Revision 1 1 Ab Initio Calculations of Uranium and Thorium Storage 2 in CaSiO₃-Perovskite in the Earth's Lower Mantle 3 4 Samuel N. Perry¹, Jeffrey S. Pigott², and Wendy R. Panero^{1,*} 5 6 ¹School of Earth Sciences, Ohio State University, 274 Mendenhall Laboratory, 125 South Oval 7 Mall, Columbus, OH, 43210, U.S.A 8 ²Department of Earth, Environmental, and Planetary Sciences, Case Western Reserve 9 University, Cleveland, OH, 44106, U.S.A 10 11 12 *E-mail: panero.1@osu.edu 13 ABSTRACT Earth's mantle convection is powered in part by the radiogenic heat released by the decay 14 of ²³⁸U, ²³⁵U, ²³²Th and ⁴⁰K. We present ab initio calculations of uranium and thorium 15 16 incorporation in CaSiO₃-perovskite with and without aluminum, and propose that aluminous 17 calcium silicate perovskite is the likely host of uranium and thorium in the lower mantle. At 15 GPa, the enthalpies of solution into aluminum-free $CaSiO_3$ -perovskite are 10.34 kJ/mol for U^{4+} 18 and 12.52 kJ/mol for Th⁴⁺ in SiO₂ saturated systems, while the enthalpies are 17.09 kJ/mol and 19 19.27 kJ/mol, respectively, in CaO saturated systems. Coupled substitution of U⁴⁺ and Th⁴⁺ with 20 aluminum is thermodynamically favored, with the enthalpies of solution negative for U^{4+} and 21 near 0 kJ/mol for Th⁴⁺ throughout the stability field of CaSiO₃-perovskite. Therefore, U 22 23 incorporation into CaSiO₃-perovskite is spontaneous in the presence of aluminum while Th 24 forms a near ideal solid solution, implying these elements are potentially compatible with respect 25 to partial melting in the transition zone and lower mantle. Further, the solid solution reactions of U^{4+} and Th^{4+} are broadly similar to each other, suggesting a restriction on the fractionation of 26 these actinides between the upper and lower mantle. U and Th compatibility in the presence of 27 28 Al has implications regarding actinide transport into the deep mantle within subducting slabs and 29 the geochemical content of seismic anomalies at the core-mantle boundary.

30 Keywords: Density functional theory, calcium-silicate perovskite, lower mantle mineralogy,

31 uranium, thorium.

32	INTRODUCTION
33	Earth's heat is from two primary sources: secular cooling of the planet from primordial
34	sources and radiogenic heat dominated by the breakdown of ²³⁸ U, ²³⁵ U, ²³² Th, and ⁴⁰ K. Uranium
35	and thorium are the source of the majority of radiogenic mantle heat at present (Arevalo et al.,
36	2009), therefore constraining the distribution and storage of U and Th in the mantle has first-
37	order control on the heat budget of the planet.
38	Estimates of the mantle's uranium and thorium budget vary depending on the
39	compositional model used, with low estimates of $12(2) - 15.4(18)$ ppb U and $43(4) - 51.3(44)$ ppb
40	Th (Šrámek et al., 2013; Javoy and Kaminski, 2014) based on CI chondrites and E-chondrites
41	and consistent with mantle geoneutrino fluxes to high estimates of 20(4) ppb U and 80(12) ppb
42	Th (McDonough and Sun, 1995) estimated from peridotite melting relationships relative to
43	chondrite models for the bulk silicate earth. These differences suggest that variation in bulk
44	mantle U and Th and U/Th ratio compared to those inferred from surface melting relationships
45	may arise as a result of deep processes forming or preserving deep mantle reservoirs.
46	A consequence of uncertainty in the total U and Th budget of the mantle and the
47	distribution within the mantle is subsequent uncertainty of the fraction of the heat budget that
48	results from secular cooling versus radiogenic heating (e.g. Korenaga, 2008; Arevalo et al., 2009;
49	Javoy and Kaminski, 2014), with an impact on the interpretation of the Urey ratio, the ratio of
50	Earth's heat production to surface heat loss, an important factor in interpretation of mantle
51	dynamics. A hidden reservoir not sampled by surface volcanism is often employed to explain
52	differences between Earth's composition as determined by mantle sampling at the surface and

chondrite models (Korenaga, 2008). Such deep reservoirs may persist from the earliest history
of the planet due to fractionation of material upon solidification of a magma ocean (Labrosse et
al., 2007) or develop through time from present-day recycling and incomplete mixing of crustal
material enriched in incompatible elements (Samuel and Farnetani, 2003).

U and Th are incompatible in near-surface mantle melting due to their high ionic charge 57 58 and large ionic radius (Beattie, 1993). Because oxygen fugacity decreases with depth (Frost and 59 McCammon, 2008), U and Th are both expected to adopt the 4+ state in the deep mantle (Wood 60 et al., 1999). Of the lower mantle mineral phases, CaSiO₃-perovskite is able to accommodate large cations such as U, Th and rare earth elements, with its large A-site occupied by the Ca²⁺ 61 cation (Taura et al., 2001). Indeed, U and Th are compatible with CaSiO₃-perovskite (Corgne et 62 63 al., 2005; Corgne and Wood, 2002), in which the distribution between mineral and melt increases 64 from a peridotite to MORB bulk composition (Hirose et al., 2004). In contrast, U and Th are incompatible with other lower mantle mineral phases, such as bridgmanite (MgSiO₃) and 65 ferropericlase ((Fe,Mg)O) (Corgne et al., 2005, Walter et al., 2004). Although CaSiO₃-66 perovskite is estimated to compose no more than 8 vol% of the lower mantle (Irifune, 1994), it is 67 the main host of U and Th in the lower mantle (Corgne et al., 2005). 68 69 Synthesis experiments of U and Th solutions have failed to incorporate U into Al-free

CaSiO₃-perovskite (Gréaux et al., 2012) yet aluminous CaSiO₃-perovskite can contain up to 4 at% of U (Gautron et al., 2006) and up to 3.8 at% of Th (Gréaux et al., 2012). As the molar ratio of Al to actinide is about 2 to 1 in these samples, this suggests a coupled substitution of <u>1</u> actinide defect on the Ca²⁺ A-site results in a net +2 charge on that site, referred to hereafter as Act_{Ca} · in Kröger-Vink notation (Act=actinide), and <u>2 Al³⁺ defects on 2 Si⁴⁺ neighboring B-sites</u> generating a net -1 charge for each defect, or 2(Al_{Si}') (Gréaux et al., 2012; Gautron et al., 2006).

