies on the iron spin and valence states in ironbearing minerals suggest that pressure can induce spin-pairing transitions of Fe^{2+} and Fe^{3+} in 224 225 relatively small octahedral sites such as in hematite Fe₂O₃ (Badro et al., 2002; Bykova et al., 226 2013), α-FeOOH (Xu et al. 2013), siderite FeCO₃ (Lavina et al. 2009; Cerantola et al. 2015), CaFe₂O₄ (Merlini et al. 2010), and Y₃Fe₅O₁₂ (Stan et al. 2015). The reported spin-pairing 227 228 transitions occur over a broad pressure range of 40 to 60 GPa. For silicate garnets, the spintransition of Fe³⁺ was previously observed only in andradite Ca₃Fe₂Si₃O₁₂ (Friedrich et al., 229 2014) in the pressure range of 60-70 GPa. Recently Friedrich et al. (2015) showed that Mn^{3+} 230 231 can also undergo a spin transition, namely in silicate hydrogarnet henritermierite $Ca_3Mn_2[SiO_4]_2[O_4H_4]$, but the spin transition starts at a slightly lower pressure (55-70 GPa). 232 As seen in our X-ray diffraction and Mössbauer spectroscopy data for skiagite-Fe-233 majorite garnet, there are changes in both octahedral Fe^{3+} and Fe^{2+} between 50 and 60 GPa. 234

235 The transformation is associated with a notable volume collapse that we assign to spin-paring. To obtain the EOS coefficients of skiagite-majorite garnet Ski_{76.6}Maj_{23.4} below and above the 236 237 spin crossover, we used the P-V X-ray diffraction data in two pressure intervals. The spin 238 transition causes a reduction of the garnet unit cell volume by $\sim 3\%$, which is associated with a ~7% reduction in the volume of (Fe,Si)O₆ octahedra (**Table S1**). 239 240 The bulk moduli of Ski_{76 6}Maj_{23 4} garnet with iron in the high-spin and low-spin states 241 are remarkably different at the pressure of the spin crossover 50-60 GPa: K_{300, 60 (High Spin)}= 242 381(2) GPa and K_{300, 60 (Low Spin})=531(19) GPa. The latter value was obtained from a fit using a 2nd order Birch-Murnaghan equation of state (K' fixed at 4) of the P-V data at pressures above 243 244 60 GPa. The bulk moduli of (Fe,Si)O₆ octahedra with iron in the high-spin and low-spin states 245 are significantly different as well: $K((Fe,Si)O_6)_{300.60} = 435(3)$ GPa and $K((Fe,Si)O_6)$ 246 $_{300,60}$ =496(2) GPa, respectively (K' fixed at 4). 247

4.3 Does the type of cation occupying the dodecahedral site define the compressibility ofgarnet?

250 Based on density functional theory, Milman et al. (2001) suggested that the bulk 251 modulus of garnet is strongly affected by the bulk modulus of the dodecahedra, while the 252 compressibilities of other individual polyhedra (tetrahedra and octahedra) do not correlate 253 with the bulk compressibility of the material. Dymshits et al. (2014) claimed that, in this case, 254 Na-majorite Na₂MgSi₅O₁₂ would have the smallest bulk modulus with Na in the dodecahedral 255 position, while experimental observations show the opposite result: Na-majorite has the highest bulk modulus (184(4) GPa) with the lowest unit-cell volume (1475.9 Å³), despite the 256 257 large Na (1.07 Å) atom in the dodecahedral position. Friedrich et al. (2014, 2015) studied the 258 Ca-bearing garnets and radite Ca₃Fe₂Si₃O₁₂ and henritetmenite Ca₃Mn₂[SiO₄]₂[O₄H₄]. While 259 the overall bulk moduli of these garnets are significantly different (andradite- 161(4) GPa and

260 henritetmenite- 101(1) GPa), the bulk moduli of dodecahedra in these garnets (104 GPa for 261 andradite and 101.2(4) GPa and 88.4(8) GPa for henritermierite) are much closer. 262 In the skiagite-Fe-majorite garnets studied in this work, dodecahedral sites are occupied exclusively by Fe^{2+} and the bulk moduli of dodecahedra are within the range 112-263 264 115 GPa. If the compressibility of dodecahedra was indeed the main factor that determined the bulk compressibility of garnet, all of the skiagite-Fe-majorite garnets that we investigated 265 266 should have had the same bulk moduli. However, all four garnets with five different 267 compositions (taking into account pure skiagite) have different bulk moduli (Table S5). Thus, 268 our results support the idea of Dymshits et al. (2014) that the compression mechanism of 269 garnet is complex, and suggests that not only the compressibility of individual polyhedra is 270 relevant, but also the behavior of the polyhedral framework and the bending angle between 271 the octahedra and tetrahedra.

