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ABSTRACT 15 

The 10Å phase, Mg3Si4O10(OH)2·H2O, is a high-pressure hydrous phyllosilicate considered as 16 

an important link in the succession of hydrous phases transporting water into the deep mantle. In 17 

this study, in situ synchrotron X-ray diffraction combined with external heating diamond-anvil 18 

cell was used to determine limits of the 10Å phase stability at pressures above 7 GPa. A reaction 19 

‘10Å phase + H2O → hydroxide-perovskite (3.65Å phase) + stishovite’ at about 10 GPa was 20 

found to be a high-pressure boundary of the 10Å phase stability field. A dehydration temperature 21 

of the 10Å phase ‘10Å phase → enstatite + stishovite + H2O’ decreases with pressure from 22 

690°C at 7 GPa to 450°C at 10 GPa; a nonvariant point where 10Å phase, hydroxide-perovskite 23 
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and enstatite coexist in the presence of stishovite and hydrous fluid was found near 10 GPa and 24 

450°C. 25 

KEYWORDS: 10Å phase, 3.65Å phase, hydroxide-perovskite, DHMS, deep water cycle 26 

 27 

INTRODUCTION 28 

A number of observations, such as electrical conductivity anomalies in the mantle transition 29 

zone (MTZ) (e.g., Koyama et al., 2006), seismic evidences of dehydration melting beneath MTZ 30 

(Schmandt et al. 2014), or finding of a hydrous ringwoodite inclusion in an ultra-deep diamond 31 

(Pearson et al. 2014) convincingly show that MTZ, at least locally, is hydrated. The latter 32 

requires an effective mechanism of recycling of surface water to the deep mantle in the cold 33 

subduction settings (Ohtani 2015). The most important water reservoir in the subducting slab is 34 

serpentinized peridotite of its bottom part (Faccenda et al. 2009), because of (1) higher absolute 35 

water content than in sedimentary and gabbro-basaltic layers (Rupke et al. 2004), and (2) cooler 36 

geotherm of the slab Moho surface compared with slab – mantle wedge interface favorable for 37 

water preservation (Syracuse et al. 2010). 38 

Due to limited temperature stability, serpentine cannot transport H2O to the deep mantle. 39 

However, it can be transformed to dense hydrous magnesium silicates (DHMS) stable at mantle 40 

conditions. A commonly considered scheme of water transport to the MTZ implies a successive 41 

transformations ‘serpentine → phase A, Mg7Si2O8(OH)6 → phase E, Mg2.3Si1.25H2.4O6 → 42 

hydrous wadsleyite → hydrous ringwoodite’ (Litasov and Ohtani 2003; Ohtani et al. 2004). In 43 

this scheme, the range of subduction geotherms suitable for water transport to the mantle is 44 

limited by intersection point of serpentine and phase A dehydration curves, ~ 6 GPa at 600°C 45 

(Schmidt and Poli 1998). Such conditions, however, can be achieved only in extremely cold 46 

subduction zones, so the geological scale of this process remains questionable (Fig. 1). 47 
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H2O initially stored in the serpentinized peridotite (Schmidt and Poli 2014) even along ‘normal’ 62 

subduction geotherm (Fig. 1). 63 

The dehydration of the 10Å phase limits its stability field by temperature: 64 

Mg3Si4O10(OH)2·H2O (10Å phase) → 3MgSiO3 (enstatite) + SiO2 (coesite / stishovite) + 65 

2H2O (1) 66 

Pawley et al. (2011) studied this reaction between 5 and 7 GPa (in the coesite stability field) 67 

and found that it proceeds at 690°C independently on the pressure applied. However, at higher 68 

pressures the slope of the given reaction has to change because of coesite → stishovite transition. 69 

A low-pressure limit of the 10Å phase stability corresponds to the reaction (2) taking place at 70 

~5 GPa and studied in situ by Chinnery et al. (1999) and Rashchenko et al. (2016): 71 

Mg3Si4O10(OH)2 + H2O →Mg3Si4O10(OH)2·H2O (10Å phase) (2) 72 

This reaction actually represents an intercalation of water molecules into the interlayer space 73 

of talc. 74 

A high-pressure limit of the 10Å phase is poorly understood. Pawley et al. (2011) reported 75 

that decomposition of the 10Å phase near 10 GPa can be associated with formation of the so-76 

called 3.65Å phase, whose composition, MgSi(OH)6, and hydroxide-perovskite structure were 77 

determined later (Wunder et al. 2011): 78 

3Mg3Si4O10(OH)2·H2O (10Å phase) → 2MgSi(OH)6 (3.65Å phase) + 7MgSiO3 (enstatite) + 79 