76	Although previous studies have proposed this substitution as the mechanism of actinide
77	incorporation in Ca-perovskite, thus far no direct simulations have been presented as supporting
78	evidence. We focus on aluminum as the most abundant minor component in CaSiO ₃ -perovskite
79	(e.g. Kesson et al., 1994; Kesson et al., 1996). Without such associated actinide defects, a
80	brownmillerite defect $(2Al_{Si}'+V_{O}'')$ is favorable over the tschermak defect $(Al_{Si}'+Al_{Ca}')$ (Akber
81	2003), indicating the mismatch between Al ^{$3+$} with the Ca-site. Therefore, this approach
82	considers the environment in which Al^{3+} on the Si-site is enhanced and charge compensated by
83	the effective loss of an oxygen vacancy.
84	To test this hypothesis, we present the results of ab initio calculations of U and Th oxides
85	and orthosilicates, and U and Th solid solutions of CaSiO ₃ -perovskite with and without Al. We
86	calculate the enthalpy of solution of the actinide species into CaSiO ₃ -perovskite and model the
87	dissolution of the actinides into the perovskite host over the production of minor phase oxides
88	and silicates. The result of this work informs the interpretation of the formation and preservation
89	of large-scale chemical heterogeneities in the deep mantle.
90	Additionally, uranium composes about 95% of spent nuclear fuel (Bruno and Ewing,
91	2006) and is a major part of the annually growing issue of nuclear waste disposal. Perovskite
92	(CaTiO ₃) has been suggested as a component of Synroc (Ringwood, 1979) and is structurally
93	analogous to the high-pressure CaSiO ₃ -perovskite phase. Thus, our results may also provide
94	information on the use of perovskites in long-term actinide containment.
95	METHODS
96	We used the Vienna Ab initio Simulation Package (VASP) to relax each structure and to
97	calculate the internal energy and pressure of each phase as a function of volume. All density
98	functional theory (DFT) calculations were done using the generalized gradient approximation

99 (GGA) with the projector-augmented wave method (PAW) (Kresse and Joubert, 1999; Kresse 100 and Furthmüller, 1996). PAW potentials were employed to allow for accurate description of the 101 localized *d*- and *f*-electrons in U and Th. 102 The DFT+U method (Dudarev et al., 1998) was employed to approximate the 5f electrons 103 more accurately in uranium. Due to the strong electron correlation in uranium, specific care was 104 taken to avoid relaxation to metastable states (Dorado et al., 2009). The total energy is 105 $E_{DFT+II} = E_{DFT} + E_{Hub} - E_{dc}$ (1)where E_{DFT} is the base GGA description of the energy, E_{Hub} is the Hubbard term accounting for 106 107 electron-electron interaction, and E_{dc} is a double-counting correction (Dorado et al., 2009). E_{dc} is 108 described as $E_{dc} = \frac{U}{2} N (N-1) - \frac{J}{2} \sum_{\sigma} N^{\sigma} (N^{\sigma}-1)$ 109 (2)110 where U is the on-site Coulomb repulsion, J is the on-site interaction, and N is the sum of the 111 electron orbitals (Dorado et al., 2009; Liechtenstein et al., 1995). We adopt values of U=4.50 eV and J=0.51 eV for uranium (Geng et al., 2007; Dudarev et al., 1997). We did not use the DFT+U 112 method for the thorium calculations, as the addition of the U energy term has been found to 113 114 produce a negligible effect owing to the lack of 5*f* electrons. (Song et al., 2013). 115 Enthalpy, H, is then calculated as $H = E_{DFT+U} + PV$ (3) 116 Where E_{DFT+U} is the internal energy as described in eqn 1, V is the volume of the 117 calculated structure, and P is pressure. 118 119 The crystal structures of all relevant phases were relaxed with 900 eV cutoff energy, 120 starting from their experimentally or theoretically determined unit cells and atomic positions 121 (Downs and Hall-Wallace, 2003; Wyckoff 1963; Wang et al., 2010; Taylor and Ewing, 1978;

122	Fiquet et al., 1999; Richet et al., 1988). The Monkhorst-Pack k-point meshes were 4x4x4 for the
123	actinide bearing phases, 16x16x16 for the CaO phases, 2x2x2 for CaSiO ₃ -perovskite and its solid
124	solutions, 8x8x8 for SiO ₂ and Al ₂ O ₃ . <u>Cutoff energies and k-point meshes were chosen so that all</u>
125	calculations converged to within 0.02 eV per unit cell and a localization of the Th- and U-
126	bonding electrons about each atom to 5%.
127	Tetragonal CaSiO ₃ -perovskite (14/mcm) (Shim et al., 2002; Caracas et al., 2005) and solid
128	solutions with U and Th were modeled using a 2x2x1 (79–80 atom) supercell, the minimum cell
129	size required to calculate the enthalpy of each defect (eqns $5-11$). Cubic CaSiO ₃ -perovskite was
130	not modeled as previous diamond-anvil cell (DAC) experiments have reported CaSiO ₃ -
131	perovskite becoming tetragonal with the incorporation of Al and U or Th (Gréaux et al., 2012;
132	Gréaux et al., 2009; Gautron et al., 2006), a necessary consideration for modeling the
133	incorporation of actinides in the most stable configuration. Furthermore, CaSiO ₃ -perovskite is
134	the only lower mantle phase experimentally observed incorporating large trace element cations
135	in any substantial amount (Corgne et al., 2005). Therefore, we do not consider at this point the
136	incorporation of U and Th into bridgmanite, ferropericlase and post-perovskite, and instead focus
137	strictly on modeling the energetics of actinide incorporation into CaSiO ₃ -perovskite.
138	We consider two possible charge-balanced defect mechanisms: Act_{Ca} + V_{Ca} and Act_{Ca} +
139	2(Al _{si}), where V is a Ca ²⁺ vacancy defect, representative brackets to the solid solution between
140	pure and highly aluminous CaSiO ₃ -perovskite. Alternative charge balance mechanisms were not
141	modeled as either ionic radii (Shannon and Prewitt, 1969) differed too much to be representative
142	of the lowest energy configuration (eg. Act_{Ca} + $Ca_{\underline{Si}}$) or the substitution mechanism was not
143	realistic in context of the saturated environment we were modeling $(Act_{Ca} + \frac{1}{2}V_{\underline{Si}})$. In the first
144	case, we assume that the A <u>ct_{Ca}</u> \cdot and V_{Ca} defects are on adjacent Ca sites. In the second case, we