272 Implication

273 The iron majorite endmember Fe₄Si₄O₁₂ is not stable, but the solid-solution 274 Fe₃Al₂Si₃O₁₂-Fe₄Si₄O₁₂ has been shown to extend to at least 40 mol. % FeSiO₃ (Akaogi and 275 Akimoto 1977). There have been several studies in the system Mg₄Si₄O₁₂–Fe₄Si₄O₁₂ majorite 276 focusing on phase stability and crystal structures of garnets (Kato 1986; Matsubara et al. 277 1990; Ohtani et al. 1991; Tomioka et al. 2002; McCammon and Ross 2003). However, the 278 effect of iron-majorite substitution on the compressibility of garnets is unknown. 279 Pyrope-majorite garnets have been studied using Brillouin spectroscopy (Sinogeikin 280 and Bass 2002; Gwanmesia et al. 2009). Their results demonstrated that the zero-pressure 281 bulk modulus of Py₅₀-Mj₅₀ and Py₆₀Mj₄₀ decreases slightly (from 172(2) to 169(1) GPa, 282 essentially within the uncertainty of measurements) with a decrease of the majorite 283 component. Recent work by Dymshits et al. (2014) reports a small increase of the bulk 284 modulus compare to pure knorringite garnet from 153.4(9) GPa to 157(2) GPa in knorringite-

285	majorite garnet $(Mg_{3.19}Cr_{1.60}Si_{3.19}O_{12})$ with admixture of 19% of a majorite component
286	(Mg ₄ Si ₄ O ₁₂). Hazen et al. (1994) conducted single-crystal X-ray diffraction studies of
287	majorites with different compositions: Ca-bearing majorite ((Ca _{0.49} Mg _{2.51})(Mg,Si)Si ₃ O ₁₂)
288	(K=164.8(2.3) GPa), Na-bearing majorite ((Na _{0.37} Mg _{2.48})(Mg _{0.13} Al _{1.07} Si _{0.80})Si ₃ O ₁₂)
289	$(K=175.1(1.3) \text{ GPa})$, and $((Na_{1.88}Mg_{0.22})(Mg_{0.06}Si_{1.94})Si_3O_{12})$ (K=191.5(2.5) GPa. The
290	isothermal bulk modulus of these garnets increases with increasing majorite component.
291	Figure 5 (a) shows the variation of the bulk moduli of different garnets as a function
292	of majorite content. It is obvious that an increase of the majorite component causes an
293	increase of the bulk modulus for Fe-bearing (this study, Woodland et al.1999), Cr-bearing
294	(Dymshits et al. 2014), and Na and Ca-bearing (Hazen et al., 1994; Dymshits et al., 2014)
295	majorites. In contrast, the pyrope-majorite (Mg ₃ Al ₂ Si ₃ O ₁₂ -Mg ₄ Si ₄ O ₁₂) join shows a different
296	behavior and a low (~160 GPa) value of the bulk modulus for pure Mg-majorite (Liu et al.
297	2000; Sinogeikin and Bass 2000). A similarly low value of 168 GPa is reported by Li and
298	Liebermann, 2007) for Mg-majorite. We note that extrapolation of our data gives 178 GPa for
299	pure Fe-majorite. Knowledge of the density ρ and the bulk modulus K allows a calculation of
300	the bulk sound velocity $V_B = \sqrt{K/\rho}$ (Table 5). Extrapolation of our data for the pure Fe-
301	majorite composition gives a value of 6.37 km/s, which is significantly lower than any
302	estimates for the Mg-majorite end member (Fig. 5b).
303	Thus, our results for majorite firmly establish that the total iron content and the
304	Fe^{2+}/Fe^{3+} ratio notably affect its elastic properties and the bulk sound velocity. Both therefore
305	need to be included in the interpretation of seismological data to model the composition of the
306	Earth's upper mantle and transition zone. While current data on the pressure and temperature
307	dependence of the elasticity of Fe-bearing garnets are too limited for detailed quantitative