3SiO2 (stishovite) in dry conditions (3), 80 

and Mg3Si4O10(OH)2·H2O (10Å phase) + 7H2O → 3MgSi(OH)6 (3.65Å phase) + SiO2 81 

(stishovite) at a[H2O] = 1 (4) 82 

We used in situ synchrotron X-ray diffraction combined with high-temperature diamond-anvil 83 

cell to study phase equilibria, which restrict the stability field of the 10Å phase, and constrain the 84 
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position of nonvariant point where the 10Å phase, 3.65Å phase and enstatite coexist in the 85 

presence of hydrous fluid. 86 

 87 

EXPERIMENTAL 88 

Natural talc from Shabrovskoye deposit (Central Ural) with Mg2.94Fe0.05Al0.05Si3.97O10(OH)2 89 

stoichiometry (X-ray fluorescence analysis) was used as a starting material. The talc flakes and a 90 

small piece of gold as a pressure standard were placed in a 100 μm hole in a rhenium gasket 91 

filled with distilled water. High-pressure – high-temperature conditions were achieved in an 92 

external heating diamond anvil cell (DAC) with 600 μm culets and molybdenum resistive heater 93 

(Bassett et al. 1993). 94 

Phase transformations in the sample were studied by in situ synchrotron X-ray diffraction at 95 

BL10XU beamline of SPring-8 synchrotron radiation facility (Hyogo, Japan). An X-ray beam 96 

with λ = 0.41468 Å monochromatized with Si (111) double crystal and focused with compound 97 

X-ray refractive lenses was used in combination with an image plate (IP) detector (Rigaku 98 

RAXIS-IV). 99 

The sample temperature was controlled by an S-type (Pt/Rh 90%/10% – Pt) thermocouple 100 

mounted at each anvil near the gasket. The difference between thermocouples readings not 101 

exceeded ±1°C, and a deviation of sample temperature from that measured by thermocouples for 102 

this type of DAC is believed to be within ±1.5°C (Bassett et al. 1993). Each temperature 103 

increment during the experiment was accompanied by a corresponding pressure increase due to 104 

the sample thermal pressure and vice versa. Several times during the experiment the occurred 105 

pressure was corrected to the desired value using control screws. The pressure was measured 106 

using equation of state of gold from Sokolova et al. (2013) with uncertainty of ±0.1 GPa. The P-107 

T-t scheme of the experiment is given in Table 1. 108 
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Table 1. P-T-t scheme of the experiment. ‘+’ – phase detected, ‘–’ – phase absent; phases in minor amount are 109 

given in brackets. 110 

Observation # Time, min P, GPa T, °C 
talc / 10Å 

phase 

3.65Å 

phase 
enstatite stishovite 

First run        

1 0 3.2 25 + – – – 

2 65 5.4 100 + – – – 

3 95 8.6 200 + – – – 

4 125 10.7 300 + – – – 

5 150 11.9 400 + (+) – (+) 

6 185 9.7 500 (+) + – + 

7 280 9 500 + – – + 

8* 0 8.9 500 + – – + 

9 80 11.9 550 – (+) + + 

10 150 11.7 500 + + + + 

11 185 11.4 450 + + + + 

Second run        

1a 0 5.7 300 + – – – 

2a 85 10.3 450 + + – + 

3a 115 12.0 500 + + – + 

4a 145 10.5 500 (+) + + + 

5a 175 9.3 500 (+) (+) + + 

6a 215 10.4 550 – – + + 

*After the 7th observation the DAC was cooled from 500°C to ambient temperature without decompression due 111 

to a beam shutdown. Then, after ~27 hours, P-T conditions were restored (observation #8) and experiment 112 

continued. 113 

 114 

RESULTS 115 
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 135 

Figure 4. Transformation of metastable talc and 10Å phase (obs. #5) into 3.65Å phase + stishovite (obs. #6) and 136 

back to the 10Å phase (obs. #7). 137 

Just after the first peaks of the 3.65Å phase and stishovite were observed, a temperature was 138 

increased to 500°C and within 35 min the sample transformed into the mixture of 3.65Å phase 139 

and stishovite according to the reaction (4). The newly formed phases demonstrated absence of 140 

texturing in contrast to initial talc flakes (Fig. 2, obs. #6). A negative volume effect of the 141 

reaction accompanied by gasket relaxation at high temperature led to the pressure decrease from 142 

11.9 to 9.7 GPa, bringing the sample back to the stability field of 10Å phase, and the next 143 

observation (#7) showed the complete reverse transformation of 3.65Å phase + stishovite into 144 

10Å phase + H2O. An interesting feature of observed phase transformation is the presence of 145 

residual stishovite in the sample (5-10 wt. % of stishovite + 90-95 wt. % of 10Å phase) even 146 

after complete disappearance of the 3.65Å phase. The latter can be attributed to the formation of 147 
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 174 

Figure 7. Stability field of the 10Å phase. Gray lines – data from previous works (Pawley and Wood 1995; 175 

Chinnery et al. 1999; Pawley et al. 2011), black lines – data from this study. ‘×’, ‘+’ and diamonds correspond to the 176 

conditions of 10Å phase, 3.65Å phase, and enstatite growth, respectively. Small symbols corresponds to observation 177 

of Pawley et al. 2011. A structural transformation of the 10Å phase observed spectroscopically by Comodi et al. 178 

(2006, 2007) is shown as H-10Å / L-10Å. The Moho geotherms in subducting slab for Antilles (A), New Zealand 179 