145	assume that each Al^{3+} replaces Si^{4+} adjacent to the Act_{Ca} defect. To confirm that the defects in
146	the 2x2x1 supercell (1.25 at% Act) are non-interacting due to the periodic boundary conditions
147	and that the energy we calculate can be attributed solely to each actinide defect reaction, two
148	configurations of the $2(Al_{Si})$ were modeled in a 2x2x2 supercell (160 atoms; 0.625 at% Act) at
149	the gamma point. The difference in enthalpy between the two supercell sizes is less than 15
150	J/mol, thus the $2x2x1$ is sufficient to describe the energy of reaction of actinide incorporation: for
151	concentrations at or below this level, the enthalpy of solution is in the dilute limit. Implicit in
152	this approach is to neglect other defects potentially active in CaSiO ₃ perovskite. We address
153	these two to establish the degree to which vacancies on the Ca-site associated with the actinide
154	defect can be active.
155	We also model ThO ₂ , UO ₂ , ThSiO ₄ , and USiO ₄ to evaluate phase stability as a function of
156	pressure and for use in calculating the perovskite defect enthalpy. At high pressures, the fluorite-
157	structured ActO ₂ oxides (<i>Fm</i> 3 <i>m</i> ; $Z = 4$) undergo a phase change to the cotunnite-type (PbCl ₂)
158	structure (<i>Pnma</i> ; $Z = 4$) (Idiri et al., 2004), with some evidence for the existence of a <i>Pbca</i> high-
159	pressure phase of the ActO ₂ oxides (Gréaux et al., 2008). The actinide silicates are isostructural
160	with zircon (ZrSiO ₄) ($I4_1/amd$; $Z = 4$) at ambient pressure, but do not undergo the same
161	transitions at high pressure. USiO ₄ becomes isostructural to the scheelite structure ($I4_1/a$; Z = 4)
162	(Bauer et al., 2014; Zhang et al., 2009) and ThSiO ₄ transforms to huttonite, a monazite-
163	structured phase $(P2_1/n; Z = 4)$ (Bose et al., 2009).
164	The stability of the silicates relative to the oxides was determined
165	$by ActSiO_4 \rightleftharpoons ActO_2 + SiO_2 $ (4)
166	in which SiO_2 is calculated as stishovite below 45 GPa and the $CaCl_2$ -structured phase above.

167	The dominance of the A <u>ct</u> _{Ca} " + V_{Ca} " relative to the A <u>ct</u> _{Ca} " + 2(Al _{Si}) defect is established
168	by comparing the enthalpies of reaction
169	$\underline{\operatorname{Act}}\operatorname{Ca}_{14}\operatorname{Si}_{16}\operatorname{O}_{48} + \operatorname{CaO} + \operatorname{Al}_2\operatorname{O}_3 \rightleftharpoons \underline{\operatorname{Act}}\operatorname{Ca}_{15}\operatorname{Si}_{14}\operatorname{Al}_2\operatorname{O}_{48} + 2\operatorname{SiO}_2 $ (5)
170	The enthalpy of formation in CaSiO ₃ -perovskite is a function of the stability of the pure
171	actinide phase, and therefore dependent upon the breakdown of the silicate, ActSiO4 to its oxides
172	$ActO_2 + SiO_2$, and further a function of the relative saturation of the system with respect to CaO
173	or SiO ₂ . The formation of the Act _{Ca} " + V_{Ca} " defect is determined by the relevant reaction,
174	$16\text{CaSiO}_3 + A\underline{\text{ct}O}_2 \rightleftharpoons A\underline{\text{ct}Ca}_{14}\text{Si}_{16}\text{O}_{48} + 2\text{CaO} $ (6)
175	$14\text{CaSiO}_3 + \underline{\text{Act}O}_2 + 2\text{SiO}_2 \rightleftharpoons \underline{\text{Act}Ca}_{14}\text{Si}_{16}\text{O}_{48} $ (7)
176	$16\text{CaSiO}_3 + A\underline{\text{ct}}\text{SiO}_4 \rightleftharpoons A\underline{\text{ct}}\text{Ca}_{14}\text{Si}_{16}\text{O}_{48} + 2\text{CaO} + \text{SiO}_2 $ (8)
177	$14\text{CaSiO}_3 + \underline{\text{Act}}\underline{\text{SiO}}_4 + \underline{\text{SiO}}_2 \rightleftharpoons \underline{\text{Act}}\underline{\text{Ca}}_{14}\underline{\text{Si}}_{16}\underline{\text{O}}_{48} $ (9)
178	in which equations (6) and (8) are relevant to CaO saturated systems and equations (7) and (9)
179	are relevant to SiO ₂ saturated systems.
180	Analogously, the formation of the $A\underline{ct}_{Ca}$ + 2(Al _{Si} ') defect is calculated by
181	$15\text{CaSiO}_3 + A\underline{\text{ct}O}_2 + Al_2O_3 \rightleftharpoons A\underline{\text{ct}Ca}_{15}Si_{14}Al_2O_{48} + SiO_2 $ (10)
182	$15\text{CaSiO}_3 + \text{ActSiO}_4 + \text{Al}_2\text{O}_3 \rightleftharpoons \text{ActCa}_{15}\text{Si}_{\underline{14}}\text{Al}_2\text{O}_{48} + 2\text{SiO}_2 $ (<u>11</u>)
183	depending upon the relative stability of equation $\underline{4}$.
184	RESULTS
185	[Table 1]
186	We confirm the transition of the fluorite-structured $ActO_2$ oxides to the high-pressure
187	Pnma phase (Fig. 1; Table 1), and find that the suggested Pbca phase (Gréaux et al., 2008) is not
188	stable at any pressure for either actinide oxide. ThO ₂ will undergo the $Fm3m$ to $Pnma$ phase
189	transition at 26.9 GPa and UO_2 will experience the same structural transition at 29.2 GPa. At

CTI O

11

6.41

190	pressures exceeding ~ 80 GPa the <i>Phma</i> phase of ThO ₂ experiences a structural conapse of the <i>a</i> -
191	axis, associated with an expansion of the <i>b</i> - and <i>c</i> -axis, likely comparable to the ZrO ₂ post-
192	cotunnite phase change to Fe ₂ P structure (Nishio-Hamane et al., 2015). As we expect a similar
193	phase change for UO ₂ , we therefore limit our results to below 80 GPa. We further confirm the
194	transition of the $A_{\underline{ct}}SiO_4$ silicates to the high-pressure phases of huttonite for $ThSiO_4$ and
195	scheelite (CaWO ₄) structure for USiO ₄ (Fig. 1) at 5.1 and 6.4 GPa, respectively.
196	[Figure 1]
197	ThSiO ₄ -huttonite is stable relative to the oxides to 11.1 GPa, above which $ThO_2 + SiO_2$ is

00 CD

41

the stable assemblage. In contrast, sheelite-structured USiO₄ is stable relative to oxides to 51.7
GPa (Fig. 2; Table 1). This pressure difference of the breakdown to the oxides represents a
potential difference in geochemical behavior of Th and U phases in the transition zone and upper
portion of the lower mantle.