- 308 analysis, our results provide a strong motivation for further studies in this area.
- **309 4 Conclusions**

310	We studied skiagite-Fe-majorite garnet with four different compositions by means of
311	synchrotron single-crystal X-ray diffraction and synchrotron Mössbauer source spectroscopy
312	at pressures up to 90 GPa. The data on the compressibility of Fe-bearing garnets acquired in
313	this work combined with analysis of literature data unambiguously demonstrate the influence
314	of total iron content and Fe^{3+}/Fe^{2+} ratio in majorite on its elasticity. Thus, modelling of the
315	composition of garnet-rich regions of the Earth's interior (the upper mantle and transition
316	zone, in particular) and interpretation of seismological data should consider the effect of iron
317	and its oxidation state.
318	We note the anomalous compressional behavior of Fe-bearing garnets along the
319	skiagite-Fe-majorite join in the pressure range of 50 to 60 GPa. The compressibility of
320	individual cation polyhedra combined with data from Mössbauer spectroscopy suggests spin
321	crossover of both ferrous and ferric iron in (Fe,Si)O ₆ octahedra in the garnet structure.
322	Acknowledgments
323	We acknowledge the ESRF and DESY for provision of synchrotron radiation facilities. This
324	study was partly supported by the Russian Foundation for Basic Research (project no. 16-05-
325	00419).
326	
327	Reference
328	
329 330	Ahrens, T.J. (1995) Mineral physics and Crystallography, a handbook of physical constants, 64-97 p. AGU Publications, Washington DC.
331 332 333	Akaogi, M., and Akimoto, S. (1977) Pyroxene-garnet solid-solution equilibria in the systems Mg ₄ Si ₄ O ₁₂ -Mg ₃ Al ₂ Si ₃ O ₁₂ and Fe ₄ Si ₄ O ₁₂ -Fe ₃ Al ₂ Si ₃ O ₁₂ . Physics of the Earth and Planetary Interiors, 15, 90–106.
334 335	Amthauer, G., Annersten, H., and Hafner, S.S. (1976) The Mössbauer spectrum of ⁵⁷ Fe in silicate garnets. Zeitschrift für Kristallographie, 143, 14–55.
336 337	Angel, R.J., Gonzalez-Platas, J., and Alvaro, M. (2014) EosFit7c and a Fortran module (library) for equation of state calculations. Zeitschrift fur Kristallographie, 229, 405–419.
338 339 340	Badro, J., Fiquet, G., Struzhkin, V. V, Somayazulu, M., Mao, H., Shen, G., and Le Bihan, T. (2002) Nature of the high-pressure transition in Fe ₂ O ₃ hematite. Physical review letters, 89, 205504.