(NZ), Kermadec (K) and Tonga (T) after Syracuse et al. (2010) are shown as examples of ‘hot’, ‘normal’, ‘cold’ and 180 

‘ultracold’ subduction, respectively. 181 

The high-pressure limit of the 10Å phase stability in the presence of hydrous fluid correspond 182 

to the reaction (4) producing MgSi(OH)6 hydroxide-perovskite (3.65Å phase) and stishovite: 183 
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Mg3Si4O10(OH)2·H2O (10Å phase) + 7H2O → 3MgSi(OH)6 (3.65Å phase) + SiO2 (stishovite) 184 

(4) 185 

 186 

IMPLICATIONS 187 

1. Geological significance of the 10Å phase 188 

Positions of different modern subduction geotherms in relation to the stability field of the 10Å 189 

phase (Fig. 7) constrain PT-ranges where the 10Å phase can exist in a subducting slab. The ‘hot’ 190 

subduction geotherm (A) lies outside the 10Å phase stability field. Therefore pure 10Å phase 191 

cannot be an equilibrium phase in the ‘hot’ subduction setting. An intermediate temperature 192 

geotherm (NZ) crosses the 10Å phase stability field between 5 and 7 GPa, indicating that at 150-193 

225 km the 10Å phase is a potential water reservoir of the subducting slab. Along a ‘cold’ 194 

subduction geotherm (K) the 10Å phase can exist in a wide pressure range of 4-9 GPa 195 

corresponding to 125-275 km depths. A dehydration of the 10Å phase below 275 km may be 196 

responsible for the deep seismicity of the lower part of double seismic zones. 197 

We should also note that the discussed stability field actually corresponds to the silica-rich 198 

‘talc/10Å phase + H2O’ system with Mg:Si ratio of 3:4. The subducting serpentinized peridotite 199 

contains less silica (Mg:Si > 1:1), and subducted water can be also retained in such Mg-rich 200 

phases as serpentine and phase A, Mg7Si2O8(OH)6, whose stability fields partly overlap the 201 

stability field of the 10Å phase. Nevertheless, Ulmer and Trommsdorff (1999) after thorough 202 

review of existed experimental data on serpentinized peridotites underlined that ‘the 10Å phase 203 

forms part of the stable phase assemblage in a PT-interval between 5.5 and 7.5 GPa just above 204 

the antigorite breakdown’. On the other hand, the presence of Al2O3 and K2O can significantly 205 

broaden the stability field of pure 10Å phase (Fumagalli and Poli 2005; Fumagalli et al. 2009; 206 

Dvir et al. 2011). The latter explains experimental observations of the 10Å phase above the 207 
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temperature of its pure end-member decomposition (690°C) – see Fig. 1, and also broadens the 208 

range of geotherms suitable for the 10Å phase formation. 209 

2. Geological significance of the MgSi(OH)6 hydroxide-perovskite (3.65Å phase) 210 

Although the 3.65Å phase was first reported decades ago in short conference abstracts of 211 

Sclar and Morzenti (1971) and Rice et al. (1989), its MgSi(OH)6 composition and an A-vacant 212 

perovskite structure of this the most H2O-rich DHMS were determined only recently (Wunder et 213 

al. 2011, 2012; Welch and Wunder 2012; Mookherjee et al. 2015). The low temperature stability 214 

of the 3.65Å phase makes it unrealistic for the most of subduction geotherms (Fig. 7). However, 215 

the position of Moho geotherm of Tonga subduction zone, which is the coldest geotherm 216 

according to Syracuse et al. (2010) (Fig. 6), allows us to suggest that a succession ‘serpentine → 217 

10Å phase → 3.65Å phase’ can lead to formation of the MgSi(OH)6 hydroxide-perovskite at 218 

depths below 300 km. The presence of aluminum may probably extend the temperature stability 219 

of the MgSi(OH)6, similar to that shown for Mg2+Si4+ ↔ 2Al3+ substitution in a high-pressure 220 

phase D, MgSi2O4(OH)2 (Ohira et al. 2014; Pamato et al. 2015), and requires a further study. 221 

3. Kinetics of hydrous phases decomposition 222 

We should also note an extreme reactivity of all hydrous phases observed in our experiments. 223 

For example, a complete high-pressure breakdown ‘10Å phase → 3.65Å phase + stishovite’ 224 

(observations #5-6) was observed in 35 minutes only, in contrast to reported syntheses of the 225 

3.65Å phase from ‘brucite + quartz + water’ mixture (114 h) and gel (77 h) under similar PT-226 

conditions (Wunder et al. 2011). The latter allows us to recommend the 10Å phase (or talc) as a 227 

highly reactive starting material for high-speed synthesis of DHMS. The fast kinetics of the 228 

observed reactions also allowed us successfully implement synchrotron-based in situ XRD 229 

coupled with high-temperature DAC for real-time observation of forward and backward 230 

reactions in the studied system. Such an approach (although requiring a fact kinetics) seems very 231 
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perspective for petrological investigations instead of time-consuming routine quenching 232 

experiments. 233 
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