202 [Figure 2]

400

203 The Act_{Ca}" + V_{Ca} " defect in CaSiO₃-perovskite is most stable for the calcium vacancy as nearest neighbor to the Act_{Ca} defect, with little difference in the direction, reflecting the slight 204 tetragonal splitting of the nominal cubic structure. The vacancy compensated U and Th defects 205 expand the unit cell by 0.15% and 0.26%, respectively, at 15 GPa and remains nearly constant 206 over the pressure range of the calculations. The coupled $Act_a^{\prime\prime} + 2(Al_{Si})$ defect is also most 207 stable when the defects are clustered together. The enthalpy of the Al_{Si}' defects when placed 208 on opposite sides of the Act_{Ca} defect in the (011) direction (Fig. 3) are within 0.2% of the Al_{si} 209 210 defects oriented in the (001) direction. The defects appear to be non-interacting at this 211 concentration, in which the defect enthalpies are negligibly lower than in the 2x2x1 supercell 212 calculation. The aluminum compensated U and Th defects expand the unit cell significantly

more than the vacancy compensated lattice, with a 2.5% and 2.2% volume expansion at 15 GPa,

- respectively. As with the vacancy compensated defects, the expansion of the lattice is
- approximately constant over the pressure range of the calculations.
- 216 [Figure 3]

The Act_{Ca}" + 2(Al_{Si}') defect is more stable than the Act_{Ca}" + V_{Ca} " defect (eqn 4; Fig. 4), suggesting that the presence of Al³⁺ in the system plays a critical role in actinide compatibility into the perovskite host. The Th_{Ca}" + 2(Al_{Si}') defect is 11 kJ/mol more stable than the Th_{Ca}" + V_{Ca} " defect at ambient pressure, increasing to 30 kJ/mol more stable at 80 GPa. In contrast, the U_{Ca}" + 2(Al_{Si}') defect is <u>30–40</u> kJ/mol more stable than the U_{Ca}" + V_{Ca} " defect, approximately constant throughout the 0-80 GPa range of the calculations.

223 [Figure 4]

Calculation of the formation enthalpies of the Act_{Ca} + V_{Ca} (eqns 6 – 9) and Act_{Ca} + 224 $2(Al_{si}')$ (eqns 10 – 11) defects, we find the $U_{Ca}^{*} + 2(Al_{si}')$ defect is negative at all pressures up 225 to at least 80 GPa, varying between -28 and -9.5 kJ/mol over the pressure range of the 226 calculations, while the Th_{Ca}" + 2(Al_{Si}') defect is <0.5 kJ/mol above 11 GPa (Fig. 5). Conversely, 227 228 the vacancy compensated defect has a positive enthalpy that increases with pressure, in which the solution enthalpy of U⁴⁺ incorporation is between 9 and 14 kJ/mol for all pressures in SiO₂-229 saturated systems, and increases from 14 to 32 kJ/mol from 0 to 80 GPa in CaO-saturated 230 systems. The behavior of Th⁴⁺ is similar in which reaction enthalpy for the formation of the 231 232 defect is between 12 and 21 kJ/mol when SiO₂-saturated, and increases from 16 to 39 kJ/mol when CaO saturated (Fig. 5). 233

234 [Figure 5]

235

DISCUSSION

236	Calculated structures and compressibilities of ActO2 oxides and ActSiO4 silicates are
237	broadly consistent with experiment and prior ab initio calculations (Table 1). Differences
238	between our equations of state and previously published calculations are a function of the cutoff
239	energy. We can reproduce the softer equations of state by reducing the cutoff energy to 500 eV,
240	but choose the higher cutoff energy (900 eV) to retain precision in the relative energies between
241	phases to high pressure. All calculations tend to predict a lower pressure of transition relative to
242	the experimentally suggested values, which are all based on room temperature diamond-anvil
243	cell experiments. At room temperature, these measurements can be subject to kinetic barriers or
244	non-hydrostatic stresses (Klotz et al., 2009), which may also explain the differences between
245	calculated and measured results.
246	Although a low-temperature transition of ThSiO ₄ from the zircon structure to the
247	scheelite structure has been suggested (Bose et al., 2009), our calculations instead confirm a
248	transition from thorite to huttonite (Liu, 1982) at approximately 5.1 GPa. We calculate the
249	transition of USiO ₄ from coffinite (zircon structure) to the scheelite structure at 6.4 GPa, which
250	is lower than the reported 14 – 17 GPa of previous studies (Bauer et al., 2014; Zhang et al.,
251	2009). The contrast between these and previous computational results appear to reside in the
252	cutoff energy (here 900 eV compared to 610 eV in Bauer et al., 2014) and potentially from the
253	treatment of the Hubbard energy (here 4.5 eV versus 2 eV in Bauer et al., 2014). Too soft a
254	cutoff energy will tend to fail to localize the <i>f</i> -electrons about the actinide element.
255	In the ActO2-CaO-SiO2-Al2O3 system, defect enthalpy decreases with SiO2 saturation,
256	and becomes spontaneous to the extent that CaSiO ₃ -perovskite forms with minor Al ₂ O ₃ (Fig. 5).
257	Mantle pyrolite and basalt assemblages show that the distribution of Al ₂ O ₃ between CaSiO ₃ -
258	perovskite and bridgmanite significantly favors the bridgmanite phase, with a partition