341 Bengtson, A., Li, J., and Morgan, D. (2009) Mossbauer modeling to interpret the spin state of 342 iron in (Mg,Fe)SiO₃ perovskite. Geophysical Research Letters, 36, L15301/1–L15301/5. 343 Bobrov, A. V., Kojitani, H., Akaogi, M., and Litvin, Y.A. (2008) Phase relations on the 344 diopside-jadeite-hedenbergite join up to 24GPa and stability of Na-bearing majoritic garnet. Geochimica et Cosmochimica Acta, 72, 2392-2408. 345 346 Bykova, E., Bykov, M., Prakapenka, V., Konôpková, Z., Liermann, H.-P., Dubrovinskaia, N., 347 and Dubrovinsky, L.S. (2013a) Novel high pressure monoclinic Fe₂O₃ polymorph 348 revealed by single-crystal synchrotron X-ray diffraction studies. High Pressure Research, 349 33, 534–545. 350 Bykova, E., Bobrov, A. V., Sirotkina, E. a., Bindi, L., Ovsyannikov, S. V., Dubrovinsky, L.S., 351 and Litvin, Y. a. (2013b) X-ray single-crystal and Raman study of knorringite, Mg₃(Cr_{1.58}Mg_{0.21}Si_{0.21})Si₃O₁₂, synthesized at 16 GPa and 1,600 °C. Physics and 352 Chemistry of Minerals, 41, 267–272. 353 354 Cerantola, V., McCammon, C., Kupenko, I., Kantor, I., Marini, C., Wilke, M., Ismailova, L., 355 Solopova, N., Chumakov, A., Pascarelli, S., and others (2015) High-pressure spectroscopic study of siderite (FeCO₃) with a focus on spin crossover. American 356 Mineralogist, 100, 2670-2681. 357 358 Duffy, T.S., and Anderson, D.L. (1989) Seismic velocities in mantle minerals and the 359 mineralogy of the upper mantle. Journal of Geophysical Research, 94, 1895. 360 Dymshits, A.M., Litasov, K.D., Shatskiy, A., Sharygin, I.S., Ohtani, E., Suzuki, A., 361 Pokhilenko, N.P., and Funakoshi, K. (2014) P - V - T equation of state of Na-majorite to 362 21 GPa and 1673 K. Physics of the Earth and Planetary Interiors, 227, 68-75. 363 Dymshits, A.M., Litasov, K.D., Sharygin, I.S., Shatskiy, A., Ohtani, E., Suzuki, A., and 364 Funakoshi, K. (2014) Thermal equation of state of majoritic knorringite and its significance for continental upper mantle. Journal of Geophysical Research B: Solid 365 Earth. 1–13. 366 Fei, Y., Ricolleau, A., Frank, M., Mibe, K., Shen, G., and Prakapenka, V. (2007) Toward an 367 368 internally consistent pressure scale. Proceedings of the National Academy of Sciences of 369 the United States of America, 104, 9182-9186. Friedrich, A., Winkler, B., Morgenroth, W., Ruiz-Fuertes, J., Koch-Müller, M., Rhede, D., 370 and Milman, V. (2014) Pressure-induced spin collapse of octahedrally coordinated Fe³⁺ 371 372 in Ca₃Fe₂[SiO₄]₃. Physical Review B, 90, 094105. Friedrich, A., Winkler, B., Morgenroth, W., Perlov, A., and Milman, V. (2015) Pressure-373 induced spin collapse of octahedrally coordinated Mn³⁺ in the tetragonal hydrogarnet 374 henritermierite Ca₃Mn₂[SiO₄]₂[O₄H₄]. Physical Review B - Condensed Matter and 375 376 Materials Physics, 92. Gwanmesia, G.D., Wang, L., Triplett, R., and Liebermann, R.C. (2009) Pressure and 377 378 temperature dependence of the elasticity of pyrope–majorite $[Py_{60}Mj_{40} \text{ and } Py_{50}Mj_{50}]$ 379 garnets solid solution measured by ultrasonic interferometry technique. Physics of the 380 Earth and Planetary Interiors, 174, 105–112. 381 Hazen, R.M., Downs, R.T., Conrad, P.G., Finger, L.W., and Gasparik, T. (1994) Comparative 382 compressibilities of majorite-type garnets. Physics and Chemistry of Minerals, 21, 1994. 383 Heinemann, S., Sharp, T.G., and Seifert, F. (1997) The cubic-tetragonal phase transition in the 384 system majorite and garnet symmetry in the Earth's transition zone. Physics and 385 Chemistry of Minerals, 24, 206–221.