259	coefficient, D_{Ca-Pv/Br_2}^{Al} of ~0.1-0.2 over the pressure and temperature range of the lower mantle
260	(Nishio-Hamane et al., 2007). Therefore for a mantle with \sim 4 wt% Al ₂ O ₃ , this suggests \sim 0.5
261	wt% Al ₂ O ₃ in the calcium phase, consistent with measurements in pyrolitic and basaltic
262	compositions to the core mantle boundary (e.g. Kesson et al., 1994; Kesson et al., 1998). Our
263	results suggest incorporation of U^{4+} and Th^{4+} is more favorable in an environment with excess Si
264	and Al. Even in the presence of aluminum, while the reaction enthalpy with Th ⁴⁺ is nearly ideal,
265	U^{4+} reactions are more negative throughout the stability field of CaSiO ₃ -perovskite (Fig. 5), with
266	the defect enthalpy of U^{4+} 18 kJ/mol lower than Th ⁴⁺ at 15 GPa and 10 kJ/mol at 80 GPa.
267	However, the U^{4+} and Th^{4+} coupled substitutions are broadly similar, implying similar
268	incorporation behavior into the perovskite host.
269	IMPLICATIONS
270	Melt-crystal partitioning measurements of U and Th in $CaSiO_3$ -perovskite are made at
271	relatively low pressures (Taura et al., 2001; Corgne and Wood, 2002; Hirose et al., 2004; Corgne
272	et al., 2005), yet equilibration in a deep magma ocean potentially occurs at significantly greater
273	pressure than those employed in these experiments, potentially as deep as the base of the mantle
274	(Labrosse et al., 2007). The reaction enthalpy of U and Th with aluminous CaSiO ₃ -perovskite is
275	roughly constant in the solid state between 0 and 80 GPa. As the melt structure changes slowly
276	under the conditions of the lower mantle (de Koker et al., 2008), this suggests that the
277	melt/mineral partitioning is likely to remain compatible and applicable through the lower
278	mantle. However, the static calculations presented here exclude direct consideration of
279	configurational and vibrational entropy from the defect reactions. However, as the defects are
280	the same between the two systems, the configurational entropic contributions will be identical
281	for Th and U incorporation in CaSiO ₃ -perovskite, and the vibrational effects should be

282	from Th- and U-free perovskites for trace concentrations. The effects of configurational entropy,
283	<u>S_{config}</u> , will be to stabilize the Gibbs free energy of the defect reaction, G_{rxn} , through $G_{rxn} = H_{rxn}$.
284	TS _{config} in equal proportions for U and Th, and therefore the conclusions are unchanged.
285	Furthermore, these results clarify the effect of actinide incorporation in CaSiO ₃ with excess
286	alumina: The increase in Al-defects will enhance the dissolution of the actinide through
287	additional possible configurations. Therefore, the concentration-dependent defect population will
288	be driven not by the actinide concentration but by the alumina concentration. We cannot,
289	however, exclude the possibility of further phase changes in UO ₂ and ThO ₂ at pressures in excess
290	of 80 GPa that would change their behavior. As these are reference phases in determining the
291	enthalpies of reaction, any first-order phase transitions will affect the solubility of U and Th into
292	CaSiO ₃ -perovskite.
293	Subducting slabs are saturated in SiO ₂ -stishovite below 300 km and enriched in
294	aluminous phases (Irifune and Ringwood, 1993), such that CaSiO ₃ -perovskite forms in
295	environments mostly likely to dissolve U^{4+} and Th^{4+} . Deeply subducted oceanic lithosphere
296	hosting CaSiO ₃ -perovskite is therefore a likely phase for transporting U and Th into the lower
297	mantle through retention of actinides already present in enriched continental sediments.
298	Remnants of ancient slabs enriched in heat producing elements near the core mantle boundary
299	(CMB) could potentially be a geochemical source of large low-shear-wave velocity provinces
300	(LLSVPs) beneath Africa and the Pacific, enriched in heat producing elements through
301	sequestration of crustal material (White, 2015). Furthermore, these results imply that the
302	LLSVPs could have formed due to preferential U and Th incorporation into CaSiO ₃ -perovskite
303	via fractional crystallization as a basal magma ocean solidified (Labrosse et al., 2007).

304	These results may further provide guidance of the design of geologic radioactive waste
305	disposal in Synroc (Ringwood et al., 1979). As perovskite (CaTiO ₃) and CaSiO ₃ -perovskite both
306	incorporate large cations into their A-site (Corgne and Wood, 2002; Corgne et al., 2003), these
307	calculations suggest similar substitution mechanisms to be at work in CaTiO ₃ at ambient
308	pressure. Therefore, the compatibility of U into aluminous CaSiO ₃ -perovskite at high pressures
309	may suggest that Synroc storage of ~ 1 at% uranium and transuranium actinides in CaTiO ₃ can be
310	stabilized through charge-coupled defects including 3+ cations such as Al in the system.
311	ACKNOWLEDGMENTS
312	Support to SNP from the Ohio State Undergraduate Research Scholarship, the Friends of
313	Orton Hall fund grant and the Columbus Rock and Mineral Society scholarship. Further support
314	for this research comes from NSF EAR 09-55647 and NSF EAR-PF 14-52545 to WRP and JSP,
315	respectively. All calculations were run at the Ohio Supercomputer Center, under computing
316	award PAS0238-1 to WRP. We thank Bethany Chidester, Alexandre Corgne, and
317	Razvan Caracas for their insightful reviews of this manuscript and their constructive
318	feedback. REFERENCES CITED
319	Akber, S.B. (2003). A theoretical study of perovskite solid solutions: towards an interpretation of
320	seismic tomographic data, PhD Thesis.
321	Arevalo, R. Jr., McDonough, W.F., and Luong, M. (2009) The K/U ratio of the silicate Earth:
322	Insights into mantle composition, structure and thermal evolution. Earth and
323	Planetary Science Letters, 278, 361-369.
324	Bauer, J.D., Labs, S., Weiss, S., Bayarjargal, L., Morgenroth, W., Milman, V., Perlov, A.,
325	Curtius, H., Bosbach, D., Za nker, H., and Winkler, B. (2014) High-Pressure Phase
326	Transition of Coffinite, USiO ₄ . The Journal of Physical Chemistry C, 118, 25141-25149.