- Hsu, H., Blaha, P., Cococcioni, M., and Wentzcovitch, R.M. (2011) Spin-State Crossover and
 Hyperfine Interactions of Ferric Iron in MgSiO₃ Perovskite. Physical Review Letters,
 106, 118501.
- Irifune, T., Higo, Y., Inoue, T., Kono, Y., Ohfuji, H., and Funakoshi, K. (2008) Sound
 velocities of majorite garnet and the composition of the mantle transition region. Nature,
 451, 814–817.
- Ismailova, L., Bobrov, A., Bykov, M., Bykova, E., Cerantola, V., Kupenko, I., McCammon,
 C., Dyadkin, V., Chernyshov, D., Pascarelli, S., and others (2015) High-pressure
 synthesis of skiagite-majorite garnet and investigation of its crystal structure. American
 Mineralogist, 100, 2650–2654.
- Ita, J., and Stixrude, L. (1992) Petrology, elasticity, and composition of the mantle transition.
 Journal of Geophysical Research, 97(B5), 6849–6866.
- Kantor, I., Dubrovinsky, L., and McCammon, C. (2006) Spin crossover in (Mg,Fe)O: A
 Mössbauer effect study with an alternative interpretation of x-ray emission spectroscopy
 data. Physical Review B, 73, 100101.
- Kato, T. (1986) Stability relation of (Mg,Fe)SiO₃ garnets, major constituents in the Earth's
 interior. Earth and Planetary Science Letters, 77, 399–408.
- Lavina, B., Dera, P., Downs, R.T., Prakapenka, V., Rivers, M., Sutton, S., and Nicol, M.
 (2009) Siderite at lower mantle conditions and the effects of the pressure-induced spinpairing transition. Geophysical Research Letters, 36, 1–4.
- Li, B., and Liebermann, R.C. (2007) Indoor seismology by probing the Earth 's interior by
 using sound velocity measurements at high pressures and temperatures. Proceedings of
 the National Academy of Sciences, 104(22), 9145–9150.
- Liermann, H.-P., Konôpková, Z., Morgenroth, W., Glazyrin, K., Bednarčik, J., McBride, E.E.,
 Petitgirard, S., Delitz, J.T., Wendt, M., Bican, Y., and others (2015) The Extreme
 Conditions Beamline P02.2 and the Extreme Conditions Science Infrastructure
 at PETRA III. Journal of Synchrotron Radiation, 22, 1–17.
- Liu, J., Chen, G., Gwanmesia, G.D., and Liebermann, R.C. (2000) Elastic wave velocities of a
 pyrope-majorite garnets (Py₆₂Mj₃₈ and Py₅₀Maj₅₀ to 9 GPa. Physics of the Earth and
 Planetary Interiors, 120, 153–163.
- Luth, R.W., Virgo, D., Boyd, F.R., Wood, B.J., Geoinstitut, B., Bayreuth, U., Bayreuth, D.-,
 and Republic, F. (1990) Ferric iron in mantle-derived garnets. Implications for
 thermobarometry and for the oxidation state of the mantle, 104, 56–72.
- 419 Matsubara, R., Toraya, H., Tanaka, S., and Sawamoto, H. (1990) Precision lattice-parameter
 420 determination of (Mg,Fe)SiO3 tetragonal garnets. Science, 697–699.
- 421 McCammon, C.A., and Ross, N.L. (2003) Crystal chemistry of ferric iron in
 422 (Mg,Fe)(Si,Al)O3 majorite with implications for the transition zone. Physics and
 423 Chemistry of Minerals, 30, 206–216.
- Merlini, M., Hanfland, M., Gemmi, M., Huotari, S., Simonelli, L., and Strobel, P. (2010) Fe³⁺
 spin transition in CaFe₂O₄ at high pressure. American Mineralogist, 95, 200–203.
- Milman, V., Akhmatskaya, E. V., Nobes, R.H., Winkler, B., Pickard, C.J., and White, J.A.
 (2001) Systematic ab initio study of the compressibility of silicate garnets. Acta
 Crystallographica Section B: Structural Science, 57, 163–177.
- 429 Momma, K., and Izumi, F. (2011) VESTA 3 for three-dimensional visualization of crystal,

- 430 volumetric and morphology data. Journal of Applied Crystallography, 44, 1272–1276.
- 431 Novak, G.A., and Gibbs, G.V. (1971) The crystal chemistry of the silicate garnets. American
 432 Mineralogist, 56, 791–825.
- Ohtani, E., Kagawa, N., and Fujino, K. (1991) Stability of majorite (Mg,Fe)SiO₃ at high pressures and 1800 ^oC. Earth and Planetary Science Letters, 102, 158–166.
- 435 Oxford Diffraction (2006) CrysAlisPro. Oxford Diffraction Ltd, Abingdon, Oxfordshire,
 436 England.
- 437 Petříček, V., Dušek, M., and Palatinus, L. (2014) Crystallographic Computing System
 438 JANA2006: General features. Zeitschrift für Kristallographie, 229, 345–352.
- Prescher, C., McCammon, C., and Dubrovinsky, L. (2012) MossA : a program for analyzing
 energy-domain Mössbauer spectra from conventional and synchrotron sources. Journal
 of Applied Crystallography, 45, 329–331.
- 442 Ringwood, A.E. (1975) Composition and petrology of the Earth's upper mantle.
- Rüffer, R., and Chumakov, A.I. (1996) Nuclear Resonance Beamline at ESRF. Hyperfine
 Interactions, 97-98, 589–604.
- Sinogeikin, S. V., and Bass, J.D. (2000) Single-crystal elasticity of pyrope and MgO to 20
 GPa by Brillouin scattering in the diamond cell. Physics of the Earth and Planetary
 Interiors, 120, 43–62.
- Sinogeikin, S. V, and Bass, J.D. (2002) Elasticity of pyrope and majorite-pyrope solid
 solutions to high temperatures. Earth and Planetary Science Letters, 203, 549–555.
- Sirotkina, E.A., Bobrov, A. V., Bindi, L., and Irifune, T. (2015) Phase relations and formation
 of chromium-rich phases in the system Mg₄Si₄O₁₂–Mg₃Cr₂Si₃O₁₂ at 10–24 GPa and
 1,600 °C. Contributions to Mineralogy and Petrology, 169.
- 453 Stan, C. V, Wang, J., Zouboulis, I.S., Prakapenka, V., and Duffy, T.S. (2015) High-pressure
 454 phase transition in Y₃Fe₅O₁₂. Journal of Physics: Condensed Matter, 27, 405401.
- Tomioka, N., Fujino, K., Ito, E., Katsura, T., Sharp, T.G., and Kato, T. (2002) Microstructures
 and structural phase transition in (Mg,Fe)SiO₃ majorite. European Journal of
 Mineralogy, 14, 7–14.
- Wood, B.J., Pawley, A., and Frost, D. (1996) Water and carbon in the Earth's mantle.
 Philosophical Transactions of the Royal Society of London, 354, 1495–1511.
- Wood, B.J., Kiseeva, E.S., and Matzen, a. K. (2013) Garnet in the Earth's Mantle. Elements,
 9, 421–426.
- 462 Woodland, a. B., Bauer, M., Ballaran, T.B., and Hanrahan, M. (2009) Crystal chemistry of 463 $Fe_3^{2+}Cr_2Si_3O_{12}-Fe_3^{2+}Fe_2^{3+}Si_3O_{12}$ garnet solid solutions and related spinels. American 464 Mineralogist, 94, 359–366.
- Woodland, A.B., and Koch, M. (2003) Variation in oxygen fugacity with depth in the upper
 mantle beneath the Kaapvaal craton, Southern Africa. Earth and Planetary Science
 Letters, 214, 295–310.
- Woodland, A.B., and Ross, C.R. (1994) A crystallographic and Mössbauer spectroscopy
 study of Fe3Al2Si3O12–Fe32+Fe23+Si3O12 and Ca3Fe32+Si3O12. Physic and
 Chemistry of Minerals, 21, 117–132.
- 471 Woodland, A.B., Angel, R.J., Koch, M., Kunz, M., and Miletich, R. (1999) Equations of state

- 472 for Fe₃Fe₂Si₃O₁₂ and Fe₂SiO₄-Fe₃O₄ spinel solid solutions. Journal of Geophysical
 473 Research, 104, 20049–20058.
- Xu, W., Greenberg, E., Rozenberg, G.K., Pasternak, M.P., Bykova, E., Boffa-Ballaran, T.,
 Dubrovinsky, L., Prakapenka, V., Hanfland, M., Vekilova, O.Y., and others (2013)
 Pressure-induced hydrogen bond symmetrization in iron oxyhydroxide. Physical Review
 Letters, 111, 1–5.
- 478
- 479