327	Beattie, P. (1993) Uranium-thorium disequilibriaand partitioning on melting of garnet
328	peridotite. Nature, 363, 63-65.
329	Bose, P.P., Mittal, R., and Chaplot, S.L. (2009) Lattice dynamics and high pressure phase
330	stability of zircon structured natural silicates. Physical Review B, 79,
331	174301. Bruno, J. and Ewing, R.C. (2006) Spent nuclear fuel. Elements, 2, 343-349.
332	Caracas, R., Wentzcovitch, R., Price, G.D., and Brodholt, J. (2005). CaSiO ₃ perovskite at lower
333	mantle pressures. Geophysical Research Letters, 32, L06306.
334	Corgne, A., and Wood, B.J. (2002) $CaSiO_3$ and $CaTiO_3$ perovskite melt partitioning of
335	trace elements: Implications for gross mantle differentiation. Geophysical Research Letters, 29,
336	DOI:10.1029/2001GL014398.
337	Corgne, A., Allan, N.L., and Wood, B.J. (2003). Atomistic simulations of trace element
338	incorporation into the large site of MgSiO ₃ and CaSiO ₃ perovskites. Physics of the Earth
339	and Planetary Interiors, 139, 113-127.
340	Corgne, A., Liebske, C., Wood, B.J., Rubie, D.C., and Frost, D.J. (2005) Silicate perovskite-melt
341	partitioning of trace elements and geochemical signature of a deep perovskite reservoir.
342	Geochimica et Cosmochimica Acta, 69, 485-496.
343	de Koker, N.P., Stixrude, L., and Karki, B.B. (2008). Thermodynamics, structure, dynamics, and
344	freezing of Mg_2SiO_4 liquid at high pressure. Geochimica et Cosmochimica Acta, 72,
345	<u>1427-1441.</u>
346	Dorado, B., Amadon, B., Freyss, M., and Bertolus, M. (2009) DFT+U calculations of the ground
347	state and metastable states of uranium dioxide. Physical Review B – Condensed
348	Matter and Materials Physics, 79, 235125.

349	Downs, R.T., and Hall-Wallace, M. (2003) The American Mineralogist crystal structure
350	database. American Mineralogist, 88, 247-250.
351	Dudarev, S.L., Manh, D.N. and Sutton, A.P. (1997) Effect of Mott-Hubbard correlations on the
352	electronic structure and structural stability of uranium dioxide. Philosophical Magazine B,
353	75,613-628.
354	Dudarev, S.L., Botton, G.A., Savrasov, S.Y., Humphreys, C.J., and Sutton, A.P. (1998) Electron-
355	energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study.
356	Physical Review B, 57, 1505-1509.
357	Fiquet, G., Richet, P., and Montagnac, G. (1999) High-temperature thermal expansion of lime,
358	periclase, corundum and spinel. Physics and Chemistry of Minerals, 27, 103-111.
359	Fonseca, R.O.C., Mallmann, G., Sprung, P., Sommer, J.E., Heuser, A., Speelmanns, I.M., and
360	Blanchard, H. (2014) Redox controls on tungsten and uranium crystal/silicate melt
361	partitioning and implications for the U/W and Th/W ratio of the lunar mantle. Earth
362	and Planetary Science Letters, 404, 1-13.
363	Frost, D.J., and McCammon, C.A. (2008) The redox state of Earth's mantle. Annual Review
364	Earth and Planetary Science, 36, 389-420.
365	Gautron, L., Greaux, S., Andrault, D., Bolfan-Casanova, N., Guignot, N., and Bouhifd, M.A.
366	(2006) Uranium in the Earth's lower mantle. Geophysical Research Letters, 33, L23301,
367	DOI: 10.1029/2006GL027508.
368	Geng, H.Y., Chen, Y., Kaneta, Y., and Kinoshita, M. (2007) Structural behavior of uranium
369	dioxide under pressure by LSDA+U calculations. Physical Review B, 75, 054111.

370	Gréaux, S., Farges, F., Gautron, L., Trcera, N., Flank, A., and Lagarde, P. (2012) X-ray
371	absorption near edge structure (XANES) study of the speciation of uranium and thorium
372	in Al-rich CaSiO ₃ perovskite. American Mineralogist, 97, 100-109.
373	Gréaux, S., Gautron, L., Andrault, D., Bolfan-Casanova, N., Guignot, N., and Bouhifd, M.A.
374	(2009) Experimental high pressure and high temperature study of the incorporation of
375	uranium in Al-rich CaSiO ₃ perovskite. Physics of the Earth and Planetary Interiors, 174,
376	254-263.
377	Gréaux, S., Gautron, L., Andrault, D., Bolfan-Casanova, N., Guignot, N., and Haines, J. (2008)
378	Structural characterization of natural UO_2 at pressures up to 82 GPa and temperatures up
379	to 2200 K. American Mineralogist, 93, 1090-1098.
380	Hirose, K., Shimizu, N., van Westrenen, W., and Fei, Y. (2004) Trace element partitioning in
381	Earth's lower mantle and implications for geochemical consequences of partial melting at
382	the core-mantle boundary. Physics of the Earth and Planetary Interiors, 146, 249-260.
383	Idiri, M., Le Bihan, T., Heathman, S., and Rebizant, J. (2004) Behavior of actinide dioxides
384	under pressure: UO_2 and ThO_2 . Physical Review B, 70, 014113.
385	Irifune, T., and Ringwood, A.E. (1993) Phase transformations in subducted oceanic crust and
386	buoyancy relationships at depths of 600-800 km in the mantle. Earth and Planetary
387	Science Letters, 117, 101-110.Javoy, M., and Kaminski, E. (2014) Earth's Uranium and
388	Thorium content and geoneutrinos fluxes based on enstatite chondrites. Earth and
389	Planetary Science Letters, 407, 1-8.
390	Irifune, T. (1994) Absence of an aluminous phase in the upper part of the Earth's lower mantle.
391	Nature, 370, 131-133.

- Kesson, S.E., Gerald, J.F., and Shelley, J.M. (1998). Mineralogy and dynamics of a pyrolite
 lower mantle. Nature, 393, 252-255.
- 394 Kesson, S.E., Gerald, J.F., and Shelley, J.M.G. (1994). Mineral chemistry and density of

subducted basaltic crust at lower-mantle pressures. Nature, 372, 767-769.

- 396 Klotz, S., Chervin, J-C., Munsch, P., and Le Marchand, G. (2009) Hydrostatic limits of 11
- 397 pressure transmitting media. Journal of Physics D Applied Physics, 42, 075413.
- 398 Korenaga, J. (2008) Urey ratio and the structure and evolution of Earth's mantle. Reviews of

399 Geophysics, 46, RG2007, DOI:10.1029/2007RG000241.

400 Kresse, G., and Joubert, D. (1999) From ultrasoft pseudopotentials to the projector augmented-

401 wave method. Physical Review B, 59, 1758-1775.

- 402 Kresse, G., and Furthmüller, J. (1996) Efficient iterative schemes for ab initio total-energy
 403 calculations using a plane-wave basis set. Physical Review B, 6, 15-50.
- Labrosse, S., Hernlund, J., and Coltice, N. (2007) A crystallizing dense magma ocean at the base
 of the Earth's mantle. Nature, 450, 866-869.
- 406 Liechtenstein, A., Anisimov, V., and Zaanen, J. (1995) Density-functional theory and strong

407 interactions: Orbital ordering in Mott-Hubbard insulators. Physical Review B, 52, R5467408 R5470.

- 409 Liu, L. (1982) Phase transformations in MSiO₄ compounds at high pressures and their
- 410 geophysical implications. Earth and Planetary Science Letters, 57, 110-116.
- 411 McDonough, W.F., and Sun, S. (1995) The composition of the Earth. Chemical Geology, 120,
- 412 223-253.

413	Nishio-Hamane, D., Dekura, H., Seto, Y., and Yagi, T. (2015) Theoretical and experimental
414	evidence for the post-cotunnite phase transition in zirconia at high pressure. Physics and
415	Chemistry of Minerals, 42, 385-392.
416	Nishio-Hamane, D., Seto, Y., Nagai, T., and Fujino, K. (2007) Ferric iron and aluminum
417	partitioning between MgSiO ₃ -and CaSiO ₃ -perovskites under oxidizing conditions. Journal
418	of Mineralogical and Petrological Sciences, 102, 291-297.
419	Qiang, L., Jun-Sheng, Y., Duo-Hui, H., Qi-Long, C., and Fan-Hou, W. (2014) Phase transition
420	and thermodynamic properties of ThO ₂ : Quasi-harmonic approximation calculations and
421	anharmonic effects. Chinese Physics B, 23, 017101.
422	Richet, P., Mao, H., and Bell, P.M. (1988) Static compression and equation of state of CaO to
423	1.35 Mbar. Journal of Geophysical Research: Solid Earth, 93, 15279-15288.
424	Ringwood, A.E., Kesson, S.E., Ware, N.G., Hibberson, W., and Major, A. (1979) Immobilisation
425	of high level nuclear reactor wastes in SYNROC. Nature, 278, 219-223.
426	Samuel, H., and Farnetani, C.G. (2003) Thermochemical convection and helium concentrations
427	in mantle plumes. Earth and Planetary Science Letters, 207, 39-56.
428	Shannon, R.D. and Prewitt, C.T. (1969) Effective ionic radii in oxides and fluorides. Acta
429	crystallographica, B25, 925-946.
430	Shim, S.H., Jeanloz, R., & Duffy, T.S. (2002). Tetragonal structure of CaSiO3 perovskite above
431	20 GPa. Geophysical Research Letters, 29, 2166.
432	Siebert, J., Badro, J., Antonangeli, D. and Ryerson, F.J. (2012) Metal-silicate partitioning of Ni
433	and Co in a deep magma ocean. Earth and Planetary Science Letters, 321, 189-197.

434	Song, H.X., Liu, L., Geng, H.Y. and Wu, Q. (2013) First-principle study on structural and							
435	electronic properties of CeO ₂ and ThO ₂ under high pressures. Physical Review B, 87,							
436	184103 <u>.</u>							
437	Šrámek, O., McDonough, W.F., Kite, E.S., Lekić, V., Dye, S.T., and Zhong, S. (2013)							
438	Geophysical and geochemical constraints on geoneutrino fluxes from Earth's mantle.							
439	Earth and Planetary Science Letters, 361, 356-366.							
440	Taura, H., Yurimoto, H., Kato, T., and Sueno, S. (2001) Trace element partitioning between							
441	silicate perovskites and ultracalcic melt. Physics of the Earth and Planetary Interiors, 124,							
442	25-32.							
443	Taylor, M., and Ewing, R.C. (1978) The crystal structures of the ThSiO ₄ polymorphs: huttonite							
444	and thorite. Acta Crystallographica Section B: Structural Crystallography and Crystal							
445	Chemistry, 34, 1074-1079.							
446	Walter, M.J., Nakamura, E., Trønnes, R.G. and Frost, D.J. (2004) Experimental constraints on							
447	crystallization differentiation in a deep magma ocean. Geochimica et Cosmochimica Acta,							
448	68,4267-4284.							
449	Wang, B., Shi, H., Li, W., and Zhang, P. (2010) First-principles study of ground-state properties							
450								
450	and high pressure behavior of ThO_2 . Journal of Nuclear Materials, 399, 181-188.							
450 451	and high pressure behavior of ThO ₂ . Journal of Nuclear Materials, 399, 181-188. White, W.M. (2015) Isotopes, DUPAL, LLSVPs, and Anekantavada. Chemical Geology, 419,							
450 451 452	and high pressure behavior of ThO ₂ . Journal of Nuclear Materials, 399, 181-188. White, W.M. (2015) Isotopes, DUPAL, LLSVPs, and Anekantavada. Chemical Geology, 419, 10-28.							
450 451 452 453	 and high pressure behavior of ThO₂. Journal of Nuclear Materials, 399, 181-188. White, W.M. (2015) Isotopes, DUPAL, LLSVPs, and Anekantavada. Chemical Geology, 419, 10-28. Wood, B.J., Blundy, J.D., and Robinson, J.A.C. (1999) The role of clinopyroxene in generating 							
450 451 452 453 454	 and high pressure behavior of ThO₂. Journal of Nuclear Materials, 399, 181-188. White, W.M. (2015) Isotopes, DUPAL, LLSVPs, and Anekantavada. Chemical Geology, 419, 10-28. Wood, B.J., Blundy, J.D., and Robinson, J.A.C. (1999) The role of clinopyroxene in generating U-series disequilibrium during mantle melting. Geochimica et Cosmochimica Acta, 63, 							

- 456 Wyckoff, R. (1963) Structures of the Compounds RX₂. In Crystal Structures 1, 2nd ed., p. 239-
- 457 243. Interscience Publishers, New York, New York.
- 458 Zhang, F.X., Pointeau, V., Shuller, L.C., Reaman, D.M., Lang, M., Liu, Z., Hu, J., Panero, W.R.,
- 459 Becker, U., Poinssot, C., and Ewing, R.C. (2009) Structural transitions and electron
- 460 transfer in coffinite, $USiO_4$, at high pressure. American Mineralogist, 94, 916-920.

461

462	FIGURE CAPTIONS
463	Figure 1. Pressure induced phase transitions in $ActSiO_4$ ($Act = Th$, blue; $Act = U$, red) zircon
464	structure to monazite and scheelite structures (dash dot), in ActO ₂ Fm3m to Pnma (solid), and
465	the disfavored <i>Pbca</i> phase (dash).
466	Figure 2. The breakdown of A <u>ct</u> SiO ₄ (A <u>ct</u> = Th, blue; A <u>ct</u> = U, red) to the binary oxides A <u>ct</u> O ₂
467	+ SiO ₂ (stishovite). Huttonite (ThSiO ₄) decomposes to oxides at 11.1 GPa, scheelite-structure
468	USiO ₄ persists to lower mantle pressures and breaks down at approximately 51.7 GPa. Figure
469	3 . <u>The structures of CaSiO₃-perovskite with Act_{Ca} + V_{Ca} defects (left) and Act_{Ca} and</u>
470	$2(Al_{Si}')$ defects (right): blue octahedra are SiO_6 units, light blue octahedra are $Al_{Si}O_6$, blue-gray
471	sphere are Ca^{2+} atoms, and the green sphere is the Act _{Ca} defect.
472	Figure 4. The exchange between the Act_{Ca} + V_{Ca} and $Act_{Ca} + 2(Al_{Si})$ defects according to
473	equation 4 (Act = Th, blue; Act = U, red)
474	Figure 5. The enthalpy (<i>H</i>) of defect formation for the Act_{Ca} + 2(Al _{Si} ') and Act_{Ca} +
475	V_{Ca} " reactions (A <u>ct</u> = Th, blue; A <u>ct</u> = U, red). Phase transformations in the oxides and silicates
476	are marked according to a = ThSiO ₄ ($I4_1/amd$) to ThSiO ₄ ($P2_1/n$), b = USiO ₄ ($I4_1/amd$) to USiO ₄
477	$(I4_1/a)$, c = ThSiO ₄ (P2 ₁ /n) to ThO ₂ (Fm3m) + SiO ₂ , d = ThO ₂ (Fm3m) to ThO ₂ (Pnma), e =
478	USiO ₄ ($I4_1/a$) to UO ₂ (<i>Pnma</i>) + SiO ₂ , f = CaO (B1) to CaO (B2).

Parameter	neterThO2 (Fm3m)Thorianite		ThO ₂ (<i>Pnma</i>)		ThSiO ₄ (I4 ₁ /amd) Thorite		ThSiO ₄ (P2 ₁ /n) Huttonite	
	Theory	Experiment	Theory	Experiment	Theory	Experiment	Theory	Experiment
V_{θ} (Å ³)	177.22(18) ^a	$175.63(3)^{d}$	$166.5(3)^{a}$		$327.2(2)^{a}$	321.48^{f}	$302.9(4)^{a}$	297.14 ^f
	178 ^b		167.0 ^b		302 ^e		302 ^e	
	174.9 ^c		160.3 ^c					
K_0 (GPa)	$189(2)^{a}$	$198(2)^{d}$	$177(4)^{a}$		176.3(15) ^a		$164(4)^{a}$	
	191 ^b		148 ^b		197 ^e			
	187.6 ^c		202.1 ^c					
K'	$4.10(3)^{a}$	$4.6(3)^{d}$	$4.20(14)^{a}$		$4.20(3)^{a}$		$3.5(1)^{a}$	
	4.5 ^b		7.8 ^b					
	4.19 ^c		4.22°					
Stability	0 to 26.9 ^a	0 to 36^d	$26.9 \text{ to } > 80^{a}$		0 to 5.1 ^a	0 to $\sim 6^{g}$	5.1 to 11.2 ^a	~6 to ~ $10^{\rm g}$
Range	0 to 26.5 ^b		26.5 to $\sim 80^{b}$					
(GPa)	0 to 27.06 ^c							
Parameter	UO ₂ (<i>Fm</i> 3 <i>m</i>)		UO ₂ (Pnma)		USiO ₄ (<i>I</i> 4 ₁ / <i>amd</i>)		$USiO_4(I4_1/a)$	
	Uraninite		-		Coffinite			
	Theory	Experiment	Theory	Experiment	Theory	Experiment	Theory	Experiment
V_{θ} (Å ³)	167.303 ^a	$163.95(4)^{d}$	158.208 ^a		312.662 ^a	306.25(6) ⁱ	277.973 ^a	273.0 ⁱ
	161 ^h	$158.9(5)^{i}$	152.3 ^h		284 ^e	305.58(2) ^j	270 ^e	
					306.21 ^j		271.39 ^j	
K_0 (GPa)	176.878^{a}	$207(2)^{d}$	151.381 ^a		162.445 ^a	$188(4)^{i}$	189.599 ^a	$274(16)^{i}$
	208.3 ^h		192.5 ^h		217 ^e	$181(5)^{j}$	$212(1)^{j}$	$195(6)^{j}$
					$190(1)^{j}$			
K'	3.65021 ^a	$4.5(4)^{d}$	4.77824 ^a		4 ^a *	4^{i*}	4^{a*}	
Stability	0 to 29.2 ^a	0 to $\sim 40^{d}$	29.2 to $>80^{a}$		0 to 6.4 ^a	0 to 14–17 ⁱ	6.4 to 51.7 ^a	$14-17$ up to 45^{i}
Range	0 to $38^{\rm h}$		38 to $\sim 80^{\rm h}$		0 to 6^{e}	0 to ~ 15^{j}	~15 to $>35^{j}$. F
(GPa)					0 to $\sim 15^{j}$			

Notes: ^aThis study, ^bWang et al., 2010, ^cQiang et al., 2014, ^dIdiri et al., 2004, ^eBose et al., 2009, ^fTayler and Ewing, 1978, ^gLiu 1982, ^bGeng et al., 2007, ⁱZhang et al., 2009, ^jBauer et al., 2014 *Fixed to 4.

Table 1. Equations of states of actinide oxide and silicate phases, where V_0 is the zero pressure volume, K_0 is the zero-pressure bulk

modulus, and K' is the pressure derivative of the bulk modulus. No experimental compression equations of state have been measured

for the *Pnma* phases of AO₂ or huttonite, and no ab initio equations of state have been calculated for huttonite.

Figure 2.

Figure 4.

Figure 5.