480 List of figure captions

- 481**Table 1:** Results of the crystal structure refinement based on single-crystal X-ray diffraction
- 482 data for skiagite-majorite garnets with four different compositions.
- 483 **Table 2:** Bond lengths and volumes of octahedra in skiagite-majorite garnets at ambient
- 484 conditions
- 485 **Table 3:** Equation of state coefficients obtained with a 3rd Birch-Murnaghan and Vinet EOS.
- 486 **Table 4:** Hyperfine parameter at selected pressures for skiagite-majorite garnet with
- 487 composition (Fe²⁺₃(Fe²⁺_{0.234(2)}Fe³⁺_{1.532(1)}Si⁴⁺_{0.234(2))}Si₃O₁₂).
- **Table 5:** Compositions, densities and bulk sound velocities of garnets at ambient conditions
- 489 with different majorite contents.
- 490 Figure 1: Unit cell volume across the skiagite-majorite join showing linear behavior as a
- 491 function of composition. Filled circles- this study, open circle (Woodland and Ross 1994),
- 492 open square pure iron majorite as obtained by extrapolation of solid solution data along the
- 493 almandine-majorite join (Akaogi and Akimoto 1977). Errors are less than the symbol size.
- 494 **Figure 2:** Compressibility of skiagite-majorite garnet with four different compositions (a –
- $495 \qquad Fe^{2+}{}_{3}(Fe^{2+}{}_{0.234(2)}Fe^{3+}{}_{1.532(1)}Si^{4+}{}_{0.234(2)})Si_{3}O_{12}\,;\,b-Fe^{2+}{}_{3}(Fe^{2+}{}_{0.31(2)}Fe^{3+}{}_{1.39(2)}Si^{4+}{}_{0.31(2)})Si_{3}O_{12}\,;\,c-1)$
- $496 \qquad Fe^{2+}{}_{3}(Fe^{2+}{}_{0.46(2)}Fe^{3+}{}_{1.08(2)}Si^{4+}{}_{0.46(2)})Si_{3}O_{12} \ ; \ d-Fe^{2+}{}_{3}(Fe^{2+}{}_{0.76(5)}Fe^{3+}{}_{0.48(5)}Si^{4+}{}_{0.76(5)})Si_{3}O_{12} \ . \ The$
- 497 error bars are comparable to the symbol size. The results of fits using a 3rd order Birch-
- 498 Murnaghan equation of state are shown by solid lines.
- 499 **Figure 3:** (a) Normalized polyhedral volume compression of skiagite-majorite garnet
- 500 Ski_{76.6}Maj_{23.4} (b) Polyhedral volume compression of skiagite-majorite garnet Ski_{76.6}Maj_{23.4}.
- 501 Solid lines represent the fit of the P-V data using a 2nd order Birch-Murnaghan equation of
- 502 state (K'=4).
- 503 Errors are smaller than the symbol size. The gray bar indicates the pressure region of the iron
- 504 high-spin to low-spin transition.
- 505 Figure 4: Selected Mössbauer spectra of skiagite-majorite garnet
- 506 $(Fe^{2+}{}_{3}(Fe^{2+}{}_{0.234(2)}Fe^{3+}{}_{1.532(1)}Si^{4+}{}_{0.234(2)})Si_{3}O_{12})$ at (a) ambient, at (b) 49.6(5) GPa , at 56.0(5)
- 507 GPa. Hyperfine parameters are shown in Table 4. Green doublet high-spin Fe^{2+} in

- 508 dodecahedra, blue doublet high-spin Fe^{3+} in octahedra, red doublet low-spin Fe^{3+} in
- 509 octahedra, turquoise singlet low-spin Fe^{2+} in octahedra)
- 510 Figure 5: Variation of (a) isothermal bulk moduli and (b) bulk sound velocities of garnets at
- 511 300 K as a function of majorite content as revealed by the present study and literature data.
- 512 Red circles skiagite-majorite garnets (this study) and pure skiagite (Woodland et al. 1999);
- 513 red squares Ca-bearing and Na-bearing majorite (Hazen et al. 1994); red triangle– majoritic
- 514 knorringite (Dymshits et al., 2014); inverted red triangle– Na-majorite (Dymshits et al.,
- 515 2014), blue triangle– "pyrolite minus olivine" majorite garnet Py₂₃Alm₆Mj₅₀Gr₂₁ (Irifune et al.
- 516 2008); blue circle Mg-majorite Mg₄Si₄O₁₂ (Li and Liebermann 2007); black circles Mg-
- 517 majorite garnets (Liu et al. 2000, Sinogeikin and Bass, 2000). Red lines represent linear fits of
- 518 our experimental data. Error bars show the experimental uncertainties. When the value of bulk
- 519 modulus was obtained with the Brillouin technique (K_s), it was converted to K_0 by applying
- 520 the relationship $K_S = K_T(1 + \alpha \gamma T)$, where α is thermal expansion, γ is the Grüneisen parameter,
- and T is temperature. The values of α and γ for skiagite-majorite garnets were assumed to be
- 522 equal to those of pyrope and were taken from (Ahrens 1995).

Table 1

Run number and composition P, T conditions of synthesis	S6073 Ski_{76.6}Maj_{23.4} 9.5 GPa 1400 K	S6176 Ski₆₉Maj₃₁ 9.5 GPa 1600 K	S6177 Ski₅4Maj46 9.5 GPa 1500 K	S6160 Ski ₂₄ Maj ₇₆ 7.5 GPa 1400 K				
Crystal system Space group		cubic $Ia\overline{3}d$						
Z		8						
λ(Å)		0.415	05					
a (Å)	11.7210(2)	11.71620(10)	11.7053(4)	11.68130(10)				
V (Å ³)	1610.25(5)	1608.28(2)	1603.79(9)	1593.95(2)				
F(000)	2117	2114	2100	2068				
Theta range for data collection (°)	2.658/17.585	1.742/17.821	1.748/17.795	2.49/22.03				
Index ranges	-15 < h < 12,	-15 < h < 17,	-17< h < 14,	-20 < h < 21,				
	-18 < k < 17,	-20< k < 19,	-15< k < 13,	-16 < k < 13,				
	-17<1<13	-15<1<13	-20<1<19	-15<1<16				
No. of measured, independent, and observed [I > 3s(I)] reflections	1626/269/ 219	1765/ 281/ 221	1655/ 267/181	1955/ 296/182				
R _{int}	0.0337	0.0316	0.0752	0.0415				
No.of parameters/restraints/ constraints	18/0/2	18/0/2	18/0/2	18/0/2				
Final R indices [I > $3\sigma(I)$]R _F / wR _F	0.0326/0.0417	0.0300/ 0.0470	0.0653/0.0821	0.0868/				
R indices (all data) R _F / wR _F	0.0394/0.0443	0.0381/0.0497	0.0781/ 0.0852	0.1491/ 0.1630				

529

530 **Table 2**

Composition	Ski ₁₀₀ *	Ski _{76.6} Maj _{23.4}	Ski ₆₉ Maj ₃₁	Ski54Maj46	Ski ₂₄ Maj ₇₆
(Fe,Si)-O, Å	1.98	1.9818(13)	1.969(4)	1.9771(15)	1.957(5)
$(Fe,Si)O_{6}$ Å ³	10.40	10.3646	10.2914	10.1732	9.9780

531 *predicted by Novak and Gibbs (1971)

532 **Table 3**

	Birch-Murnaghan		Vinet				
Composition	$V_{0,}$ Å ³	K _{0,300,} GPa	K'	$V_{0,} {\rm \AA}^3$	K _{0,300,} GPa	K'	References
Ski ₁₀₀	1611.8(3)	157.4(3.0)	5.7(1.2)				(Woodland et al. 1999)
Ski _{76.6} Maj _{23.4}	1605.3(7)	159(1)	4.27(7)	1604.8(7)	160(1)	4.36(8)	this study
Ski ₆₉ Maj ₃₁	1609(1)	168(1)	4.21(2)	1608(1)	168(1)	4.32(2)	this study
Ski ₅₄ Maj ₄₆	1602(2)	170(2)	4.16(1)	1602(2)	170(2)	4.24(1)	this study
Ski ₂₄ Maj ₇₆	1592.2(7)	172(1)	4.20(7)	1592.2(7)	172(1)	4.30(8)	this study

533 **Table 4**

534

Oxidation state	Position	Center shift (CS)* [mm/s]	Quadrupole splitting (QS) [mm/s]	Relative area				
		Ambient						
Fe ²⁺	Dodecahedral	1.31(1)	3.45(2)	58(2)				
Fe ³⁺	Octahedral	0.37(1)	0.26(2)	42(2)				
	49.6(5) GPa							
Fe ²⁺	Dodecahedral	1.17(1)	3.42(2)	58(3)				
Fe ³⁺	Octahedral	0.23(2)	0.33(3)	42(3)				
56.0(5) GPa								
Fe ²⁺	Dodecahedral	1.15(1)	3.41(3)	54(8)				
Fe ³⁺	Octahedral	0.17(2)	0.4(2)	34(9)				
Fe ²⁺	Octahedral	0.5	-	12(9)				

535 Table 5

536

537

538

Composition	Density (calculated), g/cm ³	Bulk sound velocity, V _B (km/s)	References
Ski ₁₀₀	4.58	5.86	(Woodland et al. 1999)
Ski _{76.6} Maj _{23.4}	4.49	5.93	this study
Ski ₆₉ Maj ₃₁	4.51	6.10	this study
Ski ₅₄ Maj ₄₆	4.49	6.15	this study
Ski ₂₄ Maj ₇₆	4.45	6.22	this study
Mg Majorite Mg ₄ Si ₄ O ₁₂	3.52	6.74	(Li and Liebermann 2007)
"Pyrolite minus olivine" Py ₂₃ Alm ₆ Mj ₅₀ Gr ₂₁	3.605	6.70	(Irifune et al. 2008)

539

540

541

lways consult and cite the final, published document. See http:/www.minsocam.org or GeoscienceWor

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld